optimizer.py 61.5 KB
Newer Older
1
# Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
D
dzhwinter 已提交
2
#
D
dzhwinter 已提交
3 4 5
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
D
dzhwinter 已提交
6
#
D
dzhwinter 已提交
7
#     http://www.apache.org/licenses/LICENSE-2.0
D
dzhwinter 已提交
8
#
D
dzhwinter 已提交
9 10 11 12 13
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
14 15

from __future__ import print_function
16

17
from collections import defaultdict
S
rename  
sneaxiy 已提交
18
from .wrapped_decorator import signature_safe_contextmanager
19

20
from paddle.fluid.framework import Program, Variable, name_scope, default_main_program
Q
Qiao Longfei 已提交
21
from paddle.fluid.distribute_lookup_table import find_distributed_lookup_table
22

23 24
from . import framework
from . import layers
25
from . import unique_name
26
from .backward import append_backward
27
from .clip import append_gradient_clip_ops, error_clip_callback
28 29 30
from .framework import program_guard
from .initializer import Constant
from .layer_helper import LayerHelper
S
sneaxiy 已提交
31
from .layers import ops
32
from .regularizer import append_regularization_ops
M
minqiyang 已提交
33
from .imperative import base as imperative_base
M
minqiyang 已提交
34
from .imperative.learning_rate_scheduler import LearningRateDecay
35

36
__all__ = [
Q
qiaolongfei 已提交
37
    'SGD', 'Momentum', 'Adagrad', 'Adam', 'Adamax', 'DecayedAdagrad', 'Ftrl',
38
    'SGDOptimizer', 'MomentumOptimizer', 'AdagradOptimizer', 'AdamOptimizer',
W
weixing02 已提交
39
    'AdamaxOptimizer', 'DecayedAdagradOptimizer', 'RMSPropOptimizer',
40 41
    'FtrlOptimizer', 'Adadelta', 'ModelAverage', 'LarsMomentum',
    'LarsMomentumOptimizer'
42
]
Q
Qiao Longfei 已提交
43 44 45 46 47 48


class Optimizer(object):
    """Optimizer Base class.

    Define the common interface of an optimizer.
49 50
    User should not use this class directly,
    but need to use one of it's implementation.
Q
Qiao Longfei 已提交
51 52
    """

X
Xin Pan 已提交
53
    def __init__(self, learning_rate, regularization=None, name=None):
M
minqiyang 已提交
54 55 56 57 58 59 60 61 62 63 64 65 66
        if framework._in_imperative_mode():
            if not isinstance(learning_rate, float) and \
                    not isinstance(learning_rate, LearningRateDecay):
                raise TypeError(
                    "learning rate should be float or LearningRateDecay, got %s here"
                    % type(learning_rate))
        else:
            if not isinstance(learning_rate, float) and \
                    not isinstance(learning_rate, framework.Variable):
                raise TypeError(
                    "learning rate should be float or Variable, got %s here" %
                    type(learning_rate))

W
whs 已提交
67
        self._name = name
D
dzhwinter 已提交
68
        self.regularization = regularization
69
        self._learning_rate = learning_rate
D
dzhwinter 已提交
70 71
        # the learning rate type should be inferenced from loss
        self._dtype = None
72
        # each program should have a independent learning rate
73
        # program -> Variable(learning_rate)
Q
qiaolongfei 已提交
74
        self._learning_rate_map = dict()
75
        if isinstance(self._learning_rate, framework.Variable):
76 77
            self._learning_rate_map[framework.default_main_program(
            )] = self._learning_rate
78 79 80 81 82
        # Dictionary of accumulators. Some optimizer subclasses need to
        # allocate and manage extra variables associated with the parameters
        # to train. These variables are called accumulators.
        # {accum_name : { paramter_name : accumulator_for_parameter, ...}, ...}
        self._accumulators = defaultdict(lambda: dict())
Q
Qiao Longfei 已提交
83
        self.helper = None
84 85 86 87
        self._opti_name_list = []

    def get_opti_var_name_list(self):
        return self._opti_name_list
Q
Qiao Longfei 已提交
88

Q
Qiao Longfei 已提交
89
    def _create_global_learning_rate(self):
90 91 92 93 94 95 96 97 98 99 100
        if imperative_base.enabled():
            # create learning rate Variable
            if isinstance(self._learning_rate, float):
                self._learning_rate_map[framework.default_main_program(
                )] = layers.create_global_var(
                    name=unique_name.generate("learning_rate"),
                    shape=[1],
                    value=float(self._learning_rate),
                    dtype='float32' if self._dtype is None else self._dtype,
                    persistable=True)
            # get learning rate Variable from LearningRateDecay
M
minqiyang 已提交
101
            elif isinstance(self._learning_rate, LearningRateDecay):
102 103 104 105 106 107
                self._learning_rate_map[framework.default_main_program(
                )] = self._learning_rate()
            else:
                raise TypeError(
                    "optimizer's learning rate must be float or LearningRateDecay"
                )
108
        else:
109 110 111 112 113
            lr = self._global_learning_rate()

            if isinstance(lr, framework.Variable):
                return

114
            if not isinstance(self._learning_rate, float):
Q
qiaolongfei 已提交
115
                raise TypeError(
116 117
                    "learning rate variable is create outside optimizer,"
                    "can not create new learning rate variable for new program")
Q
Qiao Longfei 已提交
118

119 120 121 122 123 124 125 126
            # create learning rate in the current main program
            self._learning_rate_map[framework.default_main_program(
            )] = layers.create_global_var(
                name=unique_name.generate("learning_rate"),
                shape=[1],
                value=float(self._learning_rate),
                dtype='float32' if self._dtype is None else self._dtype,
                persistable=True)
127

Y
yuyang18 已提交
128
    def _global_learning_rate(self, program=None):
Q
Qiao Longfei 已提交
129 130 131 132
        """
        get global decayed learning rate
        :return:
        """
133 134
        if program is None:
            program = framework.default_main_program()
Q
qiaolongfei 已提交
135
        return self._learning_rate_map.get(program, None)
Q
Qiao Longfei 已提交
136

Q
Qiao Longfei 已提交
137 138 139 140 141
    def _append_optimize_op(self, block, param_and_grad):
        """ append optimize operator to block and return all the added optimize_op
        """
        raise NotImplementedError()

142 143 144 145
    def _create_param_lr(self, param_and_grad):
        # create learning rate variable for every parameter
        param = param_and_grad[0]
        param_lr = param.optimize_attr['learning_rate']
W
Wu Yi 已提交
146 147
        if type(param_lr) == Variable:
            return param_lr
Q
qiaolongfei 已提交
148
        else:
W
Wu Yi 已提交
149
            if param_lr == 1.0:
Y
yuyang18 已提交
150
                return self._global_learning_rate()
W
Wu Yi 已提交
151
            else:
X
Xin Pan 已提交
152 153 154
                with default_main_program()._lr_schedule_guard(
                        is_with_opt=True), framework.name_scope(
                            'scale_with_param_lr'):
155
                    return self._global_learning_rate() * param_lr
156 157 158 159 160 161 162

    def _create_accumulators(self, block, parameters):
        """Create all accumulators needed by the parameters

        Args:
            block: the block in which the loss variable is present
            parameters: list of parameter variables for the optimizer
Q
Qiao Longfei 已提交
163
        """
164 165
        pass

166
    def _finish_update(self, block, parameters_and_grads):
167 168 169 170 171 172 173 174
        """Finish any custom updates needed
           before completing an optimization step

        Args:
            block: the block in which the loss variable is present
            parameters: list of parameter variables for the optimizer

        Returns:
Q
qiaolongfei 已提交
175
            None
176 177 178
        """
        pass

179 180 181 182 183 184
    def _add_accumulator(self,
                         name,
                         param,
                         dtype=None,
                         fill_value=0.0,
                         shape=None):
185 186 187 188 189 190 191 192 193
        """Utility function to add an accumulator for a parameter

        Args:
            block: the block in which the loss variable is present
            name: name of the accumulator
            param: parameter variable for which accumulator is to be added
            dtype: data type of the accumulator variable
            fill_value: value to initialize the accumulator variable
        """
W
whs 已提交
194 195
        if self._name is not None:
            name = self._name + "_" + name
196 197
        if (name in self._accumulators and
                param.name in self._accumulators[name]):
198
            raise Exception("Accumulator {} already exists for parameter {}".
199
                            format(name, param.name))
200 201
        if shape == None:
            shape = param.shape
Q
Qiao Longfei 已提交
202
        assert isinstance(self.helper, LayerHelper)
203 204 205 206 207

        var_name = param.name + "_" + name
        var_name = unique_name.generate(var_name)
        self._opti_name_list.append(var_name)

Q
Qiao Longfei 已提交
208
        var = self.helper.create_global_variable(
209
            name=var_name,
Q
Qiao Longfei 已提交
210
            persistable=True,
F
fengjiayi 已提交
211
            dtype=dtype or param.dtype,
Q
Qiao Longfei 已提交
212
            type=param.type,
213
            shape=shape)
Q
Qiao Longfei 已提交
214
        self.helper.set_variable_initializer(
215
            var, initializer=Constant(value=float(fill_value)))
Q
Qiao Longfei 已提交
216
        self._accumulators[name][param.name] = var
217
        return var
218 219 220 221 222 223 224 225 226 227 228

    def _get_accumulator(self, name, param):
        """Utility function to fetch an accumulator for a parameter

        Args:
            name: name of the accumulator
            param: parameter variable for which accumulator is to be fetched

        Returns:
            accumulator variable for the parameter
        """
W
whs 已提交
229 230
        if self._name is not None:
            name = self._name + "_" + name
231 232 233 234 235 236
        if (name not in self._accumulators or
                param.name not in self._accumulators[name]):
            raise Exception("Accumulator {} does not exist for parameter {}".
                            format(name, param.name))
        return self._accumulators[name][param.name]

237
    def _create_optimization_pass(self, parameters_and_grads):
Q
Qiao Longfei 已提交
238 239 240
        """Add optimization operators to update gradients to variables.

        Args:
Q
qiaolongfei 已提交
241
          parameters_and_grads(list(tuple(Variable, Variable))):
242
            a list of (variable, gradient) pair to update.
Q
Qiao Longfei 已提交
243 244

        Returns:
245
          return_op_list: a list of operators that will complete one step of
246 247 248
            optimization. This will include parameter update ops, global step
            update ops and any other custom ops required by subclasses to manage
            their internal state.
Q
Qiao Longfei 已提交
249
        """
250 251 252 253 254
        # This is a default implementation of create_optimization_pass that
        # can be shared by most optimizers. This implementation assumes that
        # the subclass will implement the _append_optimize_op method and the
        #  _initialize_tensors method. The subclass can extend the
        # _create_accumulators method if it needs to create accumulators
255
        # for parameters and extend _finish_update method to add custom ops.
256

257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283
        # Allways called under program_guard use global block as loss block
        global_block = framework.default_main_program().global_block()
        start = len(global_block.ops)
        self.helper = LayerHelper(self.__class__.__name__)
        self._create_accumulators(global_block,
                                  [p[0] for p in parameters_and_grads])
        self._create_global_learning_rate()

        optimize_ops = []
        for param_and_grad in parameters_and_grads:
            if param_and_grad[1] is None:
                continue
            with param_and_grad[0].block.program._optimized_guard(
                    param_and_grad), name_scope("optimizer"):
                if param_and_grad[0].trainable is True:
                    optimize_op = self._append_optimize_op(global_block,
                                                           param_and_grad)
                    optimize_ops.append(optimize_op)

        # Get custom finish ops for subclasses
        # FIXME: Need to fix this once we figure out how to handle dependencies
        self._finish_update(global_block, parameters_and_grads)

        end = len(global_block.ops)
        return global_block._slice_ops(start, end)

    def _process_distribute_lookuptable(self, param_grads):
Q
Qiao Longfei 已提交
284 285 286 287 288 289 290 291 292
        """
        Because distribute lookup table only support SGD optimizer for now, not support
        other optimizer and regularization, so we should find the table parameter out,
        and avoid to add regularization and other op for it, and add sgd optimize op
        for it independently.
        :param param_grads(list((Var, Var))): list of (param, grad) pair.
        :param loss: the loss variable.
        :param startup_program: the startup program
        """
293 294
        program = framework.default_main_program()
        global_block = framework.default_main_program().global_block()
Q
Qiao Longfei 已提交
295 296 297 298 299 300 301 302 303 304 305 306 307 308 309
        table_name = find_distributed_lookup_table(program)
        table_param = None
        table_grad = None
        new_param_grads = []
        for p, g in param_grads:
            if p.name == table_name:
                if table_param is not None:
                    raise RuntimeError(
                        "multi dist table var found, only support one now!")
                table_param = p
                table_grad = g
            else:
                new_param_grads.append((p, g))
        sgd_op = None
        if table_param is not None:
310 311 312 313 314 315 316 317 318 319 320 321 322
            param_and_grad = [table_param, table_grad]
            with table_param.block.program._optimized_guard(param_and_grad), \
                    framework.name_scope("optimizer"):
                self._create_global_learning_rate()
                # create the optimize op
                sgd_op = global_block.append_op(
                    type='sgd',
                    inputs={
                        "Param": table_param,
                        "Grad": table_grad,
                        "LearningRate": self._create_param_lr(param_and_grad)
                    },
                    outputs={"ParamOut": param_and_grad[0]})
Q
Qiao Longfei 已提交
323 324
        return new_param_grads, (table_param, table_grad), sgd_op

325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342
    def backward(self,
                 loss,
                 startup_program=None,
                 parameter_list=None,
                 no_grad_set=None,
                 callbacks=None):
        """
        First part of `minimize`, do auto-diff to append backward ops for
        the current program.

        Args:
            loss (Variable): loss variable to run optimizations.
            startup_program (Program): startup_program for initializing parameters
                in `parameter_list`.
            parameter_list (list): list of Variables to update.
            no_grad_set (set|None): set of Variables should be ignored.
            callbacks (list|None): list of callables to run when appending backward
                operator for one parameter.
M
minqiyang 已提交
343

344 345
        Return:
            list: list of (param, grad) pair, grad is the output of backward.
M
minqiyang 已提交
346

347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363
        Examples:
            See examples in `apply_gradients`.
        """
        if callbacks is None:
            callbacks = [error_clip_callback]
        else:
            assert (isinstance(callbacks, list))
            callbacks.append(error_clip_callback)
        return append_backward(loss, parameter_list, no_grad_set, callbacks)

    def apply_gradients(self, params_grads):
        """
        Second part of `minimize`, appending optimization operators for
        given `params_grads` pairs.

        Args:
            params_grads (list): list of (param, grad) pair to do optimization.
M
minqiyang 已提交
364

365 366
        Returns:
            list: A list of operators appended to the current program.
M
minqiyang 已提交
367

368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395
        Examples:
            .. code-block:: python

                loss = network()
                optimizer = fluid.optimizer.SGD(learning_rate=0.1)
                params_grads = optimizer.backward(loss)
                # you may append operations for params_grads here
                # ...
                optimizer.apply_gradients(params_grads)
        """
        params_grads = sorted(params_grads, key=lambda x: x[0].name)

        params_grads, table_param_and_grad, table_optimize_op = \
            self._process_distribute_lookuptable(params_grads)

        params_grads = append_gradient_clip_ops(params_grads)

        # Add regularization if any
        params_grads = append_regularization_ops(params_grads,
                                                 self.regularization)

        optimize_ops = self._create_optimization_pass(params_grads)
        if table_optimize_op is not None:
            optimize_ops.append(table_optimize_op)
            params_grads.append(table_param_and_grad)

        return optimize_ops

Q
Qiao Longfei 已提交
396 397
    def minimize(self,
                 loss,
398
                 startup_program=None,
Q
Qiao Longfei 已提交
399 400
                 parameter_list=None,
                 no_grad_set=None):
401 402 403 404 405
        """
        Add operations to minimize `loss` by updating `parameter_list`.

        This method combines interface `backward()` and
        `apply_gradients()` into one.
M
minqiyang 已提交
406

407 408 409 410 411 412
        Args:
            loss (Variable): loss variable to run optimizations.
            startup_program (Program): startup_program for initializing parameters
                in `parameter_list`.
            parameter_list (list): list of Variables to update.
            no_grad_set (set|None): set of Variables should be ignored.
Q
Qiao Longfei 已提交
413

414 415 416
        Returns:
            tuple: (optimize_ops, params_grads) which are, list of operators appended;
            and list of (param, grad) Variables pair for optimization.
Q
Qiao Longfei 已提交
417
        """
418 419
        self._dtype = loss.dtype
        optimize_ops = []
420
        if framework._in_imperative_mode():
M
minqiyang 已提交
421
            if parameter_list is not None:
M
minqiyang 已提交
422
                parameters = parameter_list
M
minqiyang 已提交
423
            else:
424
                parameters = framework._imperative_tracer().all_parameters()
M
minqiyang 已提交
425 426 427

            params_grads = []
            for param in parameters:
428
                if not param.trainable:
429
                    continue
430 431 432 433 434 435 436 437
                if param._ivar._grad_ivar() is not None:
                    # create gradient variable
                    grad_var = Variable(
                        block=loss.block,
                        name=param._ivar._grad_name(),
                        stop_gradient=True,
                        ivar=param._ivar._grad_ivar())
                    params_grads.append((param, grad_var))
438 439
            with program_guard(framework.default_main_program(),
                               framework.default_startup_program()):
440
                optimize_ops = self._create_optimization_pass(params_grads)
M
minqiyang 已提交
441
        else:
442
            program = loss.block.program
443 444 445 446
            with program_guard(program, startup_program):
                params_grads = self.backward(loss, startup_program,
                                             parameter_list, no_grad_set)
                optimize_ops = self.apply_gradients(params_grads)
M
minqiyang 已提交
447

Q
Qiao Longfei 已提交
448
        return optimize_ops, params_grads
Q
Qiao Longfei 已提交
449 450 451


class SGDOptimizer(Optimizer):
Q
qiaolongfei 已提交
452 453 454 455 456 457 458 459 460 461
    """
    Optimizer of the stochastic gradient descent algorithm.

    .. math::

        param\_out = param - learning\_rate * grad

    Args:
        learning_rate (float|Variable): the learning rate used to update parameters. \
        Can be a float value or a Variable with one float value as data element.
X
Xin Pan 已提交
462 463 464
        regularization: A Regularizer, such as
                        fluid.regularizer.L2DecayRegularizer.
        name: A optional name prefix.
Q
qiaolongfei 已提交
465 466 467 468

    Examples:
        .. code-block:: python

Q
qiaolongfei 已提交
469
            sgd_optimizer = fluid.optimizer.SGD(learning_rate=0.2)
Q
qiaolongfei 已提交
470
            sgd_optimizer.minimize(cost)
Q
Qiao Longfei 已提交
471 472
    """

X
Xin Pan 已提交
473
    def __init__(self, learning_rate, regularization=None, name=None):
Q
Qiao Longfei 已提交
474
        assert learning_rate is not None
Q
Qiao Longfei 已提交
475
        super(SGDOptimizer, self).__init__(
X
Xin Pan 已提交
476 477 478
            learning_rate=learning_rate,
            regularization=regularization,
            name=name)
Q
Qiao Longfei 已提交
479 480
        self.type = "sgd"

481 482
    def _append_optimize_op(self, block, param_and_grad):
        assert isinstance(block, framework.Block)
483

Q
Qiao Longfei 已提交
484 485 486 487 488 489
        # create the optimize op
        sgd_op = block.append_op(
            type=self.type,
            inputs={
                "Param": param_and_grad[0],
                "Grad": param_and_grad[1],
490
                "LearningRate": self._create_param_lr(param_and_grad)
Q
Qiao Longfei 已提交
491
            },
M
minqiyang 已提交
492 493
            outputs={"ParamOut": param_and_grad[0]},
            stop_gradient=True)
Q
Qiao Longfei 已提交
494 495

        return sgd_op
496 497 498


class MomentumOptimizer(Optimizer):
Q
qiaolongfei 已提交
499 500 501 502 503 504 505 506 507 508 509 510 511 512
    """

    Simple Momentum optimizer with velocity state

    This optimizer has a flag for Nestrov Momentum.

    The update equations are as follows:

    .. math::

        & velocity = mu * velocity + gradient

        & if (use\_nesterov):

513
        &\quad   param = param - (gradient + mu * velocity) * learning\_rate
Q
qiaolongfei 已提交
514 515 516

        & else:

Q
qiaolongfei 已提交
517
        &\quad   param = param - learning\_rate * velocity
Q
qiaolongfei 已提交
518 519 520 521 522 523

    Args:
        learning_rate (float|Variable): the learning rate used to update parameters. \
        Can be a float value or a Variable with one float value as data element.
        momentum (float): momentum factor
        use_nesterov (bool): enables Nesterov momentum
X
Xin Pan 已提交
524 525 526
        regularization: A Regularizer, such as
                        fluid.regularizer.L2DecayRegularizer.
        name: A optional name prefix.
Q
qiaolongfei 已提交
527 528 529 530

    Examples:
        .. code-block:: python

Q
qiaolongfei 已提交
531
            optimizer = fluid.optimizer.Momentum(learning_rate=0.2, momentum=0.1)
Q
qiaolongfei 已提交
532
            optimizer.minimize(cost)
533 534 535
    """
    _velocity_acc_str = "velocity"

X
Xin Pan 已提交
536 537 538 539 540 541
    def __init__(self,
                 learning_rate,
                 momentum,
                 use_nesterov=False,
                 regularization=None,
                 name=None):
542 543
        assert learning_rate is not None
        assert momentum is not None
Q
Qiao Longfei 已提交
544
        super(MomentumOptimizer, self).__init__(
X
Xin Pan 已提交
545 546 547
            learning_rate=learning_rate,
            regularization=regularization,
            name=name)
548 549
        self.type = "momentum"
        self._momentum = momentum
550
        self._use_nesterov = bool(use_nesterov)
551 552 553 554 555

    def _create_accumulators(self, block, parameters):
        assert isinstance(block, framework.Block)

        for p in parameters:
Q
Qiao Longfei 已提交
556
            self._add_accumulator(self._velocity_acc_str, p)
557 558 559 560 561 562 563 564 565 566 567 568 569

    def _append_optimize_op(self, block, param_and_grad):
        assert isinstance(block, framework.Block)

        velocity_acc = self._get_accumulator(self._velocity_acc_str,
                                             param_and_grad[0])
        # create the momentum optimize op
        momentum_op = block.append_op(
            type=self.type,
            inputs={
                "Param": param_and_grad[0],
                "Grad": param_and_grad[1],
                "Velocity": velocity_acc,
570
                "LearningRate": self._create_param_lr(param_and_grad)
571 572 573 574 575
            },
            outputs={
                "ParamOut": param_and_grad[0],
                "VelocityOut": velocity_acc
            },
576
            attrs={"mu": self._momentum,
M
minqiyang 已提交
577 578
                   "use_nesterov": self._use_nesterov},
            stop_gradient=True)
579 580

        return momentum_op
581 582


583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606
class LarsMomentumOptimizer(Optimizer):
    """
    Momentum optimizer with LARS support

    The update equations are as follows:

    .. math::

        & local\_learning\_rate = learning\_rate * lars\_coeff * \\
          \\frac{||param||}{||gradient|| + lars\_weight\_decay * ||param||}

        & velocity = mu * velocity + local\_learning\_rate * (gradient + lars\_weight\_decay * param)

        & param = param - velocity

    Args:
        learning_rate (float|Variable): the learning rate used to update parameters. \
        Can be a float value or a Variable with one float value as data element.
        momentum (float): momentum factor
        lars_coeff (float): defines how much we trust the layer to change its weights.
        lars_weight_decay (float): weight decay coefficient for decaying using LARS.
        regularization: A Regularizer, such as
                        fluid.regularizer.L2DecayRegularizer.
        name: A optional name prefix.
M
minqiyang 已提交
607

608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662

    Examples:
        .. code-block:: python

            optimizer = fluid.optimizer.LarsMomentum(learning_rate=0.2, momentum=0.1, lars_weight_decay=0.001)
            optimizer.minimize(cost)
    """
    _velocity_acc_str = "velocity"

    def __init__(self,
                 learning_rate,
                 momentum,
                 lars_coeff=0.001,
                 lars_weight_decay=0.0005,
                 regularization=None,
                 name=None):
        assert learning_rate is not None
        assert momentum is not None
        super(LarsMomentumOptimizer, self).__init__(
            learning_rate=learning_rate,
            regularization=regularization,
            name=name)
        self.type = "lars_momentum"
        self._momentum = momentum
        self._lars_coeff = float(lars_coeff)
        self._lars_weight_decay = float(lars_weight_decay)

    def _create_accumulators(self, block, parameters):
        assert isinstance(block, framework.Block)

        for p in parameters:
            self._add_accumulator(self._velocity_acc_str, p)

    def _append_optimize_op(self, block, param_and_grad):
        assert isinstance(block, framework.Block)

        velocity_acc = self._get_accumulator(self._velocity_acc_str,
                                             param_and_grad[0])
        # create the momentum optimize op
        momentum_op = block.append_op(
            type=self.type,
            inputs={
                "Param": param_and_grad[0],
                "Grad": param_and_grad[1],
                "Velocity": velocity_acc,
                "LearningRate": self._create_param_lr(param_and_grad)
            },
            outputs={
                "ParamOut": param_and_grad[0],
                "VelocityOut": velocity_acc
            },
            attrs={
                "mu": self._momentum,
                "lars_coeff": self._lars_coeff,
                "lars_weight_decay": self._lars_weight_decay
M
minqiyang 已提交
663 664
            },
            stop_gradient=True)
665 666 667 668

        return momentum_op


669
class AdagradOptimizer(Optimizer):
Q
qiaolongfei 已提交
670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689
    """
    **Adaptive Gradient Algorithm (Adagrad)**

    The update is done as follows:

    .. math::

        moment\_out &= moment + grad * grad

        param\_out &= param - \\frac{learning\_rate * grad}{\sqrt{moment\_out} + \epsilon}

    The original paper(http://www.jmlr.org/papers/volume12/duchi11a/duchi11a.pdf)
    does not have the epsilon attribute. It is added here in our implementation
    as also proposed here: http://cs231n.github.io/neural-networks-3/#ada
    for numerical stability to avoid the division by zero error.

    Args:
        learning_rate (float|Variable): the learning rate used to update parameters. \
        Can be a float value or a Variable with one float value as data element.
        epsilon (float): a small float value for numerical stability.
X
Xin Pan 已提交
690 691 692
        regularization: A Regularizer, such as
                        fluid.regularizer.L2DecayRegularizer.
        name: A optional name prefix.
X
xuezhong 已提交
693
        initial_accumulator_value (float): Initial value for moment accumulator.
Q
qiaolongfei 已提交
694 695 696 697 698 699

    Examples:
        .. code-block:: python

            optimizer = fluid.optimizer.Adagrad(learning_rate=0.2)
            optimizer.minimize(cost)
700 701 702
    """
    _moment_acc_str = "moment"

X
Xin Pan 已提交
703 704 705 706
    def __init__(self,
                 learning_rate,
                 epsilon=1.0e-6,
                 regularization=None,
707
                 name=None,
X
xuezhong 已提交
708
                 initial_accumulator_value=0.0):
709 710
        assert learning_rate is not None
        assert epsilon is not None
Q
Qiao Longfei 已提交
711
        super(AdagradOptimizer, self).__init__(
X
Xin Pan 已提交
712 713 714
            learning_rate=learning_rate,
            regularization=regularization,
            name=name)
715 716
        self.type = "adagrad"
        self._epsilon = epsilon
717
        self.initial_accumulator_value = initial_accumulator_value
718 719 720 721 722

    def _create_accumulators(self, block, parameters):
        assert isinstance(block, framework.Block)

        for p in parameters:
Q
Qiao Longfei 已提交
723
            self._add_accumulator(self._moment_acc_str, p)
724 725 726 727 728 729

    def _append_optimize_op(self, block, param_and_grad):
        assert isinstance(block, framework.Block)

        moment_acc = self._get_accumulator(self._moment_acc_str,
                                           param_and_grad[0])
730 731 732 733 734 735 736 737 738 739
        startup_block = framework.default_startup_program().global_block()
        startup_block.append_op(
            type='fill_constant',
            inputs={},
            outputs={'Out': [moment_acc]},
            attrs={
                'dtype': moment_acc.dtype,
                'value': self.initial_accumulator_value,
                'shape': moment_acc.shape,
            })
740

741
        # Create the adagrad optimizer op
742 743 744 745 746 747
        adagrad_op = block.append_op(
            type=self.type,
            inputs={
                "Param": param_and_grad[0],
                "Grad": param_and_grad[1],
                "Moment": moment_acc,
748
                "LearningRate": self._create_param_lr(param_and_grad)
749 750 751
            },
            outputs={"ParamOut": param_and_grad[0],
                     "MomentOut": moment_acc},
M
minqiyang 已提交
752 753
            attrs={"epsilon": self._epsilon},
            stop_gradient=True)
754 755

        return adagrad_op
756 757 758


class AdamOptimizer(Optimizer):
Q
qiaolongfei 已提交
759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785
    """
    This implements the Adam optimizer from Section 2 of the Adam
    paper : https://arxiv.org/abs/1412.6980.
    Adam is a first-order gradient-based optimization method based on
    adaptive estimates of lower-order moments.

    Adam updates:

    .. math::

        t & = t + 1

        moment\_1\_out & = {\\beta}_1 * moment\_1 + (1 - {\\beta}_1) * grad

        moment\_2\_out & = {\\beta}_2 * moment\_2 + (1 - {\\beta}_2) * grad * grad

        learning\_rate & = learning\_rate * \\
                          \\frac{\sqrt{1 - {\\beta}_2^t}}{1 - {\\beta}_1^t}

        param\_out & = param - learning\_rate * \\frac{moment\_1}{\sqrt{moment\_2} + \epsilon}

    Args:
        learning_rate (float|Variable): the learning rate used to update parameters. \
        Can be a float value or a Variable with one float value as data element.
        beta1 (float): The exponential decay rate for the 1st moment estimates.
        beta2 (float): The exponential decay rate for the 2nd moment estimates.
        epsilon (float): a small float value for numerical stability.
786
        regularization: A Regularizer, such as fluid.regularizer.L2DecayRegularizer.
X
Xin Pan 已提交
787
        name: A optional name prefix.
788 789 790 791 792 793
        lazy_mode(bool: false): The official Adam algorithm has two moving-average accumulators
        the accumulators are updated at every step. Every element of the two moving-average is updated
        in both dense mode and sparse mode. If the size of parameter is very large, then the update
        may be very slow. The lazy mode only update the element that has gradient is the current
        mini-batch, so it will be much more faster. But this mode has different semantics with the
        original Adam algorithm and may lead to different result.
Q
qiaolongfei 已提交
794 795 796 797 798 799 800

    Examples:
        .. code-block:: python

            optimizer = fluid.optimizer.Adam(learning_rate=0.2)
            optimizer.minimize(cost)

801 802 803
    """
    _moment1_acc_str = "moment1"
    _moment2_acc_str = "moment2"
Q
qiaolongfei 已提交
804 805
    _beta1_pow_acc_str = "beta1_pow_acc"
    _beta2_pow_acc_str = "beta2_pow_acc"
806 807 808 809 810

    def __init__(self,
                 learning_rate=0.001,
                 beta1=0.9,
                 beta2=0.999,
811
                 epsilon=1e-8,
X
Xin Pan 已提交
812
                 regularization=None,
Q
Qiao Longfei 已提交
813
                 name=None,
Q
Qiao Longfei 已提交
814
                 lazy_mode=False):
815 816 817 818
        assert learning_rate is not None
        assert beta1 is not None
        assert beta2 is not None
        assert epsilon is not None
Q
Qiao Longfei 已提交
819
        super(AdamOptimizer, self).__init__(
X
Xin Pan 已提交
820 821 822
            learning_rate=learning_rate,
            regularization=regularization,
            name=name)
823 824 825 826
        self.type = "adam"
        self._beta1 = beta1
        self._beta2 = beta2
        self._epsilon = epsilon
Q
Qiao Longfei 已提交
827
        self._lazy_mode = lazy_mode
828 829 830 831 832 833

    def _create_accumulators(self, block, parameters):
        assert isinstance(block, framework.Block)

        # Create accumulator tensors for first and second moments
        for p in parameters:
Q
Qiao Longfei 已提交
834 835
            self._add_accumulator(self._moment1_acc_str, p)
            self._add_accumulator(self._moment2_acc_str, p)
Q
qiaolongfei 已提交
836 837 838 839 840 841 842 843 844 845 846 847
            self._add_accumulator(
                name=self._beta1_pow_acc_str,
                param=p,
                dtype='float32',
                fill_value=self._beta1,
                shape=[1])
            self._add_accumulator(
                name=self._beta2_pow_acc_str,
                param=p,
                dtype='float32',
                fill_value=self._beta2,
                shape=[1])
848 849 850 851 852 853 854 855

    def _append_optimize_op(self, block, param_and_grad):
        assert isinstance(block, framework.Block)

        moment1 = self._get_accumulator(self._moment1_acc_str,
                                        param_and_grad[0])
        moment2 = self._get_accumulator(self._moment2_acc_str,
                                        param_and_grad[0])
Q
qiaolongfei 已提交
856 857 858 859 860
        beta1_pow_acc = self._get_accumulator(self._beta1_pow_acc_str,
                                              param_and_grad[0])
        beta2_pow_acc = self._get_accumulator(self._beta2_pow_acc_str,
                                              param_and_grad[0])

861
        # create the adam optimize op
862 863 864 865 866
        adam_op = block.append_op(
            type=self.type,
            inputs={
                "Param": param_and_grad[0],
                "Grad": param_and_grad[1],
867
                "LearningRate": self._create_param_lr(param_and_grad),
868 869
                "Moment1": moment1,
                "Moment2": moment2,
Q
qiaolongfei 已提交
870 871
                "Beta1Pow": beta1_pow_acc,
                "Beta2Pow": beta2_pow_acc
872 873 874 875 876 877 878 879 880
            },
            outputs={
                "ParamOut": param_and_grad[0],
                "Moment1Out": moment1,
                "Moment2Out": moment2
            },
            attrs={
                "beta1": self._beta1,
                "beta2": self._beta2,
Q
Qiao Longfei 已提交
881
                "epsilon": self._epsilon,
882 883
                "lazy_mode": self._lazy_mode,
                "min_row_size_to_use_multithread": 1000
M
minqiyang 已提交
884 885
            },
            stop_gradient=True)
886 887 888

        return adam_op

889
    def _finish_update(self, block, param_and_grads):
890 891 892
        """Update Beta1 and Beta2 Power accumulators
        """
        assert isinstance(block, framework.Block)
Q
Qiao Longfei 已提交
893
        main_block = block.program.global_block()
894 895 896
        for param, grad in param_and_grads:
            if grad is None:
                continue
X
Xin Pan 已提交
897 898
            with param.block.program._optimized_guard(
                [param, grad]), name_scope("optimizer"):
899 900 901 902 903 904 905 906
                beta1_pow_acc = self._get_accumulator(self._beta1_pow_acc_str,
                                                      param)
                beta2_pow_acc = self._get_accumulator(self._beta2_pow_acc_str,
                                                      param)
                main_block.append_op(
                    type="scale",
                    inputs={"X": beta1_pow_acc},
                    outputs={"Out": beta1_pow_acc},
M
minqiyang 已提交
907 908
                    attrs={"scale": self._beta1},
                    stop_gradient=True)
909 910 911 912 913

                main_block.append_op(
                    type="scale",
                    inputs={"X": beta2_pow_acc},
                    outputs={"Out": beta2_pow_acc},
M
minqiyang 已提交
914 915
                    attrs={"scale": self._beta2},
                    stop_gradient=True)
916 917 918


class AdamaxOptimizer(Optimizer):
Q
qiaolongfei 已提交
919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948
    """
    We implement the Adamax optimizer from Section 7 of the Adam
    paper: https://arxiv.org/abs/1412.6980. Adamax is a variant of the
    Adam algorithm based on the infinity norm.

    Adamax updates:

    .. math::

        t & = t + 1

        moment\_out & = {\\beta}_1 * moment + (1 - {\\beta}_1) * grad

        inf\_norm\_out & = max({\\beta}_2 * inf\_norm + \epsilon, |grad|)

        learning\_rate & = \\frac{learning\_rate}{1 - {\\beta}_1^t}

        param\_out & = param - learning\_rate * \\frac{moment\_out}{inf\_norm\_out}


    The original paper does not have an epsilon attribute.
    However, it is added here for numerical stability to prevent the
    division by 0 error.

    Args:
        learning_rate (float|Variable): the learning rate used to update parameters. \
        Can be a float value or a Variable with one float value as data element.
        beta1 (float): The exponential decay rate for the 1st moment estimates.
        beta2 (float): The exponential decay rate for the 2nd moment estimates.
        epsilon (float): a small float value for numerical stability.
X
Xin Pan 已提交
949 950 951
        regularization: A Regularizer, such as
                        fluid.regularizer.L2DecayRegularizer.
        name: A optional name prefix.
Q
qiaolongfei 已提交
952 953 954 955 956 957

    Examples:
        .. code-block:: python

            optimizer = fluid.optimizer.Adamax(learning_rate=0.2)
            optimizer.minimize(cost)
C
chengduo 已提交
958 959 960

    Notes:
       Currently, AdamaxOptimizer doesn't support sparse parameter optimization.
961 962 963
    """
    _moment_acc_str = "moment"
    _inf_norm_acc_str = "inf_norm"
Q
qiaolongfei 已提交
964
    _beta1_pow_acc_str = "beta1_pow_acc"
965 966 967 968 969

    def __init__(self,
                 learning_rate=0.001,
                 beta1=0.9,
                 beta2=0.999,
970
                 epsilon=1e-8,
X
Xin Pan 已提交
971 972
                 regularization=None,
                 name=None):
973 974 975 976
        assert learning_rate is not None
        assert beta1 is not None
        assert beta2 is not None
        assert epsilon is not None
Q
Qiao Longfei 已提交
977
        super(AdamaxOptimizer, self).__init__(
X
Xin Pan 已提交
978 979 980
            learning_rate=learning_rate,
            regularization=regularization,
            name=name)
981 982 983 984 985 986 987 988
        self.type = "adamax"
        self._beta1 = beta1
        self._beta2 = beta2
        self._epsilon = epsilon

    def _create_accumulators(self, block, parameters):
        # Create accumulator tensors for first moment and infinity norm
        for p in parameters:
Q
Qiao Longfei 已提交
989 990
            self._add_accumulator(self._moment_acc_str, p)
            self._add_accumulator(self._inf_norm_acc_str, p)
Q
qiaolongfei 已提交
991 992 993 994 995 996
            self._add_accumulator(
                name=self._beta1_pow_acc_str,
                param=p,
                dtype='float32',
                fill_value=self._beta1,
                shape=[1])
997 998 999 1000 1001 1002 1003

    def _append_optimize_op(self, block, param_and_grad):
        assert isinstance(block, framework.Block)

        moment = self._get_accumulator(self._moment_acc_str, param_and_grad[0])
        inf_norm = self._get_accumulator(self._inf_norm_acc_str,
                                         param_and_grad[0])
Q
qiaolongfei 已提交
1004 1005
        beta1_pow_acc = self._get_accumulator(self._beta1_pow_acc_str,
                                              param_and_grad[0])
1006 1007 1008 1009 1010 1011
        # create the adamax optimize op
        adamax_op = block.append_op(
            type=self.type,
            inputs={
                "Param": param_and_grad[0],
                "Grad": param_and_grad[1],
1012
                "LearningRate": self._create_param_lr(param_and_grad),
1013 1014
                "Moment": moment,
                "InfNorm": inf_norm,
Q
qiaolongfei 已提交
1015
                "Beta1Pow": beta1_pow_acc
1016 1017 1018 1019 1020 1021 1022 1023 1024 1025
            },
            outputs={
                "ParamOut": param_and_grad[0],
                "MomentOut": moment,
                "InfNormOut": inf_norm
            },
            attrs={
                "beta1": self._beta1,
                "beta2": self._beta2,
                "epsilon": self._epsilon
M
minqiyang 已提交
1026 1027
            },
            stop_gradient=True)
1028 1029 1030

        return adamax_op

1031
    def _finish_update(self, block, parameters_and_grads):
1032 1033 1034
        """Update Beta1 Power accumulator
        """
        assert isinstance(block, framework.Block)
Q
Qiao Longfei 已提交
1035
        main_block = block.program.global_block()
1036 1037 1038
        for param, grad in parameters_and_grads:
            if grad is None:
                continue
X
Xin Pan 已提交
1039 1040
            with param.block.program._optimized_guard(
                [param, grad]), name_scope('adamx'):
1041 1042 1043 1044 1045 1046
                beta1_pow_acc = self._get_accumulator(self._beta1_pow_acc_str,
                                                      param)
                main_block.append_op(
                    type="scale",
                    inputs={"X": beta1_pow_acc},
                    outputs={"Out": beta1_pow_acc},
M
minqiyang 已提交
1047 1048
                    attrs={"scale": self._beta1},
                    stop_gradient=True)
1049 1050 1051


class DecayedAdagradOptimizer(Optimizer):
1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073
    """
    **Decayed Adagrad Optimizer**

    The original paper(http://www.jmlr.org/papers/volume12/duchi11a/duchi11a.pdf)

    The update is done as follows:

    .. math::

        moment\_out & = decay * moment + (1 - decay) * grad * grad

        param\_out & = param - \\frac{learning\_rate * grad}{\sqrt{moment\_out} + \epsilon}

    The original paper(http://www.jmlr.org/papers/volume12/duchi11a/duchi11a.pdf)
    does not have an epsilon attribute. It is added here for numerical
    stability to avoid the division by zero error.

    Args:
        learning_rate (float|Variable): the learning rate used to update parameters. \
        Can be a float value or a Variable with one float value as data element.
        decay (float): decay rate.
        epsilon (float): a small float value for numerical stability.
X
Xin Pan 已提交
1074 1075 1076
        regularization: A Regularizer, such as
                        fluid.regularizer.L2DecayRegularizer.
        name: A optional name prefix.
1077 1078 1079 1080 1081 1082

    Examples:
        .. code-block:: python

            optimizer = fluid.optimizer.DecayedAdagrad(learning_rate=0.2)
            optimizer.minimize(cost)
C
chengduo 已提交
1083 1084 1085

    Notes:
       Currently, DecayedAdagradOptimizer doesn't support sparse parameter optimization.
1086 1087 1088
    """
    _moment_acc_str = "moment"

X
Xin Pan 已提交
1089 1090 1091 1092 1093 1094
    def __init__(self,
                 learning_rate,
                 decay=0.95,
                 epsilon=1.0e-6,
                 regularization=None,
                 name=None):
1095 1096 1097 1098
        assert learning_rate is not None
        assert decay is not None
        assert epsilon is not None

Q
Qiao Longfei 已提交
1099
        super(DecayedAdagradOptimizer, self).__init__(
X
Xin Pan 已提交
1100 1101 1102
            learning_rate=learning_rate,
            regularization=regularization,
            name=name)
1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129
        self.type = "decayed_adagrad"
        self._decay = decay
        self._epsilon = epsilon

    def _create_accumulators(self, block, parameters):
        assert isinstance(block, framework.Block)

        for p in parameters:
            self._add_accumulator(self._moment_acc_str, p)

    def _append_optimize_op(self, block, param_and_grad):
        assert isinstance(block, framework.Block)

        moment_acc = self._get_accumulator(self._moment_acc_str,
                                           param_and_grad[0])

        # Create the decayed adagrad optimizer op
        decayed_adagrad_op = block.append_op(
            type=self.type,
            inputs={
                "Param": param_and_grad[0],
                "Grad": param_and_grad[1],
                "Moment": moment_acc,
                "LearningRate": self._create_param_lr(param_and_grad)
            },
            outputs={"ParamOut": param_and_grad[0],
                     "MomentOut": moment_acc},
M
minqiyang 已提交
1130 1131
            attrs={"epsilon": self._epsilon},
            stop_gradient=True)
1132 1133

        return decayed_adagrad_op
1134 1135


1136
class AdadeltaOptimizer(Optimizer):
1137 1138
    """
    **Adadelta Optimizer**
Q
qiaolongfei 已提交
1139

1140
    Simple Adadelta optimizer with average squared grad state and
1141
    average squared update state.
1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153
    The details of adadelta please refer to this
    `ADADELTA: AN ADAPTIVE LEARNING RATE METHOD
    <http://www.matthewzeiler.com/pubs/googleTR2012/googleTR2012.pdf>`_.

    ..  math::

        E(g_t^2) &= \\rho * E(g_{t-1}^2) + (1-\\rho) * g^2 \\\\
        learning\\_rate &= sqrt( ( E(dx_{t-1}^2) + \\epsilon ) / ( \\
                          E(g_t^2) + \\epsilon ) ) \\\\
        E(dx_t^2) &= \\rho * E(dx_{t-1}^2) + (1-\\rho) * (-g*learning\\_rate)^2

    Args:
Q
qiaolongfei 已提交
1154
        learning_rate(float): global learning rate
1155 1156
        rho(float): rho in equation
        epsilon(float): epsilon in equation
X
Xin Pan 已提交
1157 1158 1159
        regularization: A Regularizer, such as
                        fluid.regularizer.L2DecayRegularizer.
        name: A optional name prefix.
1160 1161 1162 1163 1164 1165 1166

    Examples:
        .. code-block:: python

            optimizer = fluid.optimizer.Adadelta(
                learning_rate=0.0003, epsilon=1.0e-6, rho=0.95)
            _, params_grads = optimizer.minimize(cost)
C
chengduo 已提交
1167 1168 1169

    Notes:
       Currently, AdadeltaOptimizer doesn't support sparse parameter optimization.
1170
    """
1171

1172 1173 1174
    _avg_squared_grad_acc_str = "_avg_squared_grad"
    _avg_squared_update_acc_str = "_avg_squared_update"

X
Xin Pan 已提交
1175 1176 1177 1178 1179 1180
    def __init__(self,
                 learning_rate,
                 epsilon=1.0e-6,
                 rho=0.95,
                 regularization=None,
                 name=None):
1181 1182 1183 1184 1185 1186
        if learning_rate is None:
            raise ValueError("learning_rate is not set.")
        if epsilon is None:
            raise ValueError("epsilon is not set.")
        if rho is None:
            raise ValueError("rho is not set.")
1187
        super(AdadeltaOptimizer, self).__init__(
X
Xin Pan 已提交
1188 1189 1190
            learning_rate=learning_rate,
            regularization=regularization,
            name=name)
1191 1192 1193 1194 1195
        self.type = "adadelta"
        self._epsilon = epsilon
        self._rho = rho

    def _create_accumulators(self, block, parameters):
1196 1197
        if not isinstance(block, framework.Block):
            raise TypeError("block is not instance of framework.Block.")
1198 1199 1200 1201 1202 1203

        for p in parameters:
            self._add_accumulator(self._avg_squared_grad_acc_str, p)
            self._add_accumulator(self._avg_squared_update_acc_str, p)

    def _append_optimize_op(self, block, param_and_grad):
1204 1205
        if not isinstance(block, framework.Block):
            raise TypeError("block is not instance of framework.Block.")
1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226

        avg_squared_grad_acc = self._get_accumulator(
            self._avg_squared_grad_acc_str, param_and_grad[0])
        avg_squared_update_acc = self._get_accumulator(
            self._avg_squared_update_acc_str, param_and_grad[0])

        # Create the adadelta optimizer op
        adadelta_op = block.append_op(
            type=self.type,
            inputs={
                "Param": param_and_grad[0],
                "Grad": param_and_grad[1],
                "AvgSquaredGrad": avg_squared_grad_acc,
                "AvgSquaredUpdate": avg_squared_update_acc
            },
            outputs={
                "ParamOut": param_and_grad[0],
                "AvgSquaredGradOut": avg_squared_grad_acc,
                "AvgSquaredUpdateOut": avg_squared_update_acc
            },
            attrs={"epsilon": self._epsilon,
M
minqiyang 已提交
1227 1228
                   "rho": self._rho},
            stop_gradient=True)
1229 1230 1231 1232

        return adadelta_op


Q
qingqing01 已提交
1233 1234 1235 1236 1237 1238 1239 1240 1241 1242
class RMSPropOptimizer(Optimizer):
    """
    Root Mean Squared Propagation (RMSProp) is an unpublished, adaptive learning
    rate method. The original slides proposed RMSProp: Slide 29 of
    http://www.cs.toronto.edu/~tijmen/csc321/slides/lecture_slides_lec6.pdf .

    The original equation is as follows:

    ..  math::

Q
qiaolongfei 已提交
1243
        r(w, t) & = \\rho r(w, t-1) + (1 - \\rho)(\\nabla Q_{i}(w))^2
Q
qingqing01 已提交
1244 1245 1246 1247

        w & = w - \\frac{\\eta} {\\sqrt{r(w,t) + \\epsilon}} \\nabla Q_{i}(w)

    The first equation calculates moving average of the squared gradient for
Q
qiaolongfei 已提交
1248
    each weight. Then dividing the gradient by :math:`sqrt{v(w,t)}`.
Q
qingqing01 已提交
1249 1250 1251 1252 1253 1254

    In some cases, adding a momentum term :math: `\\beta` is beneficial.
    In our implementation, Nesterov momentum is used:

    ..  math::

Q
qiaolongfei 已提交
1255
        r(w, t) & = \\rho r(w, t-1) + (1 - \\rho)(\\nabla Q_{i}(w))^2
Q
qingqing01 已提交
1256

1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270
        v(w, t) & = \\beta v(w, t-1) + \\frac{\\eta} {\\sqrt{r(w,t) +
            \\epsilon}} \\nabla Q_{i}(w)

        w & = w - v(w, t)

    if centered is True:

    ..  math::

        r(w, t) & = \\rho r(w, t-1) + (1 - \\rho)(\\nabla Q_{i}(w))^2

        g(w, t) & = \\rho g(w, t-1) + (1 - \\rho)\\nabla Q_{i}(w)

        v(w, t) & = \\beta v(w, t-1) + \\frac{\\eta} {\\sqrt{r(w,t) - (g(w, t))^2 +
Q
qingqing01 已提交
1271 1272 1273 1274
            \\epsilon}} \\nabla Q_{i}(w)

        w & = w - v(w, t)

Q
qiaolongfei 已提交
1275
    where, :math:`\\rho` is a hyperparameter and typical values are 0.9, 0.95
Q
qingqing01 已提交
1276 1277 1278 1279 1280 1281
    and so on. :math: `beta` is the momentum term. :math: `\\epsilon` is a
    smoothing term to avoid division by zero, usually set somewhere in range
    from 1e-4 to 1e-8.


    Args:
Q
qiaolongfei 已提交
1282
        learning_rate(float): global learning rate.
Q
qingqing01 已提交
1283 1284 1285
        rho(float): rho is :math: `\\rho` in equation, set 0.95 by default.
        epsilon(float): :math: `\\epsilon` in equation is smoothing term to
            avoid division by zero, set 1e-6 by default.
Q
qiaolongfei 已提交
1286
        momentum(float): :math:`\\beta` in equation is the momentum term,
Q
qingqing01 已提交
1287
            set 0.0 by default.
1288 1289 1290 1291
        centered(bool): If True, gradients are normalized by the estimated variance of
            the gradient; if False, by the uncentered second moment. Setting this to
            True may help with training, but is slightly more expensive in terms of
            computation and memory. Defaults to False.
X
Xin Pan 已提交
1292 1293 1294
        regularization: A Regularizer, such as
                        fluid.regularizer.L2DecayRegularizer.
        name: A optional name prefix.
Q
qingqing01 已提交
1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307

    Raises:
        ValueError: If learning_rate, rho, epsilon, momentum are None.

    Examples:
          .. code-block:: python

              optimizer = fluid.optimizer.RMSProp(0.0001)
              _, params_grads = optimizer.minimize(cost)
    """

    _momentum_acc_str = "momentum"
    _mean_square_acc_str = "mean_square"
1308
    _mean_grad_acc_str = "mean_grad"
Q
qingqing01 已提交
1309 1310 1311 1312 1313 1314

    def __init__(self,
                 learning_rate,
                 rho=0.95,
                 epsilon=1.0e-6,
                 momentum=0.0,
1315
                 centered=False,
X
Xin Pan 已提交
1316 1317
                 regularization=None,
                 name=None):
Q
qingqing01 已提交
1318
        super(RMSPropOptimizer, self).__init__(
X
Xin Pan 已提交
1319 1320 1321
            learning_rate=learning_rate,
            regularization=regularization,
            name=name)
Q
qingqing01 已提交
1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334
        if learning_rate is None:
            raise ValueError("learning_rate is not set.")
        if rho is None:
            raise ValueError("rho is not set.")
        if epsilon is None:
            raise ValueError("epsilon is not set.")
        if momentum is None:
            raise ValueError("momentum is not set.")

        self.type = "rmsprop"
        self._rho = rho
        self._epsilon = epsilon
        self._momentum = momentum
1335
        self._centered = centered
Q
qingqing01 已提交
1336 1337 1338 1339 1340 1341 1342 1343

    def _create_accumulators(self, block, parameters):
        if not isinstance(block, framework.Block):
            raise TypeError("block is not instance of framework.Block.")

        for p in parameters:
            self._add_accumulator(self._momentum_acc_str, p)
            self._add_accumulator(self._mean_square_acc_str, p)
1344
            self._add_accumulator(self._mean_grad_acc_str, p)
Q
qingqing01 已提交
1345 1346 1347 1348 1349 1350 1351 1352 1353

    def _append_optimize_op(self, block, param_and_grad):
        if not isinstance(block, framework.Block):
            raise TypeError("block is not instance of framework.Block.")

        momentum_acc = self._get_accumulator(self._momentum_acc_str,
                                             param_and_grad[0])
        mean_square_acc = self._get_accumulator(self._mean_square_acc_str,
                                                param_and_grad[0])
1354 1355
        mean_grad_acc = self._get_accumulator(self._mean_grad_acc_str,
                                              param_and_grad[0])
Q
qingqing01 已提交
1356 1357 1358 1359 1360 1361 1362
        rmsprop_op = block.append_op(
            type=self.type,
            inputs={
                "Param": param_and_grad[0],
                "Grad": param_and_grad[1],
                "Moment": momentum_acc,
                "MeanSquare": mean_square_acc,
1363
                "MeanGrad": mean_grad_acc,
Q
qingqing01 已提交
1364 1365 1366 1367 1368
                "LearningRate": self._create_param_lr(param_and_grad),
            },
            outputs={
                "ParamOut": param_and_grad[0],
                "MomentOut": momentum_acc,
1369 1370
                "MeanSquareOut": mean_square_acc,
                "MeanGradOut": mean_grad_acc
Q
qingqing01 已提交
1371 1372 1373 1374
            },
            attrs={
                "epsilon": self._epsilon,
                "decay": self._rho,
1375 1376
                "momentum": self._momentum,
                "centered": self._centered
M
minqiyang 已提交
1377 1378
            },
            stop_gradient=True)
Q
qingqing01 已提交
1379 1380 1381 1382

        return rmsprop_op


Q
qiaolongfei 已提交
1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424
class FtrlOptimizer(Optimizer):
    """
    FTRL (Follow The Regularized Leader) Optimizer.

    The paper that proposed Follow The Regularized Leader (FTRL):
    (https://www.eecs.tufts.edu/~dsculley/papers/ad-click-prediction.pdf)

    ..  math::

        &new\_accum = squared\_accum + grad^2

        &if (lr\_power == -0.5):

        &\quad  linear\_accum += grad - \\frac{\\sqrt{new\_accum} - \\sqrt{squared\_accum}}{learning\_rate * param}

        &else:

        &\quad   linear\_accum += grad - \\frac{new\_accum^{-lr\_power} - accum^{-lr\_power}}{learning\_rate * param}


        &x = l1 * sign(linear\_accum) - linear\_accum

        &if (lr\_power == -0.5):

        &\quad   y = \\frac{\\sqrt{new\_accum}}{learning\_rate} + (2 * l2)

        &\quad   pre\_shrink = \\frac{x}{y}

        &\quad   param = (abs(linear\_accum) > l1).select(pre\_shrink, 0.0)

        &else:

        &\quad   y = \\frac{new\_accum^{-lr\_power}}{learning\_rate} + (2 * l2)

        &\quad   pre\_shrink = \\frac{x}{y}

        &\quad   param = (abs(linear\_accum) > l1).select(pre\_shrink, 0.0)

        &squared\_accum += grad^2

    Args:
        learning_rate (float|Variable): global learning rate.
M
minqiyang 已提交
1425 1426 1427
        l1 (float): L1 regularization strength.
        l2 (float): L2 regularization strength.
        lr_power (float): Learning Rate Power.
X
Xin Pan 已提交
1428 1429 1430
        regularization: A Regularizer, such as
                        fluid.regularizer.L2DecayRegularizer.
        name: A optional name prefix.
Q
qiaolongfei 已提交
1431 1432 1433 1434 1435 1436 1437 1438 1439

    Raises:
        ValueError: If learning_rate, rho, epsilon, momentum are None.

    Examples:
          .. code-block:: python

              optimizer = fluid.optimizer.Ftrl(0.0001)
              _, params_grads = optimizer.minimize(cost)
C
chengduo 已提交
1440 1441 1442

    Notes:
       Currently, FtrlOptimizer doesn't support sparse parameter optimization.
Q
qiaolongfei 已提交
1443 1444 1445 1446 1447
    """

    _squared_acc_str = "squared"
    _linear_acc_str = "linear"

X
Xin Pan 已提交
1448 1449 1450 1451 1452 1453 1454
    def __init__(self,
                 learning_rate,
                 l1=0.0,
                 l2=0.0,
                 lr_power=-0.5,
                 regularization=None,
                 name=None):
Q
qiaolongfei 已提交
1455
        super(FtrlOptimizer, self).__init__(
X
Xin Pan 已提交
1456 1457 1458
            learning_rate=learning_rate,
            regularization=regularization,
            name=name)
Q
qiaolongfei 已提交
1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498
        if learning_rate is None:
            raise ValueError("learning_rate is not set.")

        self.type = "ftrl"
        self._l1 = l1
        self._l2 = l2
        self._lr_power = lr_power

    def _create_accumulators(self, block, parameters):
        if not isinstance(block, framework.Block):
            raise TypeError("block is not instance of framework.Block.")

        for p in parameters:
            self._add_accumulator(self._squared_acc_str, p)
            self._add_accumulator(self._linear_acc_str, p)

    def _append_optimize_op(self, block, param_and_grad):
        if not isinstance(block, framework.Block):
            raise TypeError("block is not instance of framework.Block.")

        squared_acc = self._get_accumulator(self._squared_acc_str,
                                            param_and_grad[0])
        linear_acc = self._get_accumulator(self._linear_acc_str,
                                           param_and_grad[0])
        ftrl_op = block.append_op(
            type=self.type,
            inputs={
                "Param": param_and_grad[0],
                "Grad": param_and_grad[1],
                "SquaredAccumulator": squared_acc,
                "LinearAccumulator": linear_acc,
                "LearningRate": self._create_param_lr(param_and_grad),
            },
            outputs={
                "ParamOut": param_and_grad[0],
                "SquaredAccumOut": squared_acc,
                "LinearAccumOut": linear_acc
            },
            attrs={"l1": self._l1,
                   "l2": self._l1,
M
minqiyang 已提交
1499 1500
                   "lr_power": self._lr_power},
            stop_gradient=True)
Q
qiaolongfei 已提交
1501 1502 1503 1504

        return ftrl_op


1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518
# We short the class name, since users will use the optimizer with the package
# name. The sample code:
#
# import paddle.fluid as fluid
#
# sgd = fluid.optimizer.SGD(...)
#
# It is no need to add an `Optimizer` as the class suffix
SGD = SGDOptimizer
Momentum = MomentumOptimizer
Adagrad = AdagradOptimizer
Adam = AdamOptimizer
Adamax = AdamaxOptimizer
DecayedAdagrad = DecayedAdagradOptimizer
1519
Adadelta = AdadeltaOptimizer
Q
qingqing01 已提交
1520
RMSProp = RMSPropOptimizer
Q
qiaolongfei 已提交
1521
Ftrl = FtrlOptimizer
1522
LarsMomentum = LarsMomentumOptimizer
1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537


class ModelAverage(Optimizer):
    """Accumulate the average of parameters whtin sliding window. The average
    result will be saved in temporary variables which can be applied to
    parameter variables of current model by calling 'apply()' method. And the
    'restore()' method is used to restored the parameter values of current model.

    The size of average window is determined by average_window_rate,
    min_average_window, max_average_window and current update times.

    Args:
        average_window_rate: The rate of average window.
        min_average_window: The minimum size of average window.
        max_average_window: The maximum size of average window.
X
Xin Pan 已提交
1538 1539 1540
        regularization: A Regularizer, such as
                        fluid.regularizer.L2DecayRegularizer.
        name: A optional name prefix.
1541
    Examples:
Q
qiaolongfei 已提交
1542 1543 1544

      .. code-block:: python

1545
        optimizer = fluid.optimizer.Momentum()
1546 1547
        optimizer.minimize(cost)
        model_average = fluid.optimizer.ModelAverage(0.15,
1548 1549 1550 1551 1552
                                                min_average_window=10000,
                                                max_average_window=20000)
        for pass_id in range(args.pass_num):
            for data in train_reader():
                exe.run(fluid.default_main_program()...)
1553 1554 1555 1556

            with model_average.apply(exe):
                for data in test_reader():
                    exe.run(inference_program...)
1557 1558 1559
    """

    def __init__(self,
W
wanghaoshuang 已提交
1560
                 average_window_rate,
1561 1562
                 min_average_window=10000,
                 max_average_window=10000,
X
Xin Pan 已提交
1563 1564 1565 1566
                 regularization=None,
                 name=None):
        super(ModelAverage, self).__init__(
            0.0, regularization=regularization, name=name)
1567 1568 1569
        self.average_window = average_window_rate
        self.min_average_window = min_average_window
        self.max_average_window = max_average_window
1570

1571
        self.params_grads = []
1572 1573
        for param in framework.default_main_program().global_block(
        ).all_parameters():
1574
            if param.do_model_average != False:
1575 1576 1577 1578
                grad = param.block.create_var(
                    name=unique_name.generate(".".join([param.name, 'tmp'])),
                    dtype=param.dtype,
                    persistable=False,
W
wanghaoshuang 已提交
1579
                    stop_gradient=True)
1580
                self.params_grads.append((param, grad))
1581

1582
        for param, grad in self.params_grads:
1583 1584
            if grad is None:
                continue
X
Xin Pan 已提交
1585 1586
            with param.block.program._optimized_guard(
                [param, grad]), name_scope('move_average'):
1587
                self._append_average_accumulate_op(param)
1588

1589 1590 1591 1592
        self.apply_program = Program()
        block = self.apply_program.global_block()
        with program_guard(main_program=self.apply_program):
            for param_grad in self.params_grads:
1593
                self._add_average_apply_op(block, param_grad)
1594 1595 1596 1597 1598

        self.restore_program = Program()
        block = self.restore_program.global_block()
        with program_guard(main_program=self.restore_program):
            for param_grad in self.params_grads:
1599
                self._add_average_restore_op(block, param_grad)
1600

1601
    def _add_average_apply_op(self, block, param_grad):
L
Luo Tao 已提交
1602 1603 1604 1605 1606 1607
        param = block._clone_variable(param_grad[0])
        grad = block._clone_variable(param_grad[1])
        sum_1 = block._clone_variable(self._get_accumulator('sum_1', param))
        sum_2 = block._clone_variable(self._get_accumulator('sum_2', param))
        sum_3 = block._clone_variable(self._get_accumulator('sum_3', param))
        num_accumulates = block._clone_variable(
1608
            self._get_accumulator('num_accumulates', param))
L
Luo Tao 已提交
1609
        old_num_accumulates = block._clone_variable(
1610
            self._get_accumulator('old_num_accumulates', param))
L
Luo Tao 已提交
1611
        num_updates = block._clone_variable(
1612 1613 1614 1615 1616 1617
            self._get_accumulator('num_updates', param))
        # backup param value to grad
        layers.assign(input=param, output=grad)
        # param = (sum_1 + sum_2 + sum_3) / (num_accumulates + old_num_accumulates)
        tmp = layers.sum(x=[num_accumulates, old_num_accumulates])
        sum = layers.sum(x=[sum_1, sum_2, sum_3])
D
dzhwinter 已提交
1618 1619 1620 1621
        tmp = layers.cast(
            x=tmp, dtype='float32' if self._dtype == None else self._dtype)
        sum = layers.cast(
            x=sum, dtype='float32' if self._dtype == None else self._dtype)
S
sneaxiy 已提交
1622
        ops._elementwise_div(x=sum, y=tmp, out=param)
1623 1624

    def _add_average_restore_op(self, block, param_grad):
L
Luo Tao 已提交
1625 1626
        param = block._clone_variable(param_grad[0])
        grad = block._clone_variable(param_grad[1])
1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663
        layers.assign(input=grad, output=param)

    def _append_average_accumulate_op(self, param):
        self.helper = LayerHelper("average_accumulate")
        sum_1 = self._add_accumulator('sum_1', param)
        sum_2 = self._add_accumulator('sum_2', param)
        sum_3 = self._add_accumulator('sum_3', param)
        num_accumulates = self._add_accumulator(
            'num_accumulates', param, dtype='int64', shape=[1])
        old_num_accumulates = self._add_accumulator(
            'old_num_accumulates', param, dtype='int64', shape=[1])
        num_updates = self._add_accumulator(
            'num_updates', param, dtype='int64', shape=[1])

        self.helper.append_op(
            type='average_accumulates',
            inputs={
                "param": param,
                "in_sum_1": sum_1,
                "in_sum_2": sum_2,
                "in_sum_3": sum_3,
                "in_num_accumulates": num_accumulates,
                "in_old_num_accumulates": old_num_accumulates,
                "in_num_updates": num_updates
            },
            outputs={
                "out_sum_1": sum_1,
                "out_sum_2": sum_2,
                "out_sum_3": sum_3,
                "out_num_accumulates": num_accumulates,
                "out_old_num_accumulates": old_num_accumulates,
                "out_num_updates": num_updates,
            },
            attrs={
                "average_window": self.average_window,
                "min_average_window": self.min_average_window,
                "max_average_window": self.max_average_window,
M
minqiyang 已提交
1664 1665
            },
            stop_gradient=True)
1666

S
rename  
sneaxiy 已提交
1667
    @signature_safe_contextmanager
1668
    def apply(self, executor, need_restore=True):
1669 1670
        """Apply average values to parameters of current model.
        """
1671 1672 1673 1674 1675 1676
        executor.run(self.apply_program)
        try:
            yield
        finally:
            if need_restore:
                self.restore(executor)
1677 1678 1679 1680

    def restore(self, executor):
        """Restore parameter values of current model.
        """
1681
        executor.run(self.restore_program)