Skip to content
体验新版
项目
组织
正在加载...
登录
切换导航
打开侧边栏
PaddlePaddle
Paddle
提交
ae14bad1
P
Paddle
项目概览
PaddlePaddle
/
Paddle
大约 1 年 前同步成功
通知
2298
Star
20931
Fork
5422
代码
文件
提交
分支
Tags
贡献者
分支图
Diff
Issue
1423
列表
看板
标记
里程碑
合并请求
543
Wiki
0
Wiki
分析
仓库
DevOps
项目成员
Pages
P
Paddle
项目概览
项目概览
详情
发布
仓库
仓库
文件
提交
分支
标签
贡献者
分支图
比较
Issue
1,423
Issue
1,423
列表
看板
标记
里程碑
合并请求
543
合并请求
543
Pages
分析
分析
仓库分析
DevOps
Wiki
0
Wiki
成员
成员
收起侧边栏
关闭侧边栏
动态
分支图
创建新Issue
提交
Issue看板
未验证
提交
ae14bad1
编写于
11月 09, 2022
作者:
W
Wen Sun
提交者:
GitHub
11月 09, 2022
浏览文件
操作
浏览文件
下载
电子邮件补丁
差异文件
refactor: ProcessGroupNCCL (#47740)
上级
87d97246
变更
4
隐藏空白更改
内联
并排
Showing
4 changed file
with
85 addition
and
147 deletion
+85
-147
paddle/fluid/distributed/collective/ProcessGroup.h
paddle/fluid/distributed/collective/ProcessGroup.h
+0
-8
paddle/fluid/distributed/collective/ProcessGroupNCCL.cc
paddle/fluid/distributed/collective/ProcessGroupNCCL.cc
+76
-104
paddle/fluid/distributed/collective/ProcessGroupNCCL.h
paddle/fluid/distributed/collective/ProcessGroupNCCL.h
+9
-14
paddle/fluid/pybind/distributed_py.cc
paddle/fluid/pybind/distributed_py.cc
+0
-21
未找到文件。
paddle/fluid/distributed/collective/ProcessGroup.h
浏览文件 @
ae14bad1
...
...
@@ -350,14 +350,6 @@ class ProcessGroup {
GetBackendName
()));
}
virtual
std
::
shared_ptr
<
ProcessGroup
::
Task
>
_ReduceScatterBase
(
phi
::
DenseTensor
&
,
// NOLINT
phi
::
DenseTensor
&
,
// NOLINT
const
ReduceScatterOptions
&
)
{
PADDLE_THROW
(
platform
::
errors
::
InvalidArgument
(
"ProcessGroup%s does not support ReduceScatter"
,
GetBackendName
()));
}
protected:
const
int
rank_
;
const
int
size_
;
...
...
paddle/fluid/distributed/collective/ProcessGroupNCCL.cc
浏览文件 @
ae14bad1
...
...
@@ -33,7 +33,7 @@ ProcessGroupNCCL::NCCLTask::NCCLTask(const Place& place,
bool
use_calc_stream
)
:
TaskStream
(
rank
,
comm_type
,
sync_op
,
use_calc_stream
),
comm_event_
(
place
),
place_
(
place
)
{}
task_
place_
(
place
)
{}
ProcessGroupNCCL
::
NCCLTask
::~
NCCLTask
()
{}
...
...
@@ -53,8 +53,9 @@ bool ProcessGroupNCCL::NCCLTask::Wait(std::chrono::milliseconds timeout) {
return
true
;
}
const
auto
*
calc_ctx
=
platform
::
DeviceContextPool
::
Instance
().
Get
(
place_
);
comm_event_
.
Wait
(
platform
::
Place2DeviceType
(
place_
),
calc_ctx
);
const
auto
*
calc_ctx
=
platform
::
DeviceContextPool
::
Instance
().
Get
(
task_place_
);
comm_event_
.
Wait
(
platform
::
Place2DeviceType
(
task_place_
),
calc_ctx
);
if
(
FLAGS_nccl_blocking_wait
)
{
// NOTE(shenliang03): It will block host for sync
...
...
@@ -63,7 +64,7 @@ bool ProcessGroupNCCL::NCCLTask::Wait(std::chrono::milliseconds timeout) {
}
}
if
(
barrier_
)
{
if
(
IsBlockCPUInWait
()
)
{
// If we use the work to do barrier, we should block cpu
#ifdef PADDLE_WITH_CUDA
PADDLE_ENFORCE_GPU_SUCCESS
(
cudaDeviceSynchronize
());
...
...
@@ -192,7 +193,7 @@ std::shared_ptr<ProcessGroup::Task> ProcessGroupNCCL::Barrier(
/*sync_op*/
true
,
/*use_calc_stream*/
false
);
auto
nccl_task
=
dynamic_cast
<
NCCLTask
*>
(
task
.
get
());
nccl_task
->
barrier_
=
true
;
nccl_task
->
SetBlockCPUInWait
()
;
return
task
;
}
...
...
@@ -250,6 +251,10 @@ void ProcessGroupNCCL::BroadcastUniqueNCCLID(ncclUniqueId* nccl_id) {
void
ProcessGroupNCCL
::
CreateNCCLEnvCache
(
const
Place
&
place
,
const
std
::
string
&
place_key
)
{
if
(
place_to_comm_ctx_
.
size
()
>
0
)
{
VLOG
(
3
)
<<
"Warning: Tensors from multiple devices are not supported yet."
;
}
ncclUniqueId
nccl_id
;
if
(
rank_
==
0
)
{
PADDLE_ENFORCE_GPU_SUCCESS
(
platform
::
dynload
::
ncclGetUniqueId
(
&
nccl_id
));
...
...
@@ -260,7 +265,6 @@ void ProcessGroupNCCL::CreateNCCLEnvCache(const Place& place,
<<
", place: "
<<
place_key
<<
", nccl uniqueid: "
<<
SerializeNCCLUniqueId
(
nccl_id
);
calc_event_
=
std
::
make_shared
<
platform
::
DeviceEvent
>
(
place
);
auto
*
calc_ctx
=
static_cast
<
phi
::
GPUContext
*>
(
platform
::
DeviceContextPool
::
Instance
().
Get
(
place
));
auto
comm_ctx
=
std
::
make_unique
<
phi
::
GPUContext
>
(
place
);
...
...
@@ -269,20 +273,23 @@ void ProcessGroupNCCL::CreateNCCLEnvCache(const Place& place,
&
nccl_comm
,
GetSize
(),
nccl_id
,
GetRank
()));
comm_ctx
->
set_nccl_comm
(
nccl_comm
);
place_to_calc_ctx_
[
place_key
]
=
calc_ctx
;
place_to_comm_ctx_
[
place_key
]
=
std
::
move
(
comm_ctx
);
place_to_calc_event_
.
emplace
(
place_key
,
place
);
place_to_calc_ctx_
.
emplace
(
place_key
,
calc_ctx
);
place_to_comm_ctx_
.
emplace
(
place_key
,
std
::
move
(
comm_ctx
));
// TODO(sunyilun): for compatibility, will be removed later
places_to_ctx_
[
place_key
]
=
{
place_to_comm_ctx_
[
place_key
].
get
()};
std
::
vector
<
phi
::
GPUContext
*>
comm_ctx_wrapper
{
place_to_comm_ctx_
[
place_key
].
get
()};
places_to_ctx_
.
emplace
(
place_key
,
comm_ctx_wrapper
);
}
void
ProcessGroupNCCL
::
SyncCalcStream
(
const
Place
&
place
,
const
std
::
shared_ptr
<
platform
::
DeviceEvent
>&
event
)
{
void
ProcessGroupNCCL
::
SyncCalcStream
(
const
Place
&
place
)
{
const
std
::
string
&
key
=
GetKeyFromPlace
(
place
);
const
auto
*
calc_ctx
=
place_to_calc_ctx_
[
key
];
const
auto
*
comm_ctx
=
place_to_comm_ctx_
[
key
].
get
();
event
->
Record
(
calc_ctx
);
event
->
Wait
(
platform
::
Place2DeviceType
(
place
),
comm_ctx
);
auto
&
calc_event
=
place_to_calc_event_
.
at
(
key
);
const
auto
*
calc_ctx
=
place_to_calc_ctx_
.
at
(
key
);
const
auto
*
comm_ctx
=
place_to_comm_ctx_
.
at
(
key
).
get
();
calc_event
.
Record
(
calc_ctx
);
calc_event
.
Wait
(
platform
::
Place2DeviceType
(
place
),
comm_ctx
);
}
template
<
typename
Fn
>
...
...
@@ -296,26 +303,29 @@ std::shared_ptr<ProcessGroup::Task> ProcessGroupNCCL::Collective(
const
auto
&
place
=
in_tensor
.
place
();
const
auto
&
key
=
GetKeyFromPlace
(
place
);
if
(
!
calc_event_
)
{
platform
::
CUDADeviceGuard
cuda_guard
(
place
);
if
(
place_to_comm_ctx_
.
find
(
key
)
==
place_to_comm_ctx_
.
end
())
{
CreateNCCLEnvCache
(
place
,
key
);
}
if
(
!
use_calc_stream
)
{
SyncCalcStream
(
place
,
calc_event_
);
SyncCalcStream
(
place
);
}
auto
task
=
CreateTask
(
place
,
rank_
,
comm_type
,
sync_op
,
use_calc_stream
);
const
auto
*
calc_ctx
=
place_to_calc_ctx_
[
key
];
const
auto
&
comm_ctx
=
place_to_comm_ctx_
[
key
];
const
auto
*
calc_ctx
=
place_to_calc_ctx_
.
at
(
key
);
const
auto
&
comm_ctx
=
place_to_comm_ctx_
.
at
(
key
);
auto
nccl_comm
=
comm_ctx
->
nccl_comm
();
auto
nccl_stream
=
use_calc_stream
?
calc_ctx
->
stream
()
:
comm_ctx
->
stream
();
fn
(
out_tensor
,
in_tensor
,
comm_ctx
->
nccl_comm
()
,
nccl_stream
);
fn
(
out_tensor
,
in_tensor
,
nccl_comm
,
nccl_stream
);
if
(
!
use_calc_stream
)
{
if
(
FLAGS_use_stream_safe_cuda_allocator
)
{
memory
::
RecordStream
(
in_tensor
.
Holder
(),
nccl_stream
);
}
task
->
comm_event_
.
Record
(
comm_ctx
.
get
()
);
task
->
UpdateWaitChain
(
*
comm_ctx
);
}
return
task
;
...
...
@@ -352,13 +362,13 @@ void ProcessGroupNCCL::CheckSplitSizes(std::vector<int64_t>* split_sizes,
// TODO(sunyilun): methods below will be removed later
void
SyncDefaultStream
(
const
std
::
vector
<
Place
>&
places
,
const
std
::
shared_ptr
<
platform
::
DeviceEvent
>&
nccl_event
,
platform
::
DeviceEvent
&
nccl_event
,
// NOLINT
std
::
vector
<
phi
::
GPUContext
*>&
dev_ctx
)
{
// NOLINT
for
(
size_t
i
=
0
;
i
<
places
.
size
();
++
i
)
{
auto
*
default_ctx
=
static_cast
<
phi
::
GPUContext
*>
(
platform
::
DeviceContextPool
::
Instance
().
Get
(
places
[
i
]));
nccl_event
->
Record
(
default_ctx
);
nccl_event
->
Wait
(
platform
::
Place2DeviceType
(
places
[
i
]),
dev_ctx
[
i
]);
nccl_event
.
Record
(
default_ctx
);
nccl_event
.
Wait
(
platform
::
Place2DeviceType
(
places
[
i
]),
dev_ctx
[
i
]);
}
}
...
...
@@ -389,7 +399,7 @@ ProcessGroupNCCL::NCCLTask::NCCLTask(
const
std
::
vector
<
phi
::
DenseTensor
>&
inputs
)
:
TaskStream
(
rank
,
inputs
,
CommType
),
comm_event_
(
places
[
0
]),
place_
(
places
[
0
])
{}
task_
place_
(
places
[
0
])
{}
ProcessGroupNCCL
::
NCCLTask
::
NCCLTask
(
const
std
::
vector
<
Place
>&
places
,
...
...
@@ -400,7 +410,7 @@ ProcessGroupNCCL::NCCLTask::NCCLTask(
bool
use_calc_stream
)
:
TaskStream
(
rank
,
inputs
,
comm_type
,
sync_op
,
use_calc_stream
),
comm_event_
(
places
[
0
]),
place_
(
places
[
0
])
{}
task_
place_
(
places
[
0
])
{}
// create NCCLManager cache for places_key
void
ProcessGroupNCCL
::
CreateNCCLManagerCache
(
...
...
@@ -437,17 +447,18 @@ void ProcessGroupNCCL::CreateNCCLManagerCache(
NCCLCHECK
(
platform
::
dynload
::
ncclCommInitRank
(
&
nccl_comm
,
GetSize
(),
nccl_id
,
GetRank
()));
dev_ctx
[
i
]
->
set_nccl_comm
(
nccl_comm
);
dev_ctx_raw
[
i
]
=
dev_ctx
[
i
].
get
();
}
PADDLE_ENFORCE_GPU_SUCCESS
(
platform
::
dynload
::
ncclGroupEnd
());
calc_event_
=
std
::
make_shared
<
platform
::
DeviceEvent
>
(
places
[
0
]);
// TODO(sunyilun): for compatibility, will be removed later
place_to_calc_ctx_
[
places_key
]
=
static_cast
<
phi
::
GPUContext
*>
(
platform
::
DeviceContextPool
::
Instance
().
Get
(
places
[
0
]));
place_to_comm_ctx_
[
places_key
]
=
std
::
move
(
dev_ctx
[
0
]);
place_to_calc_event_
.
emplace
(
places_key
,
places
[
0
]);
place_to_calc_ctx_
.
emplace
(
places_key
,
static_cast
<
phi
::
GPUContext
*>
(
platform
::
DeviceContextPool
::
Instance
().
Get
(
places
[
0
])));
place_to_comm_ctx_
.
emplace
(
places_key
,
std
::
move
(
dev_ctx
[
0
]));
// These caches will be useful to process sync/wait/communicate
places_to_ctx_
.
emplace
(
places_key
,
std
::
move
(
dev_ctx_raw
));
...
...
@@ -466,13 +477,14 @@ std::shared_ptr<ProcessGroup::Task> ProcessGroupNCCL::Collective(
{
std
::
lock_guard
<
std
::
mutex
>
lock
(
mutex_
);
if
(
!
calc_event_
)
{
if
(
place_to_comm_ctx_
.
find
(
key
)
==
place_to_comm_ctx_
.
end
()
)
{
CreateNCCLManagerCache
(
key
,
places
);
}
}
if
(
!
use_calc_stream
)
{
SyncDefaultStream
(
places
,
calc_event_
,
places_to_ctx_
[
key
]);
SyncDefaultStream
(
places
,
place_to_calc_event_
.
at
(
key
),
places_to_ctx_
.
at
(
key
));
}
auto
task
=
...
...
@@ -492,12 +504,12 @@ std::shared_ptr<ProcessGroup::Task> ProcessGroupNCCL::Collective(
platform
::
DeviceContextPool
::
Instance
().
Get
(
places
[
i
]))
->
stream
();
}
else
{
nccl_stream
=
places_to_ctx_
[
key
]
[
i
]
->
stream
();
nccl_stream
=
places_to_ctx_
.
at
(
key
)
[
i
]
->
stream
();
}
fn
(
inputs
[
i
],
outputs
[
i
],
places_to_ctx_
[
key
]
[
i
]
->
nccl_comm
(),
places_to_ctx_
.
at
(
key
)
[
i
]
->
nccl_comm
(),
nccl_stream
);
}
}
...
...
@@ -513,7 +525,7 @@ std::shared_ptr<ProcessGroup::Task> ProcessGroupNCCL::Collective(
platform
::
DeviceContextPool
::
Instance
().
Get
(
places
[
i
]))
->
stream
();
}
else
{
nccl_stream
=
places_to_ctx_
[
key
]
[
i
]
->
stream
();
nccl_stream
=
places_to_ctx_
.
at
(
key
)
[
i
]
->
stream
();
}
memory
::
RecordStream
(
inputs
[
i
].
Holder
(),
nccl_stream
);
...
...
@@ -524,7 +536,7 @@ std::shared_ptr<ProcessGroup::Task> ProcessGroupNCCL::Collective(
if
(
!
use_calc_stream
)
{
for
(
size_t
i
=
0
;
i
<
inputs
.
size
();
++
i
)
{
cuda_guard
.
SetDevice
(
places
[
i
]);
task
->
comm_event_
.
Record
(
places_to_ctx_
[
key
]
[
i
]);
task
->
UpdateWaitChain
(
*
places_to_ctx_
.
at
(
key
)
[
i
]);
}
}
...
...
@@ -542,12 +554,13 @@ std::shared_ptr<ProcessGroup::Task> ProcessGroupNCCL::Collective(
{
std
::
lock_guard
<
std
::
mutex
>
lock
(
mutex_
);
if
(
!
calc_event_
)
{
if
(
place_to_comm_ctx_
.
find
(
key
)
==
place_to_comm_ctx_
.
end
()
)
{
CreateNCCLManagerCache
(
key
,
places
);
}
}
SyncDefaultStream
(
places
,
calc_event_
,
places_to_ctx_
[
key
]);
SyncDefaultStream
(
places
,
place_to_calc_event_
.
at
(
key
),
places_to_ctx_
.
at
(
key
));
auto
task
=
CreateTask
(
places
,
rank_
,
op_type
,
inputs
);
...
...
@@ -558,10 +571,10 @@ std::shared_ptr<ProcessGroup::Task> ProcessGroupNCCL::Collective(
platform
::
NCCLGroupGuard
nccl_guard
;
for
(
size_t
i
=
0
;
i
<
inputs
.
size
();
++
i
)
{
cuda_guard
.
SetDevice
(
places
[
i
]);
const
auto
&
nccl_stream
=
places_to_ctx_
[
key
]
[
i
]
->
stream
();
const
auto
&
nccl_stream
=
places_to_ctx_
.
at
(
key
)
[
i
]
->
stream
();
fn
(
inputs
[
i
],
outputs
[
i
],
places_to_ctx_
[
key
]
[
i
]
->
nccl_comm
(),
places_to_ctx_
.
at
(
key
)
[
i
]
->
nccl_comm
(),
nccl_stream
);
}
}
...
...
@@ -570,13 +583,13 @@ std::shared_ptr<ProcessGroup::Task> ProcessGroupNCCL::Collective(
for
(
size_t
i
=
0
;
i
<
inputs
.
size
();
++
i
)
{
cuda_guard
.
SetDevice
(
places
[
i
]);
memory
::
RecordStream
(
inputs
[
i
].
Holder
(),
places_to_ctx_
[
key
]
[
i
]
->
stream
());
places_to_ctx_
.
at
(
key
)
[
i
]
->
stream
());
}
}
for
(
size_t
i
=
0
;
i
<
inputs
.
size
();
++
i
)
{
cuda_guard
.
SetDevice
(
places
[
i
]);
task
->
comm_event_
.
Record
(
places_to_ctx_
[
key
]
[
i
]);
task
->
UpdateWaitChain
(
*
places_to_ctx_
.
at
(
key
)
[
i
]);
}
return
task
;
}
...
...
@@ -592,26 +605,27 @@ void ProcessGroupNCCL::Collective(const phi::DenseTensor* in,
{
std
::
lock_guard
<
std
::
mutex
>
lock
(
mutex_
);
if
(
!
calc_event_
)
{
if
(
place_to_comm_ctx_
.
find
(
key
)
==
place_to_comm_ctx_
.
end
()
)
{
CreateNCCLManagerCache
(
key
,
places
);
}
}
SyncDefaultStream
(
places
,
calc_event_
,
places_to_ctx_
[
key
]);
SyncDefaultStream
(
places
,
place_to_calc_event_
.
at
(
key
),
places_to_ctx_
.
at
(
key
));
// construct uninitialize guard for device
platform
::
CUDADeviceGuard
cuda_guard
;
if
(
FLAGS_use_stream_safe_cuda_allocator
)
{
cuda_guard
.
SetDevice
(
places
[
0
]);
memory
::
RecordStream
(
in
->
Holder
(),
places_to_ctx_
[
key
]
[
0
]
->
stream
());
memory
::
RecordStream
(
in
->
Holder
(),
places_to_ctx_
.
at
(
key
)
[
0
]
->
stream
());
}
{
platform
::
NCCLGroupGuard
nccl_guard
;
cuda_guard
.
SetDevice
(
places
[
0
]);
const
auto
&
nccl_stream
=
places_to_ctx_
[
key
]
[
0
]
->
stream
();
fn
(
in
,
out
,
places_to_ctx_
[
key
]
[
0
]
->
nccl_comm
(),
nccl_stream
);
const
auto
&
nccl_stream
=
places_to_ctx_
.
at
(
key
)
[
0
]
->
stream
();
fn
(
in
,
out
,
places_to_ctx_
.
at
(
key
)
[
0
]
->
nccl_comm
(),
nccl_stream
);
}
cuda_guard
.
SetDevice
(
places
[
0
]);
...
...
@@ -630,13 +644,14 @@ std::shared_ptr<ProcessGroup::Task> ProcessGroupNCCL::PointToPoint(
{
std
::
lock_guard
<
std
::
mutex
>
lock
(
mutex_
);
if
(
!
calc_event_
)
{
if
(
place_to_comm_ctx_
.
find
(
key
)
==
place_to_comm_ctx_
.
end
()
)
{
CreateNCCLManagerCache
(
key
,
places
);
}
}
if
(
!
use_calc_stream
)
{
SyncDefaultStream
(
places
,
calc_event_
,
places_to_ctx_
[
key
]);
SyncDefaultStream
(
places
,
place_to_calc_event_
.
at
(
key
),
places_to_ctx_
.
at
(
key
));
}
auto
task
=
...
...
@@ -655,10 +670,10 @@ std::shared_ptr<ProcessGroup::Task> ProcessGroupNCCL::PointToPoint(
platform
::
DeviceContextPool
::
Instance
().
Get
(
places
[
i
]))
->
stream
();
}
else
{
nccl_stream
=
places_to_ctx_
[
key
]
[
i
]
->
stream
();
nccl_stream
=
places_to_ctx_
.
at
(
key
)
[
i
]
->
stream
();
}
fn
(
tensors
[
i
],
places_to_ctx_
[
key
]
[
i
]
->
nccl_comm
(),
places_to_ctx_
.
at
(
key
)
[
i
]
->
nccl_comm
(),
nccl_stream
,
dst_rank
);
}
...
...
@@ -674,7 +689,7 @@ std::shared_ptr<ProcessGroup::Task> ProcessGroupNCCL::PointToPoint(
platform
::
DeviceContextPool
::
Instance
().
Get
(
places
[
i
]))
->
stream
();
}
else
{
nccl_stream
=
places_to_ctx_
[
key
]
[
i
]
->
stream
();
nccl_stream
=
places_to_ctx_
.
at
(
key
)
[
i
]
->
stream
();
}
memory
::
RecordStream
(
tensors
[
i
].
Holder
(),
nccl_stream
);
}
...
...
@@ -683,7 +698,7 @@ std::shared_ptr<ProcessGroup::Task> ProcessGroupNCCL::PointToPoint(
if
(
!
use_calc_stream
)
{
for
(
size_t
i
=
0
;
i
<
tensors
.
size
();
++
i
)
{
cuda_guard
.
SetDevice
(
places
[
i
]);
task
->
comm_event_
.
Record
(
places_to_ctx_
[
key
]
[
i
]);
task
->
UpdateWaitChain
(
*
places_to_ctx_
.
at
(
key
)
[
i
]);
}
}
...
...
@@ -701,12 +716,13 @@ std::shared_ptr<ProcessGroup::Task> ProcessGroupNCCL::PointToPoint(
{
std
::
lock_guard
<
std
::
mutex
>
lock
(
mutex_
);
if
(
!
calc_event_
)
{
if
(
place_to_comm_ctx_
.
find
(
key
)
==
place_to_comm_ctx_
.
end
()
)
{
CreateNCCLManagerCache
(
key
,
places
);
}
}
SyncDefaultStream
(
places
,
calc_event_
,
places_to_ctx_
[
key
]);
SyncDefaultStream
(
places
,
place_to_calc_event_
.
at
(
key
),
places_to_ctx_
.
at
(
key
));
auto
task
=
CreateTask
(
places
,
rank_
,
op_type
,
tensors
);
...
...
@@ -717,9 +733,9 @@ std::shared_ptr<ProcessGroup::Task> ProcessGroupNCCL::PointToPoint(
platform
::
NCCLGroupGuard
nccl_guard
;
for
(
size_t
i
=
0
;
i
<
tensors
.
size
();
++
i
)
{
cuda_guard
.
SetDevice
(
places
[
i
]);
const
auto
&
nccl_stream
=
places_to_ctx_
[
key
]
[
i
]
->
stream
();
const
auto
&
nccl_stream
=
places_to_ctx_
.
at
(
key
)
[
i
]
->
stream
();
fn
(
tensors
[
i
],
places_to_ctx_
[
key
]
[
i
]
->
nccl_comm
(),
places_to_ctx_
.
at
(
key
)
[
i
]
->
nccl_comm
(),
nccl_stream
,
dst_rank
);
}
...
...
@@ -729,13 +745,13 @@ std::shared_ptr<ProcessGroup::Task> ProcessGroupNCCL::PointToPoint(
for
(
size_t
i
=
0
;
i
<
tensors
.
size
();
++
i
)
{
cuda_guard
.
SetDevice
(
places
[
i
]);
memory
::
RecordStream
(
tensors
[
i
].
Holder
(),
places_to_ctx_
[
key
]
[
i
]
->
stream
());
places_to_ctx_
.
at
(
key
)
[
i
]
->
stream
());
}
}
for
(
size_t
i
=
0
;
i
<
tensors
.
size
();
++
i
)
{
cuda_guard
.
SetDevice
(
places
[
i
]);
task
->
comm_event_
.
Record
(
places_to_ctx_
[
key
]
[
i
]);
task
->
UpdateWaitChain
(
*
places_to_ctx_
.
at
(
key
)
[
i
]);
}
return
task
;
}
...
...
@@ -1608,49 +1624,5 @@ std::shared_ptr<ProcessGroup::Task> ProcessGroupNCCL::Scatter(
use_calc_stream
);
}
std
::
shared_ptr
<
ProcessGroup
::
Task
>
ProcessGroupNCCL
::
_ReduceScatterBase
(
phi
::
DenseTensor
&
out_tensor
,
phi
::
DenseTensor
&
in_tensor
,
const
ReduceScatterOptions
&
opts
)
{
// auto tensor = out_tensors.back();
PADDLE_ENFORCE_EQ
(
out_tensor
.
dtype
(),
in_tensor
.
dtype
(),
platform
::
errors
::
InvalidArgument
(
"Input tensor and output tensor should be same dtype."
));
PADDLE_ENFORCE_EQ
(
out_tensor
.
numel
()
*
size_
,
in_tensor
.
numel
(),
platform
::
errors
::
InvalidArgument
(
"input tensor must be the same size as "
"output tensor size times world_size"
));
auto
inputs
=
std
::
vector
<
phi
::
DenseTensor
>
{
in_tensor
};
auto
outputs
=
std
::
vector
<
phi
::
DenseTensor
>
{
out_tensor
};
return
Collective
(
inputs
,
outputs
,
[
&
](
phi
::
DenseTensor
&
input
,
phi
::
DenseTensor
&
output
,
ncclComm_t
comm
,
const
gpuStream_t
&
stream
)
{
if
(
FLAGS_use_stream_safe_cuda_allocator
)
{
platform
::
CUDADeviceGuard
cuda_guard
;
cuda_guard
.
SetDevice
(
output
.
place
());
memory
::
RecordStream
(
output
.
Holder
(),
stream
);
}
PADDLE_ENFORCE_GPU_SUCCESS
(
platform
::
dynload
::
ncclReduceScatter
(
input
.
data
(),
output
.
data
(),
output
.
numel
(),
platform
::
ToNCCLDataType
(
input
.
dtype
()),
ToNCCLRedType
(
opts
.
reduce_op
),
comm
,
stream
));
},
CommType
::
REDUCE_SCATTER
);
}
}
// namespace distributed
}
// namespace paddle
paddle/fluid/distributed/collective/ProcessGroupNCCL.h
浏览文件 @
ae14bad1
...
...
@@ -15,7 +15,6 @@
#pragma once
#include <chrono>
#include <map>
#include <memory>
#include <string>
#include <unordered_map>
...
...
@@ -61,6 +60,9 @@ class ProcessGroupNCCL final : public ProcessGroupStream {
void
Synchronize
()
override
;
void
UpdateWaitChain
(
const
phi
::
DeviceContext
&
ctx
)
override
;
bool
IsBlockCPUInWait
()
const
{
return
block_cpu_in_wait_
;
}
void
SetBlockCPUInWait
()
{
block_cpu_in_wait_
=
true
;
}
// TODO(sunyilun): methods below will be removed later
NCCLTask
(
const
std
::
vector
<
Place
>&
places
,
int
rank
,
...
...
@@ -73,12 +75,10 @@ class ProcessGroupNCCL final : public ProcessGroupStream {
bool
sync_op
,
bool
use_calc_stream
);
public:
bool
barrier_
{
false
};
platform
::
DeviceEvent
comm_event_
;
// event on comm stream
private:
Place
place_
;
bool
block_cpu_in_wait_
{
false
};
platform
::
DeviceEvent
comm_event_
;
// event on comm stream
Place
task_place_
;
};
public:
...
...
@@ -253,11 +253,6 @@ class ProcessGroupNCCL final : public ProcessGroupStream {
bool
sync_op
,
bool
use_calc_stream
)
override
;
std
::
shared_ptr
<
ProcessGroup
::
Task
>
_ReduceScatterBase
(
phi
::
DenseTensor
&
,
// NOLINT
phi
::
DenseTensor
&
,
// NOLINT
const
ReduceScatterOptions
&
)
override
;
private:
std
::
shared_ptr
<
ProcessGroupNCCL
::
NCCLTask
>
CreateTask
(
const
Place
&
place
,
int
rank
,
...
...
@@ -278,8 +273,7 @@ class ProcessGroupNCCL final : public ProcessGroupStream {
bool
sync_op
,
bool
use_calc_stream
);
void
SyncCalcStream
(
const
Place
&
place
,
const
std
::
shared_ptr
<
platform
::
DeviceEvent
>&
event
);
void
SyncCalcStream
(
const
Place
&
place
);
// TODO(sunyilun): methods below will be removed later
std
::
shared_ptr
<
ProcessGroupNCCL
::
NCCLTask
>
CreateTask
(
...
...
@@ -342,7 +336,8 @@ class ProcessGroupNCCL final : public ProcessGroupStream {
private:
std
::
shared_ptr
<
Store
>
store_
;
std
::
shared_ptr
<
platform
::
DeviceEvent
>
calc_event_
;
// event on calc stream
std
::
unordered_map
<
std
::
string
,
platform
::
DeviceEvent
>
place_to_calc_event_
;
// event on calc stream
std
::
unordered_map
<
std
::
string
,
phi
::
GPUContext
*>
place_to_calc_ctx_
;
std
::
unordered_map
<
std
::
string
,
std
::
unique_ptr
<
phi
::
GPUContext
>>
place_to_comm_ctx_
;
...
...
paddle/fluid/pybind/distributed_py.cc
浏览文件 @
ae14bad1
...
...
@@ -761,27 +761,6 @@ void BindDistributed(py::module *m) {
py
::
arg
(
"in"
),
py
::
arg
(
"out"
),
py
::
arg
(
"src"
),
py
::
call_guard
<
py
::
gil_scoped_release
>
())
.
def
(
"_reduce_scatter_base"
,
[](
distributed
::
ProcessGroup
&
self
,
py
::
handle
py_out_tensor
,
py
::
handle
py_in_tensor
,
distributed
::
ReduceOp
op
)
{
auto
in_tensor
=
CastPyArg2Tensor
(
py_in_tensor
.
ptr
(),
0
);
auto
out_tensor
=
CastPyArg2Tensor
(
py_out_tensor
.
ptr
(),
0
);
distributed
::
ReduceScatterOptions
opts
;
opts
.
reduce_op
=
op
;
auto
dense_out
=
std
::
dynamic_pointer_cast
<
phi
::
DenseTensor
>
(
out_tensor
.
impl
());
auto
dense_in
=
std
::
dynamic_pointer_cast
<
phi
::
DenseTensor
>
(
in_tensor
.
impl
());
return
self
.
_ReduceScatterBase
(
*
dense_out
,
*
dense_in
,
opts
);
},
py
::
arg
(
"out_tensor"
),
py
::
arg
(
"in_tensor"
),
py
::
arg
(
"op"
)
=
distributed
::
ReduceOp
::
SUM
,
py
::
call_guard
<
py
::
gil_scoped_release
>
());
auto
ProcessGroupStream
=
...
...
编辑
预览
Markdown
is supported
0%
请重试
或
添加新附件
.
添加附件
取消
You are about to add
0
people
to the discussion. Proceed with caution.
先完成此消息的编辑!
取消
想要评论请
注册
或
登录