Skip to content
体验新版
项目
组织
正在加载...
登录
切换导航
打开侧边栏
PaddlePaddle
Paddle
提交
3f480af2
P
Paddle
项目概览
PaddlePaddle
/
Paddle
1 年多 前同步成功
通知
2302
Star
20931
Fork
5422
代码
文件
提交
分支
Tags
贡献者
分支图
Diff
Issue
1423
列表
看板
标记
里程碑
合并请求
543
Wiki
0
Wiki
分析
仓库
DevOps
项目成员
Pages
P
Paddle
项目概览
项目概览
详情
发布
仓库
仓库
文件
提交
分支
标签
贡献者
分支图
比较
Issue
1,423
Issue
1,423
列表
看板
标记
里程碑
合并请求
543
合并请求
543
Pages
分析
分析
仓库分析
DevOps
Wiki
0
Wiki
成员
成员
收起侧边栏
关闭侧边栏
动态
分支图
创建新Issue
提交
Issue看板
未验证
提交
3f480af2
编写于
11月 17, 2022
作者:
W
Wen Sun
提交者:
GitHub
11月 17, 2022
浏览文件
操作
浏览文件
下载
电子邮件补丁
差异文件
Refactor collective communication all_to_all, all_to_all_single C++ API (#48059)
上级
dbc63555
变更
8
隐藏空白更改
内联
并排
Showing
8 changed file
with
290 addition
and
319 deletion
+290
-319
paddle/fluid/distributed/collective/ProcessGroup.h
paddle/fluid/distributed/collective/ProcessGroup.h
+11
-20
paddle/fluid/distributed/collective/ProcessGroupNCCL.cc
paddle/fluid/distributed/collective/ProcessGroupNCCL.cc
+84
-138
paddle/fluid/distributed/collective/ProcessGroupNCCL.h
paddle/fluid/distributed/collective/ProcessGroupNCCL.h
+8
-14
paddle/fluid/distributed/collective/ProcessGroupStream.cc
paddle/fluid/distributed/collective/ProcessGroupStream.cc
+25
-25
paddle/fluid/distributed/collective/ProcessGroupStream.h
paddle/fluid/distributed/collective/ProcessGroupStream.h
+15
-15
paddle/fluid/pybind/distributed_py.cc
paddle/fluid/pybind/distributed_py.cc
+121
-99
paddle/fluid/pybind/process_group_utils.h
paddle/fluid/pybind/process_group_utils.h
+15
-2
python/paddle/distributed/communication/stream/all_to_all.py
python/paddle/distributed/communication/stream/all_to_all.py
+11
-6
未找到文件。
paddle/fluid/distributed/collective/ProcessGroup.h
浏览文件 @
3f480af2
...
...
@@ -46,7 +46,6 @@ enum class CommType : std::uint8_t {
SEND
=
9
,
RECV
=
10
,
BARRIER
=
11
,
ALLTOALL_SINGLE
=
12
,
UNKNOWN
=
100
,
};
...
...
@@ -124,6 +123,17 @@ class ProcessGroup {
GetBackendName
()));
}
virtual
std
::
shared_ptr
<
ProcessGroup
::
Task
>
AllToAll
(
phi
::
DenseTensor
*
out_tensor
,
const
phi
::
DenseTensor
&
in_tensor
,
const
std
::
vector
<
int64_t
>&
out_size_each_rank
,
const
std
::
vector
<
int64_t
>&
in_size_each_rank
,
bool
sync_op
)
{
PADDLE_THROW
(
platform
::
errors
::
Unimplemented
(
"ProcessGroup%s does not support all_to_all with sync_op flag."
,
GetBackendName
()));
}
virtual
std
::
shared_ptr
<
ProcessGroup
::
Task
>
Barrier
(
const
BarrierOptions
&
=
BarrierOptions
())
{
PADDLE_THROW
(
platform
::
errors
::
Unimplemented
(
...
...
@@ -255,25 +265,6 @@ class ProcessGroup {
"ProcessGroup%s does not support alltoall"
,
GetBackendName
()));
}
virtual
std
::
shared_ptr
<
ProcessGroup
::
Task
>
AllToAll_Single
(
std
::
vector
<
phi
::
DenseTensor
>&
,
// NOLINT
std
::
vector
<
phi
::
DenseTensor
>&
,
// NOLINT
std
::
vector
<
int64_t
>&
,
std
::
vector
<
int64_t
>&
)
{
PADDLE_THROW
(
platform
::
errors
::
InvalidArgument
(
"ProcessGroup%s does not support AllToAll_Single"
,
GetBackendName
()));
}
virtual
std
::
shared_ptr
<
ProcessGroup
::
Task
>
AllToAllSingle
(
std
::
vector
<
phi
::
DenseTensor
>&
,
// NOLINT
std
::
vector
<
phi
::
DenseTensor
>&
,
// NOLINT
std
::
vector
<
int64_t
>&
,
std
::
vector
<
int64_t
>&
,
bool
)
{
PADDLE_THROW
(
platform
::
errors
::
InvalidArgument
(
"ProcessGroup%s does not support alltoall_single"
,
GetBackendName
()));
}
virtual
std
::
shared_ptr
<
ProcessGroup
::
Task
>
Reduce
(
std
::
vector
<
phi
::
DenseTensor
>&
,
// NOLINT
std
::
vector
<
phi
::
DenseTensor
>&
,
// NOLINT
...
...
paddle/fluid/distributed/collective/ProcessGroupNCCL.cc
浏览文件 @
3f480af2
...
...
@@ -184,6 +184,80 @@ std::shared_ptr<ProcessGroup::Task> ProcessGroupNCCL::AllReduce(
use_calc_stream
);
}
void
CheckSizeOnEachRank
(
const
phi
::
DDim
&
tensor_dim
,
const
std
::
vector
<
int64_t
>&
size_on_each_rank
,
int
world_size
)
{
int
length_size_on_each_rank
=
size_on_each_rank
.
size
();
PADDLE_ENFORCE_EQ
(
length_size_on_each_rank
,
world_size
,
platform
::
errors
::
InvalidArgument
(
"The length of size_on_each_rank must be equal to world_size."
));
int64_t
sum_size_on_each_rank
=
std
::
accumulate
(
size_on_each_rank
.
begin
(),
size_on_each_rank
.
end
(),
0
);
PADDLE_ENFORCE_EQ
(
sum_size_on_each_rank
,
tensor_dim
[
0
],
platform
::
errors
::
InvalidArgument
(
"The sum of size_on_each_rank must be equal to tensor's dim[0]."
));
}
std
::
shared_ptr
<
ProcessGroup
::
Task
>
ProcessGroupNCCL
::
AllToAll
(
phi
::
DenseTensor
*
out_tensor
,
const
phi
::
DenseTensor
&
in_tensor
,
const
std
::
vector
<
int64_t
>&
out_size_each_rank
,
const
std
::
vector
<
int64_t
>&
in_size_each_rank
,
bool
sync_op
,
bool
use_calc_stream
)
{
const
phi
::
DDim
&
out_dim
=
out_tensor
->
dims
();
const
phi
::
DDim
&
in_dim
=
in_tensor
.
dims
();
CheckSizeOnEachRank
(
out_dim
,
out_size_each_rank
,
size_
);
CheckSizeOnEachRank
(
in_dim
,
in_size_each_rank
,
size_
);
return
Collective
(
out_tensor
,
in_tensor
,
[
&
](
phi
::
DenseTensor
*
output
,
const
phi
::
DenseTensor
&
input
,
ncclComm_t
comm
,
gpuStream_t
stream
)
{
int64_t
in_row_size
=
input
.
numel
()
/
in_dim
[
0
],
out_row_size
=
output
->
numel
()
/
out_dim
[
0
];
int64_t
in_offset
=
0
,
in_numel
=
0
,
out_offset
=
0
,
out_numel
=
0
;
phi
::
DenseTensor
input_partial
,
output_partial
;
GroupStart
();
for
(
auto
i
=
0
;
i
<
size_
;
i
++
)
{
in_numel
=
in_size_each_rank
[
i
]
*
in_row_size
;
input_partial
=
GetPartialTensor
(
input
,
in_offset
,
in_numel
);
PADDLE_ENFORCE_GPU_SUCCESS
(
platform
::
dynload
::
ncclSend
(
input_partial
.
data
(),
in_numel
,
platform
::
ToNCCLDataType
(
input
.
dtype
()),
i
,
comm
,
stream
));
in_offset
+=
in_numel
;
out_numel
=
out_size_each_rank
[
i
]
*
out_row_size
;
output_partial
=
GetPartialTensor
(
*
output
,
out_offset
,
out_numel
);
PADDLE_ENFORCE_GPU_SUCCESS
(
platform
::
dynload
::
ncclRecv
(
output_partial
.
data
(),
out_numel
,
platform
::
ToNCCLDataType
(
output
->
dtype
()),
i
,
comm
,
stream
));
out_offset
+=
out_numel
;
}
GroupEnd
();
},
CommType
::
ALLTOALL
,
sync_op
,
use_calc_stream
);
}
std
::
shared_ptr
<
ProcessGroup
::
Task
>
ProcessGroupNCCL
::
Barrier
(
const
BarrierOptions
&
opts
)
{
PADDLE_ENFORCE_GE
(
opts
.
device_id
,
...
...
@@ -551,7 +625,7 @@ void ProcessGroupNCCL::CreateNCCLManagerCache(
std
::
vector
<
phi
::
GPUContext
*>
dev_ctx_raw
;
dev_ctx_raw
.
resize
(
places
.
size
());
PADDLE_ENFORCE_GPU_SUCCESS
(
platform
::
dynload
::
ncclGroupStart
()
);
GroupStart
(
);
for
(
size_t
i
=
0
;
i
<
places
.
size
();
++
i
)
{
platform
::
CUDADeviceGuard
guard
(
places
[
i
]);
...
...
@@ -564,7 +638,7 @@ void ProcessGroupNCCL::CreateNCCLManagerCache(
dev_ctx_raw
[
i
]
=
dev_ctx
[
i
].
get
();
}
PADDLE_ENFORCE_GPU_SUCCESS
(
platform
::
dynload
::
ncclGroupEnd
()
);
GroupEnd
(
);
// TODO(sunyilun): for compatibility, will be removed later
place_to_calc_event_
.
emplace
(
places_key
,
places
[
0
]);
...
...
@@ -1086,7 +1160,7 @@ std::shared_ptr<ProcessGroup::Task> ProcessGroupNCCL::AllToAll(
ncclComm_t
comm
,
const
gpuStream_t
&
stream
)
{
size_t
offset
=
0
;
PADDLE_ENFORCE_GPU_SUCCESS
(
platform
::
dynload
::
ncclGroupStart
()
);
GroupStart
(
);
for
(
auto
i
=
0
;
i
<
size_
;
i
++
)
{
PADDLE_ENFORCE_GPU_SUCCESS
(
platform
::
dynload
::
ncclSend
(
GetPointerByOffset
(
input
.
data
(),
offset
,
input
.
dtype
()),
...
...
@@ -1104,7 +1178,7 @@ std::shared_ptr<ProcessGroup::Task> ProcessGroupNCCL::AllToAll(
stream
));
offset
+=
input
.
numel
()
/
size_
;
}
PADDLE_ENFORCE_GPU_SUCCESS
(
platform
::
dynload
::
ncclGroupEnd
()
);
GroupEnd
(
);
},
CommType
::
ALLTOALL
);
}
...
...
@@ -1130,7 +1204,7 @@ std::shared_ptr<ProcessGroup::Task> ProcessGroupNCCL::AllToAll(
ncclComm_t
comm
,
const
gpuStream_t
&
stream
)
{
size_t
offset
=
0
;
PADDLE_ENFORCE_GPU_SUCCESS
(
platform
::
dynload
::
ncclGroupStart
()
);
GroupStart
(
);
for
(
auto
i
=
0
;
i
<
size_
;
i
++
)
{
PADDLE_ENFORCE_GPU_SUCCESS
(
platform
::
dynload
::
ncclSend
(
GetPointerByOffset
(
input
.
data
(),
offset
,
input
.
dtype
()),
...
...
@@ -1148,141 +1222,13 @@ std::shared_ptr<ProcessGroup::Task> ProcessGroupNCCL::AllToAll(
stream
));
offset
+=
input
.
numel
()
/
size_
;
}
PADDLE_ENFORCE_GPU_SUCCESS
(
platform
::
dynload
::
ncclGroupEnd
()
);
GroupEnd
(
);
},
CommType
::
ALLTOALL
,
sync_op
,
use_calc_stream
);
}
std
::
shared_ptr
<
ProcessGroup
::
Task
>
ProcessGroupNCCL
::
AllToAll_Single
(
std
::
vector
<
phi
::
DenseTensor
>&
in_tensors
,
std
::
vector
<
phi
::
DenseTensor
>&
out_tensors
,
std
::
vector
<
int64_t
>&
in_sizes
,
std
::
vector
<
int64_t
>&
out_sizes
)
{
PADDLE_ENFORCE_EQ
(
CheckTensorsInCudaPlace
(
in_tensors
),
true
,
platform
::
errors
::
InvalidArgument
(
"All inputs should be in CudaPlace."
));
PADDLE_ENFORCE_EQ
(
CheckTensorsInCudaPlace
(
out_tensors
),
true
,
platform
::
errors
::
InvalidArgument
(
"All inputs should be in CudaPlace."
));
return
Collective
(
in_tensors
,
out_tensors
,
[
&
](
phi
::
DenseTensor
&
input
,
phi
::
DenseTensor
&
output
,
ncclComm_t
comm
,
const
gpuStream_t
&
stream
)
{
PADDLE_ENFORCE_EQ
(
input
.
dtype
()
==
output
.
dtype
(),
true
,
platform
::
errors
::
InvalidArgument
(
"The dtypes of input and output must be equal."
));
std
::
vector
<
int64_t
>
in_dims
=
phi
::
vectorize
(
input
.
dims
());
std
::
vector
<
int64_t
>
out_dims
=
phi
::
vectorize
(
output
.
dims
());
CheckSplitSizes
(
&
in_sizes
,
in_dims
);
CheckSplitSizes
(
&
out_sizes
,
out_dims
);
size_t
in_offset
=
0
,
out_offset
=
0
;
size_t
in_length
=
0
,
out_length
=
0
;
size_t
in_row_size
=
input
.
numel
()
/
in_dims
[
0
];
size_t
out_row_size
=
output
.
numel
()
/
out_dims
[
0
];
PADDLE_ENFORCE_GPU_SUCCESS
(
platform
::
dynload
::
ncclGroupStart
());
for
(
auto
i
=
0
;
i
<
size_
;
i
++
)
{
in_length
=
in_sizes
[
i
]
*
in_row_size
;
PADDLE_ENFORCE_GPU_SUCCESS
(
platform
::
dynload
::
ncclSend
(
GetPointerByOffset
(
input
.
data
(),
in_offset
,
input
.
dtype
()),
in_length
,
platform
::
ToNCCLDataType
(
input
.
dtype
()),
i
,
comm
,
stream
));
in_offset
+=
in_length
;
out_length
=
out_sizes
[
i
]
*
out_row_size
;
PADDLE_ENFORCE_GPU_SUCCESS
(
platform
::
dynload
::
ncclRecv
(
GetPointerByOffset
(
output
.
data
(),
out_offset
,
input
.
dtype
()),
out_length
,
platform
::
ToNCCLDataType
(
input
.
dtype
()),
i
,
comm
,
stream
));
out_offset
+=
out_length
;
}
PADDLE_ENFORCE_GPU_SUCCESS
(
platform
::
dynload
::
ncclGroupEnd
());
},
CommType
::
ALLTOALL_SINGLE
);
}
std
::
shared_ptr
<
ProcessGroup
::
Task
>
ProcessGroupNCCL
::
AllToAllSingle
(
std
::
vector
<
phi
::
DenseTensor
>&
in_tensors
,
std
::
vector
<
phi
::
DenseTensor
>&
out_tensors
,
std
::
vector
<
int64_t
>&
in_sizes
,
std
::
vector
<
int64_t
>&
out_sizes
,
bool
sync_op
,
bool
use_calc_stream
)
{
PADDLE_ENFORCE_EQ
(
CheckTensorsInCudaPlace
(
in_tensors
),
true
,
platform
::
errors
::
InvalidArgument
(
"All inputs should be in CudaPlace."
));
PADDLE_ENFORCE_EQ
(
CheckTensorsInCudaPlace
(
out_tensors
),
true
,
platform
::
errors
::
InvalidArgument
(
"All inputs should be in CudaPlace."
));
return
Collective
(
in_tensors
,
out_tensors
,
[
&
](
phi
::
DenseTensor
&
input
,
phi
::
DenseTensor
&
output
,
ncclComm_t
comm
,
const
gpuStream_t
&
stream
)
{
PADDLE_ENFORCE_EQ
(
input
.
dtype
()
==
output
.
dtype
(),
true
,
platform
::
errors
::
InvalidArgument
(
"The dtypes of input and output must be equal."
));
std
::
vector
<
int64_t
>
in_dims
=
phi
::
vectorize
(
input
.
dims
());
std
::
vector
<
int64_t
>
out_dims
=
phi
::
vectorize
(
output
.
dims
());
CheckSplitSizes
(
&
in_sizes
,
in_dims
);
CheckSplitSizes
(
&
out_sizes
,
out_dims
);
size_t
in_offset
=
0
,
out_offset
=
0
;
size_t
in_length
=
0
,
out_length
=
0
;
size_t
in_row_size
=
input
.
numel
()
/
in_dims
[
0
];
size_t
out_row_size
=
output
.
numel
()
/
out_dims
[
0
];
PADDLE_ENFORCE_GPU_SUCCESS
(
platform
::
dynload
::
ncclGroupStart
());
for
(
auto
i
=
0
;
i
<
size_
;
i
++
)
{
in_length
=
in_sizes
[
i
]
*
in_row_size
;
PADDLE_ENFORCE_GPU_SUCCESS
(
platform
::
dynload
::
ncclSend
(
GetPointerByOffset
(
input
.
data
(),
in_offset
,
input
.
dtype
()),
in_length
,
platform
::
ToNCCLDataType
(
input
.
dtype
()),
i
,
comm
,
stream
));
in_offset
+=
in_length
;
out_length
=
out_sizes
[
i
]
*
out_row_size
;
PADDLE_ENFORCE_GPU_SUCCESS
(
platform
::
dynload
::
ncclRecv
(
GetPointerByOffset
(
output
.
data
(),
out_offset
,
input
.
dtype
()),
out_length
,
platform
::
ToNCCLDataType
(
input
.
dtype
()),
i
,
comm
,
stream
));
out_offset
+=
out_length
;
}
PADDLE_ENFORCE_GPU_SUCCESS
(
platform
::
dynload
::
ncclGroupEnd
());
},
CommType
::
ALLTOALL_SINGLE
,
sync_op
,
use_calc_stream
);
}
std
::
shared_ptr
<
ProcessGroup
::
Task
>
ProcessGroupNCCL
::
Reduce
(
std
::
vector
<
phi
::
DenseTensor
>&
in_tensors
,
std
::
vector
<
phi
::
DenseTensor
>&
out_tensors
,
...
...
@@ -1396,7 +1342,7 @@ std::shared_ptr<ProcessGroup::Task> ProcessGroupNCCL::Scatter(
const
gpuStream_t
&
stream
)
{
size_t
offset
=
0
;
if
(
rank_
==
opts
.
root_rank
)
{
PADDLE_ENFORCE_GPU_SUCCESS
(
platform
::
dynload
::
ncclGroupStart
()
);
GroupStart
(
);
for
(
auto
i
=
0
;
i
<
size_
;
i
++
)
{
PADDLE_ENFORCE_GPU_SUCCESS
(
platform
::
dynload
::
ncclSend
(
GetPointerByOffset
(
input
.
data
(),
offset
,
input
.
dtype
()),
...
...
@@ -1414,7 +1360,7 @@ std::shared_ptr<ProcessGroup::Task> ProcessGroupNCCL::Scatter(
opts
.
root_rank
,
comm
,
stream
));
PADDLE_ENFORCE_GPU_SUCCESS
(
platform
::
dynload
::
ncclGroupEnd
()
);
GroupEnd
(
);
}
else
{
PADDLE_ENFORCE_GPU_SUCCESS
(
platform
::
dynload
::
ncclRecv
(
output
.
data
(),
...
...
@@ -1456,7 +1402,7 @@ std::shared_ptr<ProcessGroup::Task> ProcessGroupNCCL::Scatter(
"Input and output tensors should have the same shape."
));
size_t
offset
=
0
;
if
(
rank_
==
opts
.
root_rank
)
{
PADDLE_ENFORCE_GPU_SUCCESS
(
platform
::
dynload
::
ncclGroupStart
()
);
GroupStart
(
);
for
(
auto
i
=
0
;
i
<
size_
;
i
++
)
{
PADDLE_ENFORCE_GPU_SUCCESS
(
platform
::
dynload
::
ncclSend
(
GetPointerByOffset
(
input
.
data
(),
offset
,
input
.
dtype
()),
...
...
@@ -1474,7 +1420,7 @@ std::shared_ptr<ProcessGroup::Task> ProcessGroupNCCL::Scatter(
opts
.
root_rank
,
comm
,
stream
));
PADDLE_ENFORCE_GPU_SUCCESS
(
platform
::
dynload
::
ncclGroupEnd
()
);
GroupEnd
(
);
}
else
{
PADDLE_ENFORCE_GPU_SUCCESS
(
platform
::
dynload
::
ncclRecv
(
output
.
data
(),
...
...
paddle/fluid/distributed/collective/ProcessGroupNCCL.h
浏览文件 @
3f480af2
...
...
@@ -109,6 +109,14 @@ class ProcessGroupNCCL final : public ProcessGroupStream {
bool
sync_op
,
bool
use_calc_stream
)
override
;
std
::
shared_ptr
<
ProcessGroup
::
Task
>
AllToAll
(
phi
::
DenseTensor
*
out_tensor
,
const
phi
::
DenseTensor
&
in_tensor
,
const
std
::
vector
<
int64_t
>&
out_size_each_rank
,
const
std
::
vector
<
int64_t
>&
in_size_each_rank
,
bool
sync_op
,
bool
use_calc_stream
)
override
;
std
::
shared_ptr
<
ProcessGroup
::
Task
>
Barrier
(
const
BarrierOptions
&
=
BarrierOptions
())
override
;
...
...
@@ -171,20 +179,6 @@ class ProcessGroupNCCL final : public ProcessGroupStream {
bool
sync_op
,
bool
use_calc_stream
)
override
;
std
::
shared_ptr
<
ProcessGroup
::
Task
>
AllToAll_Single
(
std
::
vector
<
phi
::
DenseTensor
>&
in
,
std
::
vector
<
phi
::
DenseTensor
>&
out
,
std
::
vector
<
int64_t
>&
in_sizes
,
std
::
vector
<
int64_t
>&
out_sizes
)
override
;
std
::
shared_ptr
<
ProcessGroup
::
Task
>
AllToAllSingle
(
std
::
vector
<
phi
::
DenseTensor
>&
in_tensors
,
std
::
vector
<
phi
::
DenseTensor
>&
out_tensors
,
std
::
vector
<
int64_t
>&
in_sizes
,
std
::
vector
<
int64_t
>&
out_sizes
,
bool
sync_op
,
bool
use_calc_stream
)
override
;
std
::
shared_ptr
<
ProcessGroup
::
Task
>
Reduce
(
std
::
vector
<
phi
::
DenseTensor
>&
tensors
,
std
::
vector
<
phi
::
DenseTensor
>&
out_tensors
,
...
...
paddle/fluid/distributed/collective/ProcessGroupStream.cc
浏览文件 @
3f480af2
...
...
@@ -73,6 +73,31 @@ std::shared_ptr<ProcessGroup::Task> ProcessGroupStream::AllReduce(
"ProcessGroup%s does not support all_reduce."
,
GetBackendName
()));
}
std
::
shared_ptr
<
ProcessGroup
::
Task
>
ProcessGroupStream
::
AllToAll
(
phi
::
DenseTensor
*
out_tensor
,
const
phi
::
DenseTensor
&
in_tensor
,
const
std
::
vector
<
int64_t
>&
out_size_each_rank
,
const
std
::
vector
<
int64_t
>&
in_size_each_rank
,
bool
sync_op
)
{
return
AllToAll
(
out_tensor
,
in_tensor
,
out_size_each_rank
,
in_size_each_rank
,
sync_op
,
/*use_calc_stream*/
false
);
}
std
::
shared_ptr
<
ProcessGroup
::
Task
>
ProcessGroupStream
::
AllToAll
(
phi
::
DenseTensor
*
out_tensor
,
const
phi
::
DenseTensor
&
in_tensor
,
const
std
::
vector
<
int64_t
>&
out_size_each_rank
,
const
std
::
vector
<
int64_t
>&
in_size_each_rank
,
bool
sync_op
,
bool
use_calc_stream
)
{
PADDLE_THROW
(
platform
::
errors
::
Unimplemented
(
"ProcessGroup%s does not support all_to_all."
,
GetBackendName
()));
}
std
::
shared_ptr
<
ProcessGroup
::
Task
>
ProcessGroupStream
::
Broadcast
(
phi
::
DenseTensor
*
out_tensor
,
const
phi
::
DenseTensor
&
in_tensor
,
...
...
@@ -165,31 +190,6 @@ std::shared_ptr<ProcessGroup::Task> ProcessGroupStream::AllToAll(
"ProcessGroup%s does not support do alltoall"
,
GetBackendName
()));
}
std
::
shared_ptr
<
ProcessGroup
::
Task
>
ProcessGroupStream
::
AllToAllSingle
(
std
::
vector
<
phi
::
DenseTensor
>&
in_tensors
,
std
::
vector
<
phi
::
DenseTensor
>&
out_tensors
,
std
::
vector
<
int64_t
>&
in_sizes
,
std
::
vector
<
int64_t
>&
out_sizes
,
bool
sync_op
)
{
return
AllToAllSingle
(
in_tensors
,
out_tensors
,
in_sizes
,
out_sizes
,
sync_op
,
/*use_calc_stream*/
false
);
}
std
::
shared_ptr
<
ProcessGroup
::
Task
>
ProcessGroupStream
::
AllToAllSingle
(
std
::
vector
<
phi
::
DenseTensor
>&
in_tensors
,
std
::
vector
<
phi
::
DenseTensor
>&
out_tensors
,
std
::
vector
<
int64_t
>&
in_sizes
,
std
::
vector
<
int64_t
>&
out_sizes
,
bool
sync_op
,
bool
use_calc_stream
)
{
PADDLE_THROW
(
platform
::
errors
::
InvalidArgument
(
"ProcessGroup%s does not support do alltoall_single"
,
GetBackendName
()));
}
std
::
shared_ptr
<
ProcessGroup
::
Task
>
ProcessGroupStream
::
Reduce
(
std
::
vector
<
phi
::
DenseTensor
>&
in_tensors
,
std
::
vector
<
phi
::
DenseTensor
>&
out_tensors
,
...
...
paddle/fluid/distributed/collective/ProcessGroupStream.h
浏览文件 @
3f480af2
...
...
@@ -89,6 +89,21 @@ class ProcessGroupStream : public ProcessGroup {
bool
sync_op
,
bool
use_calc_stream
);
std
::
shared_ptr
<
ProcessGroup
::
Task
>
AllToAll
(
phi
::
DenseTensor
*
out_tensor
,
const
phi
::
DenseTensor
&
in_tensor
,
const
std
::
vector
<
int64_t
>&
out_size_each_rank
,
const
std
::
vector
<
int64_t
>&
in_size_each_rank
,
bool
sync_op
)
override
;
virtual
std
::
shared_ptr
<
ProcessGroup
::
Task
>
AllToAll
(
phi
::
DenseTensor
*
out_tensor
,
const
phi
::
DenseTensor
&
in_tensor
,
const
std
::
vector
<
int64_t
>&
out_size_each_rank
,
const
std
::
vector
<
int64_t
>&
in_size_each_rank
,
bool
sync_op
,
bool
use_calc_stream
);
std
::
shared_ptr
<
ProcessGroup
::
Task
>
Broadcast
(
phi
::
DenseTensor
*
out_tensor
,
const
phi
::
DenseTensor
&
in_tensor
,
...
...
@@ -140,21 +155,6 @@ class ProcessGroupStream : public ProcessGroup {
bool
sync_op
,
bool
use_calc_stream
);
std
::
shared_ptr
<
ProcessGroup
::
Task
>
AllToAllSingle
(
std
::
vector
<
phi
::
DenseTensor
>&
in_tensors
,
// NOLINT
std
::
vector
<
phi
::
DenseTensor
>&
out_tensors
,
// NOLINT
std
::
vector
<
int64_t
>&
in_sizes
,
// NOLINT
std
::
vector
<
int64_t
>&
out_sizes
,
// NOLINT
bool
sync_op
)
override
;
virtual
std
::
shared_ptr
<
ProcessGroup
::
Task
>
AllToAllSingle
(
std
::
vector
<
phi
::
DenseTensor
>&
in_tensors
,
// NOLINT
std
::
vector
<
phi
::
DenseTensor
>&
out_tensors
,
// NOLINT
std
::
vector
<
int64_t
>&
in_sizes
,
// NOLINT
std
::
vector
<
int64_t
>&
out_sizes
,
// NOLINT
bool
sync_op
,
bool
use_calc_stream
);
std
::
shared_ptr
<
ProcessGroup
::
Task
>
Reduce
(
std
::
vector
<
phi
::
DenseTensor
>&
in_tensors
,
// NOLINT
std
::
vector
<
phi
::
DenseTensor
>&
out_tensors
,
// NOLINT
...
...
paddle/fluid/pybind/distributed_py.cc
浏览文件 @
3f480af2
...
...
@@ -277,7 +277,7 @@ void BindDistributed(py::module *m) {
/*offset*/
0
,
/*numel*/
-
1
,
sync_op
);
distributed
::
SplitTensor
(
dev_ctx
,
*
out_dense
,
&
out_tensor_list
);
SplitTensor
(
dev_ctx
,
*
out_dense
,
&
out_tensor_list
);
task
->
UpdateWaitChain
(
dev_ctx
);
return
task
;
},
...
...
@@ -316,84 +316,96 @@ void BindDistributed(py::module *m) {
.
def
(
"all_to_all"
,
[](
distributed
::
ProcessGroup
&
self
,
py
::
handle
py_in_tensor_list
,
py
::
handle
py_out_tensor_list
,
py
::
handle
py_in_tensor_list
,
bool
sync_op
)
{
auto
in_tensor_list
=
CastPyArg2VectorOfTensor
(
py_in_tensor_list
.
ptr
(),
0
);
Tensor
concat_in_tensor
=
paddle
::
concat
(
in_tensor_list
,
0
);
auto
in_dense
=
std
::
dynamic_pointer_cast
<
phi
::
DenseTensor
>
(
concat_in_tensor
.
impl
());
std
::
vector
<
phi
::
DenseTensor
>
in_wrapper
=
{
*
in_dense
};
auto
out_tensor_list
=
CastPyArg2VectorOfTensor
(
py_out_tensor_list
.
ptr
(),
0
);
Tensor
concat_out_tensor
=
paddle
::
concat
(
out_tensor_list
,
0
);
auto
out_dense
=
std
::
dynamic_pointer_cast
<
phi
::
DenseTensor
>
(
auto
p_out_tensor
=
std
::
dynamic_pointer_cast
<
phi
::
DenseTensor
>
(
concat_out_tensor
.
impl
());
std
::
vector
<
phi
::
DenseTensor
>
out_wrapper
=
{
*
out_dense
};
auto
*
out_dense
=
p_out_tensor
.
get
();
auto
in_tensor_list
=
CastPyArg2VectorOfTensor
(
py_in_tensor_list
.
ptr
(),
0
);
Tensor
concat_in_tensor
=
paddle
::
concat
(
in_tensor_list
,
0
);
auto
p_in_tensor
=
std
::
dynamic_pointer_cast
<
phi
::
DenseTensor
>
(
concat_in_tensor
.
impl
());
auto
in_dense
=
*
p_in_tensor
;
// in_tensor_list should not be empty
const
auto
&
dev_ctx
=
self
.
GetDeviceContext
(
in_tensor_list
.
back
().
place
());
auto
task
=
self
.
AllToAll
(
in_wrapper
,
out_wrapper
,
sync_op
);
distributed
::
SplitTensor
(
dev_ctx
,
*
out_dense
,
&
out_tensor_list
);
int
world_size
=
self
.
GetSize
();
auto
task
=
self
.
AllToAll
(
out_dense
,
in_dense
,
GetDefaultSplitSizes
(
*
out_dense
,
world_size
),
GetDefaultSplitSizes
(
in_dense
,
world_size
),
sync_op
);
SplitTensor
(
dev_ctx
,
*
out_dense
,
&
out_tensor_list
);
task
->
UpdateWaitChain
(
dev_ctx
);
return
task
;
},
py
::
arg
(
"in"
),
py
::
arg
(
"out"
),
py
::
arg
(
"in"
),
py
::
arg
(
"sync_op"
),
py
::
call_guard
<
py
::
gil_scoped_release
>
())
.
def
(
"all_to_all_tensor"
,
[](
distributed
::
ProcessGroup
&
self
,
py
::
handle
py_in_tensor
,
py
::
handle
py_out_tensor
,
py
::
handle
py_in_tensor
,
bool
sync_op
)
{
auto
in_tensor
=
CastPyArg2Tensor
(
py_in_tensor
.
ptr
(),
0
);
auto
in_dense
=
std
::
dynamic_pointer_cast
<
phi
::
DenseTensor
>
(
in_tensor
.
impl
());
std
::
vector
<
phi
::
DenseTensor
>
in_wrapper
=
{
*
in_dense
};
auto
out_tensor
=
CastPyArg2Tensor
(
py_out_tensor
.
ptr
(),
0
);
auto
out_dense
=
std
::
dynamic_pointer_cast
<
phi
::
DenseTensor
>
(
auto
p_out_tensor
=
std
::
dynamic_pointer_cast
<
phi
::
DenseTensor
>
(
out_tensor
.
impl
());
std
::
vector
<
phi
::
DenseTensor
>
out_wrapper
=
{
*
out_dense
}
;
auto
*
out_dense
=
p_out_tensor
.
get
()
;
return
self
.
AllToAll
(
in_wrapper
,
out_wrapper
,
sync_op
);
auto
in_tensor
=
CastPyArg2Tensor
(
py_in_tensor
.
ptr
(),
0
);
auto
p_in_tensor
=
std
::
dynamic_pointer_cast
<
phi
::
DenseTensor
>
(
in_tensor
.
impl
());
auto
in_dense
=
*
p_in_tensor
;
int
world_size
=
self
.
GetSize
();
return
self
.
AllToAll
(
out_dense
,
in_dense
,
GetDefaultSplitSizes
(
*
out_dense
,
world_size
),
GetDefaultSplitSizes
(
in_dense
,
world_size
),
sync_op
);
},
py
::
arg
(
"in"
),
py
::
arg
(
"out"
),
py
::
arg
(
"in"
),
py
::
arg
(
"sync_op"
),
py
::
call_guard
<
py
::
gil_scoped_release
>
())
.
def
(
"all_to_all_single"
,
[](
distributed
::
ProcessGroup
&
self
,
py
::
handle
py_in_tensor
,
py
::
handle
py_out_tensor
,
std
::
vector
<
int64_t
>
&
in_sizes
,
std
::
vector
<
int64_t
>
&
out_sizes
,
py
::
handle
py_in_tensor
,
const
std
::
vector
<
int64_t
>
&
out_sizes
,
const
std
::
vector
<
int64_t
>
&
in_sizes
,
bool
sync_op
)
{
auto
in_tensor
=
CastPyArg2Tensor
(
py_in_tensor
.
ptr
(),
0
);
auto
in_dense
=
std
::
dynamic_pointer_cast
<
phi
::
DenseTensor
>
(
in_tensor
.
impl
());
std
::
vector
<
phi
::
DenseTensor
>
in_wrapper
=
{
*
in_dense
};
auto
out_tensor
=
CastPyArg2Tensor
(
py_out_tensor
.
ptr
(),
0
);
auto
out_dense
=
std
::
dynamic_pointer_cast
<
phi
::
DenseTensor
>
(
auto
p_out_tensor
=
std
::
dynamic_pointer_cast
<
phi
::
DenseTensor
>
(
out_tensor
.
impl
());
std
::
vector
<
phi
::
DenseTensor
>
out_wrapper
=
{
*
out_dense
};
auto
*
out_dense
=
p_out_tensor
.
get
();
auto
in_tensor
=
CastPyArg2Tensor
(
py_in_tensor
.
ptr
(),
0
);
auto
p_in_tensor
=
std
::
dynamic_pointer_cast
<
phi
::
DenseTensor
>
(
in_tensor
.
impl
());
auto
in_dense
=
*
p_in_tensor
;
return
self
.
AllToAll
Single
(
in_wrapper
,
out_wrapper
,
in_sizes
,
out
_sizes
,
sync_op
);
return
self
.
AllToAll
(
out_dense
,
in_dense
,
out_sizes
,
in
_sizes
,
sync_op
);
},
py
::
arg
(
"in"
),
py
::
arg
(
"out"
),
py
::
arg
(
"in
_sizes
"
),
py
::
arg
(
"in"
),
py
::
arg
(
"out_sizes"
),
py
::
arg
(
"in_sizes"
),
py
::
arg
(
"sync_op"
),
py
::
call_guard
<
py
::
gil_scoped_release
>
())
...
...
@@ -674,18 +686,20 @@ void BindDistributed(py::module *m) {
[](
distributed
::
ProcessGroup
&
self
,
py
::
handle
py_in_tensor
,
py
::
handle
py_out_tensor
,
std
::
vector
<
int64_t
>
in_sizes
,
std
::
vector
<
int64_t
>
out_sizes
)
{
auto
in_tensor
=
CastPyArg2Tensor
(
py_in_tensor
.
ptr
(),
0
);
const
std
::
vector
<
int64_t
>
in_sizes
,
const
std
::
vector
<
int64_t
>
out_sizes
)
{
auto
out_tensor
=
CastPyArg2Tensor
(
py_out_tensor
.
ptr
(),
0
);
auto
in_dense
=
std
::
dynamic_pointer_cast
<
phi
::
DenseTensor
>
(
in_tensor
.
impl
());
auto
out_dense
=
std
::
dynamic_pointer_cast
<
phi
::
DenseTensor
>
(
auto
p_out_tensor
=
std
::
dynamic_pointer_cast
<
phi
::
DenseTensor
>
(
out_tensor
.
impl
());
std
::
vector
<
phi
::
DenseTensor
>
in_tensors
=
{
*
in_dense
};
std
::
vector
<
phi
::
DenseTensor
>
out_tensors
=
{
*
out_dense
};
return
self
.
AllToAll_Single
(
in_tensors
,
out_tensors
,
in_sizes
,
out_sizes
);
auto
*
out_dense
=
p_out_tensor
.
get
();
auto
in_tensor
=
CastPyArg2Tensor
(
py_in_tensor
.
ptr
(),
0
);
auto
p_in_tensor
=
std
::
dynamic_pointer_cast
<
phi
::
DenseTensor
>
(
in_tensor
.
impl
());
auto
in_dense
=
*
p_in_tensor
;
return
self
.
AllToAll
(
out_dense
,
in_dense
,
out_sizes
,
in_sizes
,
/*sync_op*/
true
);
},
py
::
arg
(
"in"
),
py
::
arg
(
"out"
),
...
...
@@ -765,7 +779,7 @@ void BindDistributed(py::module *m) {
/*numel*/
-
1
,
/*sync_op*/
true
,
/*use_calc_stream*/
true
);
distributed
::
SplitTensor
(
dev_ctx
,
*
out_dense
,
&
out_tensor_list
);
SplitTensor
(
dev_ctx
,
*
out_dense
,
&
out_tensor_list
);
return
task
;
},
py
::
arg
(
"out"
),
...
...
@@ -856,88 +870,96 @@ void BindDistributed(py::module *m) {
.
def
(
"all_to_all_on_calc_stream"
,
[](
distributed
::
ProcessGroupStream
&
self
,
py
::
handle
py_in_tensor_list
,
py
::
handle
py_out_tensor_list
)
{
auto
in_tensor_list
=
CastPyArg2VectorOfTensor
(
py_in_tensor_list
.
ptr
(),
0
);
Tensor
concat_in_tensor
=
paddle
::
concat
(
in_tensor_list
,
0
);
auto
in_dense
=
std
::
dynamic_pointer_cast
<
phi
::
DenseTensor
>
(
concat_in_tensor
.
impl
());
std
::
vector
<
phi
::
DenseTensor
>
in_wrapper
=
{
*
in_dense
};
py
::
handle
py_out_tensor_list
,
py
::
handle
py_in_tensor_list
)
{
auto
out_tensor_list
=
CastPyArg2VectorOfTensor
(
py_out_tensor_list
.
ptr
(),
0
);
Tensor
concat_out_tensor
=
paddle
::
concat
(
out_tensor_list
,
0
);
auto
out_dense
=
std
::
dynamic_pointer_cast
<
phi
::
DenseTensor
>
(
auto
p_out_tensor
=
std
::
dynamic_pointer_cast
<
phi
::
DenseTensor
>
(
concat_out_tensor
.
impl
());
std
::
vector
<
phi
::
DenseTensor
>
out_wrapper
=
{
*
out_dense
}
;
auto
*
out_dense
=
p_out_tensor
.
get
()
;
// in_tensor_list must not be empty
auto
in_tensor_list
=
CastPyArg2VectorOfTensor
(
py_in_tensor_list
.
ptr
(),
0
);
Tensor
concat_in_tensor
=
paddle
::
concat
(
in_tensor_list
,
0
);
auto
p_in_tensor
=
std
::
dynamic_pointer_cast
<
phi
::
DenseTensor
>
(
concat_in_tensor
.
impl
());
auto
in_dense
=
*
p_in_tensor
;
// in_tensor_list should not be empty
const
auto
&
dev_ctx
=
self
.
GetDeviceContext
(
in_tensor_list
.
back
().
place
(),
/*use_calc_stream*/
true
);
auto
task
=
self
.
AllToAll
(
in_wrapper
,
out_wrapper
,
/*sync_op*/
true
,
/*use_calc_stream*/
true
);
distributed
::
SplitTensor
(
dev_ctx
,
*
out_dense
,
&
out_tensor_list
);
int
world_size
=
self
.
GetSize
();
auto
task
=
self
.
AllToAll
(
out_dense
,
in_dense
,
GetDefaultSplitSizes
(
*
out_dense
,
world_size
),
GetDefaultSplitSizes
(
in_dense
,
world_size
),
/*sync_op*/
true
,
/*use_calc_stream*/
true
);
SplitTensor
(
dev_ctx
,
*
out_dense
,
&
out_tensor_list
);
return
task
;
},
py
::
arg
(
"in"
),
py
::
arg
(
"out"
),
py
::
arg
(
"in"
),
py
::
call_guard
<
py
::
gil_scoped_release
>
())
.
def
(
"all_to_all_tensor_on_calc_stream"
,
[](
distributed
::
ProcessGroupStream
&
self
,
py
::
handle
py_in_tensor
,
py
::
handle
py_out_tensor
)
{
auto
in_tensor
=
CastPyArg2Tensor
(
py_in_tensor
.
ptr
(),
0
);
auto
in_dense
=
std
::
dynamic_pointer_cast
<
phi
::
DenseTensor
>
(
in_tensor
.
impl
());
std
::
vector
<
phi
::
DenseTensor
>
in_wrapper
=
{
*
in_dense
};
py
::
handle
py_out_tensor
,
py
::
handle
py_in_tensor
)
{
auto
out_tensor
=
CastPyArg2Tensor
(
py_out_tensor
.
ptr
(),
0
);
auto
out_dense
=
std
::
dynamic_pointer_cast
<
phi
::
DenseTensor
>
(
auto
p_out_tensor
=
std
::
dynamic_pointer_cast
<
phi
::
DenseTensor
>
(
out_tensor
.
impl
());
std
::
vector
<
phi
::
DenseTensor
>
out_wrapper
=
{
*
out_dense
}
;
auto
*
out_dense
=
p_out_tensor
.
get
()
;
return
self
.
AllToAll
(
in_wrapper
,
out_wrapper
,
/*sync_op*/
true
,
/*use_calc_stream*/
true
);
auto
in_tensor
=
CastPyArg2Tensor
(
py_in_tensor
.
ptr
(),
0
);
auto
p_in_tensor
=
std
::
dynamic_pointer_cast
<
phi
::
DenseTensor
>
(
in_tensor
.
impl
());
auto
in_dense
=
*
p_in_tensor
;
int
world_size
=
self
.
GetSize
();
return
self
.
AllToAll
(
out_dense
,
in_dense
,
GetDefaultSplitSizes
(
*
out_dense
,
world_size
),
GetDefaultSplitSizes
(
in_dense
,
world_size
),
/*sync_op*/
true
,
/*use_calc_stream*/
true
);
},
py
::
arg
(
"in"
),
py
::
arg
(
"out"
),
py
::
arg
(
"in"
),
py
::
call_guard
<
py
::
gil_scoped_release
>
())
.
def
(
"all_to_all_single_on_calc_stream"
,
[](
distributed
::
ProcessGroupStream
&
self
,
py
::
handle
py_in_tensor
,
py
::
handle
py_out_tensor
,
std
::
vector
<
int64_t
>
&
in_sizes
,
std
::
vector
<
int64_t
>
&
out_sizes
)
{
auto
in_tensor
=
CastPyArg2Tensor
(
py_in_tensor
.
ptr
(),
0
);
auto
in_dense
=
std
::
dynamic_pointer_cast
<
phi
::
DenseTensor
>
(
in_tensor
.
impl
());
std
::
vector
<
phi
::
DenseTensor
>
in_wrapper
=
{
*
in_dense
};
py
::
handle
py_in_tensor
,
const
std
::
vector
<
int64_t
>
&
out_sizes
,
const
std
::
vector
<
int64_t
>
&
in_sizes
)
{
auto
out_tensor
=
CastPyArg2Tensor
(
py_out_tensor
.
ptr
(),
0
);
auto
out_dense
=
std
::
dynamic_pointer_cast
<
phi
::
DenseTensor
>
(
auto
p_out_tensor
=
std
::
dynamic_pointer_cast
<
phi
::
DenseTensor
>
(
out_tensor
.
impl
());
std
::
vector
<
phi
::
DenseTensor
>
out_wrapper
=
{
*
out_dense
}
;
auto
*
out_dense
=
p_out_tensor
.
get
()
;
return
self
.
AllToAllSingle
(
in_wrapper
,
out_wrapper
,
in_sizes
,
out_sizes
,
/*sync_op*/
true
,
/*use_calc_stream*/
true
);
auto
in_tensor
=
CastPyArg2Tensor
(
py_in_tensor
.
ptr
(),
0
);
auto
p_in_tensor
=
std
::
dynamic_pointer_cast
<
phi
::
DenseTensor
>
(
in_tensor
.
impl
());
auto
in_dense
=
*
p_in_tensor
;
return
self
.
AllToAll
(
out_dense
,
in_dense
,
out_sizes
,
in_sizes
,
/*sync_op*/
true
,
/*use_calc_stream*/
true
);
},
py
::
arg
(
"in"
),
py
::
arg
(
"out"
),
py
::
arg
(
"in
_sizes
"
),
py
::
arg
(
"in"
),
py
::
arg
(
"out_sizes"
),
py
::
arg
(
"in_sizes"
),
py
::
call_guard
<
py
::
gil_scoped_release
>
())
.
def
(
...
...
paddle/fluid/pybind/process_group_utils.h
浏览文件 @
3f480af2
...
...
@@ -21,7 +21,7 @@
#include "paddle/phi/kernels/funcs/concat_and_split_functor.h"
namespace
paddle
{
namespace
distribute
d
{
namespace
pybin
d
{
template
<
typename
DeviceContext
,
typename
T
>
struct
ConcatDenseTensor
{
...
...
@@ -113,6 +113,10 @@ void ConcatDenseTensorWithType(const DeviceContext &dev_ctx,
ConcatDenseTensor
<
DeviceContext
,
phi
::
dtype
::
float16
>
()(
dev_ctx
,
t_list
,
p_out
);
break
;
case
phi
::
DataType
::
BFLOAT16
:
ConcatDenseTensor
<
DeviceContext
,
phi
::
dtype
::
bfloat16
>
()(
dev_ctx
,
t_list
,
p_out
);
break
;
case
phi
::
DataType
::
FLOAT32
:
ConcatDenseTensor
<
DeviceContext
,
float
>
()(
dev_ctx
,
t_list
,
p_out
);
break
;
...
...
@@ -150,6 +154,10 @@ void SplitDenseTensorWithType(const DeviceContext &dev_ctx,
SplitDenseTensor
<
DeviceContext
,
phi
::
dtype
::
float16
>
()(
dev_ctx
,
t_in
,
p_list
);
break
;
case
phi
::
DataType
::
BFLOAT16
:
SplitDenseTensor
<
DeviceContext
,
phi
::
dtype
::
bfloat16
>
()(
dev_ctx
,
t_in
,
p_list
);
break
;
case
phi
::
DataType
::
FLOAT32
:
SplitDenseTensor
<
DeviceContext
,
float
>
()(
dev_ctx
,
t_in
,
p_list
);
break
;
...
...
@@ -249,5 +257,10 @@ void SplitTensor(const phi::DeviceContext &dev_ctx,
}
}
}
// namespace distributed
inline
std
::
vector
<
int64_t
>
GetDefaultSplitSizes
(
const
phi
::
DenseTensor
&
tensor
,
int
world_size
)
{
return
std
::
vector
<
int64_t
>
(
world_size
,
tensor
.
dims
()[
0
]
/
world_size
);
}
}
// namespace pybind
}
// namespace paddle
python/paddle/distributed/communication/stream/all_to_all.py
浏览文件 @
3f480af2
...
...
@@ -75,11 +75,11 @@ def _all_to_all_in_dygraph(
if
use_calc_stream
:
return
group
.
process_group
.
all_to_all_on_calc_stream
(
in_tensor_list
,
out
_tensor_list
out_tensor_list
,
in
_tensor_list
)
task
=
group
.
process_group
.
all_to_all
(
in_tensor_list
,
out
_tensor_list
,
sync_op
out_tensor_list
,
in
_tensor_list
,
sync_op
)
if
sync_op
:
task
.
wait
()
...
...
@@ -243,18 +243,23 @@ def _alltoall_single_in_dygraph(
sync_op
,
use_calc_stream
,
):
world_size
=
dist
.
get_world_size
()
if
out_split_sizes
is
None
:
out_split_sizes
=
[]
out_split_sizes
=
[
out_tensor
.
shape
[
0
]
//
world_size
for
_
in
range
(
world_size
)
]
if
in_split_sizes
is
None
:
in_split_sizes
=
[]
in_split_sizes
=
[
in_tensor
.
shape
[
0
]
//
world_size
for
_
in
range
(
world_size
)
]
if
use_calc_stream
:
return
group
.
process_group
.
all_to_all_single_on_calc_stream
(
in_tensor
,
out_tensor
,
in_split_sizes
,
out
_split_sizes
out_tensor
,
in_tensor
,
out_split_sizes
,
in
_split_sizes
)
task
=
group
.
process_group
.
all_to_all_single
(
in_tensor
,
out_tensor
,
in_split_sizes
,
out
_split_sizes
,
sync_op
out_tensor
,
in_tensor
,
out_split_sizes
,
in
_split_sizes
,
sync_op
)
if
sync_op
:
task
.
wait
()
...
...
编辑
预览
Markdown
is supported
0%
请重试
或
添加新附件
.
添加附件
取消
You are about to add
0
people
to the discussion. Proceed with caution.
先完成此消息的编辑!
取消
想要评论请
注册
或
登录