test_dist_base.py 63.5 KB
Newer Older
X
Xin Pan 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13
#   Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
14 15

from __future__ import print_function
16
import tempfile
X
Xin Pan 已提交
17

18
import ast
X
Xin Pan 已提交
19 20 21 22 23
import unittest
import os
import sys
import signal
import subprocess
24
import six
W
Wu Yi 已提交
25
import argparse
W
Wu Yi 已提交
26
import pickle
27
import random
W
Wu Yi 已提交
28
import numpy as np
29
import time
30 31

import paddle
32
import paddle.fluid as fluid
33
from paddle.fluid import compiler
34
import paddle.fluid.core as core
35 36
import paddle.fluid.dygraph as dygraph
from paddle.fluid.dygraph.base import to_variable
37 38
from paddle.fluid.dygraph.parallel import DataParallel, ParallelEnv
from paddle.fluid.framework import _test_eager_guard
39 40 41
from paddle.fluid.incubate.fleet.collective import fleet, DistributedStrategy
import paddle.fluid.incubate.fleet.base.role_maker as role_maker

Y
Yan Xu 已提交
42
RUN_STEP = 5
43
DEFAULT_BATCH_SIZE = 2
44
DIST_UT_PORT = 0
45

T
typhoonzero 已提交
46

47
def print_to_out(out_losses):
T
tianshuo78520a 已提交
48
    sys.stdout.buffer.write(pickle.dumps(out_losses))
49 50 51


def print_to_err(class_name, log_str):
52 53
    localtime = time.asctime(time.localtime(time.time()))
    print_str = localtime + "\t" + class_name + "\t" + log_str
T
tianshuo78520a 已提交
54
    sys.stderr.buffer.write(pickle.dumps(print_str))
G
guru4elephant 已提交
55 56


57 58 59 60
def eprint(*args, **kwargs):
    print(*args, file=sys.stderr, **kwargs)


T
typhoonzero 已提交
61
class TestDistRunnerBase(object):
62

W
Wu Yi 已提交
63 64 65
    def get_model(self,
                  batch_size=DEFAULT_BATCH_SIZE,
                  lr=0.1,
66
                  single_device=False,
J
Jiangxinz 已提交
67 68
                  use_dgc=False,
                  dist_strategy=None):
T
typhoonzero 已提交
69 70 71
        raise NotImplementedError(
            "get_model should be implemented by child classes.")

72
    @staticmethod
W
Wu Yi 已提交
73 74 75 76 77
    def get_transpiler(trainer_id,
                       main_program,
                       pserver_endpoints,
                       trainers,
                       sync_mode,
78
                       dc_asgd=False,
79
                       current_endpoint=None,
T
tangwei12 已提交
80 81
                       nccl_comm_num=1,
                       hogwild_mode=False):
T
typhoonzero 已提交
82
        # NOTE: import fluid until runtime, or else forking processes will cause error.
83
        config = fluid.DistributeTranspilerConfig()
W
Wu Yi 已提交
84
        config.enable_dc_asgd = dc_asgd
85
        config.sync_mode = sync_mode
T
tangwei12 已提交
86 87
        config.runtime_split_send_recv = hogwild_mode

88 89
        if nccl_comm_num > 1:
            config.nccl_comm_num = nccl_comm_num
90
        # config.runtime_split_send_recv = True
91
        t = fluid.DistributeTranspiler(config=config)
92 93 94 95 96 97
        t.transpile(trainer_id=trainer_id,
                    program=main_program,
                    pservers=pserver_endpoints,
                    trainers=trainers,
                    sync_mode=sync_mode,
                    current_endpoint=current_endpoint)
T
typhoonzero 已提交
98 99
        return t

100 101 102 103 104 105 106 107 108
    @staticmethod
    def get_lr_scheduler(program):
        lr_sheduler = None
        if hasattr(program, 'lr_sheduler'):
            from paddle.optimizer.lr import LRScheduler
            lr_sheduler = program.lr_sheduler
            assert isinstance(lr_sheduler, LRScheduler), "must be LRScheduler"
        return lr_sheduler

W
Wu Yi 已提交
109
    def run_pserver(self, args):
W
Wu Yi 已提交
110
        self.lr = args.lr
111
        self.get_model(batch_size=args.batch_size)
112
        # NOTE: pserver should not call memory optimize
T
tangwei12 已提交
113

114 115 116 117 118 119 120
        t = self.get_transpiler(trainer_id=args.trainer_id,
                                main_program=fluid.default_main_program(),
                                pserver_endpoints=args.endpoints,
                                trainers=args.trainers,
                                sync_mode=args.sync_mode,
                                dc_asgd=args.dc_asgd,
                                hogwild_mode=args.hogwild)
W
Wu Yi 已提交
121 122 123
        pserver_prog = t.get_pserver_program(args.current_endpoint)
        startup_prog = t.get_startup_program(args.current_endpoint,
                                             pserver_prog)
Y
Yancey1989 已提交
124

T
typhoonzero 已提交
125 126 127
        place = fluid.CPUPlace()
        exe = fluid.Executor(place)
        exe.run(startup_prog)
128
        print_to_err(type(self).__name__, "run pserver startup program done.")
T
typhoonzero 已提交
129
        exe.run(pserver_prog)
130
        print_to_err(type(self).__name__, "run pserver main program done.")
T
typhoonzero 已提交
131

132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150
    def run_pipeline_trainer(self, args):
        self.lr = args.lr

        dist_strategy = DistributedStrategy()
        test_program, avg_cost, train_reader, test_reader, batch_acc, predict, data_loader = \
            self.get_model(batch_size=args.batch_size, dist_strategy=dist_strategy)

        device_id = int(os.getenv("FLAGS_selected_gpus", "0"))
        eprint(type(self).__name__, "device_id: %d." % device_id)
        place = fluid.CUDAPlace(device_id)

        exe = fluid.Executor(place)
        exe.run(fluid.default_startup_program())
        eprint(type(self).__name__, "run worker startup program done.")

        data_loader.set_sample_list_generator(train_reader, place)
        data_loader.start()
        print_to_err(type(self).__name__, "begin to train on trainer")
        out_losses = []
151 152 153

        main_program = fluid.default_main_program()
        lr_sheduler = self.get_lr_scheduler(main_program)
154
        for i in six.moves.xrange(RUN_STEP):
155
            loss = exe.run(main_program, fetch_list=[avg_cost])
156 157 158
            loss = loss[0] if loss else None
            out_losses.append(loss)
            print_to_err(type(self).__name__, "run step %d finished" % i)
159 160 161
            if lr_sheduler is not None:
                lr_sheduler.step()

162
        data_loader.reset()
163 164
        print_to_err(type(self).__name__, "trainer run finished")

T
tianshuo78520a 已提交
165
        sys.stdout.buffer.write(pickle.dumps(out_losses))
166

167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196
    def run_use_fleet_api_20_trainer(self, args):
        """
        1. remove codes for DistributedStrategy and leave the DistributedStrategy part to get_model()
        2. to run with fleet 2.0 api, set flags _use_fleet_api and _use_fleet_api_20 to True
        3. for now, not support test for model save
        """
        assert args.update_method == "nccl2" or "bkcl"

        self.lr = args.lr
        print_to_err("use_fleet 2.0", "fleet.node_num:")

        test_program, avg_cost, train_reader, test_reader, batch_acc, predict = \
            self.get_model(batch_size=args.batch_size)

        if fluid.core.is_compiled_with_cuda():
            device_id = int(os.getenv("FLAGS_selected_gpus", "0"))
            place = fluid.CUDAPlace(device_id)
        elif fluid.core.is_compiled_with_xpu():
            device_id = int(os.getenv("FLAGS_selected_xpus", "0"))
            place = fluid.XPUPlace(device_id)
        else:
            raise ValueError(
                "fleet dygraph api must in paddlepaddle-xpu or paddlepaddle-gpu."
            )

        exe = fluid.Executor(place)
        exe.run(fluid.default_startup_program())
        eprint(type(self).__name__, "run worker startup program done.")

        feed_var_list = [
197 198
            var for var in
            fluid.default_main_program().global_block().vars.values()
199 200 201 202 203 204 205 206 207 208 209 210 211
            if var.is_data
        ]

        eprint("feed_var_list:", feed_var_list)

        if feed_var_list[0].name == 'label':
            feed_var_list = feed_var_list[::-1]

        feeder = fluid.DataFeeder(feed_var_list, place)
        reader_generator = train_reader()

        def get_data():
            origin_batch = next(reader_generator)
X
xiongkun 已提交
212 213 214 215 216
            if paddle.distributed.get_world_size(
            ) == 1 and args.update_method == 'gloo':  # Gloo single mode
                return origin_batch

            elif args.update_method != "local" and args.use_reader_alloc:
217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235
                new_batch = []
                for offset, item in enumerate(origin_batch):
                    if offset % 2 == args.trainer_id:
                        new_batch.append(item)
                return new_batch
            else:
                return origin_batch

        print_to_err(type(self).__name__, "begin to train on trainer")
        out_losses = []
        for i in six.moves.xrange(RUN_STEP):
            loss, = exe.run(fluid.default_main_program(),
                            fetch_list=[avg_cost.name],
                            feed=feeder.feed(get_data()))
            out_losses.append(loss[0])
            print_to_err(type(self).__name__, "run step %d finished" % i)
        print_to_err(type(self).__name__, "trainer run finished")
        print_to_err(type(self).__name__, "dist losses: {}".format(out_losses))

T
tianshuo78520a 已提交
236
        sys.stdout.buffer.write(pickle.dumps(out_losses))
237

238 239
    def run_use_fleet_api_trainer(self, args):
        assert args.update_method == "nccl2" or "bkcl"
240 241 242 243 244 245 246 247

        self.lr = args.lr

        exec_strategy = fluid.ExecutionStrategy()
        exec_strategy.num_threads = 1

        dist_strategy = DistributedStrategy()
        dist_strategy.exec_strategy = exec_strategy
T
tangwei12 已提交
248
        dist_strategy.fuse_memory_size = 1  # MB
249
        dist_strategy.fuse_laryer_size = 1
250 251 252 253
        if args.use_local_sgd:
            dist_strategy.use_local_sgd = True
        if args.ut4grad_allreduce:
            dist_strategy._ut4grad_allreduce = True
254 255
        if args.sync_batch_norm:
            dist_strategy.sync_batch_norm = True
256 257 258

        role = role_maker.PaddleCloudRoleMaker(is_collective=True)
        fleet.init(role)
259
        print_to_err("use_fleet", "fleet.node_num:")
T
tangwei12 已提交
260 261
        # "fleet.node_id:", fleet.node_id(),
        # "fleet.trainer_num:", fleet.worker_num())
262 263

        test_program, avg_cost, train_reader, test_reader, batch_acc, predict = \
T
tangwei12 已提交
264
            self.get_model(batch_size=args.batch_size, dist_strategy=dist_strategy)
265 266 267 268

        trainer_prog = fleet._origin_program
        dist_prog = fleet.main_program

269 270 271 272 273 274 275 276 277 278
        if fluid.core.is_compiled_with_cuda():
            device_id = int(os.getenv("FLAGS_selected_gpus", "0"))
            place = fluid.CUDAPlace(device_id)
        elif fluid.core.is_compiled_with_xpu():
            device_id = int(os.getenv("FLAGS_selected_xpus", "0"))
            place = fluid.XPUPlace(device_id)
        else:
            raise ValueError(
                "fleet dygraph api must in paddlepaddle-xpu or paddlepaddle-gpu."
            )
279 280 281 282 283 284 285 286 287 288

        exe = fluid.Executor(place)
        exe.run(fluid.default_startup_program())
        eprint(type(self).__name__, "run worker startup program done.")

        feed_var_list = [
            var for var in trainer_prog.global_block().vars.values()
            if var.is_data
        ]

289 290 291 292 293 294 295
        eprint("feed_var_list:", feed_var_list)

        # tmp add this code to pass python35 gcc8 CI
        # Fixme(gongweibao, wangxi), need fix fleet api program order
        if feed_var_list[0].name == 'label':
            feed_var_list = feed_var_list[::-1]

296 297 298 299 300 301 302 303 304 305 306 307 308 309
        feeder = fluid.DataFeeder(feed_var_list, place)
        reader_generator = train_reader()

        def get_data():
            origin_batch = next(reader_generator)
            if args.update_method != "local" and args.use_reader_alloc:
                new_batch = []
                for offset, item in enumerate(origin_batch):
                    if offset % 2 == args.trainer_id:
                        new_batch.append(item)
                return new_batch
            else:
                return origin_batch

310
        print_to_err(type(self).__name__, "begin to train on trainer")
311 312 313 314 315 316
        out_losses = []
        for i in six.moves.xrange(RUN_STEP):
            loss, = exe.run(dist_prog,
                            fetch_list=[avg_cost.name],
                            feed=feeder.feed(get_data()))
            out_losses.append(loss[0])
317 318
            print_to_err(type(self).__name__, "run step %d finished" % i)
        print_to_err(type(self).__name__, "trainer run finished")
319

T
tianshuo78520a 已提交
320
        sys.stdout.buffer.write(pickle.dumps(out_losses))
321

322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351
        if args.save_model:
            model_save_dir = "/tmp"
            if fleet.worker_index() == 0:
                model_save_dir_fluid = os.path.join(model_save_dir,
                                                    "fluid_persistables")
                model_save_dir_fleet = os.path.join(model_save_dir,
                                                    "fleet_persistables")
                infer_save_dir_fluid = os.path.join(model_save_dir,
                                                    "fluid_infer")
                infer_save_dir_fleet = os.path.join(model_save_dir,
                                                    "fleet_infer")
            else:
                model_save_dir_fluid = os.path.join(model_save_dir,
                                                    "fluid_persistables_2")
                model_save_dir_fleet = os.path.join(model_save_dir,
                                                    "fleet_persistables_2")
                infer_save_dir_fluid = os.path.join(model_save_dir,
                                                    "fluid_infer_2")
                infer_save_dir_fleet = os.path.join(model_save_dir,
                                                    "fleet_infer_2")
            fluid.io.save_persistables(exe, model_save_dir_fluid,
                                       fleet._origin_program)
            fleet.save_persistables(executor=exe, dirname=model_save_dir_fleet)
            feeded_var_names = [var.name for var in feed_var_list]
            fluid.io.save_inference_model(infer_save_dir_fluid,
                                          feeded_var_names, [avg_cost], exe,
                                          fleet._origin_program)
            fleet.save_inference_model(exe, infer_save_dir_fleet,
                                       feeded_var_names, [avg_cost])

352
    def run_trainer(self, args):
W
Wu Yi 已提交
353
        self.lr = args.lr
W
Wu Yi 已提交
354 355 356
        if args.nccl2_reduce_layer_local_run:
            test_program, avg_cost, train_reader, test_reader, batch_acc, predict = \
                self.get_model(batch_size=args.batch_size, single_device=True)
357 358 359
        elif args.use_dgc:
            test_program, avg_cost, train_reader, test_reader, batch_acc, predict = \
                self.get_model(batch_size=args.batch_size, use_dgc=args.use_dgc)
W
Wu Yi 已提交
360 361 362
        else:
            test_program, avg_cost, train_reader, test_reader, batch_acc, predict = \
                self.get_model(batch_size=args.batch_size)
363

W
Wu Yi 已提交
364
        if args.update_method == "pserver":
365
            print_to_err(
366 367
                type(self).__name__,
                "begin to run transpile on trainer with pserver mode")
368 369 370 371 372 373 374
            t = self.get_transpiler(trainer_id=args.trainer_id,
                                    main_program=fluid.default_main_program(),
                                    pserver_endpoints=args.endpoints,
                                    trainers=args.trainers,
                                    sync_mode=args.sync_mode,
                                    dc_asgd=args.dc_asgd,
                                    hogwild_mode=args.hogwild)
T
tangwei12 已提交
375

T
typhoonzero 已提交
376
            trainer_prog = t.get_trainer_program()
377
            print_to_err(
378 379
                type(self).__name__,
                "get trainer program done with pserver mode.")
W
Wu Yi 已提交
380
        elif args.update_method == "nccl2" or args.update_method == "nccl2_reduce_layer":
W
Wu Yi 已提交
381 382 383
            # transpile for nccl2
            config = fluid.DistributeTranspilerConfig()
            config.mode = "nccl2"
384
            config.nccl_comm_num = args.nccl_comm_num
385 386 387
            if args.use_hallreduce:
                config.use_hierarchical_allreduce = True
                config.hierarchical_allreduce_inter_nranks = args.hallreduce_inter_nranks
388
            print_to_err(
389 390
                type(self).__name__,
                "begin to run transpile on trainer with nccl2 mode")
W
Wu Yi 已提交
391
            nccl2_t = fluid.DistributeTranspiler(config=config)
392 393 394 395 396
            nccl2_t.transpile(args.trainer_id,
                              program=fluid.default_main_program(),
                              startup_program=fluid.default_startup_program(),
                              trainers=args.endpoints,
                              current_endpoint=args.current_endpoint)
397
            print_to_err(
398 399
                type(self).__name__,
                "get trainer program done. with nccl2 mode")
W
Wu Yi 已提交
400
            trainer_prog = fluid.default_main_program()
T
typhoonzero 已提交
401
        else:
402
            print_to_err(
403 404
                type(self).__name__,
                "do nothing about main program, just use it")
T
typhoonzero 已提交
405
            trainer_prog = fluid.default_main_program()
406
            print_to_err(type(self).__name__, "use main program done.")
T
typhoonzero 已提交
407

408 409 410
        # FIXME(gongwb):wait pserver initialization.
        time.sleep(1)

411
        if args.use_cuda:
412 413
            device_id = int(os.getenv("FLAGS_selected_gpus", "0"))
            place = fluid.CUDAPlace(device_id)
414 415 416
        else:
            place = fluid.CPUPlace()

417 418
        exe = fluid.Executor(place)
        exe.run(fluid.default_startup_program())
419
        print_to_err(type(self).__name__, "run worker startup program done.")
T
typhoonzero 已提交
420

W
Wu Yi 已提交
421 422
        exec_strategy = fluid.ExecutionStrategy()
        exec_strategy.num_threads = 1
423

W
Wu Yi 已提交
424
        build_stra = fluid.BuildStrategy()
425 426 427
        # FIXME force disable enable_inplace and memory_optimize
        build_stra.enable_inplace = False
        build_stra.memory_optimize = False
W
Wu Yi 已提交
428

429 430 431 432
        if args.fuse_all_reduce is not None:
            sys.stderr.write('fuse_all_reduce={}'.format(args.fuse_all_reduce))
            build_stra.fuse_all_reduce_ops = args.fuse_all_reduce

T
tangwei12 已提交
433 434 435
        if args.hogwild:
            build_stra.async_mode = True

436 437 438
        if args.enable_backward_deps:
            build_stra.enable_backward_optimizer_op_deps = True

W
Wu Yi 已提交
439 440 441 442 443
        if args.use_reduce:
            build_stra.reduce_strategy = fluid.BuildStrategy.ReduceStrategy.Reduce
        else:
            build_stra.reduce_strategy = fluid.BuildStrategy.ReduceStrategy.AllReduce

W
Wu Yi 已提交
444
        pass_builder = None
X
Xin Pan 已提交
445
        if args.batch_merge_repeat > 1:
X
fix  
Xin Pan 已提交
446
            pass_builder = build_stra._finalize_strategy_and_create_passes()
447
            mypass = pass_builder.insert_pass(0, "multi_batch_merge_pass")
448
            mypass.set("num_repeats", args.batch_merge_repeat)
X
Xin Pan 已提交
449

W
Wu Yi 已提交
450
        if args.update_method == "nccl2" or args.update_method == "nccl2_reduce_layer":
451 452
            build_stra.num_trainers = len(args.endpoints.split(","))
            build_stra.trainer_id = args.trainer_id
W
Wu Yi 已提交
453
        else:
W
Wu Yi 已提交
454
            # case args.update_method == "nccl2_reduce_layer":
455 456
            build_stra.num_trainers = 1
            build_stra.trainer_id = 0
W
Wu Yi 已提交
457

458
        print_to_err(type(self).__name__, "begin to compile with data parallel")
X
Xin Pan 已提交
459
        binary = compiler.CompiledProgram(trainer_prog).with_data_parallel(
W
Wu Yi 已提交
460
            loss_name=avg_cost.name,
W
Wu Yi 已提交
461
            build_strategy=build_stra,
W
Wu Yi 已提交
462
            exec_strategy=exec_strategy)
463
        print_to_err(type(self).__name__, "program compiled with data parallel")
T
typhoonzero 已提交
464 465 466 467 468 469 470

        feed_var_list = [
            var for var in trainer_prog.global_block().vars.values()
            if var.is_data
        ]

        feeder = fluid.DataFeeder(feed_var_list, place)
471
        reader_generator = train_reader()
T
typhoonzero 已提交
472

473 474
        def get_data():
            origin_batch = next(reader_generator)
W
Wu Yi 已提交
475
            if args.update_method != "local" and args.use_reader_alloc:
476 477 478 479 480 481 482
                new_batch = []
                for offset, item in enumerate(origin_batch):
                    if offset % 2 == args.trainer_id:
                        new_batch.append(item)
                return new_batch
            else:
                return origin_batch
T
typhoonzero 已提交
483

484
        lr_scheduler = self.get_lr_scheduler(trainer_prog)
485
        print_to_err(type(self).__name__, "begin to train on trainer")
W
Wu Yi 已提交
486
        out_losses = []
487
        for i in six.moves.xrange(RUN_STEP):
488 489
            loss, = exe.run(binary,
                            fetch_list=[avg_cost.name],
490
                            feed=feeder.feed(get_data()))
W
Wu Yi 已提交
491
            out_losses.append(loss[0])
492
            print_to_err(type(self).__name__, "run step %d finished" % i)
493 494 495
            if lr_scheduler is not None:
                lr_scheduler.step()

496
        print_to_err(type(self).__name__, "trainer run finished")
497

498
        print_to_out(out_losses)
T
typhoonzero 已提交
499 500


501
class TestParallelDyGraphRunnerBase(object):
502

503 504 505 506 507 508 509 510
    def get_model(self):
        raise NotImplementedError(
            "get_model should be implemented by child classes.")

    def run_one_loop(self, model, opt, data):
        raise NotImplementedError(
            "train_one_loop should be implemented by the child classes.")

511
    def _get_data(self, batch, args):
X
xiongkun 已提交
512 513 514 515
        if paddle.distributed.get_world_size(
        ) == 1 and args.update_method == 'gloo':  # Gloo single mode
            return batch
        elif args.update_method != "local":
516
            new_batch = []
517

518 519 520
            # NOTE(@xiongkun03) args.diff_batch means batch length is different:
            # such as : batch = [2,3,4,5], then the first rank will get [2]  and
            # the second rank will get [3,4,5].
521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538
            # this function is for test sparse_embedding_differ_length
            if hasattr(args, "diff_batch") and args.diff_batch:
                assert len(
                    batch) > 2, "in differ_batch mode, len(batch) must > 2."
                if paddle.distributed.get_rank() == 0:
                    new_batch.append(batch[0])
                elif paddle.distributed.get_rank() == 1:
                    new_batch.extend([_ for _ in batch[1:]])
                else:
                    raise NotImplementedError(
                        "Current TestParallelDyGraphRunnerBase don't support world_size > 2"
                    )
                return new_batch
            else:
                for offset, item in enumerate(batch):
                    if offset % 2 == args.trainer_id:
                        new_batch.append(item)
                return new_batch
539 540 541
        else:
            return batch

542 543
    def run_trainer(self, args):
        seed = 90
X
xiongkun 已提交
544 545 546
        if args.update_method == 'gloo':
            place = fluid.CPUPlace()
        elif fluid.core.is_compiled_with_cuda():
547 548 549 550 551
            device_id = int(os.getenv("FLAGS_selected_gpus", "0"))
            place = fluid.CUDAPlace(device_id)
        elif fluid.core.is_compiled_with_xpu():
            device_id = int(os.getenv("FLAGS_selected_xpus", "0"))
            place = fluid.XPUPlace(device_id)
552 553 554
        elif fluid.core.is_compiled_with_npu():
            device_id = int(os.getenv("FLAGS_selected_npus", "0"))
            place = fluid.NPUPlace(device_id)
555
        else:
X
xiongkun 已提交
556
            assert ("Only support CUDAPlace or XPUPlace or CPU(Gloo) for now.")
557 558 559 560

        with fluid.dygraph.guard(place):
            fluid.default_startup_program().random_seed = seed
            fluid.default_main_program().random_seed = seed
Y
Yan Xu 已提交
561 562
            np.random.seed(seed)
            import random
563
            random.seed(seed)
564 565
            model, train_reader, opt = self.get_model()
            nranks = len(args.endpoints.split(",")) if args.endpoints else 1
Y
Yan Xu 已提交
566

567
            #if args.update_method == "nccl2":
568
            if args.update_method == "nccl2" or args.update_method == "bkcl" or args.update_method == "hccl":
569 570 571 572 573
                strategy = dygraph.parallel.ParallelStrategy()
                strategy.nranks = nranks
                strategy.local_rank = args.trainer_id
                strategy.trainer_endpoints = args.endpoints.split(",")
                strategy.current_endpoint = args.current_endpoint
574
                paddle.distributed.init_parallel_env()
575
                print_to_err(
576 577
                    type(self).__name__,
                    "begin to prepare context in dygraph with nccl2")
578
                dygraph.parallel.prepare_context(strategy)
579 580 581 582 583 584
                if not args.find_unused_parameters:
                    model = dygraph.parallel.DataParallel(
                        model, strategy, find_unused_parameters=False)
                else:
                    model = dygraph.parallel.DataParallel(
                        model, strategy, find_unused_parameters=True)
585
                print_to_err(type(self).__name__, "model built in dygraph")
X
xiongkun 已提交
586 587 588 589 590 591 592 593 594 595

            elif args.update_method == "gloo":
                paddle.distributed.init_parallel_env()
                if not args.find_unused_parameters:
                    model = dygraph.parallel.DataParallel(
                        model, find_unused_parameters=False)
                else:
                    model = dygraph.parallel.DataParallel(
                        model, find_unused_parameters=True)

596
            out_losses = []
597
            print_to_err(type(self).__name__, "begin to run dygraph training")
598
            for step_id, data in enumerate(train_reader()):
599
                data = self._get_data(data, args)
600 601 602
                if step_id == RUN_STEP:
                    break
                loss = self.run_one_loop(model, opt, data)
G
guru4elephant 已提交
603
                if step_id % 10 == 0:
604
                    print_to_err(
605
                        type(self).__name__,
606
                        "loss at step %d: %f" % (step_id, loss.numpy()))
Y
Yan Xu 已提交
607
                out_losses.append(loss.numpy())
608 609 610 611

                loss.backward()

                opt.minimize(loss)
612 613
                if not args.accumulate_gradient:
                    model.clear_gradients()
614
        print_to_out(out_losses)
615

616 617 618 619 620 621 622 623 624
    def run_trainer_with_spawn(self, args):
        # 1. enable dygraph
        paddle.disable_static()

        # 2. init seed
        seed = 90
        paddle.static.default_startup_program().random_seed = seed
        paddle.static.default_main_program().random_seed = seed
        np.random.seed(seed)
625
        random.seed(seed)
626 627 628 629
        # get trainer id
        args.trainer_id = paddle.distributed.get_rank()

        # 3. init parallel env
X
xiongkun 已提交
630
        if args.update_method in ["nccl2", "gloo"]:
631 632 633 634
            paddle.distributed.init_parallel_env()

        # 4. train model
        model, train_reader, opt = self.get_model()
X
xiongkun 已提交
635
        if args.update_method in ["nccl2", "gloo"]:
636 637
            model = paddle.DataParallel(
                model, find_unused_parameters=args.find_unused_parameters)
638 639 640 641 642 643 644 645 646 647 648 649 650 651 652

        out_losses = []
        for step_id, data in enumerate(train_reader()):
            data = self._get_data(data, args)
            if step_id == RUN_STEP:
                break
            loss = self.run_one_loop(model, opt, data)
            out_losses.append(loss.numpy())

            loss.backward()

            opt.minimize(loss)
            model.clear_gradients()
        return out_losses

653
    def run_use_fleet_api_trainer(self, args):
654 655 656 657 658 659 660 661 662 663
        import paddle.distributed.fleet as fleet
        import paddle.distributed.fleet.base.role_maker as role_maker
        # 1. enable dygraph
        paddle.disable_static()

        # 2. init seed
        seed = 90
        paddle.static.default_startup_program().random_seed = seed
        paddle.static.default_main_program().random_seed = seed
        np.random.seed(seed)
664
        random.seed(seed)
665 666 667
        # get trainer id
        args.trainer_id = paddle.distributed.get_rank()

668 669
        # set strategy
        strategy = fleet.DistributedStrategy()
670 671
        if args.find_unused_parameters:
            strategy.find_unused_parameters = True
672

673
        # 3. init parallel env
674
        if args.update_method == "nccl2" or "bkcl" or "hccl":
675
            fleet.init(is_collective=True, strategy=strategy)
676 677 678

        # 4. train model
        model, train_reader, opt = self.get_model()
679
        if args.update_method == "nccl2" or "bkcl" or "hccl":
680 681 682 683 684 685 686 687 688 689 690 691 692 693
            opt = fleet.distributed_optimizer(opt)
            model = fleet.distributed_model(model)

        out_losses = []
        for step_id, data in enumerate(train_reader()):
            data = self._get_data(data, args)
            if step_id == RUN_STEP:
                break
            loss = self.run_one_loop(model, opt, data)
            out_losses.append(loss.numpy())

            loss.backward()

            opt.step()
694 695
            if not args.accumulate_gradient:
                opt.clear_grad()
696 697
        print_to_out(out_losses)

698

T
typhoonzero 已提交
699
def runtime_main(test_class):
W
Wu Yi 已提交
700
    parser = argparse.ArgumentParser(description='Run dist test.')
701 702 703 704
    parser.add_argument('--role',
                        type=str,
                        required=True,
                        choices=['pserver', 'trainer'])
W
Wu Yi 已提交
705
    parser.add_argument('--endpoints', type=str, required=False, default="")
706 707 708 709 710 711 712
    parser.add_argument('--update_method',
                        type=str,
                        default="local",
                        choices=[
                            "pserver", "nccl2", "bkcl", "local",
                            "nccl2_reduce_layer", "gloo", "hccl"
                        ])
W
Wu Yi 已提交
713 714
    parser.add_argument('--trainer_id', type=int, required=False, default=0)
    parser.add_argument('--trainers', type=int, required=False, default=1)
715
    parser.add_argument('--nccl_comm_num', type=int, required=False, default=1)
716 717
    parser.add_argument('--enable_backward_deps', action='store_true')
    parser.add_argument('--use_hallreduce', action='store_true')
718
    parser.add_argument('--use_pipeline', action='store_true')
719
    parser.add_argument('--use_fleet_api', action='store_true')
720
    parser.add_argument('--use_fleet_api_20', action='store_true')
721
    parser.add_argument('--use_local_sgd', action='store_true')
722
    parser.add_argument('--diff_batch', action='store_true')
723
    parser.add_argument('--ut4grad_allreduce', action='store_true')
724 725 726 727 728 729 730 731
    parser.add_argument('--hallreduce_inter_nranks',
                        type=int,
                        required=False,
                        default=2)
    parser.add_argument('--current_endpoint',
                        type=str,
                        required=False,
                        default="")
W
Wu Yi 已提交
732
    parser.add_argument('--sync_mode', action='store_true')
733
    parser.add_argument('--use_cuda', action='store_true')
X
xiongkun 已提交
734
    parser.add_argument('--use_cpu', action='store_true')
735
    parser.add_argument('--use_xpu', action='store_true')
736
    parser.add_argument('--use_dgc', action='store_true')
737
    parser.add_argument('--use_npu', action='store_true')
738
    parser.add_argument('--accumulate_gradient', action='store_true')
739
    parser.add_argument('--find_unused_parameters', action='store_true')
W
Wu Yi 已提交
740
    parser.add_argument('--use_reduce', action='store_true')
W
Wu Yi 已提交
741
    parser.add_argument('--dc_asgd', action='store_true')
T
tangwei12 已提交
742
    parser.add_argument('--hogwild', action='store_true')
743
    parser.add_argument('--save_model', action='store_true')
744 745 746
    parser.add_argument('--use_reader_alloc',
                        action='store_true',
                        required=False)
747
    parser.add_argument('--batch_size', required=False, type=int, default=2)
W
Wu Yi 已提交
748
    parser.add_argument('--lr', required=False, type=float, default=0.001)
749 750 751 752 753 754 755 756
    parser.add_argument('--batch_merge_repeat',
                        required=False,
                        type=int,
                        default=1)
    parser.add_argument('--nccl2_reduce_layer_local_run',
                        required=False,
                        type=bool,
                        default=False)
757
    parser.add_argument('--sync_batch_norm', action='store_true')
758 759 760 761
    parser.add_argument('--fuse_all_reduce',
                        required=False,
                        type=ast.literal_eval,
                        default=None)
W
Wu Yi 已提交
762 763

    args = parser.parse_args()
T
typhoonzero 已提交
764

X
xiongkun 已提交
765 766 767
    if args.update_method == 'gloo':
        paddle.set_device("cpu")

T
typhoonzero 已提交
768
    model = test_class()
W
Wu Yi 已提交
769
    if args.role == "pserver" and args.update_method == "pserver":
W
Wu Yi 已提交
770
        model.run_pserver(args)
771 772
    elif args.use_fleet_api:
        model.run_use_fleet_api_trainer(args)
773 774
    elif args.use_fleet_api_20:
        model.run_use_fleet_api_20_trainer(args)
775 776
    elif args.use_pipeline:
        model.run_pipeline_trainer(args)
T
typhoonzero 已提交
777
    else:
778
        model.run_trainer(args)
X
Xin Pan 已提交
779

M
minqiyang 已提交
780

M
minqiyang 已提交
781
import paddle.compat as cpt
Y
Yancey1989 已提交
782 783
import socket
from contextlib import closing
M
minqiyang 已提交
784

X
Xin Pan 已提交
785 786

class TestDistBase(unittest.TestCase):
787

W
Wu Yi 已提交
788 789 790
    def _setup_config(self):
        raise NotImplementedError("tests should have _setup_config implemented")

791 792 793
    def _after_setup_config(self):
        if self._enforce_place == "CPU":
            self.__use_cuda = False
794
            self.__use_xpu = False
795
            self._use_dgc = False
796
            self.__use_npu = False
797 798
        elif self._enforce_place == "GPU":
            self.__use_cuda = True
799
            self.__use_xpu = False
800
            self.__use_npu = False
801 802 803 804
        elif self._enforce_place == "XPU":
            self.__use_cuda = False
            self.__use_xpu = True
            self._use_dgc = False
805 806 807 808 809 810
            self.__use_npu = False
        elif self._enforce_place == "NPU":
            self.__use_cuda = False
            self.__use_xpu = False
            self._use_dgc = False
            self.__use_npu = True
811 812 813 814 815
        else:
            if fluid.core.is_compiled_with_cuda():
                self.__use_cuda = True
            else:
                self.__use_cuda = False
816 817 818 819
                self._use_dgc = False

        if self._use_reduce:
            assert not self._use_dgc
820

X
Xin Pan 已提交
821 822 823
    def setUp(self):
        self._trainers = 2
        self._pservers = 2
Y
Yancey1989 已提交
824
        self._port_set = set()
M
minqiyang 已提交
825
        self._python_interp = sys.executable
W
Wu Yi 已提交
826
        self._sync_mode = True
T
tangwei12 已提交
827
        self._hogwild_mode = False
828
        self._enforce_place = None
W
Wu Yi 已提交
829
        self._use_reduce = False
W
Wu Yi 已提交
830
        self._dc_asgd = False  # must use with async mode
831
        self._use_reader_alloc = True
W
Wu Yi 已提交
832
        self._nccl2_mode = False
833
        self._bkcl_mode = False
X
xiongkun 已提交
834
        self._gloo_mode = False  # now, support gloo backend
835
        self._hccl_mode = False
836
        self._pipeline_mode = False
837
        self._mp_mode = False
838
        self._diff_batch = False
W
Wu Yi 已提交
839 840 841 842 843
        # FIXME(typhoonzero): I added this stupid argument to enable
        # testing allreduce layers, which users can call layers.allreduce
        # to accumulate tensors at anywhere. Find a better way to do this
        # test, reduce check this argument everywhere.
        self._nccl2_reduce_layer = False
W
Wu Yi 已提交
844
        self._lr = 0.001
845
        self._use_dgc = False
846
        self._dygraph = False
847
        self._nccl_comm_num = 1
848
        self._enable_backward_deps = False
849
        self._use_fleet_api = False
850
        self._use_fleet_api_20 = False
851 852
        self._use_local_sgd = False
        self._ut4grad_allreduce = False
853
        self._use_hallreduce = False
854
        self._save_model = False
855
        self._fuse_all_reduce = None
856
        self._accumulate_gradient = False
857
        self._find_unused_parameters = False
W
Wu Yi 已提交
858
        self._setup_config()
859 860 861 862 863 864 865 866 867 868 869 870

        global DIST_UT_PORT
        if DIST_UT_PORT == 0 and os.getenv("PADDLE_DIST_UT_PORT"):
            DIST_UT_PORT = int(os.getenv("PADDLE_DIST_UT_PORT"))

        if DIST_UT_PORT == 0:
            self._ps_endpoints = "127.0.0.1:%s,127.0.0.1:%s" % (
                self._find_free_port(), self._find_free_port())
        else:
            self._ps_endpoints = "127.0.0.1:%s,127.0.0.1:%s" % (
                DIST_UT_PORT, DIST_UT_PORT + 1)
            DIST_UT_PORT += 2
871
            self._dist_port = DIST_UT_PORT
872

873
        self._after_setup_config()
X
Xin Pan 已提交
874

875 876 877 878 879
        self.temp_dir = tempfile.TemporaryDirectory()

    def tearDown(self):
        self.temp_dir.cleanup()

Y
Yancey1989 已提交
880
    def _find_free_port(self):
881

Y
Yancey1989 已提交
882 883 884 885
        def __free_port():
            with closing(socket.socket(socket.AF_INET,
                                       socket.SOCK_STREAM)) as s:
                s.bind(('', 0))
886
                print_to_err(
887
                    type(self).__name__, "socket name: %s" % s.getsockname()[1])
Y
Yancey1989 已提交
888 889 890 891 892 893 894
                return s.getsockname()[1]

        while True:
            port = __free_port()
            if port not in self._port_set:
                self._port_set.add(port)
                return port
Y
Yancey1989 已提交
895

896 897 898 899 900
    def start_pserver(self,
                      model_file,
                      check_error_log,
                      required_envs,
                      log_name=""):
X
Xin Pan 已提交
901
        ps0_ep, ps1_ep = self._ps_endpoints.split(",")
902 903 904 905 906 907 908 909
        ps_cmd = "%s"

        if os.getenv('WITH_COVERAGE', 'OFF') == 'ON':
            required_envs['COVERAGE_FILE'] = os.getenv('COVERAGE_FILE', '')
            ps_cmd += " -m coverage run --branch -p"

        ps_cmd += " %s --role pserver --endpoints %s --trainer_id 0 --current_endpoint %s --trainers %d --update_method pserver"

W
Wu Yi 已提交
910
        ps0_cmd = ps_cmd % \
911 912
                  (self._python_interp, model_file, self._ps_endpoints, ps0_ep,
                   self._trainers)
W
Wu Yi 已提交
913
        ps1_cmd = ps_cmd % \
914 915
                  (self._python_interp, model_file, self._ps_endpoints, ps1_ep,
                   self._trainers)
W
Wu Yi 已提交
916 917 918 919

        if self._sync_mode:
            ps0_cmd += " --sync_mode"
            ps1_cmd += " --sync_mode"
X
Xin Pan 已提交
920

921 922
        print(ps0_cmd)
        print(ps1_cmd)
923 924 925 926
        path0 = os.path.join(self.temp_dir.name, log_name + "_ps0_err.log")
        path1 = os.path.join(self.temp_dir.name, log_name + "_ps1_err.log")
        ps0_pipe = open(path0, "wb")
        ps1_pipe = open(path1, "wb")
G
gongweibao 已提交
927

928
        print_to_err(type(self).__name__, "going to start pserver process 0")
929 930 931 932
        ps0_proc = subprocess.Popen(ps0_cmd.strip().split(" "),
                                    stdout=subprocess.PIPE,
                                    stderr=ps0_pipe,
                                    env=required_envs)
933
        print_to_err(type(self).__name__, "going to start pserver process 1")
934 935 936 937
        ps1_proc = subprocess.Popen(ps1_cmd.strip().split(" "),
                                    stdout=subprocess.PIPE,
                                    stderr=ps1_pipe,
                                    env=required_envs)
G
gongweibao 已提交
938

939
        return ps0_proc, ps1_proc, ps0_pipe, ps1_pipe
X
Xin Pan 已提交
940

941 942 943 944 945
    def _run_local(self,
                   model,
                   envs,
                   check_error_log=False,
                   batch_size=DEFAULT_BATCH_SIZE,
946
                   batch_merge_repeat=1,
947
                   log_name="",
X
xiongkun 已提交
948
                   devices="1"):
G
gongweibao 已提交
949

950 951 952 953 954 955
        cmd = self._python_interp

        if os.getenv('WITH_COVERAGE', 'OFF') == 'ON':
            envs['COVERAGE_FILE'] = os.getenv('COVERAGE_FILE', '')
            cmd += " -m coverage run --branch -p"

956 957
        cmd += " %s --role trainer --update_method local --lr %f" % (model,
                                                                     self._lr)
958

959 960 961 962
        if batch_size != DEFAULT_BATCH_SIZE:
            cmd += " --batch_size %d" % batch_size
        if batch_merge_repeat > 1:
            cmd += " --batch_merge_repeat %d" % batch_merge_repeat
W
Wu Yi 已提交
963 964
        if self._nccl2_reduce_layer:
            cmd += " --nccl2_reduce_layer_local_run 1"
965

966
        if self.__use_cuda:
967
            cmd += " --use_cuda"
W
Wu Yi 已提交
968
            env_local = {
969 970 971 972 973 974 975 976
                "CUDA_VISIBLE_DEVICES": devices,
                "PADDLE_TRAINERS_NUM": "1",
                "PADDLE_TRAINER_ID": "0"
            }
        elif self.__use_xpu:
            cmd += " --use_xpu"
            env_local = {
                "FLAGS_selected_xpus": devices,
W
Wu Yi 已提交
977 978 979
                "PADDLE_TRAINERS_NUM": "1",
                "PADDLE_TRAINER_ID": "0"
            }
980 981 982 983 984 985 986
        elif self.__use_npu:
            cmd += " --use_npu"
            env_local = {
                "FLAGS_selected_npus": devices,
                "PADDLE_TRAINERS_NUM": "1",
                "PADDLE_TRAINER_ID": "0"
            }
987 988 989
        else:
            env_local = {'CPU_NUM': '1'}

990
        # not use dgc in single card
991
        if len(devices) > 1 and self._use_dgc:
992 993
            cmd += " --use_dgc"

994 995 996
        if self._accumulate_gradient:
            cmd += " --accumulate_gradient"

997 998 999
        if self._find_unused_parameters:
            cmd += " --find_unused_parameters"

W
Wu Yi 已提交
1000 1001
        env_local.update(envs)
        print("local_cmd: {}, env: {}".format(cmd, env_local))
G
gongweibao 已提交
1002

1003
        if check_error_log:
1004 1005
            path = os.path.join(self.temp_dir.name, log_name + "_local.log")
            err_log = open(path, "wb")
1006 1007 1008 1009
            local_proc = subprocess.Popen(cmd.split(" "),
                                          stdout=subprocess.PIPE,
                                          stderr=err_log,
                                          env=env_local)
G
gongweibao 已提交
1010
        else:
1011 1012 1013 1014
            local_proc = subprocess.Popen(cmd.split(" "),
                                          stdout=subprocess.PIPE,
                                          stderr=subprocess.PIPE,
                                          env=env_local)
G
gongweibao 已提交
1015

1016 1017 1018 1019 1020 1021
        local_out, local_err = local_proc.communicate()

        if check_error_log:
            err_log.close()

        sys.stderr.write('local_stderr: %s\n' % local_err)
W
Wu Yi 已提交
1022
        sys.stderr.write('local_stdout: %s\n' % pickle.loads(local_out))
X
Xin Pan 已提交
1023

W
Wu Yi 已提交
1024
        return pickle.loads(local_out)
1025

X
xiongkun 已提交
1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040
    def _run_local_gloo(self,
                        model,
                        envs,
                        check_error_log=False,
                        batch_size=DEFAULT_BATCH_SIZE,
                        batch_merge_repeat=1,
                        log_name="",
                        devices="0"):
        saved_endpoints = self._ps_endpoints
        self._ps_endpoints = self._ps_endpoints.split(',')[0]
        result = self._run_cluster_gloo(model, envs, 'gloo', check_error_log,
                                        log_name)
        self._ps_endpoints = saved_endpoints
        return result

1041
    def _run_cluster(self, model, envs, check_error_log, log_name):
X
Xin Pan 已提交
1042
        # Run dist train to compare with local results
1043 1044 1045 1046
        ps0, ps1, ps0_pipe, ps1_pipe = self.start_pserver(model,
                                                          check_error_log,
                                                          envs,
                                                          log_name=log_name)
W
Wu Yi 已提交
1047

X
Xin Pan 已提交
1048
        ps0_ep, ps1_ep = self._ps_endpoints.split(",")
1049

1050 1051 1052 1053 1054 1055 1056 1057
        tr_cmd = "%s"

        if os.getenv('WITH_COVERAGE', 'OFF') == 'ON':
            envs['COVERAGE_FILE'] = os.getenv('COVERAGE_FILE', '')
            tr_cmd += " -m coverage run --branch -p"

        tr_cmd += " %s --role trainer --endpoints %s --trainer_id %d --current_endpoint %s --trainers %d --update_method pserver --lr %f"

W
Wu Yi 已提交
1058
        tr0_cmd = tr_cmd % \
1059
                  (self._python_interp, model, self._ps_endpoints,
W
Wu Yi 已提交
1060
                   0, ps0_ep, self._trainers, self._lr)
W
Wu Yi 已提交
1061
        tr1_cmd = tr_cmd % \
1062
                  (self._python_interp, model, self._ps_endpoints,
W
Wu Yi 已提交
1063
                   1, ps1_ep, self._trainers, self._lr)
W
Wu Yi 已提交
1064 1065 1066 1067

        if self._sync_mode:
            tr0_cmd += " --sync_mode"
            tr1_cmd += " --sync_mode"
T
tangwei12 已提交
1068 1069 1070
        if self._hogwild_mode:
            tr0_cmd += " --hogwild"
            tr1_cmd += " --hogwild"
W
Wu Yi 已提交
1071 1072 1073
        if self._use_reduce:
            tr0_cmd += " --use_reduce"
            tr1_cmd += " --use_reduce"
1074 1075 1076
        if self._use_reader_alloc:
            tr0_cmd += " --use_reader_alloc"
            tr1_cmd += " --use_reader_alloc"
1077
        if self.__use_cuda:
1078 1079 1080 1081 1082 1083 1084 1085 1086 1087
            tr0_cmd += " --use_cuda"
            tr1_cmd += " --use_cuda"
            env0 = {"CUDA_VISIBLE_DEVICES": "0"}
            env1 = {"CUDA_VISIBLE_DEVICES": "1"}
        else:
            env0 = {'CPU_NUM': '1'}
            env1 = {'CPU_NUM': '1'}

        env0.update(envs)
        env1.update(envs)
X
Xin Pan 已提交
1088

W
Wu Yi 已提交
1089 1090
        print("tr0_cmd: {}, env: {}".format(tr0_cmd, env0))
        print("tr1_cmd: {}, env: {}".format(tr1_cmd, env1))
1091 1092 1093 1094 1095

        path0 = os.path.join(self.temp_dir.name, log_name + "_tr0_err.log")
        path1 = os.path.join(self.temp_dir.name, log_name + "_tr1_err.log")
        tr0_pipe = open(path0, "wb")
        tr1_pipe = open(path1, "wb")
G
gongweibao 已提交
1096

1097
        print_to_err(type(self).__name__, "going to start trainer process 0")
1098 1099 1100 1101
        tr0_proc = subprocess.Popen(tr0_cmd.strip().split(" "),
                                    stdout=subprocess.PIPE,
                                    stderr=tr0_pipe,
                                    env=env0)
1102
        print_to_err(type(self).__name__, "going to start trainer process 1")
1103 1104 1105 1106
        tr1_proc = subprocess.Popen(tr1_cmd.strip().split(" "),
                                    stdout=subprocess.PIPE,
                                    stderr=tr1_pipe,
                                    env=env1)
X
Xin Pan 已提交
1107

1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119
        # Wait until trainer process terminate
        while True:
            stat0 = tr0_proc.poll()
            time.sleep(0.1)
            if stat0 is not None:
                break
        while True:
            stat1 = tr1_proc.poll()
            time.sleep(0.1)
            if stat1 is not None:
                break

1120 1121
        tr0_out, tr0_err = tr0_proc.communicate()
        tr1_out, tr1_err = tr1_proc.communicate()
X
Xin Pan 已提交
1122

G
gongweibao 已提交
1123
        # close trainer file
1124 1125 1126 1127
        tr0_pipe.close()
        tr1_pipe.close()
        ps0_pipe.close()
        ps1_pipe.close()
W
Wu Yi 已提交
1128

W
Wu Yi 已提交
1129 1130
        ps0.terminate()
        ps1.terminate()
T
typhoonzero 已提交
1131

W
Wu Yi 已提交
1132 1133
        return pickle.loads(tr0_out), pickle.loads(tr1_out)

X
xiongkun 已提交
1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155
    def _get_gloo_trainer_cmd(self, model, ep, update_method, trainer_id,
                              trainer_num):
        env = {}
        tr_cmd = "%s -u"

        if os.getenv('WITH_COVERAGE', 'OFF') == 'ON':
            tr_cmd += " -m coverage run --branch -p"

        tr_cmd += " %s --role trainer --endpoints %s --trainer_id %d --current_endpoint %s --update_method %s --lr %f"

        tr_cmd = tr_cmd % \
                 (self._python_interp, model, self._ps_endpoints,
                  trainer_id, ep, update_method, self._lr)

        if self._use_reduce:
            tr_cmd += " --use_reduce"
        if self._use_reader_alloc:
            tr_cmd += " --use_reader_alloc"
        #assert self._use_reduce == False, "gloo not support _use_reduce"
        #assert self._use_reader_alloc == False, "gloo not support _use_reduce"
        if self._save_model:
            tr_cmd += " --save_model"
1156 1157
        if self._diff_batch:
            tr_cmd += " --diff_batch"
X
xiongkun 已提交
1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173
        self.__use_cuda = False
        self.__use_xpu = False
        assert self.__use_cuda == False, "gloo not support use cuda"
        assert self.__use_xpu == False, "gloo not support use xpu"
        tr_cmd += " --use_cpu"
        env.update({
            "PADDLE_TRAINERS_NUM": "{}".format(trainer_num),
            "PADDLE_TRAINER_ID": "{}".format(trainer_id),
            "PADDLE_TRAINER_ENDPOINTS": self._ps_endpoints,
            "PADDLE_CURRENT_ENDPOINT": ep,
            "PADDLE_CURRENT_ENDPOINT": ep,
            "PADDLE_DISTRI_BACKEND": "gloo",
            "GLOG_v": "2",
        })

        assert self._use_dgc == False, "gloo not support use dgc"
1174

X
xiongkun 已提交
1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192
        if self._accumulate_gradient:
            tr_cmd += " --accumulate_gradient"

        if self._find_unused_parameters:
            tr_cmd += " --find_unused_parameters"

        assert self._pipeline_mode == False, "gloo not support use pipeline"

        if self._enable_backward_deps:  # build strategy, save it
            tr_cmd += " --enable_backward_deps"

        if self._fuse_all_reduce is not None:
            tr_cmd += " --fuse_all_reduce {}".format(self._fuse_all_reduce)

        assert self._use_fleet_api == False, "gloo not support use fleet api"
        assert self._use_fleet_api_20 == False, "gloo not support use fleet api"
        return tr_cmd, env

1193 1194 1195
    def _get_nccl2_trainer_cmd(self, model, ep, update_method, trainer_id,
                               trainer_num):
        env = {}
1196 1197 1198 1199 1200 1201 1202
        tr_cmd = "%s -u"

        if os.getenv('WITH_COVERAGE', 'OFF') == 'ON':
            tr_cmd += " -m coverage run --branch -p"

        tr_cmd += " %s --role trainer --endpoints %s --trainer_id %d --current_endpoint %s --update_method %s --lr %f"

1203
        tr_cmd = tr_cmd % \
T
tangwei12 已提交
1204 1205
                 (self._python_interp, model, self._ps_endpoints,
                  trainer_id, ep, update_method, self._lr)
W
Wu Yi 已提交
1206 1207

        if self._use_reduce:
1208
            tr_cmd += " --use_reduce"
W
Wu Yi 已提交
1209
        if self._use_reader_alloc:
1210
            tr_cmd += " --use_reader_alloc"
1211 1212
        if self._save_model:
            tr_cmd += " --save_model"
W
Wu Yi 已提交
1213
        if self.__use_cuda:
1214 1215
            tr_cmd += " --use_cuda"
            env.update({
1216
                "FLAGS_selected_gpus": "{}".format(0),
W
WangXi 已提交
1217
                "CUDA_VISIBLE_DEVICES": "{}".format(trainer_id),
1218
                "PADDLE_TRAINERS_NUM": "{}".format(trainer_num),
1219 1220 1221
                "PADDLE_TRAINER_ID": "{}".format(trainer_id),
                "PADDLE_TRAINER_ENDPOINTS": self._ps_endpoints,
                "PADDLE_CURRENT_ENDPOINT": ep,
1222
            })
1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235
        # TODO(liuyuhui):XPU_VISIBLE_DEVICES is not working right now,
        # will update it after Badiu Kunlun partners' support.
        elif self.__use_xpu:
            tr_cmd += " --use_xpu"
            env.update({
                "FLAGS_selected_xpus": "{}".format(trainer_id),
                #"XPU_VISIBLE_DEVICES": "{}".format(trainer_id + 1),
                "PADDLE_TRAINERS_NUM": "{}".format(trainer_num),
                "PADDLE_TRAINER_ID": "{}".format(trainer_id),
                "PADDLE_TRAINER_ENDPOINTS": self._ps_endpoints,
                "PADDLE_CURRENT_ENDPOINT": ep,
                "GLOG_v": "2",
            })
1236 1237 1238 1239 1240 1241 1242 1243 1244 1245
        elif self.__use_npu:
            tr_cmd += " --use_npu"
            env.update({
                "FLAGS_selected_npus": "{}".format(trainer_id),
                "PADDLE_TRAINERS_NUM": "{}".format(trainer_num),
                "PADDLE_TRAINER_ID": "{}".format(trainer_id),
                "PADDLE_TRAINER_ENDPOINTS": self._ps_endpoints,
                "PADDLE_CURRENT_ENDPOINT": ep,
                "GLOG_v": "2",
            })
W
Wu Yi 已提交
1246
        else:
1247
            env.update({'CPU_NUM': '1'})
W
Wu Yi 已提交
1248

1249
        if self._use_dgc:
1250 1251
            tr_cmd += " --use_dgc"

1252 1253 1254
        if self._accumulate_gradient:
            tr_cmd += " --accumulate_gradient"

1255 1256 1257
        if self._find_unused_parameters:
            tr_cmd += " --find_unused_parameters"

1258 1259
        if self._pipeline_mode:
            tr_cmd += " --use_pipeline"
1260
        if self._mp_mode:
W
WangXi 已提交
1261
            env = {"FLAGS_selected_gpus": "{}".format(trainer_id)}
1262 1263

        if self._nccl_comm_num > 1:
1264
            tr_cmd += " --nccl_comm_num {}".format(self._nccl_comm_num)
1265

1266 1267
        if self._use_hallreduce:
            tr_cmd += " --use_hallreduce --hallreduce_inter_nranks 2"
1268

1269
        if self._enable_backward_deps:
1270
            tr_cmd += " --enable_backward_deps"
1271

1272 1273 1274
        if self._fuse_all_reduce is not None:
            tr_cmd += " --fuse_all_reduce {}".format(self._fuse_all_reduce)

1275
        if self._use_fleet_api:
1276
            tr_cmd += " --use_fleet_api_20" if self._use_fleet_api_20 else " --use_fleet_api"
1277 1278 1279 1280
            if self._use_local_sgd:
                tr_cmd += " --use_local_sgd"
            if self._ut4grad_allreduce:
                tr_cmd += " --ut4grad_allreduce"
1281 1282
            if hasattr(self, '_sync_batch_norm') and self._sync_batch_norm:
                tr_cmd += " --sync_batch_norm"
1283

1284 1285 1286
        if os.getenv('WITH_COVERAGE', 'OFF') == 'ON':
            env['COVERAGE_FILE'] = os.getenv('COVERAGE_FILE', '')

1287
        return tr_cmd, env
W
Wu Yi 已提交
1288

X
xiongkun 已提交
1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300
    def _run_cluster_gloo(self, model, envs, update_method, check_error_log,
                          log_name):
        assert update_method == "gloo", "_run_cluster_gloo must have update_method: gloo, but get %s" % update_method
        assert not self._use_hallreduce, "_run_cluster_gloo must have _use_hallreduce = false"

        worker_endpoints = self._ps_endpoints.split(",")

        trainer_num = len(worker_endpoints)

        procs = []
        pipes = []
        for i in range(0, trainer_num):
1301 1302 1303 1304
            tr_cmd, tr_env = self._get_gloo_trainer_cmd(model,
                                                        worker_endpoints[i],
                                                        update_method, i,
                                                        trainer_num)
X
xiongkun 已提交
1305 1306 1307 1308 1309 1310
            tr_env.update(envs)
            tr_env["GLOG_vmodule"] = 'gloo_context=4'
            tr_env["GLOG_v"] = '3'
            print("use_hallreduce:{} tr_cmd:{}, env: {}".format(
                self._use_hallreduce, tr_cmd, tr_env))

1311 1312 1313
            path = os.path.join(self.temp_dir.name,
                                log_name + "_tr{}_err.log".format(i))
            tr_pipe = open(path, "wb")
X
xiongkun 已提交
1314 1315 1316 1317

            print_to_err(
                type(self).__name__,
                "going to start process {} with nccl2".format(i))
1318 1319 1320 1321
            tr_proc = subprocess.Popen(tr_cmd.strip().split(" "),
                                       stdout=subprocess.PIPE,
                                       stderr=tr_pipe,
                                       env=tr_env)
X
xiongkun 已提交
1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342

            procs.append(tr_proc)
            pipes.append(tr_pipe)

        outs = []
        for i in range(0, trainer_num):
            tr_out, tr_err = procs[i].communicate()
            outs.append(tr_out)
            pipes[i].close()
            sys.stderr.write('trainer {} stderr: {}\n'.format(i, tr_err))

        if trainer_num == 1:
            if check_error_log: print("outs[0]:", outs[0])
            return pickle.loads(outs[0])

        else:
            if check_error_log:
                print("outs[0]:", outs[0])
                print("outs[1]:", outs[1])
            return pickle.loads(outs[0]), pickle.loads(outs[1])

1343 1344
    def _run_cluster_nccl2(self, model, envs, update_method, check_error_log,
                           log_name):
1345 1346
        if self._use_hallreduce:
            self._ps_endpoints = ""
1347 1348 1349

            global DIST_UT_PORT
            if DIST_UT_PORT == 0:
W
WangXi 已提交
1350
                # NOTE(wangxi). hallreduce test must use 4cards after nccl>=2.7
1351 1352 1353 1354 1355 1356 1357
                for i in range(0, 4):
                    self._ps_endpoints += "127.0.0.1:%s," % (
                        self._find_free_port())
            else:
                for i in range(0, 4):
                    self._ps_endpoints += "127.0.0.1:%s," % (DIST_UT_PORT + i)
                DIST_UT_PORT += 4
1358
            self._ps_endpoints = self._ps_endpoints[:-1]
W
Wu Yi 已提交
1359

1360 1361
        # NOTE: we reuse ps_endpoints as nccl2 worker endpoints
        worker_endpoints = self._ps_endpoints.split(",")
W
Wu Yi 已提交
1362

1363
        trainer_num = len(worker_endpoints)
W
Wu Yi 已提交
1364

1365 1366 1367 1368 1369 1370 1371 1372
        procs = []
        pipes = []
        for i in range(0, trainer_num):
            tr_cmd, tr_env = self._get_nccl2_trainer_cmd(
                model, worker_endpoints[i], update_method, i, trainer_num)
            tr_env.update(envs)
            print("use_hallreduce:{} tr_cmd:{}, env: {}".format(
                self._use_hallreduce, tr_cmd, tr_env))
W
Wu Yi 已提交
1373

1374 1375 1376
            path = os.path.join(self.temp_dir.name,
                                log_name + "_tr{}_err.log".format(i))
            tr_pipe = open(path, "wb")
W
Wu Yi 已提交
1377

1378
            print_to_err(
1379 1380
                type(self).__name__,
                "going to start process {} with nccl2".format(i))
1381 1382 1383 1384
            tr_proc = subprocess.Popen(tr_cmd.strip().split(" "),
                                       stdout=subprocess.PIPE,
                                       stderr=tr_pipe,
                                       env=tr_env)
1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395

            procs.append(tr_proc)
            pipes.append(tr_pipe)

        outs = []
        for i in range(0, trainer_num):
            tr_out, tr_err = procs[i].communicate()
            outs.append(tr_out)
            pipes[i].close()
            sys.stderr.write('trainer {} stderr: {}\n'.format(i, tr_err))

1396 1397 1398
        if check_error_log:
            print("outs[0]:", outs[0])
            print("outs[1]:", outs[1])
1399

1400
        return pickle.loads(outs[0]), pickle.loads(outs[1])
1401

1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420
    def _run_pipeline(self, model, envs, check_error_log, log_name):
        # NOTE: we reuse ps_endpoints as nccl2 worker endpoints
        worker_endpoints = self._ps_endpoints.split(",")
        update_method = "nccl2"

        trainer_num = len(worker_endpoints)

        procs = []
        pipes = []
        for i in range(0, trainer_num):
            tr_cmd, tr_env = self._get_nccl2_trainer_cmd(
                model, worker_endpoints[i], update_method, i, trainer_num)
            tr_env.update(envs)
            tr_env['CUDA_VISIBLE_DEVICES'] = "0,1"
            tr_env['NCCL_SHM_DISABLE'] = '1'
            tr_env['FLAGS_selected_gpus'] = str(i)
            tr_env['FLAGS_cudnn_deterministic'] = '0'
            print("tr_cmd:{}, env: {}".format(tr_cmd, tr_env))

1421 1422
            path = os.path.join(self.temp_dir.name + "tr{}_err.log".format(i))
            tr_pipe = open(path, "wb")
1423 1424 1425 1426

            print_to_err(
                type(self).__name__,
                "going to start process {} with nccl2".format(i))
1427 1428 1429 1430
            tr_proc = subprocess.Popen(tr_cmd.strip().split(" "),
                                       stdout=subprocess.PIPE,
                                       stderr=tr_pipe,
                                       env=tr_env)
1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446

            procs.append(tr_proc)
            pipes.append(tr_pipe)

        outs = []
        for i in range(0, trainer_num):
            tr_out, tr_err = procs[i].communicate()
            outs.append(tr_out)
            pipes[i].close()
            sys.stderr.write('trainer {} stderr: {}\n'.format(i, tr_err))

        if check_error_log:
            print("outs[0]:", outs[0])
            print("outs[1]:", outs[1])
        return pickle.loads(outs[0]), pickle.loads(outs[1])

1447
    def _get_required_envs(self, check_error_log=False, need_envs={}):
1448 1449 1450 1451 1452 1453
        # TODO(typhoonzero): should auto adapt GPU count on the machine.
        required_envs = {
            "PATH": os.getenv("PATH", ""),
            "PYTHONPATH": os.getenv("PYTHONPATH", ""),
            "LD_LIBRARY_PATH": os.getenv("LD_LIBRARY_PATH", ""),
            "FLAGS_fraction_of_gpu_memory_to_use": "0.15",
G
guru4elephant 已提交
1454
            "FLAGS_rpc_deadline": "30000",  # 5sec to fail fast
1455
            "FLAGS_rpc_retry_bind_port": "50",
1456
            "FLAGS_cudnn_deterministic": "1",
1457
            "FLAGS_rpc_disable_reuse_port": "1",
W
Wu Yi 已提交
1458
            "http_proxy": "",
1459 1460
            "NCCL_P2P_DISABLE": "1",
            "NCCL_SHM_DISABLE": "1"
1461 1462 1463
        }

        if check_error_log:
1464
            required_envs["GLOG_vmodule"] = \
1465 1466
                "fused_all_reduce_op_handle=10,all_reduce_op_handle=10,alloc_continuous_space_op=10,fuse_all_reduce_op_pass=10," \
                "alloc_continuous_space_for_grad_pass=10,fast_threaded_ssa_graph_executor=10,executor=10,operator=10," \
W
WangXi 已提交
1467
                "sparse_all_reduce_op_handle=10,gen_nccl_id_op=10,gen_nccl_id_op_help=10,nccl_helper=10,grpc_client=10," \
1468
                "grpc_server=10,request_handler_impl=10,section_worker=10"
1469 1470
            required_envs["GLOG_logtostderr"] = "1"

1471 1472 1473 1474
        if os.getenv('NVIDIA_TF32_OVERRIDE', '') is not None:
            required_envs['NVIDIA_TF32_OVERRIDE'] = os.getenv(
                'NVIDIA_TF32_OVERRIDE', '')

1475 1476 1477 1478 1479 1480 1481 1482 1483
        required_envs.update(need_envs)
        return required_envs

    def check_with_place(self,
                         model_file,
                         delta=1e-3,
                         check_error_log=False,
                         need_envs={},
                         log_name=""):
1484 1485
        if self._dygraph and (self._gloo_mode or self._nccl2_mode):
            with _test_eager_guard():
1486 1487 1488 1489 1490 1491 1492 1493 1494 1495
                self.check_with_place_func(model_file=model_file,
                                           delta=delta,
                                           check_error_log=check_error_log,
                                           need_envs=need_envs,
                                           log_name=log_name)
            self.check_with_place_func(model_file=model_file,
                                       delta=delta,
                                       check_error_log=check_error_log,
                                       need_envs=need_envs,
                                       log_name=log_name)
1496
        else:
1497 1498 1499 1500 1501
            self.check_with_place_func(model_file=model_file,
                                       delta=delta,
                                       check_error_log=check_error_log,
                                       need_envs=need_envs,
                                       log_name=log_name)
1502 1503 1504 1505 1506 1507 1508

    def check_with_place_func(self,
                              model_file,
                              delta=1e-3,
                              check_error_log=False,
                              need_envs={},
                              log_name=""):
1509 1510
        required_envs = self._get_required_envs(check_error_log, need_envs)

X
xiongkun 已提交
1511 1512 1513 1514 1515 1516
        if self._gloo_mode:
            local_losses \
                = self._run_local_gloo(model_file, required_envs,
                                  check_error_log, log_name=log_name)
        else:
            local_losses \
1517
            = self._run_local(model_file, required_envs,
1518 1519
                              check_error_log, log_name=log_name)

W
Wu Yi 已提交
1520
        if self._nccl2_mode:
W
Wu Yi 已提交
1521 1522
            if self._nccl2_reduce_layer:
                tr0_losses, tr1_losses = self._run_cluster_nccl2(
1523 1524
                    model_file,
                    required_envs,
1525 1526
                    update_method="nccl2_reduce_layer",
                    check_error_log=check_error_log,
1527
                    log_name=log_name)
W
Wu Yi 已提交
1528 1529
            else:
                tr0_losses, tr1_losses = self._run_cluster_nccl2(
1530 1531
                    model_file,
                    required_envs,
1532 1533
                    update_method='nccl2',
                    check_error_log=check_error_log,
1534
                    log_name=log_name)
1535 1536 1537 1538 1539 1540 1541
        elif self._bkcl_mode:
            tr0_losses, tr1_losses = self._run_cluster_nccl2(
                model_file,
                required_envs,
                update_method='bkcl',
                check_error_log=check_error_log,
                log_name=log_name)
X
xiongkun 已提交
1542 1543 1544 1545 1546 1547 1548 1549
        elif self._gloo_mode:
            # gloo mode, cpu only parallel train @xiongkun03
            tr0_losses, tr1_losses = self._run_cluster_gloo(
                model_file,
                required_envs,
                update_method='gloo',
                check_error_log=check_error_log,
                log_name=log_name)
1550 1551 1552 1553 1554 1555 1556
        elif self._hccl_mode:
            tr0_losses, tr1_losses = self._run_cluster_nccl2(
                model_file,
                required_envs,
                update_method='hccl',
                check_error_log=check_error_log,
                log_name=log_name)
1557

1558
        elif self._pipeline_mode:
1559 1560 1561 1562
            tr0_losses, tr1_losses = self._run_pipeline(model_file,
                                                        required_envs,
                                                        check_error_log,
                                                        log_name=log_name)
W
Wu Yi 已提交
1563
        else:
1564 1565 1566 1567
            tr0_losses, tr1_losses = self._run_cluster(model_file,
                                                       required_envs,
                                                       check_error_log,
                                                       log_name=log_name)
1568 1569

        for step_id in range(RUN_STEP):
W
Wu Yi 已提交
1570 1571 1572
            local_loss = local_losses[step_id]
            tr0_loss = tr0_losses[step_id]
            tr1_loss = tr1_losses[step_id]
1573 1574 1575 1576
            if self._pipeline_mode:
                dist_loss = np.array([tr1_loss])
            else:
                dist_loss = (np.array([tr0_loss]) + np.array([tr1_loss])) / 2
W
Wu Yi 已提交
1577 1578
            print("=======", local_loss, ":", dist_loss[0], "=======")
            self.assertAlmostEqual(local_loss, dist_loss[0], delta=delta)
1579 1580 1581 1582 1583 1584 1585

    def check_with_place_multi_cards(self,
                                     model_file,
                                     delta=1e-3,
                                     check_error_log=False,
                                     need_envs={},
                                     log_name=""):
1586

1587 1588 1589 1590 1591 1592
        # need open p2p or shm otherwise multi cards mode will hang
        need_envs.update({"NCCL_P2P_DISABLE": "0", "NCCL_SHM_DISABLE": "0"})

        required_envs = self._get_required_envs(check_error_log, need_envs)

        if self._use_dgc:
1593 1594 1595 1596 1597 1598
            multi_cards_losses = self._run_local(model_file,
                                                 required_envs,
                                                 check_error_log,
                                                 log_name=log_name +
                                                 "_dgc_2cards",
                                                 devices="0,1")
1599 1600

            self._use_dgc = False
1601 1602 1603 1604 1605
            base_losses = self._run_local(model_file,
                                          required_envs,
                                          check_error_log,
                                          log_name=log_name + "_base_2cards",
                                          devices="0,1")
1606 1607 1608 1609 1610 1611 1612 1613

            self._use_dgc = True

            for step_id in range(RUN_STEP):
                base_loss = base_losses[step_id]
                multi_cards_loss = multi_cards_losses[step_id]
                print("=======", base_loss, ":", multi_cards_loss, "=======")
                self.assertAlmostEqual(base_loss, multi_cards_loss, delta=delta)