Skip to content
体验新版
项目
组织
正在加载...
登录
切换导航
打开侧边栏
PaddlePaddle
Paddle
提交
4e00d2bb
P
Paddle
项目概览
PaddlePaddle
/
Paddle
大约 1 年 前同步成功
通知
2298
Star
20931
Fork
5422
代码
文件
提交
分支
Tags
贡献者
分支图
Diff
Issue
1423
列表
看板
标记
里程碑
合并请求
543
Wiki
0
Wiki
分析
仓库
DevOps
项目成员
Pages
P
Paddle
项目概览
项目概览
详情
发布
仓库
仓库
文件
提交
分支
标签
贡献者
分支图
比较
Issue
1,423
Issue
1,423
列表
看板
标记
里程碑
合并请求
543
合并请求
543
Pages
分析
分析
仓库分析
DevOps
Wiki
0
Wiki
成员
成员
收起侧边栏
关闭侧边栏
动态
分支图
创建新Issue
提交
Issue看板
未验证
提交
4e00d2bb
编写于
3月 02, 2022
作者:
B
Baibaifan
提交者:
GitHub
3月 02, 2022
浏览文件
操作
浏览文件
下载
电子邮件补丁
差异文件
add_new_comm_primitive (#40040)
上级
aa47297a
变更
6
隐藏空白更改
内联
并排
Showing
6 changed file
with
259 addition
and
1 deletion
+259
-1
paddle/fluid/distributed/collective/ProcessGroup.h
paddle/fluid/distributed/collective/ProcessGroup.h
+19
-1
paddle/fluid/distributed/collective/ProcessGroupNCCL.cc
paddle/fluid/distributed/collective/ProcessGroupNCCL.cc
+156
-0
paddle/fluid/distributed/collective/ProcessGroupNCCL.h
paddle/fluid/distributed/collective/ProcessGroupNCCL.h
+17
-0
paddle/fluid/distributed/collective/Types.h
paddle/fluid/distributed/collective/Types.h
+4
-0
paddle/fluid/pybind/distributed_py.cc
paddle/fluid/pybind/distributed_py.cc
+33
-0
python/paddle/fluid/tests/unittests/process_group_nccl.py
python/paddle/fluid/tests/unittests/process_group_nccl.py
+30
-0
未找到文件。
paddle/fluid/distributed/collective/ProcessGroup.h
浏览文件 @
4e00d2bb
...
...
@@ -96,7 +96,25 @@ class ProcessGroup {
std
::
vector
<
Tensor
>&
/* tensors */
,
const
BroadcastOptions
&
=
BroadcastOptions
())
{
PADDLE_THROW
(
platform
::
errors
::
InvalidArgument
(
"ProcessGroup%s does not support allreduce"
,
GetBackendName
()));
"ProcessGroup%s does not support broadcast"
,
GetBackendName
()));
}
virtual
std
::
shared_ptr
<
ProcessGroup
::
Task
>
Barrier
(
const
BarrierOptions
&
=
BarrierOptions
())
{
PADDLE_THROW
(
platform
::
errors
::
InvalidArgument
(
"ProcessGroup%s does not support barrier"
,
GetBackendName
()));
}
virtual
std
::
shared_ptr
<
ProcessGroup
::
Task
>
Send
(
std
::
vector
<
Tensor
>&
tensors
/* tensors */
,
int
dst_rank
)
{
// NOLINT
PADDLE_THROW
(
platform
::
errors
::
InvalidArgument
(
"ProcessGroup%s does not support send"
,
GetBackendName
()));
}
virtual
std
::
shared_ptr
<
ProcessGroup
::
Task
>
Recv
(
std
::
vector
<
Tensor
>&
tensors
/* tensors */
,
int
src_rank
)
{
// NOLINT
PADDLE_THROW
(
platform
::
errors
::
InvalidArgument
(
"ProcessGroup%s does not support receive"
,
GetBackendName
()));
}
protected:
...
...
paddle/fluid/distributed/collective/ProcessGroupNCCL.cc
浏览文件 @
4e00d2bb
...
...
@@ -14,6 +14,9 @@
#include "paddle/fluid/distributed/collective/ProcessGroupNCCL.h"
#include "paddle/fluid/platform/device/gpu/nccl_helper.h"
#include "paddle/fluid/platform/place.h"
#include "paddle/phi/api/include/api.h"
#include "paddle/phi/common/place.h"
DECLARE_bool
(
nccl_blocking_wait
);
DECLARE_bool
(
use_stream_safe_cuda_allocator
);
...
...
@@ -139,6 +142,14 @@ bool ProcessGroupNCCL::NCCLTask::Wait(std::chrono::milliseconds timeout) {
std
::
this_thread
::
sleep_for
(
std
::
chrono
::
milliseconds
(
kWaitBlockTImeout
));
}
}
if
(
!
barrierTensors_
.
empty
())
{
// If we use the work to do barrier, we should block cpu
for
(
auto
&
place
:
places_
)
{
platform
::
CUDADeviceGuard
gpuGuard
(
place
);
PADDLE_ENFORCE_GPU_SUCCESS
(
cudaDeviceSynchronize
());
}
}
return
true
;
}
...
...
@@ -193,6 +204,10 @@ void ProcessGroupNCCL::CreateNCCLManagerCache(
nccl_ids
.
resize
(
1
);
auto
&
nccl_id
=
nccl_ids
.
front
();
for
(
auto
&
place
:
places
)
{
used_place_ids_
.
insert
(
place
.
GetDeviceId
());
}
if
(
rank_
==
0
)
{
PADDLE_ENFORCE_GPU_SUCCESS
(
platform
::
dynload
::
ncclGetUniqueId
(
&
nccl_id
));
}
...
...
@@ -274,6 +289,54 @@ std::shared_ptr<ProcessGroup::Task> ProcessGroupNCCL::Collective(
return
task
;
}
template
<
typename
Fn
>
std
::
shared_ptr
<
ProcessGroup
::
Task
>
ProcessGroupNCCL
::
PointToPoint
(
std
::
vector
<
Tensor
>&
tensors
,
Fn
fn
,
int
dst_rank
,
CommType
op_type
)
{
const
auto
places
=
GetPlaceList
(
tensors
);
const
auto
key
=
GetKeyFromPlaces
(
places
);
{
std
::
lock_guard
<
std
::
mutex
>
lock
(
mutex_
);
if
(
places_to_ncclcomm_
.
find
(
key
)
==
places_to_ncclcomm_
.
end
())
{
CreateNCCLManagerCache
(
key
,
places
);
}
}
auto
&
nccl_comms
=
places_to_ncclcomm_
[
key
];
SyncDefaultStream
(
places
,
places_to_events_
[
key
],
places_to_ctx_
[
key
]);
auto
task
=
CreateTask
(
places
,
rank_
,
op_type
,
tensors
);
// construct uninitialize guard for device
platform
::
CUDADeviceGuard
cuda_guard
;
if
(
FLAGS_use_stream_safe_cuda_allocator
)
{
for
(
size_t
i
=
0
;
i
<
tensors
.
size
();
++
i
)
{
cuda_guard
.
SetDevice
(
places
[
i
]);
auto
dense_tensor
=
std
::
dynamic_pointer_cast
<
phi
::
DenseTensor
>
(
tensors
[
i
].
impl
());
memory
::
RecordStream
(
dense_tensor
->
Holder
(),
places_to_ctx_
[
key
][
i
]
->
stream
());
}
}
{
platform
::
NCCLGroupGuard
nccl_guard
;
for
(
size_t
i
=
0
;
i
<
tensors
.
size
();
++
i
)
{
cuda_guard
.
SetDevice
(
places
[
i
]);
const
auto
&
nccl_stream
=
places_to_ctx_
[
key
][
i
]
->
stream
();
fn
(
tensors
[
i
],
nccl_comms
[
i
]
->
GetNcclComm
(),
nccl_stream
,
dst_rank
);
}
}
for
(
size_t
i
=
0
;
i
<
tensors
.
size
();
++
i
)
{
cuda_guard
.
SetDevice
(
places
[
i
]);
task
->
control_events_
[
i
].
Record
(
*
places_to_ctx_
[
key
][
i
]);
}
return
task
;
}
std
::
shared_ptr
<
ProcessGroup
::
Task
>
ProcessGroupNCCL
::
AllReduce
(
std
::
vector
<
Tensor
>&
tensors
,
const
AllreduceOptions
&
opts
)
{
PADDLE_ENFORCE_EQ
(
...
...
@@ -317,5 +380,98 @@ std::shared_ptr<ProcessGroup::Task> ProcessGroupNCCL::Broadcast(
CommType
::
BROADCAST
);
}
std
::
shared_ptr
<
ProcessGroup
::
Task
>
ProcessGroupNCCL
::
Barrier
(
const
BarrierOptions
&
opts
)
{
std
::
vector
<
phi
::
GPUPlace
>
places
;
if
(
!
opts
.
place_ids
.
empty
())
{
for
(
auto
place_id
:
opts
.
place_ids
)
{
places
.
emplace_back
(
place_id
);
}
}
else
if
(
!
used_place_ids_
.
empty
())
{
for
(
auto
place_id
:
used_place_ids_
)
{
places
.
emplace_back
(
place_id
);
}
}
else
{
auto
numGPUs
=
GetSize
();
int
place_id
=
static_cast
<
int
>
(
rank_
%
numGPUs
);
places
.
emplace_back
(
place_id
);
}
std
::
vector
<
Tensor
>
barrierTensors
;
barrierTensors
.
reserve
(
places
.
size
());
platform
::
CUDADeviceGuard
gpuGuard
;
for
(
auto
&
place
:
places
)
{
gpuGuard
.
SetDeviceIndex
(
place
.
GetDeviceId
());
auto
dt
=
full
({
1
},
0
,
phi
::
DataType
::
FLOAT32
,
phi
::
Backend
::
GPU
);
barrierTensors
.
push_back
(
dt
);
}
auto
task
=
ProcessGroupNCCL
::
AllReduce
(
barrierTensors
);
auto
nccl_task
=
dynamic_cast
<
ProcessGroupNCCL
::
NCCLTask
*>
(
task
.
get
());
nccl_task
->
barrierTensors_
=
std
::
move
(
barrierTensors
);
return
task
;
}
void
CheckTensorsInDifferentDevices
(
const
std
::
vector
<
Tensor
>&
tensors
,
const
size_t
num_devices
)
{
PADDLE_ENFORCE_EQ
(
tensors
.
size
()
==
0
,
false
,
platform
::
errors
::
InvalidArgument
(
"Tensor list must be nonempty."
));
PADDLE_ENFORCE_LE
(
tensors
.
size
(),
num_devices
,
platform
::
errors
::
InvalidArgument
(
"Tensor list mustn't be larger than the number of available GPUs."
));
std
::
set
<
Place
>
used_devices
;
for
(
const
auto
&
t
:
tensors
)
{
PADDLE_ENFORCE_EQ
(
t
.
is_cuda
()
&&
t
.
is_dense_tensor
(),
true
,
platform
::
errors
::
InvalidArgument
(
"Tensors must be CUDA and dense tensor."
));
const
auto
inserted
=
used_devices
.
insert
(
t
.
inner_place
()).
second
;
PADDLE_ENFORCE_EQ
(
inserted
,
true
,
platform
::
errors
::
InvalidArgument
(
"Tensors must be on distinct GPU devices."
));
}
}
std
::
shared_ptr
<
ProcessGroup
::
Task
>
ProcessGroupNCCL
::
Send
(
std
::
vector
<
Tensor
>&
tensors
,
int
dst_rank
)
{
CheckTensorsInDifferentDevices
(
tensors
,
static_cast
<
size_t
>
(
GetSize
()));
auto
task
=
PointToPoint
(
tensors
,
[
&
](
Tensor
&
input
,
ncclComm_t
comm
,
const
gpuStream_t
&
stream
,
int
dst_rank
)
{
auto
input_tensor
=
std
::
dynamic_pointer_cast
<
phi
::
DenseTensor
>
(
input
.
impl
());
return
platform
::
dynload
::
ncclSend
(
input_tensor
->
data
(),
input_tensor
->
numel
(),
platform
::
ToNCCLDataType
(
input
.
type
()),
dst_rank
,
comm
,
stream
);
},
dst_rank
,
CommType
::
SEND
);
return
task
;
}
std
::
shared_ptr
<
ProcessGroup
::
Task
>
ProcessGroupNCCL
::
Recv
(
std
::
vector
<
Tensor
>&
tensors
,
int
src_rank
)
{
CheckTensorsInDifferentDevices
(
tensors
,
static_cast
<
size_t
>
(
GetSize
()));
auto
task
=
PointToPoint
(
tensors
,
[
&
](
Tensor
&
output
,
ncclComm_t
comm
,
const
gpuStream_t
&
stream
,
int
src_rank
)
{
auto
output_tensor
=
std
::
dynamic_pointer_cast
<
phi
::
DenseTensor
>
(
output
.
impl
());
return
platform
::
dynload
::
ncclRecv
(
output_tensor
->
data
(),
output_tensor
->
numel
(),
platform
::
ToNCCLDataType
(
output
.
type
()),
src_rank
,
comm
,
stream
);
},
src_rank
,
CommType
::
RECV
);
return
task
;
}
}
// namespace distributed
}
// namespace paddle
paddle/fluid/distributed/collective/ProcessGroupNCCL.h
浏览文件 @
4e00d2bb
...
...
@@ -65,6 +65,7 @@ class ProcessGroupNCCL : public ProcessGroup {
virtual
~
NCCLTask
();
std
::
vector
<
EventManager
>
control_events_
;
std
::
vector
<
Tensor
>
barrierTensors_
;
protected:
std
::
vector
<
Place
>
places_
;
...
...
@@ -88,6 +89,15 @@ class ProcessGroupNCCL : public ProcessGroup {
std
::
vector
<
Tensor
>&
tensors
,
const
BroadcastOptions
&
=
BroadcastOptions
())
override
;
std
::
shared_ptr
<
ProcessGroup
::
Task
>
Barrier
(
const
BarrierOptions
&
=
BarrierOptions
())
override
;
std
::
shared_ptr
<
ProcessGroup
::
Task
>
Send
(
std
::
vector
<
Tensor
>&
tensors
,
int
dst_rank
)
override
;
std
::
shared_ptr
<
ProcessGroup
::
Task
>
Recv
(
std
::
vector
<
Tensor
>&
tensors
,
int
src_rank
)
override
;
protected:
virtual
std
::
shared_ptr
<
ProcessGroupNCCL
::
NCCLTask
>
CreateTask
(
std
::
vector
<
Place
>
places
,
int
rank
,
CommType
opType
,
...
...
@@ -106,6 +116,8 @@ class ProcessGroupNCCL : public ProcessGroup {
std
::
vector
<
std
::
unique_ptr
<
CUDADeviceContext
>>>
places_to_ctx_
;
std
::
set
<
int
>
used_place_ids_
;
private:
void
BcastNCCLId
(
std
::
vector
<
ncclUniqueId
>&
nccl_ids
,
int
root
,
// NOLINT
int
server_fd
);
...
...
@@ -118,6 +130,11 @@ class ProcessGroupNCCL : public ProcessGroup {
std
::
vector
<
Tensor
>&
outputs
,
// NOLINT
Fn
fn
,
CommType
op_type
);
template
<
typename
Fn
>
std
::
shared_ptr
<
ProcessGroup
::
Task
>
PointToPoint
(
std
::
vector
<
Tensor
>&
tensors
,
// NOLINT
Fn
fn
,
int
dst_rank
,
CommType
op_type
);
void
CreateNCCLManagerCache
(
const
std
::
string
&
places_key
,
const
std
::
vector
<
Place
>&
places
);
};
...
...
paddle/fluid/distributed/collective/Types.h
浏览文件 @
4e00d2bb
...
...
@@ -32,5 +32,9 @@ struct BroadcastOptions {
int
source_root
=
0
;
};
struct
BarrierOptions
{
std
::
vector
<
int
>
place_ids
;
};
}
// namespace distributed
}
// namespace paddle
paddle/fluid/pybind/distributed_py.cc
浏览文件 @
4e00d2bb
...
...
@@ -60,6 +60,10 @@ void BindDistributed(py::module *m) {
.
def_readwrite
(
"source_root"
,
&
distributed
::
BroadcastOptions
::
source_root
);
py
::
class_
<
distributed
::
BarrierOptions
>
(
*
m
,
"BarrierOptions"
)
.
def
(
py
::
init
<>
())
.
def_readwrite
(
"place_ids"
,
&
distributed
::
BarrierOptions
::
place_ids
);
auto
ProcessGroup
=
py
::
class_
<
distributed
::
ProcessGroup
,
std
::
shared_ptr
<
distributed
::
ProcessGroup
>>
(
*
m
,
"ProcessGroup"
)
...
...
@@ -88,6 +92,35 @@ void BindDistributed(py::module *m) {
return
self
.
Broadcast
(
tensors
,
opts
);
},
py
::
arg
(
"tensor"
),
py
::
arg
(
"source_rank"
),
py
::
call_guard
<
py
::
gil_scoped_release
>
())
.
def
(
"barrier"
,
[](
distributed
::
ProcessGroup
&
self
,
std
::
vector
<
int
>
place_ids
)
{
distributed
::
BarrierOptions
opts
;
opts
.
place_ids
=
place_ids
;
return
self
.
Barrier
(
opts
);
},
py
::
arg
(
"place_ids"
)
=
std
::
vector
<
int
>
{},
py
::
call_guard
<
py
::
gil_scoped_release
>
())
.
def
(
"send"
,
[](
distributed
::
ProcessGroup
&
self
,
py
::
handle
py_tensor
,
int
dst
)
{
auto
tensor
=
CastPyArg2Tensor
(
py_tensor
.
ptr
(),
0
);
std
::
vector
<
Tensor
>
tensors
=
{
tensor
};
return
self
.
Send
(
tensors
,
dst
);
},
py
::
arg
(
"tensor"
),
py
::
arg
(
"dst"
),
py
::
call_guard
<
py
::
gil_scoped_release
>
())
.
def
(
"recv"
,
[](
distributed
::
ProcessGroup
&
self
,
py
::
handle
py_tensor
,
int
src
)
{
auto
tensor
=
CastPyArg2Tensor
(
py_tensor
.
ptr
(),
0
);
std
::
vector
<
Tensor
>
tensors
=
{
tensor
};
return
self
.
Recv
(
tensors
,
src
);
},
py
::
arg
(
"tensor"
),
py
::
arg
(
"src"
),
py
::
call_guard
<
py
::
gil_scoped_release
>
());
#if defined(PADDLE_WITH_NCCL)
...
...
python/paddle/fluid/tests/unittests/process_group_nccl.py
浏览文件 @
4e00d2bb
...
...
@@ -132,6 +132,36 @@ class TestProcessGroupFp32(unittest.TestCase):
print
(
"test broadcast api ok"
)
# test barrier
# rank 0
if
pg
.
rank
()
==
0
:
task
=
pg
.
barrier
()
task
.
wait
()
# rank 1
else
:
task
=
pg
.
barrier
()
task
.
wait
()
print
(
"test barrier api ok
\n
"
)
# test send/recv
# rank 0
x
=
np
.
random
.
random
(
self
.
shape
).
astype
(
self
.
dtype
)
tensor_x
=
paddle
.
to_tensor
(
x
)
if
pg
.
rank
()
==
0
:
task
=
pg
.
send
(
tensor_x
,
dst
=
1
)
task
.
wait
()
paddle
.
device
.
cuda
.
synchronize
()
# rank 1
else
:
y
=
np
.
random
.
random
(
self
.
shape
).
astype
(
self
.
dtype
)
tensor_y
=
paddle
.
to_tensor
(
y
)
task
=
pg
.
recv
(
tensor_y
,
src
=
0
)
task
.
wait
()
paddle
.
device
.
cuda
.
synchronize
()
assert
np
.
array_equal
(
tensor_x
,
tensor_y
)
print
(
"test send/recv api ok
\n
"
)
class
TestProcessGroupFp16
(
TestProcessGroupFp32
):
def
setUp
(
self
):
...
...
编辑
预览
Markdown
is supported
0%
请重试
或
添加新附件
.
添加附件
取消
You are about to add
0
people
to the discussion. Proceed with caution.
先完成此消息的编辑!
取消
想要评论请
注册
或
登录