Skip to content
体验新版
项目
组织
正在加载...
登录
切换导航
打开侧边栏
PaddlePaddle
Paddle
提交
dbd4d058
P
Paddle
项目概览
PaddlePaddle
/
Paddle
1 年多 前同步成功
通知
2302
Star
20931
Fork
5422
代码
文件
提交
分支
Tags
贡献者
分支图
Diff
Issue
1423
列表
看板
标记
里程碑
合并请求
543
Wiki
0
Wiki
分析
仓库
DevOps
项目成员
Pages
P
Paddle
项目概览
项目概览
详情
发布
仓库
仓库
文件
提交
分支
标签
贡献者
分支图
比较
Issue
1,423
Issue
1,423
列表
看板
标记
里程碑
合并请求
543
合并请求
543
Pages
分析
分析
仓库分析
DevOps
Wiki
0
Wiki
成员
成员
收起侧边栏
关闭侧边栏
动态
分支图
创建新Issue
提交
Issue看板
提交
dbd4d058
编写于
1月 16, 2019
作者:
M
minqiyang
浏览文件
操作
浏览文件
下载
电子邮件补丁
差异文件
Add static implementation and fix fc layer
上级
315b133e
变更
6
隐藏空白更改
内联
并排
Showing
6 changed file
with
112 addition
and
69 deletion
+112
-69
paddle/fluid/pybind/pybind.cc
paddle/fluid/pybind/pybind.cc
+7
-0
python/paddle/fluid/framework.py
python/paddle/fluid/framework.py
+1
-0
python/paddle/fluid/imperative/base.py
python/paddle/fluid/imperative/base.py
+2
-2
python/paddle/fluid/imperative/nn.py
python/paddle/fluid/imperative/nn.py
+22
-2
python/paddle/fluid/optimizer.py
python/paddle/fluid/optimizer.py
+3
-0
python/paddle/fluid/tests/unittests/test_imperative_resnet.py
...on/paddle/fluid/tests/unittests/test_imperative_resnet.py
+77
-65
未找到文件。
paddle/fluid/pybind/pybind.cc
浏览文件 @
dbd4d058
...
...
@@ -138,6 +138,13 @@ PYBIND11_MODULE(core, m) {
py
::
return_value_policy
::
reference
)
.
def
(
"value"
,
[](
const
imperative
::
VarBase
&
self
)
{
return
self
.
var_
;
},
py
::
return_value_policy
::
reference
)
.
def
(
"wait_device"
,
[](
const
imperative
::
VarBase
&
self
)
{
platform
::
DeviceContext
*
dev_ctx
=
platform
::
DeviceContextPool
::
Instance
().
Get
(
self
.
var_
->
Get
<
framework
::
LoDTensor
>
().
place
());
dev_ctx
->
Wait
();
})
.
def_property
(
"desc"
,
[](
const
imperative
::
VarBase
&
self
)
{
return
self
.
var_desc_
;
},
...
...
python/paddle/fluid/framework.py
浏览文件 @
dbd4d058
...
...
@@ -384,6 +384,7 @@ class Variable(object):
self
.
_ivar
.
stop_gradient
=
stop_gradient
def
_numpy
(
self
):
self
.
_ivar
.
wait_device
()
tensor
=
self
.
_ivar
.
value
().
get_tensor
()
return
np
.
array
(
tensor
)
...
...
python/paddle/fluid/imperative/base.py
浏览文件 @
dbd4d058
...
...
@@ -45,9 +45,9 @@ def guard(device=0):
def
to_variable
(
value
,
block
=
None
):
assert
enabled
(),
"to_variable could only be called in imperative mode"
if
isinstance
(
value
,
np
.
ndarray
):
assert
enabled
(),
"to_variable could only be called in imperative mode"
if
not
block
:
block
=
framework
.
default_main_program
().
current_block
()
py_var
=
framework
.
Variable
(
...
...
python/paddle/fluid/imperative/nn.py
浏览文件 @
dbd4d058
...
...
@@ -239,6 +239,17 @@ class FC(layers.Layer):
shape
=
param_shape
,
dtype
=
self
.
_dtype
,
is_bias
=
False
)
print
(
"create param: "
,
self
.
_w
.
name
,
self
.
_w
.
stop_gradient
)
if
self
.
_helper
.
bias_attr
:
size
=
list
([
self
.
_size
])
self
.
_b
=
self
.
_helper
.
create_parameter
(
attr
=
self
.
_helper
.
bias_attr
,
shape
=
size
,
dtype
=
self
.
_dtype
,
is_bias
=
True
)
else
:
self
.
_b
=
None
def
forward
(
self
,
input
):
tmp
=
self
.
_helper
.
create_variable_for_type_inference
(
self
.
_dtype
)
...
...
@@ -259,8 +270,17 @@ class FC(layers.Layer):
outputs
=
{
"Out"
:
pre_bias
},
attrs
=
{
"use_mkldnn"
:
False
})
pre_activation
=
self
.
_helper
.
append_bias_op
(
pre_bias
,
dim_start
=
self
.
_num_flatten_dims
)
if
self
.
_b
:
pre_activation
=
self
.
_helper
.
create_variable_for_type_inference
(
dtype
=
self
.
_dtype
)
self
.
_helper
.
append_op
(
type
=
'elementwise_add'
,
inputs
=
{
'X'
:
[
pre_bias
],
'Y'
:
[
self
.
_b
]},
outputs
=
{
'Out'
:
[
pre_activation
]},
attrs
=
{
'axis'
:
self
.
_num_flatten_dims
})
else
:
pre_activation
=
pre_bias
return
self
.
_helper
.
append_activation
(
pre_activation
)
...
...
python/paddle/fluid/optimizer.py
浏览文件 @
dbd4d058
...
...
@@ -387,6 +387,9 @@ class Optimizer(object):
params_grads
=
[]
for
param
in
parameters
:
if
param
.
stop_gradient
:
print
(
"parameter:"
,
param
.
name
,
"stop gradient, skip it"
)
continue
# create gradient variable
grad_var
=
Variable
(
block
=
loss
.
block
,
...
...
python/paddle/fluid/tests/unittests/test_imperative_resnet.py
浏览文件 @
dbd4d058
...
...
@@ -31,11 +31,11 @@ train_parameters = {
"input_std"
:
[
0.229
,
0.224
,
0.225
],
"learning_strategy"
:
{
"name"
:
"piecewise_decay"
,
"batch_size"
:
256
,
"batch_size"
:
1
,
"epochs"
:
[
30
,
60
,
90
],
"steps"
:
[
0.1
,
0.01
,
0.001
,
0.0001
]
},
"batch_size"
:
256
,
"batch_size"
:
1
,
"lr"
:
0.1
,
"total_images"
:
1281164
,
}
...
...
@@ -201,6 +201,7 @@ class TestImperativeResnet(unittest.TestCase):
def
test_resnet_gpu_float32
(
self
):
seed
=
90
batch_size
=
train_parameters
[
"batch_size"
]
with
fluid
.
imperative
.
guard
():
fluid
.
default_startup_program
().
random_seed
=
seed
fluid
.
default_main_program
().
random_seed
=
seed
...
...
@@ -208,17 +209,21 @@ class TestImperativeResnet(unittest.TestCase):
resnet
=
ResNet
()
optimizer
=
optimizer_setting
(
train_parameters
)
train_reader
=
paddle
.
batch
(
paddle
.
dataset
.
flowers
.
train
(),
batch_size
=
256
)
paddle
.
dataset
.
flowers
.
train
(),
batch_size
=
batch_size
)
dy_param_init_value
=
{}
for
param
in
fluid
.
default_main_program
().
global_block
(
).
all_parameters
():
dy_param_init_value
[
param
.
name
]
=
param
.
_numpy
()
for
batch_id
,
data
in
enumerate
(
train_reader
()):
if
batch_id
>=
2
:
if
batch_id
>=
1
:
break
x_data
=
np
.
array
(
[
x
[
0
].
reshape
(
3
,
224
,
224
)
for
x
in
data
]).
astype
(
'float32'
)
y_data
=
np
.
array
([
x
[
1
]
for
x
in
data
]).
astype
(
'int64'
).
reshape
(
256
,
1
)
batch_size
,
1
)
img
=
to_variable
(
x_data
)
label
=
to_variable
(
y_data
)
...
...
@@ -232,74 +237,81 @@ class TestImperativeResnet(unittest.TestCase):
if
batch_id
==
0
:
for
param
in
fluid
.
default_main_program
().
global_block
(
).
all_parameters
():
dy_param_init_value
[
param
.
name
]
=
param
.
_numpy
()
if
param
.
name
not
in
dy_param_init_value
:
dy_param_init_value
[
param
.
name
]
=
param
.
_numpy
()
avg_loss
.
_backward
()
optimizer
.
minimize
(
avg_loss
)
dy_param_value
=
{}
for
param
in
fluid
.
default_main_program
().
global_block
(
).
all_parameters
():
dy_param_value
[
param
.
name
]
=
param
.
_numpy
()
# with new_program_scope():
# fluid.default_startup_program().random_seed = seed
# fluid.default_main_program().random_seed = seed
# exe = fluid.Executor(fluid.CPUPlace())
# # mnist = Conv2D(1, 20, 5)
# mnist = MNIST()
# sgd = SGDOptimizer(learning_rate=1e-3)
# train_reader = paddle.batch(
# paddle.dataset.mnist.train(), batch_size=128)
# img = fluid.layers.data(
# name='pixel', shape=[1, 28, 28], dtype='float32')
# label = fluid.layers.data(name='label', shape=[1], dtype='int64')
# cost = mnist(img)
# loss = fluid.layers.reduce_mean(cost)
# sgd.minimize(loss)
# # initialize params and fetch them
# static_param_init_value = {}
# static_param_name_list = []
# for param in fluid.default_startup_program().global_block(
# ).all_parameters():
# static_param_name_list.append(param.name)
# out = exe.run(fluid.default_startup_program(),
# fetch_list=static_param_name_list)
# for i in range(len(static_param_name_list)):
# static_param_init_value[static_param_name_list[i]] = out[i]
# for batch_id, data in enumerate(train_reader()):
# if batch_id >= 2:
# break
# x_data = np.array(
# [x[0].reshape(1, 28, 28) for x in data]).astype('float32')
# y_data = np.array([x[1] for x in data]).astype('int64').reshape(
# [128, 1])
# fetch_list = [loss.name]
# fetch_list.extend(static_param_name_list)
# out = exe.run(fluid.default_main_program(),
# feed={"pixel": x_data,
# "label": y_data},
# fetch_list=fetch_list)
# static_param_value = {}
# static_out = out[0]
# for i in range(1, len(out)):
# static_param_value[static_param_name_list[i - 1]] = out[i]
# for key, value in six.iteritems(static_param_init_value):
# self.assertTrue(
# np.allclose(value.all(), dy_param_init_value[key].all()))
# self.assertTrue(np.allclose(static_out.all(), dy_out.all()))
# for key, value in six.iteritems(static_param_value):
# self.assertTrue(np.allclose(value.all(), dy_param_value[key].all()))
with
new_program_scope
():
fluid
.
default_startup_program
().
random_seed
=
seed
fluid
.
default_main_program
().
random_seed
=
seed
exe
=
fluid
.
Executor
(
fluid
.
CUDAPlace
(
0
))
resnet
=
ResNet
()
optimizer
=
optimizer_setting
(
train_parameters
)
train_reader
=
paddle
.
batch
(
paddle
.
dataset
.
flowers
.
train
(),
batch_size
=
batch_size
)
img
=
fluid
.
layers
.
data
(
name
=
'pixel'
,
shape
=
[
3
,
224
,
224
],
dtype
=
'float32'
)
label
=
fluid
.
layers
.
data
(
name
=
'label'
,
shape
=
[
1
],
dtype
=
'int64'
)
out
=
resnet
(
img
)
loss
=
fluid
.
layers
.
cross_entropy
(
input
=
out
,
label
=
label
)
avg_loss
=
fluid
.
layers
.
mean
(
x
=
loss
)
optimizer
.
minimize
(
avg_loss
)
# initialize params and fetch them
static_param_init_value
=
{}
static_param_name_list
=
[]
for
param
in
fluid
.
default_startup_program
().
global_block
(
).
all_parameters
():
static_param_name_list
.
append
(
param
.
name
)
out
=
exe
.
run
(
fluid
.
default_startup_program
(),
fetch_list
=
static_param_name_list
)
for
i
in
range
(
len
(
static_param_name_list
)):
static_param_init_value
[
static_param_name_list
[
i
]]
=
out
[
i
]
for
batch_id
,
data
in
enumerate
(
train_reader
()):
if
batch_id
>=
1
:
break
x_data
=
np
.
array
(
[
x
[
0
].
reshape
(
3
,
224
,
224
)
for
x
in
data
]).
astype
(
'float32'
)
y_data
=
np
.
array
([
x
[
1
]
for
x
in
data
]).
astype
(
'int64'
).
reshape
(
[
batch_size
,
1
])
fetch_list
=
[
loss
.
name
]
fetch_list
.
extend
(
static_param_name_list
)
out
=
exe
.
run
(
fluid
.
default_main_program
(),
feed
=
{
"pixel"
:
x_data
,
"label"
:
y_data
},
fetch_list
=
fetch_list
)
static_param_value
=
{}
static_out
=
out
[
0
]
for
i
in
range
(
1
,
len
(
out
)):
static_param_value
[
static_param_name_list
[
i
-
1
]]
=
out
[
i
]
self
.
assertTrue
(
np
.
allclose
(
static_out
.
all
(),
dy_out
.
all
()))
for
key
,
value
in
six
.
iteritems
(
static_param_init_value
):
self
.
assertTrue
(
np
.
allclose
(
value
.
all
(),
dy_param_init_value
[
key
].
all
()))
for
key
,
value
in
six
.
iteritems
(
static_param_value
):
if
not
np
.
allclose
(
value
.
all
(),
dy_param_value
[
key
].
all
()):
print
(
key
)
print
(
value
,
dy_param_value
[
key
])
self
.
assertTrue
(
np
.
allclose
(
value
.
all
(),
dy_param_value
[
key
].
all
()))
if
__name__
==
'__main__'
:
...
...
编辑
预览
Markdown
is supported
0%
请重试
或
添加新附件
.
添加附件
取消
You are about to add
0
people
to the discussion. Proceed with caution.
先完成此消息的编辑!
取消
想要评论请
注册
或
登录