optimizer.py 35.6 KB
Newer Older
1
#   Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
D
dzhwinter 已提交
2
#
D
dzhwinter 已提交
3 4 5
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
D
dzhwinter 已提交
6
#
D
dzhwinter 已提交
7
#     http://www.apache.org/licenses/LICENSE-2.0
D
dzhwinter 已提交
8
#
D
dzhwinter 已提交
9 10 11 12 13
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
W
wanghaoshuang 已提交
14
import re
15
from collections import defaultdict
16
from paddle.fluid.framework import Program
17
import framework
Q
Qiao Longfei 已提交
18
import layers
F
fengjiayi 已提交
19
from backward import append_backward
Y
Yu Yang 已提交
20 21
from framework import program_guard
import unique_name
22 23 24
from initializer import Constant
from layer_helper import LayerHelper
from regularizer import append_regularization_ops
F
fengjiayi 已提交
25
from clip import append_gradient_clip_ops, error_clip_callback
26
from contextlib import contextmanager
27

28 29
__all__ = [
    'SGD', 'Momentum', 'Adagrad', 'Adam', 'Adamax', 'DecayedAdagrad',
30
    'SGDOptimizer', 'MomentumOptimizer', 'AdagradOptimizer', 'AdamOptimizer',
Y
Yu Yang 已提交
31 32
    'AdamaxOptimizer', 'DecayedAdagradOptimizer', 'Adadelta', 'ModelAverage',
    'Optimizer'
33
]
Q
Qiao Longfei 已提交
34 35 36 37 38 39


class Optimizer(object):
    """Optimizer Base class.

    Define the common interface of an optimizer.
40 41
    User should not use this class directly,
    but need to use one of it's implementation.
Q
Qiao Longfei 已提交
42 43
    """

Y
Yu Yang 已提交
44
    def __init__(self, learning_rate, regularization=None):
45 46
        if not isinstance(learning_rate, float) and \
                not isinstance(learning_rate, framework.Variable):
Q
qiaolongfei 已提交
47
            raise TypeError("learning rate should be float or Variable")
D
dzhwinter 已提交
48
        self.regularization = regularization
49
        self._learning_rate = learning_rate
D
dzhwinter 已提交
50 51
        # the learning rate type should be inferenced from loss
        self._dtype = None
52 53
        # each program should have a independent learning rate
        # program -> Variable(learning_rate)
Q
qiaolongfei 已提交
54
        self._learning_rate_map = dict()
55 56 57
        if isinstance(self._learning_rate, framework.Variable):
            self._learning_rate_map[framework.default_main_program(
            )] = self._learning_rate
58 59 60 61 62
        # Dictionary of accumulators. Some optimizer subclasses need to
        # allocate and manage extra variables associated with the parameters
        # to train. These variables are called accumulators.
        # {accum_name : { paramter_name : accumulator_for_parameter, ...}, ...}
        self._accumulators = defaultdict(lambda: dict())
Q
Qiao Longfei 已提交
63
        self.helper = None
Q
Qiao Longfei 已提交
64

Q
Qiao Longfei 已提交
65
    def _create_global_learning_rate(self):
66
        lr = self.global_learning_rate()
Q
Qiao Longfei 已提交
67

68 69 70 71
        if isinstance(lr, framework.Variable):
            return
        else:
            if not isinstance(self._learning_rate, float):
Q
qiaolongfei 已提交
72
                raise TypeError(
73 74
                    "learning rate variable is create outside optimizer,"
                    "can not create new learning rate variable for new program")
Q
Qiao Longfei 已提交
75

76 77 78 79 80 81
        # create learning rate in the current main program
        self._learning_rate_map[framework.default_main_program(
        )] = layers.create_global_var(
            name=unique_name.generate("learning_rate"),
            shape=[1],
            value=float(self._learning_rate),
D
dzhwinter 已提交
82
            dtype='float32' if self._dtype == None else self._dtype,
83 84 85
            persistable=True)

    def global_learning_rate(self, program=None):
Q
Qiao Longfei 已提交
86 87 88 89
        """
        get global decayed learning rate
        :return:
        """
90 91
        if program is None:
            program = framework.default_main_program()
Q
qiaolongfei 已提交
92
        return self._learning_rate_map.get(program, None)
Q
Qiao Longfei 已提交
93

Q
Qiao Longfei 已提交
94 95 96 97 98
    def _append_optimize_op(self, block, param_and_grad):
        """ append optimize operator to block and return all the added optimize_op
        """
        raise NotImplementedError()

99 100 101 102
    def _create_param_lr(self, param_and_grad):
        # create learning rate variable for every parameter
        param = param_and_grad[0]
        param_lr = param.optimize_attr['learning_rate']
Q
qiaolongfei 已提交
103 104 105 106
        if param_lr == 1.0:
            return self.global_learning_rate()
        else:
            return self.global_learning_rate() * param_lr
107 108 109 110 111 112 113

    def _create_accumulators(self, block, parameters):
        """Create all accumulators needed by the parameters

        Args:
            block: the block in which the loss variable is present
            parameters: list of parameter variables for the optimizer
Q
Qiao Longfei 已提交
114
        """
115 116
        pass

117 118 119 120 121 122 123 124 125 126 127 128 129
    def _finish_update(self, block):
        """Finish any custom updates needed
           before completing an optimization step

        Args:
            block: the block in which the loss variable is present
            parameters: list of parameter variables for the optimizer

        Returns:
            list of finish ops or None
        """
        pass

130 131 132 133 134 135
    def _add_accumulator(self,
                         name,
                         param,
                         dtype=None,
                         fill_value=0.0,
                         shape=None):
136 137 138 139 140 141 142 143 144 145 146
        """Utility function to add an accumulator for a parameter

        Args:
            block: the block in which the loss variable is present
            name: name of the accumulator
            param: parameter variable for which accumulator is to be added
            dtype: data type of the accumulator variable
            fill_value: value to initialize the accumulator variable
        """
        if (name in self._accumulators and
                param.name in self._accumulators[name]):
147
            raise Exception("Accumulator {} already exists for parameter {}".
148
                            format(name, param.name))
149 150
        if shape == None:
            shape = param.shape
Q
Qiao Longfei 已提交
151 152
        assert isinstance(self.helper, LayerHelper)
        var = self.helper.create_global_variable(
Y
Yu Yang 已提交
153
            name=unique_name.generate(name),
Q
Qiao Longfei 已提交
154
            persistable=True,
F
fengjiayi 已提交
155
            dtype=dtype or param.dtype,
Q
Qiao Longfei 已提交
156
            type=param.type,
157
            shape=shape)
Q
Qiao Longfei 已提交
158
        self.helper.set_variable_initializer(
159
            var, initializer=Constant(value=float(fill_value)))
Q
Qiao Longfei 已提交
160
        self._accumulators[name][param.name] = var
161
        return var
162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178

    def _get_accumulator(self, name, param):
        """Utility function to fetch an accumulator for a parameter

        Args:
            name: name of the accumulator
            param: parameter variable for which accumulator is to be fetched

        Returns:
            accumulator variable for the parameter
        """
        if (name not in self._accumulators or
                param.name not in self._accumulators[name]):
            raise Exception("Accumulator {} does not exist for parameter {}".
                            format(name, param.name))
        return self._accumulators[name][param.name]

Q
Qiao Longfei 已提交
179 180 181
    def create_optimization_pass(self,
                                 parameters_and_grads,
                                 loss,
182
                                 startup_program=None):
Q
Qiao Longfei 已提交
183 184 185 186 187 188 189
        """Add optimization operators to update gradients to variables.

        Args:
          loss: the target that this optimization is for.
          parameters_and_grads: a list of (variable, gradient) pair to update.

        Returns:
190 191 192 193
          return_op_list: a list of operators that will complete one step of
          optimization. This will include parameter update ops, global step
          update ops and any other custom ops required by subclasses to manage
          their internal state.
Q
Qiao Longfei 已提交
194
          :param startup_program:
Q
Qiao Longfei 已提交
195
        """
196 197 198 199 200
        # This is a default implementation of create_optimization_pass that
        # can be shared by most optimizers. This implementation assumes that
        # the subclass will implement the _append_optimize_op method and the
        #  _initialize_tensors method. The subclass can extend the
        # _create_accumulators method if it needs to create accumulators
201
        # for parameters and extend _finish_update method to add custom ops.
202 203

        # Create any accumulators
Q
Qiao Longfei 已提交
204
        program = loss.block.program
D
dzhwinter 已提交
205
        self._dtype = loss.dtype
206
        with program_guard(program, startup_program):
Y
Yancey1989 已提交
207 208
            global_block = framework.default_main_program().global_block()
            start = len(global_block.ops)
209 210 211
            self.helper = LayerHelper(self.__class__.__name__)
            self._create_accumulators(loss.block,
                                      [p[0] for p in parameters_and_grads])
Q
Qiao Longfei 已提交
212
            self._create_global_learning_rate()
213 214 215 216 217 218 219 220 221 222 223

            optimize_ops = []
            for param_and_grad in parameters_and_grads:
                if param_and_grad[0].trainable is True and param_and_grad[
                        1] is not None:
                    optimize_op = self._append_optimize_op(loss.block,
                                                           param_and_grad)
                    optimize_ops.append(optimize_op)

            # Get custom finish ops for subclasses
            # FIXME: Need to fix this once we figure out how to handle dependencies
Y
Yancey1989 已提交
224
            self._finish_update(loss.block)
225

Y
Yancey1989 已提交
226 227
            end = len(global_block.ops)
            return global_block.slice_ops(start, end)
Q
Qiao Longfei 已提交
228

Q
Qiao Longfei 已提交
229 230
    def minimize(self,
                 loss,
231
                 startup_program=None,
Q
Qiao Longfei 已提交
232 233
                 parameter_list=None,
                 no_grad_set=None):
Q
Qiao Longfei 已提交
234 235
        """Add operations to minimize `loss` by updating `parameter_list`.

F
fengjiayi 已提交
236
        This method combines interface `append_backward()` and
Q
Qiao Longfei 已提交
237 238
        `create_optimization_pass()` into one.
        """
F
fengjiayi 已提交
239
        params_grads = append_backward(loss, parameter_list, no_grad_set,
Y
Yang Yang 已提交
240
                                       [error_clip_callback])
Y
Yu Yang 已提交
241

Y
Yu Yang 已提交
242 243
        params_grads = sorted(params_grads, key=lambda x: x[0].name)

Y
Yu Yang 已提交
244 245
        params_grads = append_gradient_clip_ops(params_grads)

F
fengjiayi 已提交
246
        # Add regularization if any
D
dzhwinter 已提交
247 248
        params_grads = append_regularization_ops(params_grads,
                                                 self.regularization)
Y
Yu Yang 已提交
249

Q
Qiao Longfei 已提交
250
        optimize_ops = self.create_optimization_pass(params_grads, loss,
251
                                                     startup_program)
T
typhoonzero 已提交
252
        return optimize_ops, params_grads
Q
Qiao Longfei 已提交
253 254 255 256 257 258


class SGDOptimizer(Optimizer):
    """ Simple SGD optimizer without any state.
    """

D
dzhwinter 已提交
259
    def __init__(self, learning_rate, **kwargs):
Q
Qiao Longfei 已提交
260
        assert learning_rate is not None
Q
Qiao Longfei 已提交
261 262
        super(SGDOptimizer, self).__init__(
            learning_rate=learning_rate, **kwargs)
Q
Qiao Longfei 已提交
263 264
        self.type = "sgd"

265 266
    def _append_optimize_op(self, block, param_and_grad):
        assert isinstance(block, framework.Block)
267

Q
Qiao Longfei 已提交
268 269 270 271 272 273
        # create the optimize op
        sgd_op = block.append_op(
            type=self.type,
            inputs={
                "Param": param_and_grad[0],
                "Grad": param_and_grad[1],
274
                "LearningRate": self._create_param_lr(param_and_grad)
Q
Qiao Longfei 已提交
275
            },
276
            outputs={"ParamOut": param_and_grad[0]})
Q
Qiao Longfei 已提交
277 278

        return sgd_op
279 280 281 282 283 284 285


class MomentumOptimizer(Optimizer):
    """Simple Momentum optimizer with velocity state
    """
    _velocity_acc_str = "velocity"

D
dzhwinter 已提交
286
    def __init__(self, learning_rate, momentum, use_nesterov=False, **kwargs):
287 288
        assert learning_rate is not None
        assert momentum is not None
Q
Qiao Longfei 已提交
289 290
        super(MomentumOptimizer, self).__init__(
            learning_rate=learning_rate, **kwargs)
291 292
        self.type = "momentum"
        self._momentum = momentum
293
        self._use_nesterov = bool(use_nesterov)
294 295 296 297 298

    def _create_accumulators(self, block, parameters):
        assert isinstance(block, framework.Block)

        for p in parameters:
Q
Qiao Longfei 已提交
299
            self._add_accumulator(self._velocity_acc_str, p)
300 301 302 303 304 305 306 307 308 309 310 311 312

    def _append_optimize_op(self, block, param_and_grad):
        assert isinstance(block, framework.Block)

        velocity_acc = self._get_accumulator(self._velocity_acc_str,
                                             param_and_grad[0])
        # create the momentum optimize op
        momentum_op = block.append_op(
            type=self.type,
            inputs={
                "Param": param_and_grad[0],
                "Grad": param_and_grad[1],
                "Velocity": velocity_acc,
313
                "LearningRate": self._create_param_lr(param_and_grad)
314 315 316 317 318
            },
            outputs={
                "ParamOut": param_and_grad[0],
                "VelocityOut": velocity_acc
            },
319
            attrs={"mu": self._momentum,
320
                   "use_nesterov": self._use_nesterov})
321 322

        return momentum_op
323 324 325 326 327 328 329


class AdagradOptimizer(Optimizer):
    """Simple Adagrad optimizer with moment state
    """
    _moment_acc_str = "moment"

D
dzhwinter 已提交
330
    def __init__(self, learning_rate, epsilon=1.0e-6, **kwargs):
331 332
        assert learning_rate is not None
        assert epsilon is not None
Q
Qiao Longfei 已提交
333 334
        super(AdagradOptimizer, self).__init__(
            learning_rate=learning_rate, **kwargs)
335 336 337 338 339 340 341
        self.type = "adagrad"
        self._epsilon = epsilon

    def _create_accumulators(self, block, parameters):
        assert isinstance(block, framework.Block)

        for p in parameters:
Q
Qiao Longfei 已提交
342
            self._add_accumulator(self._moment_acc_str, p)
343 344 345 346 347 348 349

    def _append_optimize_op(self, block, param_and_grad):
        assert isinstance(block, framework.Block)

        moment_acc = self._get_accumulator(self._moment_acc_str,
                                           param_and_grad[0])

350
        # Create the adagrad optimizer op
351 352 353 354 355 356
        adagrad_op = block.append_op(
            type=self.type,
            inputs={
                "Param": param_and_grad[0],
                "Grad": param_and_grad[1],
                "Moment": moment_acc,
357
                "LearningRate": self._create_param_lr(param_and_grad)
358 359 360 361 362 363
            },
            outputs={"ParamOut": param_and_grad[0],
                     "MomentOut": moment_acc},
            attrs={"epsilon": self._epsilon})

        return adagrad_op
364 365 366 367 368 369 370 371 372 373 374 375


class AdamOptimizer(Optimizer):
    """Implements the Adam Optimizer
    """
    _moment1_acc_str = "moment1"
    _moment2_acc_str = "moment2"

    def __init__(self,
                 learning_rate=0.001,
                 beta1=0.9,
                 beta2=0.999,
376
                 epsilon=1e-8,
D
dzhwinter 已提交
377
                 **kwargs):
378 379 380 381
        assert learning_rate is not None
        assert beta1 is not None
        assert beta2 is not None
        assert epsilon is not None
Q
Qiao Longfei 已提交
382 383
        super(AdamOptimizer, self).__init__(
            learning_rate=learning_rate, **kwargs)
384 385 386 387 388 389 390 391
        self.type = "adam"
        self._beta1 = beta1
        self._beta2 = beta2
        self._epsilon = epsilon

    def _create_accumulators(self, block, parameters):
        assert isinstance(block, framework.Block)

Q
Qiao Longfei 已提交
392
        main_block = block.program.global_block()
393 394
        # Create beta1 and beta2 power tensors
        beta_shape = [1]
Q
Qiao Longfei 已提交
395
        self._beta1_pow_acc = self.helper.create_global_variable(
Y
Yu Yang 已提交
396
            name=unique_name.generate('beta1_pow_acc'),
D
dzhwinter 已提交
397
            dtype='float32' if self._dtype == None else self._dtype,
Q
Qiao Longfei 已提交
398 399 400 401
            shape=beta_shape,
            lod_level=0,
            persistable=True)
        self.helper.set_variable_initializer(
402
            self._beta1_pow_acc, initializer=Constant(self._beta1))
Q
Qiao Longfei 已提交
403 404

        self._beta2_pow_acc = self.helper.create_global_variable(
Y
Yu Yang 已提交
405
            name=unique_name.generate('beta2_pow_acc'),
D
dzhwinter 已提交
406
            dtype='float32' if self._dtype == None else self._dtype,
Q
Qiao Longfei 已提交
407 408 409 410 411
            shape=beta_shape,
            lod_level=0,
            persistable=True)

        self.helper.set_variable_initializer(
412
            self._beta2_pow_acc, initializer=Constant(self._beta2))
413 414 415

        # Create accumulator tensors for first and second moments
        for p in parameters:
Q
Qiao Longfei 已提交
416 417
            self._add_accumulator(self._moment1_acc_str, p)
            self._add_accumulator(self._moment2_acc_str, p)
418 419 420 421 422 423 424 425

    def _append_optimize_op(self, block, param_and_grad):
        assert isinstance(block, framework.Block)

        moment1 = self._get_accumulator(self._moment1_acc_str,
                                        param_and_grad[0])
        moment2 = self._get_accumulator(self._moment2_acc_str,
                                        param_and_grad[0])
426
        # create the adam optimize op
427 428 429 430 431
        adam_op = block.append_op(
            type=self.type,
            inputs={
                "Param": param_and_grad[0],
                "Grad": param_and_grad[1],
432
                "LearningRate": self._create_param_lr(param_and_grad),
433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454
                "Moment1": moment1,
                "Moment2": moment2,
                "Beta1Pow": self._beta1_pow_acc,
                "Beta2Pow": self._beta2_pow_acc
            },
            outputs={
                "ParamOut": param_and_grad[0],
                "Moment1Out": moment1,
                "Moment2Out": moment2
            },
            attrs={
                "beta1": self._beta1,
                "beta2": self._beta2,
                "epsilon": self._epsilon
            })

        return adam_op

    def _finish_update(self, block):
        """Update Beta1 and Beta2 Power accumulators
        """
        assert isinstance(block, framework.Block)
Q
Qiao Longfei 已提交
455 456
        main_block = block.program.global_block()
        scale_beta1 = main_block.append_op(
457 458 459 460 461
            type="scale",
            inputs={"X": self._beta1_pow_acc},
            outputs={"Out": self._beta1_pow_acc},
            attrs={"scale": self._beta1})

Q
Qiao Longfei 已提交
462
        scale_beta2 = main_block.append_op(
463 464 465 466 467 468
            type="scale",
            inputs={"X": self._beta2_pow_acc},
            outputs={"Out": self._beta2_pow_acc},
            attrs={"scale": self._beta2})

        return [scale_beta1, scale_beta2]
469 470 471 472 473 474 475 476 477 478 479 480


class AdamaxOptimizer(Optimizer):
    """Implements the Adamax Optimizer
    """
    _moment_acc_str = "moment"
    _inf_norm_acc_str = "inf_norm"

    def __init__(self,
                 learning_rate=0.001,
                 beta1=0.9,
                 beta2=0.999,
481
                 epsilon=1e-8,
D
dzhwinter 已提交
482
                 **kwargs):
483 484 485 486
        assert learning_rate is not None
        assert beta1 is not None
        assert beta2 is not None
        assert epsilon is not None
Q
Qiao Longfei 已提交
487 488
        super(AdamaxOptimizer, self).__init__(
            learning_rate=learning_rate, **kwargs)
489 490 491 492 493 494 495 496
        self.type = "adamax"
        self._beta1 = beta1
        self._beta2 = beta2
        self._epsilon = epsilon

    def _create_accumulators(self, block, parameters):
        # Create beta1 power accumulator tensor
        beta_shape = [1]
Q
Qiao Longfei 已提交
497
        self._beta1_pow_acc = self.helper.create_global_variable(
Y
Yu Yang 已提交
498
            name=unique_name.generate('beta1_pow_acc'),
D
dzhwinter 已提交
499
            dtype='float32' if self._dtype == None else self._dtype,
Q
Qiao Longfei 已提交
500 501 502 503
            shape=beta_shape,
            lod_level=0,
            persistable=True)
        self.helper.set_variable_initializer(
504
            self._beta1_pow_acc, initializer=Constant(self._beta1))
505 506 507

        # Create accumulator tensors for first moment and infinity norm
        for p in parameters:
Q
Qiao Longfei 已提交
508 509
            self._add_accumulator(self._moment_acc_str, p)
            self._add_accumulator(self._inf_norm_acc_str, p)
510 511 512 513 514 515 516 517 518 519 520 521 522

    def _append_optimize_op(self, block, param_and_grad):
        assert isinstance(block, framework.Block)

        moment = self._get_accumulator(self._moment_acc_str, param_and_grad[0])
        inf_norm = self._get_accumulator(self._inf_norm_acc_str,
                                         param_and_grad[0])
        # create the adamax optimize op
        adamax_op = block.append_op(
            type=self.type,
            inputs={
                "Param": param_and_grad[0],
                "Grad": param_and_grad[1],
523
                "LearningRate": self._create_param_lr(param_and_grad),
524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544
                "Moment": moment,
                "InfNorm": inf_norm,
                "Beta1Pow": self._beta1_pow_acc
            },
            outputs={
                "ParamOut": param_and_grad[0],
                "MomentOut": moment,
                "InfNormOut": inf_norm
            },
            attrs={
                "beta1": self._beta1,
                "beta2": self._beta2,
                "epsilon": self._epsilon
            })

        return adamax_op

    def _finish_update(self, block):
        """Update Beta1 Power accumulator
        """
        assert isinstance(block, framework.Block)
Q
Qiao Longfei 已提交
545 546
        main_block = block.program.global_block()
        scale_beta1 = main_block.append_op(
547 548 549 550 551 552
            type="scale",
            inputs={"X": self._beta1_pow_acc},
            outputs={"Out": self._beta1_pow_acc},
            attrs={"scale": self._beta1})

        return [scale_beta1]
553 554 555 556 557 558 559


class DecayedAdagradOptimizer(Optimizer):
    """Simple Decayed Adagrad optimizer with moment state
    """
    _moment_acc_str = "moment"

D
dzhwinter 已提交
560
    def __init__(self, learning_rate, decay=0.95, epsilon=1.0e-6, **kwargs):
561 562 563 564
        assert learning_rate is not None
        assert decay is not None
        assert epsilon is not None

Q
Qiao Longfei 已提交
565 566
        super(DecayedAdagradOptimizer, self).__init__(
            learning_rate=learning_rate, **kwargs)
567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596
        self.type = "decayed_adagrad"
        self._decay = decay
        self._epsilon = epsilon

    def _create_accumulators(self, block, parameters):
        assert isinstance(block, framework.Block)

        for p in parameters:
            self._add_accumulator(self._moment_acc_str, p)

    def _append_optimize_op(self, block, param_and_grad):
        assert isinstance(block, framework.Block)

        moment_acc = self._get_accumulator(self._moment_acc_str,
                                           param_and_grad[0])

        # Create the decayed adagrad optimizer op
        decayed_adagrad_op = block.append_op(
            type=self.type,
            inputs={
                "Param": param_and_grad[0],
                "Grad": param_and_grad[1],
                "Moment": moment_acc,
                "LearningRate": self._create_param_lr(param_and_grad)
            },
            outputs={"ParamOut": param_and_grad[0],
                     "MomentOut": moment_acc},
            attrs={"epsilon": self._epsilon})

        return decayed_adagrad_op
597 598


599
class AdadeltaOptimizer(Optimizer):
600 601 602
    """
    **Adadelta Optimizer**
    Simple Adadelta optimizer with average squared grad state and
603
    average squared update state.
604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625
    The details of adadelta please refer to this
    `ADADELTA: AN ADAPTIVE LEARNING RATE METHOD
    <http://www.matthewzeiler.com/pubs/googleTR2012/googleTR2012.pdf>`_.

    ..  math::

        E(g_t^2) &= \\rho * E(g_{t-1}^2) + (1-\\rho) * g^2 \\\\
        learning\\_rate &= sqrt( ( E(dx_{t-1}^2) + \\epsilon ) / ( \\
                          E(g_t^2) + \\epsilon ) ) \\\\
        E(dx_t^2) &= \\rho * E(dx_{t-1}^2) + (1-\\rho) * (-g*learning\\_rate)^2

    Args:
        learning_rate(float): global leraning rate
        rho(float): rho in equation
        epsilon(float): epsilon in equation

    Examples:
        .. code-block:: python

            optimizer = fluid.optimizer.Adadelta(
                learning_rate=0.0003, epsilon=1.0e-6, rho=0.95)
            _, params_grads = optimizer.minimize(cost)
626
    """
627

628 629 630 631
    _avg_squared_grad_acc_str = "_avg_squared_grad"
    _avg_squared_update_acc_str = "_avg_squared_update"

    def __init__(self, learning_rate, epsilon=1.0e-6, rho=0.95, **kwargs):
632 633 634 635 636 637
        if learning_rate is None:
            raise ValueError("learning_rate is not set.")
        if epsilon is None:
            raise ValueError("epsilon is not set.")
        if rho is None:
            raise ValueError("rho is not set.")
638 639 640 641 642 643 644
        super(AdadeltaOptimizer, self).__init__(
            learning_rate=learning_rate, **kwargs)
        self.type = "adadelta"
        self._epsilon = epsilon
        self._rho = rho

    def _create_accumulators(self, block, parameters):
645 646
        if not isinstance(block, framework.Block):
            raise TypeError("block is not instance of framework.Block.")
647 648 649 650 651 652

        for p in parameters:
            self._add_accumulator(self._avg_squared_grad_acc_str, p)
            self._add_accumulator(self._avg_squared_update_acc_str, p)

    def _append_optimize_op(self, block, param_and_grad):
653 654
        if not isinstance(block, framework.Block):
            raise TypeError("block is not instance of framework.Block.")
655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680

        avg_squared_grad_acc = self._get_accumulator(
            self._avg_squared_grad_acc_str, param_and_grad[0])
        avg_squared_update_acc = self._get_accumulator(
            self._avg_squared_update_acc_str, param_and_grad[0])

        # Create the adadelta optimizer op
        adadelta_op = block.append_op(
            type=self.type,
            inputs={
                "Param": param_and_grad[0],
                "Grad": param_and_grad[1],
                "AvgSquaredGrad": avg_squared_grad_acc,
                "AvgSquaredUpdate": avg_squared_update_acc
            },
            outputs={
                "ParamOut": param_and_grad[0],
                "AvgSquaredGradOut": avg_squared_grad_acc,
                "AvgSquaredUpdateOut": avg_squared_update_acc
            },
            attrs={"epsilon": self._epsilon,
                   "rho": self._rho})

        return adadelta_op


Q
qingqing01 已提交
681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797
class RMSPropOptimizer(Optimizer):
    """
    Root Mean Squared Propagation (RMSProp) is an unpublished, adaptive learning
    rate method. The original slides proposed RMSProp: Slide 29 of
    http://www.cs.toronto.edu/~tijmen/csc321/slides/lecture_slides_lec6.pdf .

    The original equation is as follows:

    ..  math::

        r(w, t) & = \\rho r(w, t-1) + (1 - \\rho)(\\nabla Q_{i}(w))^2 \\\\

        w & = w - \\frac{\\eta} {\\sqrt{r(w,t) + \\epsilon}} \\nabla Q_{i}(w)

    The first equation calculates moving average of the squared gradient for
    each weight. Then dividing the gradient by :math: `sqrt{v(w,t)}`.

    In some cases, adding a momentum term :math: `\\beta` is beneficial.
    In our implementation, Nesterov momentum is used:

    ..  math::

        r(w, t) & = \\rho r(w, t-1) + (1 - \\rho)(\\nabla Q_{i}(w))^2 \\\\

        v(w, t) & = \\beta v(w, t-1) + \\frac{\\eta} {\\sqrt{v(w,t) +
            \\epsilon}} \\nabla Q_{i}(w)

        w & = w - v(w, t)

    where, :math: `\\rho` is a hyperparameter and typical values are 0.9, 0.95
    and so on. :math: `beta` is the momentum term. :math: `\\epsilon` is a
    smoothing term to avoid division by zero, usually set somewhere in range
    from 1e-4 to 1e-8.


    Args:
        learning_rate(float): global leraning rate.
        rho(float): rho is :math: `\\rho` in equation, set 0.95 by default.
        epsilon(float): :math: `\\epsilon` in equation is smoothing term to
            avoid division by zero, set 1e-6 by default.
        momentum(float): :math: `\\beta` in equation is the momentum term,
            set 0.0 by default.

    Raises:
        ValueError: If learning_rate, rho, epsilon, momentum are None.

    Examples:
          .. code-block:: python

              optimizer = fluid.optimizer.RMSProp(0.0001)
              _, params_grads = optimizer.minimize(cost)
    """

    _momentum_acc_str = "momentum"
    _mean_square_acc_str = "mean_square"

    def __init__(self,
                 learning_rate,
                 rho=0.95,
                 epsilon=1.0e-6,
                 momentum=0.0,
                 **kwargs):
        super(RMSPropOptimizer, self).__init__(
            learning_rate=learning_rate, **kwargs)
        if learning_rate is None:
            raise ValueError("learning_rate is not set.")
        if rho is None:
            raise ValueError("rho is not set.")
        if epsilon is None:
            raise ValueError("epsilon is not set.")
        if momentum is None:
            raise ValueError("momentum is not set.")

        self.type = "rmsprop"
        self._rho = rho
        self._epsilon = epsilon
        self._momentum = momentum

    def _create_accumulators(self, block, parameters):
        if not isinstance(block, framework.Block):
            raise TypeError("block is not instance of framework.Block.")

        for p in parameters:
            self._add_accumulator(self._momentum_acc_str, p)
            self._add_accumulator(self._mean_square_acc_str, p)

    def _append_optimize_op(self, block, param_and_grad):
        if not isinstance(block, framework.Block):
            raise TypeError("block is not instance of framework.Block.")

        momentum_acc = self._get_accumulator(self._momentum_acc_str,
                                             param_and_grad[0])
        mean_square_acc = self._get_accumulator(self._mean_square_acc_str,
                                                param_and_grad[0])
        rmsprop_op = block.append_op(
            type=self.type,
            inputs={
                "Param": param_and_grad[0],
                "Grad": param_and_grad[1],
                "Moment": momentum_acc,
                "MeanSquare": mean_square_acc,
                "LearningRate": self._create_param_lr(param_and_grad),
            },
            outputs={
                "ParamOut": param_and_grad[0],
                "MomentOut": momentum_acc,
                "MeanSquareOut": mean_square_acc
            },
            attrs={
                "epsilon": self._epsilon,
                "decay": self._rho,
                "momentum": self._momentum
            })

        return rmsprop_op


798 799 800 801 802 803 804 805 806 807 808 809 810 811
# We short the class name, since users will use the optimizer with the package
# name. The sample code:
#
# import paddle.fluid as fluid
#
# sgd = fluid.optimizer.SGD(...)
#
# It is no need to add an `Optimizer` as the class suffix
SGD = SGDOptimizer
Momentum = MomentumOptimizer
Adagrad = AdagradOptimizer
Adam = AdamOptimizer
Adamax = AdamaxOptimizer
DecayedAdagrad = DecayedAdagradOptimizer
812
Adadelta = AdadeltaOptimizer
Q
qingqing01 已提交
813
RMSProp = RMSPropOptimizer
814 815 816 817 818 819 820 821 822 823 824 825 826


class ModelAverage(Optimizer):
    """Accumulate the average of parameters whtin sliding window. The average
    result will be saved in temporary variables which can be applied to
    parameter variables of current model by calling 'apply()' method. And the
    'restore()' method is used to restored the parameter values of current model.

    The size of average window is determined by average_window_rate,
    min_average_window, max_average_window and current update times.

    Args:
        average_window_rate: The rate of average window.
W
wanghaoshuang 已提交
827
        params_grads: A list of parameter-grad variable pairs.
828 829 830 831 832 833 834 835 836 837 838 839 840
        min_average_window: The minimum size of average window.
        max_average_window: The maximum size of average window.

    Examples:
        ...
        optimizer = fluid.optimizer.Momentum()
        _, params_grads = optimizer.minimize(cost)
        model_average = fluid.optimizer.ModelAverage(params_grads, 0.15,
                                                min_average_window=10000,
                                                max_average_window=20000)
        for pass_id in range(args.pass_num):
            for data in train_reader():
                exe.run(fluid.default_main_program()...)
841 842 843 844

            with model_average.apply(exe):
                for data in test_reader():
                    exe.run(inference_program...)
845 846 847
    """

    def __init__(self,
W
wanghaoshuang 已提交
848
                 average_window_rate,
W
wanghaoshuang 已提交
849
                 params_grads=None,
850 851 852 853 854 855 856
                 min_average_window=10000,
                 max_average_window=10000,
                 **kwargs):
        super(ModelAverage, self).__init__(0.0, **kwargs)
        self.average_window = average_window_rate
        self.min_average_window = min_average_window
        self.max_average_window = max_average_window
857

W
wanghaoshuang 已提交
858 859 860
        self.params_grads = [] if params_grads is None else params_grads
        params = {}
        for param, grad in self.params_grads:
861 862
            if param.do_model_average != False:
                params[param.name] = (param, grad)
863 864
        for param in framework.default_main_program().global_block(
        ).all_parameters():
W
wanghaoshuang 已提交
865
            if param.name not in params and param.do_model_average != False:
866 867 868 869
                grad = param.block.create_var(
                    name=unique_name.generate(".".join([param.name, 'tmp'])),
                    dtype=param.dtype,
                    persistable=False,
W
wanghaoshuang 已提交
870 871 872
                    stop_gradient=True)
                params[param.name] = (param, grad)
        self.params_grads = params.values()
873

874
        for param, grad in self.params_grads:
875
            self._append_average_accumulate_op(param)
876

877 878 879 880
        self.apply_program = Program()
        block = self.apply_program.global_block()
        with program_guard(main_program=self.apply_program):
            for param_grad in self.params_grads:
881
                self._add_average_apply_op(block, param_grad)
882 883 884 885 886

        self.restore_program = Program()
        block = self.restore_program.global_block()
        with program_guard(main_program=self.restore_program):
            for param_grad in self.params_grads:
887
                self._add_average_restore_op(block, param_grad)
888

889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905
    def _add_average_apply_op(self, block, param_grad):
        param = block.clone_variable(param_grad[0])
        grad = block.clone_variable(param_grad[1])
        sum_1 = block.clone_variable(self._get_accumulator('sum_1', param))
        sum_2 = block.clone_variable(self._get_accumulator('sum_2', param))
        sum_3 = block.clone_variable(self._get_accumulator('sum_3', param))
        num_accumulates = block.clone_variable(
            self._get_accumulator('num_accumulates', param))
        old_num_accumulates = block.clone_variable(
            self._get_accumulator('old_num_accumulates', param))
        num_updates = block.clone_variable(
            self._get_accumulator('num_updates', param))
        # backup param value to grad
        layers.assign(input=param, output=grad)
        # param = (sum_1 + sum_2 + sum_3) / (num_accumulates + old_num_accumulates)
        tmp = layers.sum(x=[num_accumulates, old_num_accumulates])
        sum = layers.sum(x=[sum_1, sum_2, sum_3])
D
dzhwinter 已提交
906 907 908 909
        tmp = layers.cast(
            x=tmp, dtype='float32' if self._dtype == None else self._dtype)
        sum = layers.cast(
            x=sum, dtype='float32' if self._dtype == None else self._dtype)
910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953
        layers.elementwise_div(x=sum, y=tmp, out=param)

    def _add_average_restore_op(self, block, param_grad):
        param = block.clone_variable(param_grad[0])
        grad = block.clone_variable(param_grad[1])
        layers.assign(input=grad, output=param)

    def _append_average_accumulate_op(self, param):
        self.helper = LayerHelper("average_accumulate")
        sum_1 = self._add_accumulator('sum_1', param)
        sum_2 = self._add_accumulator('sum_2', param)
        sum_3 = self._add_accumulator('sum_3', param)
        num_accumulates = self._add_accumulator(
            'num_accumulates', param, dtype='int64', shape=[1])
        old_num_accumulates = self._add_accumulator(
            'old_num_accumulates', param, dtype='int64', shape=[1])
        num_updates = self._add_accumulator(
            'num_updates', param, dtype='int64', shape=[1])

        self.helper.append_op(
            type='average_accumulates',
            inputs={
                "param": param,
                "in_sum_1": sum_1,
                "in_sum_2": sum_2,
                "in_sum_3": sum_3,
                "in_num_accumulates": num_accumulates,
                "in_old_num_accumulates": old_num_accumulates,
                "in_num_updates": num_updates
            },
            outputs={
                "out_sum_1": sum_1,
                "out_sum_2": sum_2,
                "out_sum_3": sum_3,
                "out_num_accumulates": num_accumulates,
                "out_old_num_accumulates": old_num_accumulates,
                "out_num_updates": num_updates,
            },
            attrs={
                "average_window": self.average_window,
                "min_average_window": self.min_average_window,
                "max_average_window": self.max_average_window,
            })

954 955
    @contextmanager
    def apply(self, executor, need_restore=True):
956 957
        """Apply average values to parameters of current model.
        """
958 959 960 961 962 963
        executor.run(self.apply_program)
        try:
            yield
        finally:
            if need_restore:
                self.restore(executor)
964 965 966 967

    def restore(self, executor):
        """Restore parameter values of current model.
        """
968
        executor.run(self.restore_program)