test_dist_base.py 47.8 KB
Newer Older
X
Xin Pan 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13
#   Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
14 15

from __future__ import print_function
X
Xin Pan 已提交
16 17
import time

18
import ast
X
Xin Pan 已提交
19 20 21 22 23
import unittest
import os
import sys
import signal
import subprocess
24
import six
W
Wu Yi 已提交
25
import argparse
W
Wu Yi 已提交
26
import pickle
27
import random
W
Wu Yi 已提交
28
import numpy as np
29
import time
30 31

import paddle
32
import paddle.fluid as fluid
33
from paddle.fluid import compiler
34 35 36
import paddle.fluid.dygraph as dygraph
from paddle.fluid.dygraph.base import to_variable
from paddle.fluid.dygraph.parallel import DataParallel
37

38 39 40
from paddle.fluid.incubate.fleet.collective import fleet, DistributedStrategy
import paddle.fluid.incubate.fleet.base.role_maker as role_maker

Y
Yan Xu 已提交
41
RUN_STEP = 5
42
DEFAULT_BATCH_SIZE = 2
43
DIST_UT_PORT = 0
44

T
typhoonzero 已提交
45

46 47 48 49 50 51 52 53
def print_to_out(out_losses):
    if six.PY2:
        print(pickle.dumps(out_losses))
    else:
        sys.stdout.buffer.write(pickle.dumps(out_losses))


def print_to_err(class_name, log_str):
54 55
    localtime = time.asctime(time.localtime(time.time()))
    print_str = localtime + "\t" + class_name + "\t" + log_str
G
guru4elephant 已提交
56
    if six.PY2:
57
        sys.stderr.write(pickle.dumps(print_str))
G
guru4elephant 已提交
58
    else:
59
        sys.stderr.buffer.write(pickle.dumps(print_str))
G
guru4elephant 已提交
60 61


62 63 64 65
def eprint(*args, **kwargs):
    print(*args, file=sys.stderr, **kwargs)


T
typhoonzero 已提交
66
class TestDistRunnerBase(object):
W
Wu Yi 已提交
67 68 69
    def get_model(self,
                  batch_size=DEFAULT_BATCH_SIZE,
                  lr=0.1,
70 71
                  single_device=False,
                  use_dgc=False):
T
typhoonzero 已提交
72 73 74
        raise NotImplementedError(
            "get_model should be implemented by child classes.")

75
    @staticmethod
W
Wu Yi 已提交
76 77 78 79 80
    def get_transpiler(trainer_id,
                       main_program,
                       pserver_endpoints,
                       trainers,
                       sync_mode,
81
                       dc_asgd=False,
82
                       current_endpoint=None,
T
tangwei12 已提交
83 84
                       nccl_comm_num=1,
                       hogwild_mode=False):
T
typhoonzero 已提交
85
        # NOTE: import fluid until runtime, or else forking processes will cause error.
86
        config = fluid.DistributeTranspilerConfig()
W
Wu Yi 已提交
87
        config.enable_dc_asgd = dc_asgd
88
        config.sync_mode = sync_mode
T
tangwei12 已提交
89 90
        config.runtime_split_send_recv = hogwild_mode

91 92
        if nccl_comm_num > 1:
            config.nccl_comm_num = nccl_comm_num
93
        # config.runtime_split_send_recv = True
94
        t = fluid.DistributeTranspiler(config=config)
T
typhoonzero 已提交
95 96 97 98
        t.transpile(
            trainer_id=trainer_id,
            program=main_program,
            pservers=pserver_endpoints,
W
Wu Yi 已提交
99
            trainers=trainers,
T
tangwei12 已提交
100
            sync_mode=sync_mode,
101
            current_endpoint=current_endpoint)
T
typhoonzero 已提交
102 103
        return t

W
Wu Yi 已提交
104
    def run_pserver(self, args):
W
Wu Yi 已提交
105
        self.lr = args.lr
106
        self.get_model(batch_size=args.batch_size)
107
        # NOTE: pserver should not call memory optimize
T
tangwei12 已提交
108 109 110 111 112 113 114 115 116

        t = self.get_transpiler(
            trainer_id=args.trainer_id,
            main_program=fluid.default_main_program(),
            pserver_endpoints=args.endpoints,
            trainers=args.trainers,
            sync_mode=args.sync_mode,
            dc_asgd=args.dc_asgd,
            hogwild_mode=args.hogwild)
W
Wu Yi 已提交
117 118 119
        pserver_prog = t.get_pserver_program(args.current_endpoint)
        startup_prog = t.get_startup_program(args.current_endpoint,
                                             pserver_prog)
Y
Yancey1989 已提交
120

T
typhoonzero 已提交
121 122 123
        place = fluid.CPUPlace()
        exe = fluid.Executor(place)
        exe.run(startup_prog)
124
        print_to_err(type(self).__name__, "run pserver startup program done.")
T
typhoonzero 已提交
125
        exe.run(pserver_prog)
126
        print_to_err(type(self).__name__, "run pserver main program done.")
T
typhoonzero 已提交
127

128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188
    def run_pipeline_trainer(self, args):
        self.lr = args.lr

        dist_strategy = DistributedStrategy()
        test_program, avg_cost, train_reader, test_reader, batch_acc, predict, data_loader = \
            self.get_model(batch_size=args.batch_size, dist_strategy=dist_strategy)

        device_id = int(os.getenv("FLAGS_selected_gpus", "0"))
        eprint(type(self).__name__, "device_id: %d." % device_id)
        place = fluid.CUDAPlace(device_id)

        exe = fluid.Executor(place)
        exe.run(fluid.default_startup_program())
        eprint(type(self).__name__, "run worker startup program done.")

        data_loader.set_sample_list_generator(train_reader, place)
        data_loader.start()
        print_to_err(type(self).__name__, "begin to train on trainer")
        out_losses = []
        for i in six.moves.xrange(RUN_STEP):
            loss = exe.run(fluid.default_main_program(), fetch_list=[avg_cost])
            loss = loss[0] if loss else None
            out_losses.append(loss)
            print_to_err(type(self).__name__, "run step %d finished" % i)
        print_to_err(type(self).__name__, "trainer run finished")

        if six.PY2:
            print(pickle.dumps(out_losses))
        else:
            sys.stdout.buffer.write(pickle.dumps(out_losses))

        if args.save_model:
            model_save_dir = "/tmp"
            if fleet.worker_index() == 0:
                model_save_dir_fluid = os.path.join(model_save_dir,
                                                    "fluid_persistables")
                model_save_dir_fleet = os.path.join(model_save_dir,
                                                    "fleet_persistables")
                infer_save_dir_fluid = os.path.join(model_save_dir,
                                                    "fluid_infer")
                infer_save_dir_fleet = os.path.join(model_save_dir,
                                                    "fleet_infer")
            else:
                model_save_dir_fluid = os.path.join(model_save_dir,
                                                    "fluid_persistables_2")
                model_save_dir_fleet = os.path.join(model_save_dir,
                                                    "fleet_persistables_2")
                infer_save_dir_fluid = os.path.join(model_save_dir,
                                                    "fluid_infer_2")
                infer_save_dir_fleet = os.path.join(model_save_dir,
                                                    "fleet_infer_2")
            fluid.io.save_persistables(exe, model_save_dir_fluid,
                                       fleet._origin_program)
            fleet.save_persistables(executor=exe, dirname=model_save_dir_fleet)
            feeded_var_names = [var.name for var in feed_var_list]
            fluid.io.save_inference_model(infer_save_dir_fluid,
                                          feeded_var_names, [avg_cost], exe,
                                          fleet._origin_program)
            fleet.save_inference_model(exe, infer_save_dir_fleet,
                                       feeded_var_names, [avg_cost])

189 190
    def run_use_fleet_api_trainer(self, args):
        assert args.update_method == "nccl2" or "bkcl"
191 192 193 194 195 196 197 198

        self.lr = args.lr

        exec_strategy = fluid.ExecutionStrategy()
        exec_strategy.num_threads = 1

        dist_strategy = DistributedStrategy()
        dist_strategy.exec_strategy = exec_strategy
T
tangwei12 已提交
199
        dist_strategy.fuse_memory_size = 1  # MB
200
        dist_strategy.fuse_laryer_size = 1
201 202 203 204
        if args.use_local_sgd:
            dist_strategy.use_local_sgd = True
        if args.ut4grad_allreduce:
            dist_strategy._ut4grad_allreduce = True
205 206
        if args.sync_batch_norm:
            dist_strategy.sync_batch_norm = True
207 208 209

        role = role_maker.PaddleCloudRoleMaker(is_collective=True)
        fleet.init(role)
210
        print_to_err("use_fleet", "fleet.node_num:")
T
tangwei12 已提交
211 212
        # "fleet.node_id:", fleet.node_id(),
        # "fleet.trainer_num:", fleet.worker_num())
213 214

        test_program, avg_cost, train_reader, test_reader, batch_acc, predict = \
T
tangwei12 已提交
215
            self.get_model(batch_size=args.batch_size, dist_strategy=dist_strategy)
216 217 218 219

        trainer_prog = fleet._origin_program
        dist_prog = fleet.main_program

220 221 222 223 224 225 226 227 228 229
        if fluid.core.is_compiled_with_cuda():
            device_id = int(os.getenv("FLAGS_selected_gpus", "0"))
            place = fluid.CUDAPlace(device_id)
        elif fluid.core.is_compiled_with_xpu():
            device_id = int(os.getenv("FLAGS_selected_xpus", "0"))
            place = fluid.XPUPlace(device_id)
        else:
            raise ValueError(
                "fleet dygraph api must in paddlepaddle-xpu or paddlepaddle-gpu."
            )
230 231 232 233 234 235 236 237 238 239

        exe = fluid.Executor(place)
        exe.run(fluid.default_startup_program())
        eprint(type(self).__name__, "run worker startup program done.")

        feed_var_list = [
            var for var in trainer_prog.global_block().vars.values()
            if var.is_data
        ]

240 241 242 243 244 245 246
        eprint("feed_var_list:", feed_var_list)

        # tmp add this code to pass python35 gcc8 CI
        # Fixme(gongweibao, wangxi), need fix fleet api program order
        if feed_var_list[0].name == 'label':
            feed_var_list = feed_var_list[::-1]

247 248 249 250 251 252 253 254 255 256 257 258 259 260
        feeder = fluid.DataFeeder(feed_var_list, place)
        reader_generator = train_reader()

        def get_data():
            origin_batch = next(reader_generator)
            if args.update_method != "local" and args.use_reader_alloc:
                new_batch = []
                for offset, item in enumerate(origin_batch):
                    if offset % 2 == args.trainer_id:
                        new_batch.append(item)
                return new_batch
            else:
                return origin_batch

261
        print_to_err(type(self).__name__, "begin to train on trainer")
262 263 264 265 266 267
        out_losses = []
        for i in six.moves.xrange(RUN_STEP):
            loss, = exe.run(dist_prog,
                            fetch_list=[avg_cost.name],
                            feed=feeder.feed(get_data()))
            out_losses.append(loss[0])
268 269
            print_to_err(type(self).__name__, "run step %d finished" % i)
        print_to_err(type(self).__name__, "trainer run finished")
270 271 272 273 274 275

        if six.PY2:
            print(pickle.dumps(out_losses))
        else:
            sys.stdout.buffer.write(pickle.dumps(out_losses))

276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305
        if args.save_model:
            model_save_dir = "/tmp"
            if fleet.worker_index() == 0:
                model_save_dir_fluid = os.path.join(model_save_dir,
                                                    "fluid_persistables")
                model_save_dir_fleet = os.path.join(model_save_dir,
                                                    "fleet_persistables")
                infer_save_dir_fluid = os.path.join(model_save_dir,
                                                    "fluid_infer")
                infer_save_dir_fleet = os.path.join(model_save_dir,
                                                    "fleet_infer")
            else:
                model_save_dir_fluid = os.path.join(model_save_dir,
                                                    "fluid_persistables_2")
                model_save_dir_fleet = os.path.join(model_save_dir,
                                                    "fleet_persistables_2")
                infer_save_dir_fluid = os.path.join(model_save_dir,
                                                    "fluid_infer_2")
                infer_save_dir_fleet = os.path.join(model_save_dir,
                                                    "fleet_infer_2")
            fluid.io.save_persistables(exe, model_save_dir_fluid,
                                       fleet._origin_program)
            fleet.save_persistables(executor=exe, dirname=model_save_dir_fleet)
            feeded_var_names = [var.name for var in feed_var_list]
            fluid.io.save_inference_model(infer_save_dir_fluid,
                                          feeded_var_names, [avg_cost], exe,
                                          fleet._origin_program)
            fleet.save_inference_model(exe, infer_save_dir_fleet,
                                       feeded_var_names, [avg_cost])

306
    def run_trainer(self, args):
W
Wu Yi 已提交
307
        self.lr = args.lr
W
Wu Yi 已提交
308 309 310
        if args.nccl2_reduce_layer_local_run:
            test_program, avg_cost, train_reader, test_reader, batch_acc, predict = \
                self.get_model(batch_size=args.batch_size, single_device=True)
311 312 313
        elif args.use_dgc:
            test_program, avg_cost, train_reader, test_reader, batch_acc, predict = \
                self.get_model(batch_size=args.batch_size, use_dgc=args.use_dgc)
W
Wu Yi 已提交
314 315 316
        else:
            test_program, avg_cost, train_reader, test_reader, batch_acc, predict = \
                self.get_model(batch_size=args.batch_size)
317

W
Wu Yi 已提交
318
        if args.update_method == "pserver":
319
            print_to_err(
320 321
                type(self).__name__,
                "begin to run transpile on trainer with pserver mode")
T
tangwei12 已提交
322 323 324 325 326 327 328 329 330
            t = self.get_transpiler(
                trainer_id=args.trainer_id,
                main_program=fluid.default_main_program(),
                pserver_endpoints=args.endpoints,
                trainers=args.trainers,
                sync_mode=args.sync_mode,
                dc_asgd=args.dc_asgd,
                hogwild_mode=args.hogwild)

T
typhoonzero 已提交
331
            trainer_prog = t.get_trainer_program()
332
            print_to_err(
333 334
                type(self).__name__,
                "get trainer program done with pserver mode.")
W
Wu Yi 已提交
335
        elif args.update_method == "nccl2" or args.update_method == "nccl2_reduce_layer":
W
Wu Yi 已提交
336 337 338
            # transpile for nccl2
            config = fluid.DistributeTranspilerConfig()
            config.mode = "nccl2"
339
            config.nccl_comm_num = args.nccl_comm_num
340 341 342
            if args.use_hallreduce:
                config.use_hierarchical_allreduce = True
                config.hierarchical_allreduce_inter_nranks = args.hallreduce_inter_nranks
343
            print_to_err(
344 345
                type(self).__name__,
                "begin to run transpile on trainer with nccl2 mode")
W
Wu Yi 已提交
346 347 348 349 350 351 352
            nccl2_t = fluid.DistributeTranspiler(config=config)
            nccl2_t.transpile(
                args.trainer_id,
                program=fluid.default_main_program(),
                startup_program=fluid.default_startup_program(),
                trainers=args.endpoints,
                current_endpoint=args.current_endpoint)
353
            print_to_err(
354 355
                type(self).__name__,
                "get trainer program done. with nccl2 mode")
W
Wu Yi 已提交
356
            trainer_prog = fluid.default_main_program()
T
typhoonzero 已提交
357
        else:
358
            print_to_err(
359 360
                type(self).__name__,
                "do nothing about main program, just use it")
T
typhoonzero 已提交
361
            trainer_prog = fluid.default_main_program()
362
            print_to_err(type(self).__name__, "use main program done.")
T
typhoonzero 已提交
363

364 365 366
        # FIXME(gongwb):wait pserver initialization.
        time.sleep(1)

367
        if args.use_cuda:
368 369
            device_id = int(os.getenv("FLAGS_selected_gpus", "0"))
            place = fluid.CUDAPlace(device_id)
370 371 372
        else:
            place = fluid.CPUPlace()

373 374
        exe = fluid.Executor(place)
        exe.run(fluid.default_startup_program())
375
        print_to_err(type(self).__name__, "run worker startup program done.")
T
typhoonzero 已提交
376

W
Wu Yi 已提交
377 378
        exec_strategy = fluid.ExecutionStrategy()
        exec_strategy.num_threads = 1
379

W
Wu Yi 已提交
380
        build_stra = fluid.BuildStrategy()
381 382 383
        # FIXME force disable enable_inplace and memory_optimize
        build_stra.enable_inplace = False
        build_stra.memory_optimize = False
W
Wu Yi 已提交
384

385 386 387 388
        if args.fuse_all_reduce is not None:
            sys.stderr.write('fuse_all_reduce={}'.format(args.fuse_all_reduce))
            build_stra.fuse_all_reduce_ops = args.fuse_all_reduce

T
tangwei12 已提交
389 390 391
        if args.hogwild:
            build_stra.async_mode = True

392 393 394
        if args.enable_backward_deps:
            build_stra.enable_backward_optimizer_op_deps = True

W
Wu Yi 已提交
395 396 397 398 399
        if args.use_reduce:
            build_stra.reduce_strategy = fluid.BuildStrategy.ReduceStrategy.Reduce
        else:
            build_stra.reduce_strategy = fluid.BuildStrategy.ReduceStrategy.AllReduce

W
Wu Yi 已提交
400
        pass_builder = None
X
Xin Pan 已提交
401
        if args.batch_merge_repeat > 1:
X
fix  
Xin Pan 已提交
402
            pass_builder = build_stra._finalize_strategy_and_create_passes()
403
            mypass = pass_builder.insert_pass(0, "multi_batch_merge_pass")
404
            mypass.set("num_repeats", args.batch_merge_repeat)
X
Xin Pan 已提交
405

W
Wu Yi 已提交
406
        if args.update_method == "nccl2" or args.update_method == "nccl2_reduce_layer":
407 408
            build_stra.num_trainers = len(args.endpoints.split(","))
            build_stra.trainer_id = args.trainer_id
W
Wu Yi 已提交
409
        else:
W
Wu Yi 已提交
410
            # case args.update_method == "nccl2_reduce_layer":
411 412
            build_stra.num_trainers = 1
            build_stra.trainer_id = 0
W
Wu Yi 已提交
413

414
        print_to_err(type(self).__name__, "begin to compile with data parallel")
X
Xin Pan 已提交
415
        binary = compiler.CompiledProgram(trainer_prog).with_data_parallel(
W
Wu Yi 已提交
416
            loss_name=avg_cost.name,
W
Wu Yi 已提交
417
            build_strategy=build_stra,
W
Wu Yi 已提交
418
            exec_strategy=exec_strategy)
419
        print_to_err(type(self).__name__, "program compiled with data parallel")
T
typhoonzero 已提交
420 421 422 423 424 425 426

        feed_var_list = [
            var for var in trainer_prog.global_block().vars.values()
            if var.is_data
        ]

        feeder = fluid.DataFeeder(feed_var_list, place)
427
        reader_generator = train_reader()
T
typhoonzero 已提交
428

429 430
        def get_data():
            origin_batch = next(reader_generator)
W
Wu Yi 已提交
431
            if args.update_method != "local" and args.use_reader_alloc:
432 433 434 435 436 437 438
                new_batch = []
                for offset, item in enumerate(origin_batch):
                    if offset % 2 == args.trainer_id:
                        new_batch.append(item)
                return new_batch
            else:
                return origin_batch
T
typhoonzero 已提交
439

440
        print_to_err(type(self).__name__, "begin to train on trainer")
W
Wu Yi 已提交
441
        out_losses = []
442
        for i in six.moves.xrange(RUN_STEP):
443 444
            loss, = exe.run(binary,
                            fetch_list=[avg_cost.name],
445
                            feed=feeder.feed(get_data()))
W
Wu Yi 已提交
446
            out_losses.append(loss[0])
447 448
            print_to_err(type(self).__name__, "run step %d finished" % i)
        print_to_err(type(self).__name__, "trainer run finished")
449

450
        print_to_out(out_losses)
T
typhoonzero 已提交
451 452


453 454 455 456 457 458 459 460 461
class TestParallelDyGraphRunnerBase(object):
    def get_model(self):
        raise NotImplementedError(
            "get_model should be implemented by child classes.")

    def run_one_loop(self, model, opt, data):
        raise NotImplementedError(
            "train_one_loop should be implemented by the child classes.")

462 463 464 465 466 467 468 469 470 471
    def _get_data(self, batch, args):
        if args.update_method != "local":
            new_batch = []
            for offset, item in enumerate(batch):
                if offset % 2 == args.trainer_id:
                    new_batch.append(item)
            return new_batch
        else:
            return batch

472
    def run_trainer(self, args):
Y
Yan Xu 已提交
473

474
        seed = 90
475 476 477 478 479 480 481 482
        if fluid.core.is_compiled_with_cuda():
            device_id = int(os.getenv("FLAGS_selected_gpus", "0"))
            place = fluid.CUDAPlace(device_id)
        elif fluid.core.is_compiled_with_xpu():
            device_id = int(os.getenv("FLAGS_selected_xpus", "0"))
            place = fluid.XPUPlace(device_id)
        else:
            assert ("Only support CUDAPlace or XPUPlace for now.")
483 484 485 486

        with fluid.dygraph.guard(place):
            fluid.default_startup_program().random_seed = seed
            fluid.default_main_program().random_seed = seed
Y
Yan Xu 已提交
487 488
            np.random.seed(seed)
            import random
489
            random.seed(seed)
490 491
            model, train_reader, opt = self.get_model()
            nranks = len(args.endpoints.split(",")) if args.endpoints else 1
Y
Yan Xu 已提交
492

493 494
            #if args.update_method == "nccl2":
            if args.update_method == "nccl2" or args.update_method == "bkcl":
495 496 497 498 499
                strategy = dygraph.parallel.ParallelStrategy()
                strategy.nranks = nranks
                strategy.local_rank = args.trainer_id
                strategy.trainer_endpoints = args.endpoints.split(",")
                strategy.current_endpoint = args.current_endpoint
500
                print_to_err(
501 502
                    type(self).__name__,
                    "begin to prepare context in dygraph with nccl2")
503
                dygraph.parallel.prepare_context(strategy)
Y
Yan Xu 已提交
504
                model = dygraph.parallel.DataParallel(model, strategy)
505
                print_to_err(type(self).__name__, "model built in dygraph")
506
            out_losses = []
507
            print_to_err(type(self).__name__, "begin to run dygraph training")
508
            for step_id, data in enumerate(train_reader()):
509
                data = self._get_data(data, args)
510 511 512
                if step_id == RUN_STEP:
                    break
                loss = self.run_one_loop(model, opt, data)
G
guru4elephant 已提交
513
                if step_id % 10 == 0:
514
                    print_to_err(
515
                        type(self).__name__,
516
                        "loss at step %d: %f" % (step_id, loss.numpy()))
Y
Yan Xu 已提交
517
                out_losses.append(loss.numpy())
518 519 520 521 522

                loss.backward()

                opt.minimize(loss)
                model.clear_gradients()
523
        print_to_out(out_losses)
524

525 526 527 528 529 530 531 532 533
    def run_trainer_with_spawn(self, args):
        # 1. enable dygraph
        paddle.disable_static()

        # 2. init seed
        seed = 90
        paddle.static.default_startup_program().random_seed = seed
        paddle.static.default_main_program().random_seed = seed
        np.random.seed(seed)
534
        random.seed(seed)
535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560
        # get trainer id
        args.trainer_id = paddle.distributed.get_rank()

        # 3. init parallel env
        if args.update_method == "nccl2":
            paddle.distributed.init_parallel_env()

        # 4. train model
        model, train_reader, opt = self.get_model()
        if args.update_method == "nccl2":
            model = paddle.DataParallel(model)

        out_losses = []
        for step_id, data in enumerate(train_reader()):
            data = self._get_data(data, args)
            if step_id == RUN_STEP:
                break
            loss = self.run_one_loop(model, opt, data)
            out_losses.append(loss.numpy())

            loss.backward()

            opt.minimize(loss)
            model.clear_gradients()
        return out_losses

561
    def run_use_fleet_api_trainer(self, args):
562 563 564 565 566 567 568 569 570 571
        import paddle.distributed.fleet as fleet
        import paddle.distributed.fleet.base.role_maker as role_maker
        # 1. enable dygraph
        paddle.disable_static()

        # 2. init seed
        seed = 90
        paddle.static.default_startup_program().random_seed = seed
        paddle.static.default_main_program().random_seed = seed
        np.random.seed(seed)
572
        random.seed(seed)
573 574 575 576
        # get trainer id
        args.trainer_id = paddle.distributed.get_rank()

        # 3. init parallel env
577
        if args.update_method == "nccl2" or "bkcl":
578 579 580 581
            fleet.init(is_collective=True)

        # 4. train model
        model, train_reader, opt = self.get_model()
582
        if args.update_method == "nccl2" or "bkcl":
583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599
            opt = fleet.distributed_optimizer(opt)
            model = fleet.distributed_model(model)

        out_losses = []
        for step_id, data in enumerate(train_reader()):
            data = self._get_data(data, args)
            if step_id == RUN_STEP:
                break
            loss = self.run_one_loop(model, opt, data)
            out_losses.append(loss.numpy())

            loss.backward()

            opt.step()
            opt.clear_grad()
        print_to_out(out_losses)

600

T
typhoonzero 已提交
601
def runtime_main(test_class):
W
Wu Yi 已提交
602 603 604 605
    parser = argparse.ArgumentParser(description='Run dist test.')
    parser.add_argument(
        '--role', type=str, required=True, choices=['pserver', 'trainer'])
    parser.add_argument('--endpoints', type=str, required=False, default="")
W
Wu Yi 已提交
606 607 608 609
    parser.add_argument(
        '--update_method',
        type=str,
        default="local",
610
        choices=["pserver", "nccl2", "bkcl", "local", "nccl2_reduce_layer"])
W
Wu Yi 已提交
611 612
    parser.add_argument('--trainer_id', type=int, required=False, default=0)
    parser.add_argument('--trainers', type=int, required=False, default=1)
613
    parser.add_argument('--nccl_comm_num', type=int, required=False, default=1)
614 615
    parser.add_argument('--enable_backward_deps', action='store_true')
    parser.add_argument('--use_hallreduce', action='store_true')
616
    parser.add_argument('--use_pipeline', action='store_true')
617
    parser.add_argument('--use_fleet_api', action='store_true')
618 619
    parser.add_argument('--use_local_sgd', action='store_true')
    parser.add_argument('--ut4grad_allreduce', action='store_true')
620
    parser.add_argument(
621
        '--hallreduce_inter_nranks', type=int, required=False, default=2)
W
Wu Yi 已提交
622 623 624
    parser.add_argument(
        '--current_endpoint', type=str, required=False, default="")
    parser.add_argument('--sync_mode', action='store_true')
625
    parser.add_argument('--use_cuda', action='store_true')
626
    parser.add_argument('--use_xpu', action='store_true')
627
    parser.add_argument('--use_dgc', action='store_true')
W
Wu Yi 已提交
628
    parser.add_argument('--use_reduce', action='store_true')
W
Wu Yi 已提交
629
    parser.add_argument('--dc_asgd', action='store_true')
T
tangwei12 已提交
630
    parser.add_argument('--hogwild', action='store_true')
631
    parser.add_argument('--save_model', action='store_true')
632
    parser.add_argument(
W
Wu Yi 已提交
633
        '--use_reader_alloc', action='store_true', required=False)
634
    parser.add_argument('--batch_size', required=False, type=int, default=2)
W
Wu Yi 已提交
635
    parser.add_argument('--lr', required=False, type=float, default=0.001)
636 637
    parser.add_argument(
        '--batch_merge_repeat', required=False, type=int, default=1)
W
Wu Yi 已提交
638 639 640 641 642
    parser.add_argument(
        '--nccl2_reduce_layer_local_run',
        required=False,
        type=bool,
        default=False)
643
    parser.add_argument('--sync_batch_norm', action='store_true')
644 645 646 647 648
    parser.add_argument(
        '--fuse_all_reduce',
        required=False,
        type=ast.literal_eval,
        default=None)
W
Wu Yi 已提交
649 650

    args = parser.parse_args()
T
typhoonzero 已提交
651 652

    model = test_class()
W
Wu Yi 已提交
653
    if args.role == "pserver" and args.update_method == "pserver":
W
Wu Yi 已提交
654
        model.run_pserver(args)
655 656
    elif args.use_fleet_api:
        model.run_use_fleet_api_trainer(args)
657 658
    elif args.use_pipeline:
        model.run_pipeline_trainer(args)
T
typhoonzero 已提交
659
    else:
660
        model.run_trainer(args)
X
Xin Pan 已提交
661

M
minqiyang 已提交
662

M
minqiyang 已提交
663
import paddle.compat as cpt
Y
Yancey1989 已提交
664 665
import socket
from contextlib import closing
M
minqiyang 已提交
666

X
Xin Pan 已提交
667 668

class TestDistBase(unittest.TestCase):
W
Wu Yi 已提交
669 670 671
    def _setup_config(self):
        raise NotImplementedError("tests should have _setup_config implemented")

672 673 674
    def _after_setup_config(self):
        if self._enforce_place == "CPU":
            self.__use_cuda = False
675
            self.__use_xpu = False
676
            self._use_dgc = False
677 678
        elif self._enforce_place == "GPU":
            self.__use_cuda = True
679 680 681 682 683
            self.__use_xpu = False
        elif self._enforce_place == "XPU":
            self.__use_cuda = False
            self.__use_xpu = True
            self._use_dgc = False
684 685 686 687 688
        else:
            if fluid.core.is_compiled_with_cuda():
                self.__use_cuda = True
            else:
                self.__use_cuda = False
689 690 691 692
                self._use_dgc = False

        if self._use_reduce:
            assert not self._use_dgc
693

X
Xin Pan 已提交
694 695 696
    def setUp(self):
        self._trainers = 2
        self._pservers = 2
Y
Yancey1989 已提交
697
        self._port_set = set()
M
minqiyang 已提交
698
        self._python_interp = sys.executable
W
Wu Yi 已提交
699
        self._sync_mode = True
T
tangwei12 已提交
700
        self._hogwild_mode = False
701
        self._enforce_place = None
W
Wu Yi 已提交
702
        self._use_reduce = False
W
Wu Yi 已提交
703
        self._dc_asgd = False  # must use with async mode
704
        self._use_reader_alloc = True
W
Wu Yi 已提交
705
        self._nccl2_mode = False
706
        self._bkcl_mode = False
707
        self._pipeline_mode = False
708
        self._mp_mode = False
W
Wu Yi 已提交
709 710 711 712 713
        # FIXME(typhoonzero): I added this stupid argument to enable
        # testing allreduce layers, which users can call layers.allreduce
        # to accumulate tensors at anywhere. Find a better way to do this
        # test, reduce check this argument everywhere.
        self._nccl2_reduce_layer = False
W
Wu Yi 已提交
714
        self._lr = 0.001
715
        self._use_dgc = False
716
        self._dygraph = False
717
        self._nccl_comm_num = 1
718
        self._enable_backward_deps = False
719
        self._use_fleet_api = False
720 721
        self._use_local_sgd = False
        self._ut4grad_allreduce = False
722
        self._use_hallreduce = False
723
        self._save_model = False
724
        self._fuse_all_reduce = None
W
Wu Yi 已提交
725
        self._setup_config()
726 727 728 729 730 731 732 733 734 735 736 737 738 739

        global DIST_UT_PORT
        if DIST_UT_PORT == 0 and os.getenv("PADDLE_DIST_UT_PORT"):
            DIST_UT_PORT = int(os.getenv("PADDLE_DIST_UT_PORT"))

        if DIST_UT_PORT == 0:
            self._ps_endpoints = "127.0.0.1:%s,127.0.0.1:%s" % (
                self._find_free_port(), self._find_free_port())
        else:
            print("set begin_port:", DIST_UT_PORT)
            self._ps_endpoints = "127.0.0.1:%s,127.0.0.1:%s" % (
                DIST_UT_PORT, DIST_UT_PORT + 1)
            DIST_UT_PORT += 2

740
        self._after_setup_config()
X
Xin Pan 已提交
741

Y
Yancey1989 已提交
742
    def _find_free_port(self):
Y
Yancey1989 已提交
743 744 745 746
        def __free_port():
            with closing(socket.socket(socket.AF_INET,
                                       socket.SOCK_STREAM)) as s:
                s.bind(('', 0))
747
                print_to_err(
748
                    type(self).__name__, "socket name: %s" % s.getsockname()[1])
Y
Yancey1989 已提交
749 750 751 752 753 754 755
                return s.getsockname()[1]

        while True:
            port = __free_port()
            if port not in self._port_set:
                self._port_set.add(port)
                return port
Y
Yancey1989 已提交
756

757 758 759 760 761
    def start_pserver(self,
                      model_file,
                      check_error_log,
                      required_envs,
                      log_name=""):
X
Xin Pan 已提交
762
        ps0_ep, ps1_ep = self._ps_endpoints.split(",")
763 764 765 766 767 768 769 770
        ps_cmd = "%s"

        if os.getenv('WITH_COVERAGE', 'OFF') == 'ON':
            required_envs['COVERAGE_FILE'] = os.getenv('COVERAGE_FILE', '')
            ps_cmd += " -m coverage run --branch -p"

        ps_cmd += " %s --role pserver --endpoints %s --trainer_id 0 --current_endpoint %s --trainers %d --update_method pserver"

W
Wu Yi 已提交
771
        ps0_cmd = ps_cmd % \
772 773
                  (self._python_interp, model_file, self._ps_endpoints, ps0_ep,
                   self._trainers)
W
Wu Yi 已提交
774
        ps1_cmd = ps_cmd % \
775 776
                  (self._python_interp, model_file, self._ps_endpoints, ps1_ep,
                   self._trainers)
W
Wu Yi 已提交
777 778 779 780

        if self._sync_mode:
            ps0_cmd += " --sync_mode"
            ps1_cmd += " --sync_mode"
X
Xin Pan 已提交
781

782 783
        print(ps0_cmd)
        print(ps1_cmd)
784 785
        ps0_pipe = open(log_name + "_ps0_err.log", "wb")
        ps1_pipe = open(log_name + "_ps1_err.log", "wb")
G
gongweibao 已提交
786

787
        print_to_err(type(self).__name__, "going to start pserver process 0")
X
Xin Pan 已提交
788
        ps0_proc = subprocess.Popen(
789 790 791 792
            ps0_cmd.strip().split(" "),
            stdout=subprocess.PIPE,
            stderr=ps0_pipe,
            env=required_envs)
793
        print_to_err(type(self).__name__, "going to start pserver process 1")
X
Xin Pan 已提交
794
        ps1_proc = subprocess.Popen(
795 796 797 798
            ps1_cmd.strip().split(" "),
            stdout=subprocess.PIPE,
            stderr=ps1_pipe,
            env=required_envs)
G
gongweibao 已提交
799

800
        return ps0_proc, ps1_proc, ps0_pipe, ps1_pipe
X
Xin Pan 已提交
801

802 803 804 805 806
    def _run_local(self,
                   model,
                   envs,
                   check_error_log=False,
                   batch_size=DEFAULT_BATCH_SIZE,
807
                   batch_merge_repeat=1,
808
                   log_name="",
809
                   devices="0"):
G
gongweibao 已提交
810

811 812 813 814 815 816
        cmd = self._python_interp

        if os.getenv('WITH_COVERAGE', 'OFF') == 'ON':
            envs['COVERAGE_FILE'] = os.getenv('COVERAGE_FILE', '')
            cmd += " -m coverage run --branch -p"

817 818
        cmd += " %s --role trainer --update_method local --lr %f" % (model,
                                                                     self._lr)
819

820 821 822 823
        if batch_size != DEFAULT_BATCH_SIZE:
            cmd += " --batch_size %d" % batch_size
        if batch_merge_repeat > 1:
            cmd += " --batch_merge_repeat %d" % batch_merge_repeat
W
Wu Yi 已提交
824 825
        if self._nccl2_reduce_layer:
            cmd += " --nccl2_reduce_layer_local_run 1"
826

827
        if self.__use_cuda:
828
            cmd += " --use_cuda"
W
Wu Yi 已提交
829
            env_local = {
830 831 832 833 834 835 836 837
                "CUDA_VISIBLE_DEVICES": devices,
                "PADDLE_TRAINERS_NUM": "1",
                "PADDLE_TRAINER_ID": "0"
            }
        elif self.__use_xpu:
            cmd += " --use_xpu"
            env_local = {
                "FLAGS_selected_xpus": devices,
W
Wu Yi 已提交
838 839 840
                "PADDLE_TRAINERS_NUM": "1",
                "PADDLE_TRAINER_ID": "0"
            }
841 842 843
        else:
            env_local = {'CPU_NUM': '1'}

844
        # not use dgc in single card
845
        if len(devices) > 1 and self._use_dgc:
846 847
            cmd += " --use_dgc"

W
Wu Yi 已提交
848 849
        env_local.update(envs)
        print("local_cmd: {}, env: {}".format(cmd, env_local))
G
gongweibao 已提交
850

851
        if check_error_log:
852
            err_log = open(log_name + "_local.log", "wb")
G
gongweibao 已提交
853
            local_proc = subprocess.Popen(
854
                cmd.split(" "),
G
gongweibao 已提交
855
                stdout=subprocess.PIPE,
856
                stderr=err_log,
W
Wu Yi 已提交
857
                env=env_local)
G
gongweibao 已提交
858 859
        else:
            local_proc = subprocess.Popen(
860
                cmd.split(" "),
G
gongweibao 已提交
861
                stdout=subprocess.PIPE,
862
                stderr=subprocess.PIPE,
W
Wu Yi 已提交
863
                env=env_local)
G
gongweibao 已提交
864

865 866 867 868 869 870
        local_out, local_err = local_proc.communicate()

        if check_error_log:
            err_log.close()

        sys.stderr.write('local_stderr: %s\n' % local_err)
W
Wu Yi 已提交
871
        sys.stderr.write('local_stdout: %s\n' % pickle.loads(local_out))
X
Xin Pan 已提交
872

W
Wu Yi 已提交
873
        return pickle.loads(local_out)
874

875
    def _run_cluster(self, model, envs, check_error_log, log_name):
X
Xin Pan 已提交
876
        # Run dist train to compare with local results
877 878
        ps0, ps1, ps0_pipe, ps1_pipe = self.start_pserver(
            model, check_error_log, envs, log_name=log_name)
W
Wu Yi 已提交
879

X
Xin Pan 已提交
880
        ps0_ep, ps1_ep = self._ps_endpoints.split(",")
881

882 883 884 885 886 887 888 889
        tr_cmd = "%s"

        if os.getenv('WITH_COVERAGE', 'OFF') == 'ON':
            envs['COVERAGE_FILE'] = os.getenv('COVERAGE_FILE', '')
            tr_cmd += " -m coverage run --branch -p"

        tr_cmd += " %s --role trainer --endpoints %s --trainer_id %d --current_endpoint %s --trainers %d --update_method pserver --lr %f"

W
Wu Yi 已提交
890
        tr0_cmd = tr_cmd % \
891
                  (self._python_interp, model, self._ps_endpoints,
W
Wu Yi 已提交
892
                   0, ps0_ep, self._trainers, self._lr)
W
Wu Yi 已提交
893
        tr1_cmd = tr_cmd % \
894
                  (self._python_interp, model, self._ps_endpoints,
W
Wu Yi 已提交
895
                   1, ps1_ep, self._trainers, self._lr)
W
Wu Yi 已提交
896 897 898 899

        if self._sync_mode:
            tr0_cmd += " --sync_mode"
            tr1_cmd += " --sync_mode"
T
tangwei12 已提交
900 901 902
        if self._hogwild_mode:
            tr0_cmd += " --hogwild"
            tr1_cmd += " --hogwild"
W
Wu Yi 已提交
903 904 905
        if self._use_reduce:
            tr0_cmd += " --use_reduce"
            tr1_cmd += " --use_reduce"
906 907 908
        if self._use_reader_alloc:
            tr0_cmd += " --use_reader_alloc"
            tr1_cmd += " --use_reader_alloc"
909
        if self.__use_cuda:
910 911 912 913 914 915 916 917 918 919
            tr0_cmd += " --use_cuda"
            tr1_cmd += " --use_cuda"
            env0 = {"CUDA_VISIBLE_DEVICES": "0"}
            env1 = {"CUDA_VISIBLE_DEVICES": "1"}
        else:
            env0 = {'CPU_NUM': '1'}
            env1 = {'CPU_NUM': '1'}

        env0.update(envs)
        env1.update(envs)
X
Xin Pan 已提交
920

W
Wu Yi 已提交
921 922
        print("tr0_cmd: {}, env: {}".format(tr0_cmd, env0))
        print("tr1_cmd: {}, env: {}".format(tr1_cmd, env1))
923 924
        tr0_pipe = open(log_name + "_tr0_err.log", "wb")
        tr1_pipe = open(log_name + "_tr1_err.log", "wb")
G
gongweibao 已提交
925

926
        print_to_err(type(self).__name__, "going to start trainer process 0")
X
Xin Pan 已提交
927
        tr0_proc = subprocess.Popen(
W
Wu Yi 已提交
928
            tr0_cmd.strip().split(" "),
X
Xin Pan 已提交
929
            stdout=subprocess.PIPE,
G
gongweibao 已提交
930
            stderr=tr0_pipe,
X
Xin Pan 已提交
931
            env=env0)
932
        print_to_err(type(self).__name__, "going to start trainer process 1")
X
Xin Pan 已提交
933
        tr1_proc = subprocess.Popen(
W
Wu Yi 已提交
934
            tr1_cmd.strip().split(" "),
X
Xin Pan 已提交
935
            stdout=subprocess.PIPE,
G
gongweibao 已提交
936
            stderr=tr1_pipe,
X
Xin Pan 已提交
937 938
            env=env1)

939 940 941 942 943 944 945 946 947 948 949 950
        # Wait until trainer process terminate
        while True:
            stat0 = tr0_proc.poll()
            time.sleep(0.1)
            if stat0 is not None:
                break
        while True:
            stat1 = tr1_proc.poll()
            time.sleep(0.1)
            if stat1 is not None:
                break

951 952
        tr0_out, tr0_err = tr0_proc.communicate()
        tr1_out, tr1_err = tr1_proc.communicate()
X
Xin Pan 已提交
953

G
gongweibao 已提交
954
        # close trainer file
955 956 957 958
        tr0_pipe.close()
        tr1_pipe.close()
        ps0_pipe.close()
        ps1_pipe.close()
W
Wu Yi 已提交
959

W
Wu Yi 已提交
960 961
        ps0.terminate()
        ps1.terminate()
T
typhoonzero 已提交
962

W
Wu Yi 已提交
963 964
        return pickle.loads(tr0_out), pickle.loads(tr1_out)

965 966 967
    def _get_nccl2_trainer_cmd(self, model, ep, update_method, trainer_id,
                               trainer_num):
        env = {}
968 969 970 971 972 973 974
        tr_cmd = "%s -u"

        if os.getenv('WITH_COVERAGE', 'OFF') == 'ON':
            tr_cmd += " -m coverage run --branch -p"

        tr_cmd += " %s --role trainer --endpoints %s --trainer_id %d --current_endpoint %s --update_method %s --lr %f"

975
        tr_cmd = tr_cmd % \
T
tangwei12 已提交
976 977
                 (self._python_interp, model, self._ps_endpoints,
                  trainer_id, ep, update_method, self._lr)
W
Wu Yi 已提交
978 979

        if self._use_reduce:
980
            tr_cmd += " --use_reduce"
W
Wu Yi 已提交
981
        if self._use_reader_alloc:
982
            tr_cmd += " --use_reader_alloc"
983 984
        if self._save_model:
            tr_cmd += " --save_model"
W
Wu Yi 已提交
985
        if self.__use_cuda:
986 987
            tr_cmd += " --use_cuda"
            env.update({
988
                "FLAGS_selected_gpus": "{}".format(0),
W
WangXi 已提交
989
                "CUDA_VISIBLE_DEVICES": "{}".format(trainer_id),
990
                "PADDLE_TRAINERS_NUM": "{}".format(trainer_num),
991 992 993
                "PADDLE_TRAINER_ID": "{}".format(trainer_id),
                "PADDLE_TRAINER_ENDPOINTS": self._ps_endpoints,
                "PADDLE_CURRENT_ENDPOINT": ep,
994
            })
995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007
        # TODO(liuyuhui):XPU_VISIBLE_DEVICES is not working right now,
        # will update it after Badiu Kunlun partners' support.
        elif self.__use_xpu:
            tr_cmd += " --use_xpu"
            env.update({
                "FLAGS_selected_xpus": "{}".format(trainer_id),
                #"XPU_VISIBLE_DEVICES": "{}".format(trainer_id + 1),
                "PADDLE_TRAINERS_NUM": "{}".format(trainer_num),
                "PADDLE_TRAINER_ID": "{}".format(trainer_id),
                "PADDLE_TRAINER_ENDPOINTS": self._ps_endpoints,
                "PADDLE_CURRENT_ENDPOINT": ep,
                "GLOG_v": "2",
            })
W
Wu Yi 已提交
1008
        else:
1009
            env.update({'CPU_NUM': '1'})
W
Wu Yi 已提交
1010

1011
        if self._use_dgc:
1012 1013
            tr_cmd += " --use_dgc"

1014 1015
        if self._pipeline_mode:
            tr_cmd += " --use_pipeline"
1016
        if self._mp_mode:
W
WangXi 已提交
1017
            env = {"FLAGS_selected_gpus": "{}".format(trainer_id)}
1018 1019

        if self._nccl_comm_num > 1:
1020
            tr_cmd += " --nccl_comm_num {}".format(self._nccl_comm_num)
1021

1022 1023
        if self._use_hallreduce:
            tr_cmd += " --use_hallreduce --hallreduce_inter_nranks 2"
1024

1025
        if self._enable_backward_deps:
1026
            tr_cmd += " --enable_backward_deps"
1027

1028 1029 1030
        if self._fuse_all_reduce is not None:
            tr_cmd += " --fuse_all_reduce {}".format(self._fuse_all_reduce)

1031 1032
        if self._use_fleet_api:
            tr_cmd += " --use_fleet_api"
1033 1034 1035 1036
            if self._use_local_sgd:
                tr_cmd += " --use_local_sgd"
            if self._ut4grad_allreduce:
                tr_cmd += " --ut4grad_allreduce"
1037 1038
            if hasattr(self, '_sync_batch_norm') and self._sync_batch_norm:
                tr_cmd += " --sync_batch_norm"
1039

1040 1041 1042
        if os.getenv('WITH_COVERAGE', 'OFF') == 'ON':
            env['COVERAGE_FILE'] = os.getenv('COVERAGE_FILE', '')

1043
        return tr_cmd, env
W
Wu Yi 已提交
1044

1045 1046
    def _run_cluster_nccl2(self, model, envs, update_method, check_error_log,
                           log_name):
1047 1048
        if self._use_hallreduce:
            self._ps_endpoints = ""
1049 1050 1051

            global DIST_UT_PORT
            if DIST_UT_PORT == 0:
W
WangXi 已提交
1052
                # NOTE(wangxi). hallreduce test must use 4cards after nccl>=2.7
1053 1054 1055 1056 1057 1058 1059
                for i in range(0, 4):
                    self._ps_endpoints += "127.0.0.1:%s," % (
                        self._find_free_port())
            else:
                for i in range(0, 4):
                    self._ps_endpoints += "127.0.0.1:%s," % (DIST_UT_PORT + i)
                DIST_UT_PORT += 4
1060
            self._ps_endpoints = self._ps_endpoints[:-1]
W
Wu Yi 已提交
1061

1062 1063
        # NOTE: we reuse ps_endpoints as nccl2 worker endpoints
        worker_endpoints = self._ps_endpoints.split(",")
W
Wu Yi 已提交
1064

1065
        trainer_num = len(worker_endpoints)
W
Wu Yi 已提交
1066

1067 1068 1069 1070 1071 1072 1073 1074
        procs = []
        pipes = []
        for i in range(0, trainer_num):
            tr_cmd, tr_env = self._get_nccl2_trainer_cmd(
                model, worker_endpoints[i], update_method, i, trainer_num)
            tr_env.update(envs)
            print("use_hallreduce:{} tr_cmd:{}, env: {}".format(
                self._use_hallreduce, tr_cmd, tr_env))
W
Wu Yi 已提交
1075

1076
            tr_pipe = open(log_name + "_tr{}_err.log".format(i), "wb")
W
Wu Yi 已提交
1077

1078
            print_to_err(
1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096
                type(self).__name__,
                "going to start process {} with nccl2".format(i))
            tr_proc = subprocess.Popen(
                tr_cmd.strip().split(" "),
                stdout=subprocess.PIPE,
                stderr=tr_pipe,
                env=tr_env)

            procs.append(tr_proc)
            pipes.append(tr_pipe)

        outs = []
        for i in range(0, trainer_num):
            tr_out, tr_err = procs[i].communicate()
            outs.append(tr_out)
            pipes[i].close()
            sys.stderr.write('trainer {} stderr: {}\n'.format(i, tr_err))

1097 1098 1099
        if check_error_log:
            print("outs[0]:", outs[0])
            print("outs[1]:", outs[1])
1100
        return pickle.loads(outs[0]), pickle.loads(outs[1])
1101

1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146
    def _run_pipeline(self, model, envs, check_error_log, log_name):
        # NOTE: we reuse ps_endpoints as nccl2 worker endpoints
        worker_endpoints = self._ps_endpoints.split(",")
        update_method = "nccl2"

        trainer_num = len(worker_endpoints)

        procs = []
        pipes = []
        for i in range(0, trainer_num):
            tr_cmd, tr_env = self._get_nccl2_trainer_cmd(
                model, worker_endpoints[i], update_method, i, trainer_num)
            tr_env.update(envs)
            tr_env['CUDA_VISIBLE_DEVICES'] = "0,1"
            tr_env['NCCL_SHM_DISABLE'] = '1'
            tr_env['FLAGS_selected_gpus'] = str(i)
            tr_env['FLAGS_cudnn_deterministic'] = '0'
            print("tr_cmd:{}, env: {}".format(tr_cmd, tr_env))

            tr_pipe = open("/tmp/" + "tr{}_err.log".format(i), "wb")

            print_to_err(
                type(self).__name__,
                "going to start process {} with nccl2".format(i))
            tr_proc = subprocess.Popen(
                tr_cmd.strip().split(" "),
                stdout=subprocess.PIPE,
                stderr=tr_pipe,
                env=tr_env)

            procs.append(tr_proc)
            pipes.append(tr_pipe)

        outs = []
        for i in range(0, trainer_num):
            tr_out, tr_err = procs[i].communicate()
            outs.append(tr_out)
            pipes[i].close()
            sys.stderr.write('trainer {} stderr: {}\n'.format(i, tr_err))

        if check_error_log:
            print("outs[0]:", outs[0])
            print("outs[1]:", outs[1])
        return pickle.loads(outs[0]), pickle.loads(outs[1])

1147
    def _get_required_envs(self, check_error_log=False, need_envs={}):
1148 1149 1150 1151 1152 1153
        # TODO(typhoonzero): should auto adapt GPU count on the machine.
        required_envs = {
            "PATH": os.getenv("PATH", ""),
            "PYTHONPATH": os.getenv("PYTHONPATH", ""),
            "LD_LIBRARY_PATH": os.getenv("LD_LIBRARY_PATH", ""),
            "FLAGS_fraction_of_gpu_memory_to_use": "0.15",
G
guru4elephant 已提交
1154
            "FLAGS_rpc_deadline": "30000",  # 5sec to fail fast
1155
            "FLAGS_rpc_retry_bind_port": "50",
1156
            "FLAGS_cudnn_deterministic": "1",
1157
            "FLAGS_rpc_disable_reuse_port": "1",
W
Wu Yi 已提交
1158
            "http_proxy": "",
1159 1160
            "NCCL_P2P_DISABLE": "1",
            "NCCL_SHM_DISABLE": "1"
1161 1162 1163
        }

        if check_error_log:
1164
            required_envs["GLOG_vmodule"] = \
1165 1166
                "fused_all_reduce_op_handle=10,all_reduce_op_handle=10,alloc_continuous_space_op=10,fuse_all_reduce_op_pass=10," \
                "alloc_continuous_space_for_grad_pass=10,fast_threaded_ssa_graph_executor=10,executor=10,operator=10," \
W
WangXi 已提交
1167 1168
                "sparse_all_reduce_op_handle=10,gen_nccl_id_op=10,gen_nccl_id_op_help=10,nccl_helper=10,grpc_client=10," \
                "grpc_server=10,request_handler_impl=10"
1169 1170
            required_envs["GLOG_logtostderr"] = "1"

1171 1172 1173 1174 1175 1176 1177 1178 1179
        required_envs.update(need_envs)
        return required_envs

    def check_with_place(self,
                         model_file,
                         delta=1e-3,
                         check_error_log=False,
                         need_envs={},
                         log_name=""):
1180

1181 1182
        required_envs = self._get_required_envs(check_error_log, need_envs)

T
tangwei12 已提交
1183
        local_losses \
1184
            = self._run_local(model_file, required_envs,
1185 1186
                              check_error_log, log_name=log_name)

W
Wu Yi 已提交
1187
        if self._nccl2_mode:
W
Wu Yi 已提交
1188 1189
            if self._nccl2_reduce_layer:
                tr0_losses, tr1_losses = self._run_cluster_nccl2(
1190 1191
                    model_file,
                    required_envs,
1192 1193
                    update_method="nccl2_reduce_layer",
                    check_error_log=check_error_log,
1194
                    log_name=log_name)
W
Wu Yi 已提交
1195 1196
            else:
                tr0_losses, tr1_losses = self._run_cluster_nccl2(
1197 1198
                    model_file,
                    required_envs,
1199 1200
                    update_method='nccl2',
                    check_error_log=check_error_log,
1201
                    log_name=log_name)
1202 1203 1204 1205 1206 1207 1208 1209
        elif self._bkcl_mode:
            tr0_losses, tr1_losses = self._run_cluster_nccl2(
                model_file,
                required_envs,
                update_method='bkcl',
                check_error_log=check_error_log,
                log_name=log_name)

1210 1211 1212
        elif self._pipeline_mode:
            tr0_losses, tr1_losses = self._run_pipeline(
                model_file, required_envs, check_error_log, log_name=log_name)
W
Wu Yi 已提交
1213 1214
        else:
            tr0_losses, tr1_losses = self._run_cluster(
1215
                model_file, required_envs, check_error_log, log_name=log_name)
1216 1217

        for step_id in range(RUN_STEP):
W
Wu Yi 已提交
1218 1219 1220
            local_loss = local_losses[step_id]
            tr0_loss = tr0_losses[step_id]
            tr1_loss = tr1_losses[step_id]
1221 1222 1223 1224
            if self._pipeline_mode:
                dist_loss = np.array([tr1_loss])
            else:
                dist_loss = (np.array([tr0_loss]) + np.array([tr1_loss])) / 2
W
Wu Yi 已提交
1225 1226
            print("=======", local_loss, ":", dist_loss[0], "=======")
            self.assertAlmostEqual(local_loss, dist_loss[0], delta=delta)
1227 1228 1229 1230 1231 1232 1233

    def check_with_place_multi_cards(self,
                                     model_file,
                                     delta=1e-3,
                                     check_error_log=False,
                                     need_envs={},
                                     log_name=""):
1234

1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245
        # need open p2p or shm otherwise multi cards mode will hang
        need_envs.update({"NCCL_P2P_DISABLE": "0", "NCCL_SHM_DISABLE": "0"})

        required_envs = self._get_required_envs(check_error_log, need_envs)

        if self._use_dgc:
            multi_cards_losses = self._run_local(
                model_file,
                required_envs,
                check_error_log,
                log_name=log_name + "_dgc_2cards",
1246
                devices="0,1")
1247 1248 1249 1250 1251 1252 1253

            self._use_dgc = False
            base_losses = self._run_local(
                model_file,
                required_envs,
                check_error_log,
                log_name=log_name + "_base_2cards",
1254
                devices="0,1")
1255 1256 1257 1258 1259 1260 1261 1262

            self._use_dgc = True

            for step_id in range(RUN_STEP):
                base_loss = base_losses[step_id]
                multi_cards_loss = multi_cards_losses[step_id]
                print("=======", base_loss, ":", multi_cards_loss, "=======")
                self.assertAlmostEqual(base_loss, multi_cards_loss, delta=delta)