test_dist_base.py 59.3 KB
Newer Older
X
Xin Pan 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13
#   Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
14 15

from __future__ import print_function
X
Xin Pan 已提交
16 17
import time

18
import ast
X
Xin Pan 已提交
19 20 21 22 23
import unittest
import os
import sys
import signal
import subprocess
24
import six
W
Wu Yi 已提交
25
import argparse
W
Wu Yi 已提交
26
import pickle
27
import random
W
Wu Yi 已提交
28
import numpy as np
29
import time
30 31

import paddle
32
import paddle.fluid as fluid
33
from paddle.fluid import compiler
34 35 36
import paddle.fluid.dygraph as dygraph
from paddle.fluid.dygraph.base import to_variable
from paddle.fluid.dygraph.parallel import DataParallel
37

38 39 40
from paddle.fluid.incubate.fleet.collective import fleet, DistributedStrategy
import paddle.fluid.incubate.fleet.base.role_maker as role_maker

Y
Yan Xu 已提交
41
RUN_STEP = 5
42
DEFAULT_BATCH_SIZE = 2
43
DIST_UT_PORT = 0
44

T
typhoonzero 已提交
45

46
def print_to_out(out_losses):
T
tianshuo78520a 已提交
47
    sys.stdout.buffer.write(pickle.dumps(out_losses))
48 49 50


def print_to_err(class_name, log_str):
51 52
    localtime = time.asctime(time.localtime(time.time()))
    print_str = localtime + "\t" + class_name + "\t" + log_str
T
tianshuo78520a 已提交
53
    sys.stderr.buffer.write(pickle.dumps(print_str))
G
guru4elephant 已提交
54 55


56 57 58 59
def eprint(*args, **kwargs):
    print(*args, file=sys.stderr, **kwargs)


T
typhoonzero 已提交
60
class TestDistRunnerBase(object):
W
Wu Yi 已提交
61 62 63
    def get_model(self,
                  batch_size=DEFAULT_BATCH_SIZE,
                  lr=0.1,
64
                  single_device=False,
J
Jiangxinz 已提交
65 66
                  use_dgc=False,
                  dist_strategy=None):
T
typhoonzero 已提交
67 68 69
        raise NotImplementedError(
            "get_model should be implemented by child classes.")

70
    @staticmethod
W
Wu Yi 已提交
71 72 73 74 75
    def get_transpiler(trainer_id,
                       main_program,
                       pserver_endpoints,
                       trainers,
                       sync_mode,
76
                       dc_asgd=False,
77
                       current_endpoint=None,
T
tangwei12 已提交
78 79
                       nccl_comm_num=1,
                       hogwild_mode=False):
T
typhoonzero 已提交
80
        # NOTE: import fluid until runtime, or else forking processes will cause error.
81
        config = fluid.DistributeTranspilerConfig()
W
Wu Yi 已提交
82
        config.enable_dc_asgd = dc_asgd
83
        config.sync_mode = sync_mode
T
tangwei12 已提交
84 85
        config.runtime_split_send_recv = hogwild_mode

86 87
        if nccl_comm_num > 1:
            config.nccl_comm_num = nccl_comm_num
88
        # config.runtime_split_send_recv = True
89
        t = fluid.DistributeTranspiler(config=config)
T
typhoonzero 已提交
90 91 92 93
        t.transpile(
            trainer_id=trainer_id,
            program=main_program,
            pservers=pserver_endpoints,
W
Wu Yi 已提交
94
            trainers=trainers,
T
tangwei12 已提交
95
            sync_mode=sync_mode,
96
            current_endpoint=current_endpoint)
T
typhoonzero 已提交
97 98
        return t

99 100 101 102 103 104 105 106 107
    @staticmethod
    def get_lr_scheduler(program):
        lr_sheduler = None
        if hasattr(program, 'lr_sheduler'):
            from paddle.optimizer.lr import LRScheduler
            lr_sheduler = program.lr_sheduler
            assert isinstance(lr_sheduler, LRScheduler), "must be LRScheduler"
        return lr_sheduler

W
Wu Yi 已提交
108
    def run_pserver(self, args):
W
Wu Yi 已提交
109
        self.lr = args.lr
110
        self.get_model(batch_size=args.batch_size)
111
        # NOTE: pserver should not call memory optimize
T
tangwei12 已提交
112 113 114 115 116 117 118 119 120

        t = self.get_transpiler(
            trainer_id=args.trainer_id,
            main_program=fluid.default_main_program(),
            pserver_endpoints=args.endpoints,
            trainers=args.trainers,
            sync_mode=args.sync_mode,
            dc_asgd=args.dc_asgd,
            hogwild_mode=args.hogwild)
W
Wu Yi 已提交
121 122 123
        pserver_prog = t.get_pserver_program(args.current_endpoint)
        startup_prog = t.get_startup_program(args.current_endpoint,
                                             pserver_prog)
Y
Yancey1989 已提交
124

T
typhoonzero 已提交
125 126 127
        place = fluid.CPUPlace()
        exe = fluid.Executor(place)
        exe.run(startup_prog)
128
        print_to_err(type(self).__name__, "run pserver startup program done.")
T
typhoonzero 已提交
129
        exe.run(pserver_prog)
130
        print_to_err(type(self).__name__, "run pserver main program done.")
T
typhoonzero 已提交
131

132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150
    def run_pipeline_trainer(self, args):
        self.lr = args.lr

        dist_strategy = DistributedStrategy()
        test_program, avg_cost, train_reader, test_reader, batch_acc, predict, data_loader = \
            self.get_model(batch_size=args.batch_size, dist_strategy=dist_strategy)

        device_id = int(os.getenv("FLAGS_selected_gpus", "0"))
        eprint(type(self).__name__, "device_id: %d." % device_id)
        place = fluid.CUDAPlace(device_id)

        exe = fluid.Executor(place)
        exe.run(fluid.default_startup_program())
        eprint(type(self).__name__, "run worker startup program done.")

        data_loader.set_sample_list_generator(train_reader, place)
        data_loader.start()
        print_to_err(type(self).__name__, "begin to train on trainer")
        out_losses = []
151 152 153

        main_program = fluid.default_main_program()
        lr_sheduler = self.get_lr_scheduler(main_program)
154
        for i in six.moves.xrange(RUN_STEP):
155
            loss = exe.run(main_program, fetch_list=[avg_cost])
156 157 158
            loss = loss[0] if loss else None
            out_losses.append(loss)
            print_to_err(type(self).__name__, "run step %d finished" % i)
159 160 161
            if lr_sheduler is not None:
                lr_sheduler.step()

162
        data_loader.reset()
163 164
        print_to_err(type(self).__name__, "trainer run finished")

T
tianshuo78520a 已提交
165
        sys.stdout.buffer.write(pickle.dumps(out_losses))
166

167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211
    def run_use_fleet_api_20_trainer(self, args):
        """
        1. remove codes for DistributedStrategy and leave the DistributedStrategy part to get_model()
        2. to run with fleet 2.0 api, set flags _use_fleet_api and _use_fleet_api_20 to True
        3. for now, not support test for model save
        """
        assert args.update_method == "nccl2" or "bkcl"

        self.lr = args.lr
        print_to_err("use_fleet 2.0", "fleet.node_num:")

        test_program, avg_cost, train_reader, test_reader, batch_acc, predict = \
            self.get_model(batch_size=args.batch_size)

        if fluid.core.is_compiled_with_cuda():
            device_id = int(os.getenv("FLAGS_selected_gpus", "0"))
            place = fluid.CUDAPlace(device_id)
        elif fluid.core.is_compiled_with_xpu():
            device_id = int(os.getenv("FLAGS_selected_xpus", "0"))
            place = fluid.XPUPlace(device_id)
        else:
            raise ValueError(
                "fleet dygraph api must in paddlepaddle-xpu or paddlepaddle-gpu."
            )

        exe = fluid.Executor(place)
        exe.run(fluid.default_startup_program())
        eprint(type(self).__name__, "run worker startup program done.")

        feed_var_list = [
            var
            for var in fluid.default_main_program().global_block().vars.values()
            if var.is_data
        ]

        eprint("feed_var_list:", feed_var_list)

        if feed_var_list[0].name == 'label':
            feed_var_list = feed_var_list[::-1]

        feeder = fluid.DataFeeder(feed_var_list, place)
        reader_generator = train_reader()

        def get_data():
            origin_batch = next(reader_generator)
X
xiongkun 已提交
212 213 214 215 216
            if paddle.distributed.get_world_size(
            ) == 1 and args.update_method == 'gloo':  # Gloo single mode
                return origin_batch

            elif args.update_method != "local" and args.use_reader_alloc:
217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235
                new_batch = []
                for offset, item in enumerate(origin_batch):
                    if offset % 2 == args.trainer_id:
                        new_batch.append(item)
                return new_batch
            else:
                return origin_batch

        print_to_err(type(self).__name__, "begin to train on trainer")
        out_losses = []
        for i in six.moves.xrange(RUN_STEP):
            loss, = exe.run(fluid.default_main_program(),
                            fetch_list=[avg_cost.name],
                            feed=feeder.feed(get_data()))
            out_losses.append(loss[0])
            print_to_err(type(self).__name__, "run step %d finished" % i)
        print_to_err(type(self).__name__, "trainer run finished")
        print_to_err(type(self).__name__, "dist losses: {}".format(out_losses))

T
tianshuo78520a 已提交
236
        sys.stdout.buffer.write(pickle.dumps(out_losses))
237

238 239
    def run_use_fleet_api_trainer(self, args):
        assert args.update_method == "nccl2" or "bkcl"
240 241 242 243 244 245 246 247

        self.lr = args.lr

        exec_strategy = fluid.ExecutionStrategy()
        exec_strategy.num_threads = 1

        dist_strategy = DistributedStrategy()
        dist_strategy.exec_strategy = exec_strategy
T
tangwei12 已提交
248
        dist_strategy.fuse_memory_size = 1  # MB
249
        dist_strategy.fuse_laryer_size = 1
250 251 252 253
        if args.use_local_sgd:
            dist_strategy.use_local_sgd = True
        if args.ut4grad_allreduce:
            dist_strategy._ut4grad_allreduce = True
254 255
        if args.sync_batch_norm:
            dist_strategy.sync_batch_norm = True
256 257 258

        role = role_maker.PaddleCloudRoleMaker(is_collective=True)
        fleet.init(role)
259
        print_to_err("use_fleet", "fleet.node_num:")
T
tangwei12 已提交
260 261
        # "fleet.node_id:", fleet.node_id(),
        # "fleet.trainer_num:", fleet.worker_num())
262 263

        test_program, avg_cost, train_reader, test_reader, batch_acc, predict = \
T
tangwei12 已提交
264
            self.get_model(batch_size=args.batch_size, dist_strategy=dist_strategy)
265 266 267 268

        trainer_prog = fleet._origin_program
        dist_prog = fleet.main_program

269 270 271 272 273 274 275 276 277 278
        if fluid.core.is_compiled_with_cuda():
            device_id = int(os.getenv("FLAGS_selected_gpus", "0"))
            place = fluid.CUDAPlace(device_id)
        elif fluid.core.is_compiled_with_xpu():
            device_id = int(os.getenv("FLAGS_selected_xpus", "0"))
            place = fluid.XPUPlace(device_id)
        else:
            raise ValueError(
                "fleet dygraph api must in paddlepaddle-xpu or paddlepaddle-gpu."
            )
279 280 281 282 283 284 285 286 287 288

        exe = fluid.Executor(place)
        exe.run(fluid.default_startup_program())
        eprint(type(self).__name__, "run worker startup program done.")

        feed_var_list = [
            var for var in trainer_prog.global_block().vars.values()
            if var.is_data
        ]

289 290 291 292 293 294 295
        eprint("feed_var_list:", feed_var_list)

        # tmp add this code to pass python35 gcc8 CI
        # Fixme(gongweibao, wangxi), need fix fleet api program order
        if feed_var_list[0].name == 'label':
            feed_var_list = feed_var_list[::-1]

296 297 298 299 300 301 302 303 304 305 306 307 308 309
        feeder = fluid.DataFeeder(feed_var_list, place)
        reader_generator = train_reader()

        def get_data():
            origin_batch = next(reader_generator)
            if args.update_method != "local" and args.use_reader_alloc:
                new_batch = []
                for offset, item in enumerate(origin_batch):
                    if offset % 2 == args.trainer_id:
                        new_batch.append(item)
                return new_batch
            else:
                return origin_batch

310
        print_to_err(type(self).__name__, "begin to train on trainer")
311 312 313 314 315 316
        out_losses = []
        for i in six.moves.xrange(RUN_STEP):
            loss, = exe.run(dist_prog,
                            fetch_list=[avg_cost.name],
                            feed=feeder.feed(get_data()))
            out_losses.append(loss[0])
317 318
            print_to_err(type(self).__name__, "run step %d finished" % i)
        print_to_err(type(self).__name__, "trainer run finished")
319

T
tianshuo78520a 已提交
320
        sys.stdout.buffer.write(pickle.dumps(out_losses))
321

322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351
        if args.save_model:
            model_save_dir = "/tmp"
            if fleet.worker_index() == 0:
                model_save_dir_fluid = os.path.join(model_save_dir,
                                                    "fluid_persistables")
                model_save_dir_fleet = os.path.join(model_save_dir,
                                                    "fleet_persistables")
                infer_save_dir_fluid = os.path.join(model_save_dir,
                                                    "fluid_infer")
                infer_save_dir_fleet = os.path.join(model_save_dir,
                                                    "fleet_infer")
            else:
                model_save_dir_fluid = os.path.join(model_save_dir,
                                                    "fluid_persistables_2")
                model_save_dir_fleet = os.path.join(model_save_dir,
                                                    "fleet_persistables_2")
                infer_save_dir_fluid = os.path.join(model_save_dir,
                                                    "fluid_infer_2")
                infer_save_dir_fleet = os.path.join(model_save_dir,
                                                    "fleet_infer_2")
            fluid.io.save_persistables(exe, model_save_dir_fluid,
                                       fleet._origin_program)
            fleet.save_persistables(executor=exe, dirname=model_save_dir_fleet)
            feeded_var_names = [var.name for var in feed_var_list]
            fluid.io.save_inference_model(infer_save_dir_fluid,
                                          feeded_var_names, [avg_cost], exe,
                                          fleet._origin_program)
            fleet.save_inference_model(exe, infer_save_dir_fleet,
                                       feeded_var_names, [avg_cost])

352
    def run_trainer(self, args):
W
Wu Yi 已提交
353
        self.lr = args.lr
W
Wu Yi 已提交
354 355 356
        if args.nccl2_reduce_layer_local_run:
            test_program, avg_cost, train_reader, test_reader, batch_acc, predict = \
                self.get_model(batch_size=args.batch_size, single_device=True)
357 358 359
        elif args.use_dgc:
            test_program, avg_cost, train_reader, test_reader, batch_acc, predict = \
                self.get_model(batch_size=args.batch_size, use_dgc=args.use_dgc)
W
Wu Yi 已提交
360 361 362
        else:
            test_program, avg_cost, train_reader, test_reader, batch_acc, predict = \
                self.get_model(batch_size=args.batch_size)
363

W
Wu Yi 已提交
364
        if args.update_method == "pserver":
365
            print_to_err(
366 367
                type(self).__name__,
                "begin to run transpile on trainer with pserver mode")
T
tangwei12 已提交
368 369 370 371 372 373 374 375 376
            t = self.get_transpiler(
                trainer_id=args.trainer_id,
                main_program=fluid.default_main_program(),
                pserver_endpoints=args.endpoints,
                trainers=args.trainers,
                sync_mode=args.sync_mode,
                dc_asgd=args.dc_asgd,
                hogwild_mode=args.hogwild)

T
typhoonzero 已提交
377
            trainer_prog = t.get_trainer_program()
378
            print_to_err(
379 380
                type(self).__name__,
                "get trainer program done with pserver mode.")
W
Wu Yi 已提交
381
        elif args.update_method == "nccl2" or args.update_method == "nccl2_reduce_layer":
W
Wu Yi 已提交
382 383 384
            # transpile for nccl2
            config = fluid.DistributeTranspilerConfig()
            config.mode = "nccl2"
385
            config.nccl_comm_num = args.nccl_comm_num
386 387 388
            if args.use_hallreduce:
                config.use_hierarchical_allreduce = True
                config.hierarchical_allreduce_inter_nranks = args.hallreduce_inter_nranks
389
            print_to_err(
390 391
                type(self).__name__,
                "begin to run transpile on trainer with nccl2 mode")
W
Wu Yi 已提交
392 393 394 395 396 397 398
            nccl2_t = fluid.DistributeTranspiler(config=config)
            nccl2_t.transpile(
                args.trainer_id,
                program=fluid.default_main_program(),
                startup_program=fluid.default_startup_program(),
                trainers=args.endpoints,
                current_endpoint=args.current_endpoint)
399
            print_to_err(
400 401
                type(self).__name__,
                "get trainer program done. with nccl2 mode")
W
Wu Yi 已提交
402
            trainer_prog = fluid.default_main_program()
T
typhoonzero 已提交
403
        else:
404
            print_to_err(
405 406
                type(self).__name__,
                "do nothing about main program, just use it")
T
typhoonzero 已提交
407
            trainer_prog = fluid.default_main_program()
408
            print_to_err(type(self).__name__, "use main program done.")
T
typhoonzero 已提交
409

410 411 412
        # FIXME(gongwb):wait pserver initialization.
        time.sleep(1)

413
        if args.use_cuda:
414 415
            device_id = int(os.getenv("FLAGS_selected_gpus", "0"))
            place = fluid.CUDAPlace(device_id)
416 417 418
        else:
            place = fluid.CPUPlace()

419 420
        exe = fluid.Executor(place)
        exe.run(fluid.default_startup_program())
421
        print_to_err(type(self).__name__, "run worker startup program done.")
T
typhoonzero 已提交
422

W
Wu Yi 已提交
423 424
        exec_strategy = fluid.ExecutionStrategy()
        exec_strategy.num_threads = 1
425

W
Wu Yi 已提交
426
        build_stra = fluid.BuildStrategy()
427 428 429
        # FIXME force disable enable_inplace and memory_optimize
        build_stra.enable_inplace = False
        build_stra.memory_optimize = False
W
Wu Yi 已提交
430

431 432 433 434
        if args.fuse_all_reduce is not None:
            sys.stderr.write('fuse_all_reduce={}'.format(args.fuse_all_reduce))
            build_stra.fuse_all_reduce_ops = args.fuse_all_reduce

T
tangwei12 已提交
435 436 437
        if args.hogwild:
            build_stra.async_mode = True

438 439 440
        if args.enable_backward_deps:
            build_stra.enable_backward_optimizer_op_deps = True

W
Wu Yi 已提交
441 442 443 444 445
        if args.use_reduce:
            build_stra.reduce_strategy = fluid.BuildStrategy.ReduceStrategy.Reduce
        else:
            build_stra.reduce_strategy = fluid.BuildStrategy.ReduceStrategy.AllReduce

W
Wu Yi 已提交
446
        pass_builder = None
X
Xin Pan 已提交
447
        if args.batch_merge_repeat > 1:
X
fix  
Xin Pan 已提交
448
            pass_builder = build_stra._finalize_strategy_and_create_passes()
449
            mypass = pass_builder.insert_pass(0, "multi_batch_merge_pass")
450
            mypass.set("num_repeats", args.batch_merge_repeat)
X
Xin Pan 已提交
451

W
Wu Yi 已提交
452
        if args.update_method == "nccl2" or args.update_method == "nccl2_reduce_layer":
453 454
            build_stra.num_trainers = len(args.endpoints.split(","))
            build_stra.trainer_id = args.trainer_id
W
Wu Yi 已提交
455
        else:
W
Wu Yi 已提交
456
            # case args.update_method == "nccl2_reduce_layer":
457 458
            build_stra.num_trainers = 1
            build_stra.trainer_id = 0
W
Wu Yi 已提交
459

460
        print_to_err(type(self).__name__, "begin to compile with data parallel")
X
Xin Pan 已提交
461
        binary = compiler.CompiledProgram(trainer_prog).with_data_parallel(
W
Wu Yi 已提交
462
            loss_name=avg_cost.name,
W
Wu Yi 已提交
463
            build_strategy=build_stra,
W
Wu Yi 已提交
464
            exec_strategy=exec_strategy)
465
        print_to_err(type(self).__name__, "program compiled with data parallel")
T
typhoonzero 已提交
466 467 468 469 470 471 472

        feed_var_list = [
            var for var in trainer_prog.global_block().vars.values()
            if var.is_data
        ]

        feeder = fluid.DataFeeder(feed_var_list, place)
473
        reader_generator = train_reader()
T
typhoonzero 已提交
474

475 476
        def get_data():
            origin_batch = next(reader_generator)
W
Wu Yi 已提交
477
            if args.update_method != "local" and args.use_reader_alloc:
478 479 480 481 482 483 484
                new_batch = []
                for offset, item in enumerate(origin_batch):
                    if offset % 2 == args.trainer_id:
                        new_batch.append(item)
                return new_batch
            else:
                return origin_batch
T
typhoonzero 已提交
485

486
        lr_scheduler = self.get_lr_scheduler(trainer_prog)
487
        print_to_err(type(self).__name__, "begin to train on trainer")
W
Wu Yi 已提交
488
        out_losses = []
489
        for i in six.moves.xrange(RUN_STEP):
490 491
            loss, = exe.run(binary,
                            fetch_list=[avg_cost.name],
492
                            feed=feeder.feed(get_data()))
W
Wu Yi 已提交
493
            out_losses.append(loss[0])
494
            print_to_err(type(self).__name__, "run step %d finished" % i)
495 496 497
            if lr_scheduler is not None:
                lr_scheduler.step()

498
        print_to_err(type(self).__name__, "trainer run finished")
499

500
        print_to_out(out_losses)
T
typhoonzero 已提交
501 502


503 504 505 506 507 508 509 510 511
class TestParallelDyGraphRunnerBase(object):
    def get_model(self):
        raise NotImplementedError(
            "get_model should be implemented by child classes.")

    def run_one_loop(self, model, opt, data):
        raise NotImplementedError(
            "train_one_loop should be implemented by the child classes.")

512
    def _get_data(self, batch, args):
X
xiongkun 已提交
513 514 515 516
        if paddle.distributed.get_world_size(
        ) == 1 and args.update_method == 'gloo':  # Gloo single mode
            return batch
        elif args.update_method != "local":
517
            new_batch = []
518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539

            # NOTE(@xiongkun03) args.diff_batch means batch length is different: 
            # such as : batch = [2,3,4,5], then the first rank will get [2]  and 
            # the second rank will get [3,4,5]. 
            # this function is for test sparse_embedding_differ_length
            if hasattr(args, "diff_batch") and args.diff_batch:
                assert len(
                    batch) > 2, "in differ_batch mode, len(batch) must > 2."
                if paddle.distributed.get_rank() == 0:
                    new_batch.append(batch[0])
                elif paddle.distributed.get_rank() == 1:
                    new_batch.extend([_ for _ in batch[1:]])
                else:
                    raise NotImplementedError(
                        "Current TestParallelDyGraphRunnerBase don't support world_size > 2"
                    )
                return new_batch
            else:
                for offset, item in enumerate(batch):
                    if offset % 2 == args.trainer_id:
                        new_batch.append(item)
                return new_batch
540 541 542
        else:
            return batch

543
    def run_trainer(self, args):
Y
Yan Xu 已提交
544

545
        seed = 90
X
xiongkun 已提交
546 547 548
        if args.update_method == 'gloo':
            place = fluid.CPUPlace()
        elif fluid.core.is_compiled_with_cuda():
549 550 551 552 553
            device_id = int(os.getenv("FLAGS_selected_gpus", "0"))
            place = fluid.CUDAPlace(device_id)
        elif fluid.core.is_compiled_with_xpu():
            device_id = int(os.getenv("FLAGS_selected_xpus", "0"))
            place = fluid.XPUPlace(device_id)
554 555 556
        elif fluid.core.is_compiled_with_npu():
            device_id = int(os.getenv("FLAGS_selected_npus", "0"))
            place = fluid.NPUPlace(device_id)
557
        else:
X
xiongkun 已提交
558
            assert ("Only support CUDAPlace or XPUPlace or CPU(Gloo) for now.")
559 560 561 562

        with fluid.dygraph.guard(place):
            fluid.default_startup_program().random_seed = seed
            fluid.default_main_program().random_seed = seed
Y
Yan Xu 已提交
563 564
            np.random.seed(seed)
            import random
565
            random.seed(seed)
566 567
            model, train_reader, opt = self.get_model()
            nranks = len(args.endpoints.split(",")) if args.endpoints else 1
Y
Yan Xu 已提交
568

569
            #if args.update_method == "nccl2":
570
            if args.update_method == "nccl2" or args.update_method == "bkcl" or args.update_method == "hccl":
571 572 573 574 575
                strategy = dygraph.parallel.ParallelStrategy()
                strategy.nranks = nranks
                strategy.local_rank = args.trainer_id
                strategy.trainer_endpoints = args.endpoints.split(",")
                strategy.current_endpoint = args.current_endpoint
576
                print_to_err(
577 578
                    type(self).__name__,
                    "begin to prepare context in dygraph with nccl2")
579
                dygraph.parallel.prepare_context(strategy)
580 581 582 583 584 585
                if not args.find_unused_parameters:
                    model = dygraph.parallel.DataParallel(
                        model, strategy, find_unused_parameters=False)
                else:
                    model = dygraph.parallel.DataParallel(
                        model, strategy, find_unused_parameters=True)
586
                print_to_err(type(self).__name__, "model built in dygraph")
X
xiongkun 已提交
587 588 589 590 591 592 593 594 595 596

            elif args.update_method == "gloo":
                paddle.distributed.init_parallel_env()
                if not args.find_unused_parameters:
                    model = dygraph.parallel.DataParallel(
                        model, find_unused_parameters=False)
                else:
                    model = dygraph.parallel.DataParallel(
                        model, find_unused_parameters=True)

597
            out_losses = []
598
            print_to_err(type(self).__name__, "begin to run dygraph training")
599
            for step_id, data in enumerate(train_reader()):
600
                data = self._get_data(data, args)
601 602 603
                if step_id == RUN_STEP:
                    break
                loss = self.run_one_loop(model, opt, data)
G
guru4elephant 已提交
604
                if step_id % 10 == 0:
605
                    print_to_err(
606
                        type(self).__name__,
607
                        "loss at step %d: %f" % (step_id, loss.numpy()))
Y
Yan Xu 已提交
608
                out_losses.append(loss.numpy())
609 610 611 612

                loss.backward()

                opt.minimize(loss)
613 614
                if not args.accumulate_gradient:
                    model.clear_gradients()
615
        print_to_out(out_losses)
616

617 618 619 620 621 622 623 624 625
    def run_trainer_with_spawn(self, args):
        # 1. enable dygraph
        paddle.disable_static()

        # 2. init seed
        seed = 90
        paddle.static.default_startup_program().random_seed = seed
        paddle.static.default_main_program().random_seed = seed
        np.random.seed(seed)
626
        random.seed(seed)
627 628 629 630
        # get trainer id
        args.trainer_id = paddle.distributed.get_rank()

        # 3. init parallel env
X
xiongkun 已提交
631
        if args.update_method in ["nccl2", "gloo"]:
632 633 634 635
            paddle.distributed.init_parallel_env()

        # 4. train model
        model, train_reader, opt = self.get_model()
X
xiongkun 已提交
636
        if args.update_method in ["nccl2", "gloo"]:
637 638 639 640
            if args.find_unused_parameters:
                model = paddle.DataParallel(model, find_unused_parameters=True)
            else:
                model = paddle.DataParallel(model, find_unused_parameters=False)
641 642 643 644 645 646 647 648 649 650 651 652 653 654 655

        out_losses = []
        for step_id, data in enumerate(train_reader()):
            data = self._get_data(data, args)
            if step_id == RUN_STEP:
                break
            loss = self.run_one_loop(model, opt, data)
            out_losses.append(loss.numpy())

            loss.backward()

            opt.minimize(loss)
            model.clear_gradients()
        return out_losses

656
    def run_use_fleet_api_trainer(self, args):
657 658 659 660 661 662 663 664 665 666
        import paddle.distributed.fleet as fleet
        import paddle.distributed.fleet.base.role_maker as role_maker
        # 1. enable dygraph
        paddle.disable_static()

        # 2. init seed
        seed = 90
        paddle.static.default_startup_program().random_seed = seed
        paddle.static.default_main_program().random_seed = seed
        np.random.seed(seed)
667
        random.seed(seed)
668 669 670
        # get trainer id
        args.trainer_id = paddle.distributed.get_rank()

671 672
        # set strategy
        strategy = fleet.DistributedStrategy()
673 674
        if args.find_unused_parameters:
            strategy.find_unused_parameters = True
675

676
        # 3. init parallel env
677
        if args.update_method == "nccl2" or "bkcl" or "hccl":
678
            fleet.init(is_collective=True, strategy=strategy)
679 680 681

        # 4. train model
        model, train_reader, opt = self.get_model()
682
        if args.update_method == "nccl2" or "bkcl" or "hccl":
683 684 685 686 687 688 689 690 691 692 693 694 695 696
            opt = fleet.distributed_optimizer(opt)
            model = fleet.distributed_model(model)

        out_losses = []
        for step_id, data in enumerate(train_reader()):
            data = self._get_data(data, args)
            if step_id == RUN_STEP:
                break
            loss = self.run_one_loop(model, opt, data)
            out_losses.append(loss.numpy())

            loss.backward()

            opt.step()
697 698
            if not args.accumulate_gradient:
                opt.clear_grad()
699 700
        print_to_out(out_losses)

701

T
typhoonzero 已提交
702
def runtime_main(test_class):
W
Wu Yi 已提交
703 704 705 706
    parser = argparse.ArgumentParser(description='Run dist test.')
    parser.add_argument(
        '--role', type=str, required=True, choices=['pserver', 'trainer'])
    parser.add_argument('--endpoints', type=str, required=False, default="")
W
Wu Yi 已提交
707 708 709 710
    parser.add_argument(
        '--update_method',
        type=str,
        default="local",
X
xiongkun 已提交
711
        choices=[
712 713
            "pserver", "nccl2", "bkcl", "local", "nccl2_reduce_layer", "gloo",
            "hccl"
X
xiongkun 已提交
714
        ])
W
Wu Yi 已提交
715 716
    parser.add_argument('--trainer_id', type=int, required=False, default=0)
    parser.add_argument('--trainers', type=int, required=False, default=1)
717
    parser.add_argument('--nccl_comm_num', type=int, required=False, default=1)
718 719
    parser.add_argument('--enable_backward_deps', action='store_true')
    parser.add_argument('--use_hallreduce', action='store_true')
720
    parser.add_argument('--use_pipeline', action='store_true')
721
    parser.add_argument('--use_fleet_api', action='store_true')
722
    parser.add_argument('--use_fleet_api_20', action='store_true')
723
    parser.add_argument('--use_local_sgd', action='store_true')
724
    parser.add_argument('--diff_batch', action='store_true')
725
    parser.add_argument('--ut4grad_allreduce', action='store_true')
726
    parser.add_argument(
727
        '--hallreduce_inter_nranks', type=int, required=False, default=2)
W
Wu Yi 已提交
728 729 730
    parser.add_argument(
        '--current_endpoint', type=str, required=False, default="")
    parser.add_argument('--sync_mode', action='store_true')
731
    parser.add_argument('--use_cuda', action='store_true')
X
xiongkun 已提交
732
    parser.add_argument('--use_cpu', action='store_true')
733
    parser.add_argument('--use_xpu', action='store_true')
734
    parser.add_argument('--use_dgc', action='store_true')
735
    parser.add_argument('--use_npu', action='store_true')
736
    parser.add_argument('--accumulate_gradient', action='store_true')
737
    parser.add_argument('--find_unused_parameters', action='store_true')
W
Wu Yi 已提交
738
    parser.add_argument('--use_reduce', action='store_true')
W
Wu Yi 已提交
739
    parser.add_argument('--dc_asgd', action='store_true')
T
tangwei12 已提交
740
    parser.add_argument('--hogwild', action='store_true')
741
    parser.add_argument('--save_model', action='store_true')
742
    parser.add_argument(
W
Wu Yi 已提交
743
        '--use_reader_alloc', action='store_true', required=False)
744
    parser.add_argument('--batch_size', required=False, type=int, default=2)
W
Wu Yi 已提交
745
    parser.add_argument('--lr', required=False, type=float, default=0.001)
746 747
    parser.add_argument(
        '--batch_merge_repeat', required=False, type=int, default=1)
W
Wu Yi 已提交
748 749 750 751 752
    parser.add_argument(
        '--nccl2_reduce_layer_local_run',
        required=False,
        type=bool,
        default=False)
753
    parser.add_argument('--sync_batch_norm', action='store_true')
754 755 756 757 758
    parser.add_argument(
        '--fuse_all_reduce',
        required=False,
        type=ast.literal_eval,
        default=None)
W
Wu Yi 已提交
759 760

    args = parser.parse_args()
T
typhoonzero 已提交
761

X
xiongkun 已提交
762 763 764
    if args.update_method == 'gloo':
        paddle.set_device("cpu")

T
typhoonzero 已提交
765
    model = test_class()
W
Wu Yi 已提交
766
    if args.role == "pserver" and args.update_method == "pserver":
W
Wu Yi 已提交
767
        model.run_pserver(args)
768 769
    elif args.use_fleet_api:
        model.run_use_fleet_api_trainer(args)
770 771
    elif args.use_fleet_api_20:
        model.run_use_fleet_api_20_trainer(args)
772 773
    elif args.use_pipeline:
        model.run_pipeline_trainer(args)
T
typhoonzero 已提交
774
    else:
775
        model.run_trainer(args)
X
Xin Pan 已提交
776

M
minqiyang 已提交
777

M
minqiyang 已提交
778
import paddle.compat as cpt
Y
Yancey1989 已提交
779 780
import socket
from contextlib import closing
M
minqiyang 已提交
781

X
Xin Pan 已提交
782 783

class TestDistBase(unittest.TestCase):
W
Wu Yi 已提交
784 785 786
    def _setup_config(self):
        raise NotImplementedError("tests should have _setup_config implemented")

787 788 789
    def _after_setup_config(self):
        if self._enforce_place == "CPU":
            self.__use_cuda = False
790
            self.__use_xpu = False
791
            self._use_dgc = False
792
            self.__use_npu = False
793 794
        elif self._enforce_place == "GPU":
            self.__use_cuda = True
795
            self.__use_xpu = False
796
            self.__use_npu = False
797 798 799 800
        elif self._enforce_place == "XPU":
            self.__use_cuda = False
            self.__use_xpu = True
            self._use_dgc = False
801 802 803 804 805 806
            self.__use_npu = False
        elif self._enforce_place == "NPU":
            self.__use_cuda = False
            self.__use_xpu = False
            self._use_dgc = False
            self.__use_npu = True
807 808 809 810 811
        else:
            if fluid.core.is_compiled_with_cuda():
                self.__use_cuda = True
            else:
                self.__use_cuda = False
812 813 814 815
                self._use_dgc = False

        if self._use_reduce:
            assert not self._use_dgc
816

X
Xin Pan 已提交
817 818 819
    def setUp(self):
        self._trainers = 2
        self._pservers = 2
Y
Yancey1989 已提交
820
        self._port_set = set()
M
minqiyang 已提交
821
        self._python_interp = sys.executable
W
Wu Yi 已提交
822
        self._sync_mode = True
T
tangwei12 已提交
823
        self._hogwild_mode = False
824
        self._enforce_place = None
W
Wu Yi 已提交
825
        self._use_reduce = False
W
Wu Yi 已提交
826
        self._dc_asgd = False  # must use with async mode
827
        self._use_reader_alloc = True
W
Wu Yi 已提交
828
        self._nccl2_mode = False
829
        self._bkcl_mode = False
X
xiongkun 已提交
830
        self._gloo_mode = False  # now, support gloo backend
831
        self._hccl_mode = False
832
        self._pipeline_mode = False
833
        self._mp_mode = False
834
        self._diff_batch = False
W
Wu Yi 已提交
835 836 837 838 839
        # FIXME(typhoonzero): I added this stupid argument to enable
        # testing allreduce layers, which users can call layers.allreduce
        # to accumulate tensors at anywhere. Find a better way to do this
        # test, reduce check this argument everywhere.
        self._nccl2_reduce_layer = False
W
Wu Yi 已提交
840
        self._lr = 0.001
841
        self._use_dgc = False
842
        self._dygraph = False
843
        self._nccl_comm_num = 1
844
        self._enable_backward_deps = False
845
        self._use_fleet_api = False
846
        self._use_fleet_api_20 = False
847 848
        self._use_local_sgd = False
        self._ut4grad_allreduce = False
849
        self._use_hallreduce = False
850
        self._save_model = False
851
        self._fuse_all_reduce = None
852
        self._accumulate_gradient = False
853
        self._find_unused_parameters = False
W
Wu Yi 已提交
854
        self._setup_config()
855 856 857 858 859 860 861 862 863 864 865 866 867 868

        global DIST_UT_PORT
        if DIST_UT_PORT == 0 and os.getenv("PADDLE_DIST_UT_PORT"):
            DIST_UT_PORT = int(os.getenv("PADDLE_DIST_UT_PORT"))

        if DIST_UT_PORT == 0:
            self._ps_endpoints = "127.0.0.1:%s,127.0.0.1:%s" % (
                self._find_free_port(), self._find_free_port())
        else:
            print("set begin_port:", DIST_UT_PORT)
            self._ps_endpoints = "127.0.0.1:%s,127.0.0.1:%s" % (
                DIST_UT_PORT, DIST_UT_PORT + 1)
            DIST_UT_PORT += 2

869
        self._after_setup_config()
X
Xin Pan 已提交
870

Y
Yancey1989 已提交
871
    def _find_free_port(self):
Y
Yancey1989 已提交
872 873 874 875
        def __free_port():
            with closing(socket.socket(socket.AF_INET,
                                       socket.SOCK_STREAM)) as s:
                s.bind(('', 0))
876
                print_to_err(
877
                    type(self).__name__, "socket name: %s" % s.getsockname()[1])
Y
Yancey1989 已提交
878 879 880 881 882 883 884
                return s.getsockname()[1]

        while True:
            port = __free_port()
            if port not in self._port_set:
                self._port_set.add(port)
                return port
Y
Yancey1989 已提交
885

886 887 888 889 890
    def start_pserver(self,
                      model_file,
                      check_error_log,
                      required_envs,
                      log_name=""):
X
Xin Pan 已提交
891
        ps0_ep, ps1_ep = self._ps_endpoints.split(",")
892 893 894 895 896 897 898 899
        ps_cmd = "%s"

        if os.getenv('WITH_COVERAGE', 'OFF') == 'ON':
            required_envs['COVERAGE_FILE'] = os.getenv('COVERAGE_FILE', '')
            ps_cmd += " -m coverage run --branch -p"

        ps_cmd += " %s --role pserver --endpoints %s --trainer_id 0 --current_endpoint %s --trainers %d --update_method pserver"

W
Wu Yi 已提交
900
        ps0_cmd = ps_cmd % \
901 902
                  (self._python_interp, model_file, self._ps_endpoints, ps0_ep,
                   self._trainers)
W
Wu Yi 已提交
903
        ps1_cmd = ps_cmd % \
904 905
                  (self._python_interp, model_file, self._ps_endpoints, ps1_ep,
                   self._trainers)
W
Wu Yi 已提交
906 907 908 909

        if self._sync_mode:
            ps0_cmd += " --sync_mode"
            ps1_cmd += " --sync_mode"
X
Xin Pan 已提交
910

911 912
        print(ps0_cmd)
        print(ps1_cmd)
913 914
        ps0_pipe = open(log_name + "_ps0_err.log", "wb")
        ps1_pipe = open(log_name + "_ps1_err.log", "wb")
G
gongweibao 已提交
915

916
        print_to_err(type(self).__name__, "going to start pserver process 0")
X
Xin Pan 已提交
917
        ps0_proc = subprocess.Popen(
918 919 920 921
            ps0_cmd.strip().split(" "),
            stdout=subprocess.PIPE,
            stderr=ps0_pipe,
            env=required_envs)
922
        print_to_err(type(self).__name__, "going to start pserver process 1")
X
Xin Pan 已提交
923
        ps1_proc = subprocess.Popen(
924 925 926 927
            ps1_cmd.strip().split(" "),
            stdout=subprocess.PIPE,
            stderr=ps1_pipe,
            env=required_envs)
G
gongweibao 已提交
928

929
        return ps0_proc, ps1_proc, ps0_pipe, ps1_pipe
X
Xin Pan 已提交
930

931 932 933 934 935
    def _run_local(self,
                   model,
                   envs,
                   check_error_log=False,
                   batch_size=DEFAULT_BATCH_SIZE,
936
                   batch_merge_repeat=1,
937
                   log_name="",
X
xiongkun 已提交
938
                   devices="1"):
G
gongweibao 已提交
939

940 941 942 943 944 945
        cmd = self._python_interp

        if os.getenv('WITH_COVERAGE', 'OFF') == 'ON':
            envs['COVERAGE_FILE'] = os.getenv('COVERAGE_FILE', '')
            cmd += " -m coverage run --branch -p"

946 947
        cmd += " %s --role trainer --update_method local --lr %f" % (model,
                                                                     self._lr)
948

949 950 951 952
        if batch_size != DEFAULT_BATCH_SIZE:
            cmd += " --batch_size %d" % batch_size
        if batch_merge_repeat > 1:
            cmd += " --batch_merge_repeat %d" % batch_merge_repeat
W
Wu Yi 已提交
953 954
        if self._nccl2_reduce_layer:
            cmd += " --nccl2_reduce_layer_local_run 1"
955

956
        if self.__use_cuda:
957
            cmd += " --use_cuda"
W
Wu Yi 已提交
958
            env_local = {
959 960 961 962 963 964 965 966
                "CUDA_VISIBLE_DEVICES": devices,
                "PADDLE_TRAINERS_NUM": "1",
                "PADDLE_TRAINER_ID": "0"
            }
        elif self.__use_xpu:
            cmd += " --use_xpu"
            env_local = {
                "FLAGS_selected_xpus": devices,
W
Wu Yi 已提交
967 968 969
                "PADDLE_TRAINERS_NUM": "1",
                "PADDLE_TRAINER_ID": "0"
            }
970 971 972 973 974 975 976
        elif self.__use_npu:
            cmd += " --use_npu"
            env_local = {
                "FLAGS_selected_npus": devices,
                "PADDLE_TRAINERS_NUM": "1",
                "PADDLE_TRAINER_ID": "0"
            }
977 978 979
        else:
            env_local = {'CPU_NUM': '1'}

980
        # not use dgc in single card
981
        if len(devices) > 1 and self._use_dgc:
982 983
            cmd += " --use_dgc"

984 985 986
        if self._accumulate_gradient:
            cmd += " --accumulate_gradient"

987 988 989
        if self._find_unused_parameters:
            cmd += " --find_unused_parameters"

W
Wu Yi 已提交
990 991
        env_local.update(envs)
        print("local_cmd: {}, env: {}".format(cmd, env_local))
G
gongweibao 已提交
992

993
        if check_error_log:
994
            err_log = open(log_name + "_local.log", "wb")
G
gongweibao 已提交
995
            local_proc = subprocess.Popen(
996
                cmd.split(" "),
G
gongweibao 已提交
997
                stdout=subprocess.PIPE,
998
                stderr=err_log,
W
Wu Yi 已提交
999
                env=env_local)
G
gongweibao 已提交
1000 1001
        else:
            local_proc = subprocess.Popen(
1002
                cmd.split(" "),
G
gongweibao 已提交
1003
                stdout=subprocess.PIPE,
1004
                stderr=subprocess.PIPE,
W
Wu Yi 已提交
1005
                env=env_local)
G
gongweibao 已提交
1006

1007 1008 1009 1010 1011 1012
        local_out, local_err = local_proc.communicate()

        if check_error_log:
            err_log.close()

        sys.stderr.write('local_stderr: %s\n' % local_err)
W
Wu Yi 已提交
1013
        sys.stderr.write('local_stdout: %s\n' % pickle.loads(local_out))
X
Xin Pan 已提交
1014

W
Wu Yi 已提交
1015
        return pickle.loads(local_out)
1016

X
xiongkun 已提交
1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031
    def _run_local_gloo(self,
                        model,
                        envs,
                        check_error_log=False,
                        batch_size=DEFAULT_BATCH_SIZE,
                        batch_merge_repeat=1,
                        log_name="",
                        devices="0"):
        saved_endpoints = self._ps_endpoints
        self._ps_endpoints = self._ps_endpoints.split(',')[0]
        result = self._run_cluster_gloo(model, envs, 'gloo', check_error_log,
                                        log_name)
        self._ps_endpoints = saved_endpoints
        return result

1032
    def _run_cluster(self, model, envs, check_error_log, log_name):
X
Xin Pan 已提交
1033
        # Run dist train to compare with local results
1034 1035
        ps0, ps1, ps0_pipe, ps1_pipe = self.start_pserver(
            model, check_error_log, envs, log_name=log_name)
W
Wu Yi 已提交
1036

X
Xin Pan 已提交
1037
        ps0_ep, ps1_ep = self._ps_endpoints.split(",")
1038

1039 1040 1041 1042 1043 1044 1045 1046
        tr_cmd = "%s"

        if os.getenv('WITH_COVERAGE', 'OFF') == 'ON':
            envs['COVERAGE_FILE'] = os.getenv('COVERAGE_FILE', '')
            tr_cmd += " -m coverage run --branch -p"

        tr_cmd += " %s --role trainer --endpoints %s --trainer_id %d --current_endpoint %s --trainers %d --update_method pserver --lr %f"

W
Wu Yi 已提交
1047
        tr0_cmd = tr_cmd % \
1048
                  (self._python_interp, model, self._ps_endpoints,
W
Wu Yi 已提交
1049
                   0, ps0_ep, self._trainers, self._lr)
W
Wu Yi 已提交
1050
        tr1_cmd = tr_cmd % \
1051
                  (self._python_interp, model, self._ps_endpoints,
W
Wu Yi 已提交
1052
                   1, ps1_ep, self._trainers, self._lr)
W
Wu Yi 已提交
1053 1054 1055 1056

        if self._sync_mode:
            tr0_cmd += " --sync_mode"
            tr1_cmd += " --sync_mode"
T
tangwei12 已提交
1057 1058 1059
        if self._hogwild_mode:
            tr0_cmd += " --hogwild"
            tr1_cmd += " --hogwild"
W
Wu Yi 已提交
1060 1061 1062
        if self._use_reduce:
            tr0_cmd += " --use_reduce"
            tr1_cmd += " --use_reduce"
1063 1064 1065
        if self._use_reader_alloc:
            tr0_cmd += " --use_reader_alloc"
            tr1_cmd += " --use_reader_alloc"
1066
        if self.__use_cuda:
1067 1068 1069 1070 1071 1072 1073 1074 1075 1076
            tr0_cmd += " --use_cuda"
            tr1_cmd += " --use_cuda"
            env0 = {"CUDA_VISIBLE_DEVICES": "0"}
            env1 = {"CUDA_VISIBLE_DEVICES": "1"}
        else:
            env0 = {'CPU_NUM': '1'}
            env1 = {'CPU_NUM': '1'}

        env0.update(envs)
        env1.update(envs)
X
Xin Pan 已提交
1077

W
Wu Yi 已提交
1078 1079
        print("tr0_cmd: {}, env: {}".format(tr0_cmd, env0))
        print("tr1_cmd: {}, env: {}".format(tr1_cmd, env1))
1080 1081
        tr0_pipe = open(log_name + "_tr0_err.log", "wb")
        tr1_pipe = open(log_name + "_tr1_err.log", "wb")
G
gongweibao 已提交
1082

1083
        print_to_err(type(self).__name__, "going to start trainer process 0")
X
Xin Pan 已提交
1084
        tr0_proc = subprocess.Popen(
W
Wu Yi 已提交
1085
            tr0_cmd.strip().split(" "),
X
Xin Pan 已提交
1086
            stdout=subprocess.PIPE,
G
gongweibao 已提交
1087
            stderr=tr0_pipe,
X
Xin Pan 已提交
1088
            env=env0)
1089
        print_to_err(type(self).__name__, "going to start trainer process 1")
X
Xin Pan 已提交
1090
        tr1_proc = subprocess.Popen(
W
Wu Yi 已提交
1091
            tr1_cmd.strip().split(" "),
X
Xin Pan 已提交
1092
            stdout=subprocess.PIPE,
G
gongweibao 已提交
1093
            stderr=tr1_pipe,
X
Xin Pan 已提交
1094 1095
            env=env1)

1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107
        # Wait until trainer process terminate
        while True:
            stat0 = tr0_proc.poll()
            time.sleep(0.1)
            if stat0 is not None:
                break
        while True:
            stat1 = tr1_proc.poll()
            time.sleep(0.1)
            if stat1 is not None:
                break

1108 1109
        tr0_out, tr0_err = tr0_proc.communicate()
        tr1_out, tr1_err = tr1_proc.communicate()
X
Xin Pan 已提交
1110

G
gongweibao 已提交
1111
        # close trainer file
1112 1113 1114 1115
        tr0_pipe.close()
        tr1_pipe.close()
        ps0_pipe.close()
        ps1_pipe.close()
W
Wu Yi 已提交
1116

W
Wu Yi 已提交
1117 1118
        ps0.terminate()
        ps1.terminate()
T
typhoonzero 已提交
1119

W
Wu Yi 已提交
1120 1121
        return pickle.loads(tr0_out), pickle.loads(tr1_out)

X
xiongkun 已提交
1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143
    def _get_gloo_trainer_cmd(self, model, ep, update_method, trainer_id,
                              trainer_num):
        env = {}
        tr_cmd = "%s -u"

        if os.getenv('WITH_COVERAGE', 'OFF') == 'ON':
            tr_cmd += " -m coverage run --branch -p"

        tr_cmd += " %s --role trainer --endpoints %s --trainer_id %d --current_endpoint %s --update_method %s --lr %f"

        tr_cmd = tr_cmd % \
                 (self._python_interp, model, self._ps_endpoints,
                  trainer_id, ep, update_method, self._lr)

        if self._use_reduce:
            tr_cmd += " --use_reduce"
        if self._use_reader_alloc:
            tr_cmd += " --use_reader_alloc"
        #assert self._use_reduce == False, "gloo not support _use_reduce"
        #assert self._use_reader_alloc == False, "gloo not support _use_reduce"
        if self._save_model:
            tr_cmd += " --save_model"
1144 1145
        if self._diff_batch:
            tr_cmd += " --diff_batch"
X
xiongkun 已提交
1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179
        self.__use_cuda = False
        self.__use_xpu = False
        assert self.__use_cuda == False, "gloo not support use cuda"
        assert self.__use_xpu == False, "gloo not support use xpu"
        tr_cmd += " --use_cpu"
        env.update({
            "PADDLE_TRAINERS_NUM": "{}".format(trainer_num),
            "PADDLE_TRAINER_ID": "{}".format(trainer_id),
            "PADDLE_TRAINER_ENDPOINTS": self._ps_endpoints,
            "PADDLE_CURRENT_ENDPOINT": ep,
            "PADDLE_CURRENT_ENDPOINT": ep,
            "PADDLE_DISTRI_BACKEND": "gloo",
            "GLOG_v": "2",
        })

        assert self._use_dgc == False, "gloo not support use dgc"
        if self._accumulate_gradient:
            tr_cmd += " --accumulate_gradient"

        if self._find_unused_parameters:
            tr_cmd += " --find_unused_parameters"

        assert self._pipeline_mode == False, "gloo not support use pipeline"

        if self._enable_backward_deps:  # build strategy, save it
            tr_cmd += " --enable_backward_deps"

        if self._fuse_all_reduce is not None:
            tr_cmd += " --fuse_all_reduce {}".format(self._fuse_all_reduce)

        assert self._use_fleet_api == False, "gloo not support use fleet api"
        assert self._use_fleet_api_20 == False, "gloo not support use fleet api"
        return tr_cmd, env

1180 1181 1182
    def _get_nccl2_trainer_cmd(self, model, ep, update_method, trainer_id,
                               trainer_num):
        env = {}
1183 1184 1185 1186 1187 1188 1189
        tr_cmd = "%s -u"

        if os.getenv('WITH_COVERAGE', 'OFF') == 'ON':
            tr_cmd += " -m coverage run --branch -p"

        tr_cmd += " %s --role trainer --endpoints %s --trainer_id %d --current_endpoint %s --update_method %s --lr %f"

1190
        tr_cmd = tr_cmd % \
T
tangwei12 已提交
1191 1192
                 (self._python_interp, model, self._ps_endpoints,
                  trainer_id, ep, update_method, self._lr)
W
Wu Yi 已提交
1193 1194

        if self._use_reduce:
1195
            tr_cmd += " --use_reduce"
W
Wu Yi 已提交
1196
        if self._use_reader_alloc:
1197
            tr_cmd += " --use_reader_alloc"
1198 1199
        if self._save_model:
            tr_cmd += " --save_model"
W
Wu Yi 已提交
1200
        if self.__use_cuda:
1201 1202
            tr_cmd += " --use_cuda"
            env.update({
1203
                "FLAGS_selected_gpus": "{}".format(0),
W
WangXi 已提交
1204
                "CUDA_VISIBLE_DEVICES": "{}".format(trainer_id),
1205
                "PADDLE_TRAINERS_NUM": "{}".format(trainer_num),
1206 1207 1208
                "PADDLE_TRAINER_ID": "{}".format(trainer_id),
                "PADDLE_TRAINER_ENDPOINTS": self._ps_endpoints,
                "PADDLE_CURRENT_ENDPOINT": ep,
1209
            })
1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222
        # TODO(liuyuhui):XPU_VISIBLE_DEVICES is not working right now,
        # will update it after Badiu Kunlun partners' support.
        elif self.__use_xpu:
            tr_cmd += " --use_xpu"
            env.update({
                "FLAGS_selected_xpus": "{}".format(trainer_id),
                #"XPU_VISIBLE_DEVICES": "{}".format(trainer_id + 1),
                "PADDLE_TRAINERS_NUM": "{}".format(trainer_num),
                "PADDLE_TRAINER_ID": "{}".format(trainer_id),
                "PADDLE_TRAINER_ENDPOINTS": self._ps_endpoints,
                "PADDLE_CURRENT_ENDPOINT": ep,
                "GLOG_v": "2",
            })
1223 1224 1225 1226 1227 1228 1229 1230 1231 1232
        elif self.__use_npu:
            tr_cmd += " --use_npu"
            env.update({
                "FLAGS_selected_npus": "{}".format(trainer_id),
                "PADDLE_TRAINERS_NUM": "{}".format(trainer_num),
                "PADDLE_TRAINER_ID": "{}".format(trainer_id),
                "PADDLE_TRAINER_ENDPOINTS": self._ps_endpoints,
                "PADDLE_CURRENT_ENDPOINT": ep,
                "GLOG_v": "2",
            })
W
Wu Yi 已提交
1233
        else:
1234
            env.update({'CPU_NUM': '1'})
W
Wu Yi 已提交
1235

1236
        if self._use_dgc:
1237 1238
            tr_cmd += " --use_dgc"

1239 1240 1241
        if self._accumulate_gradient:
            tr_cmd += " --accumulate_gradient"

1242 1243 1244
        if self._find_unused_parameters:
            tr_cmd += " --find_unused_parameters"

1245 1246
        if self._pipeline_mode:
            tr_cmd += " --use_pipeline"
1247
        if self._mp_mode:
W
WangXi 已提交
1248
            env = {"FLAGS_selected_gpus": "{}".format(trainer_id)}
1249 1250

        if self._nccl_comm_num > 1:
1251
            tr_cmd += " --nccl_comm_num {}".format(self._nccl_comm_num)
1252

1253 1254
        if self._use_hallreduce:
            tr_cmd += " --use_hallreduce --hallreduce_inter_nranks 2"
1255

1256
        if self._enable_backward_deps:
1257
            tr_cmd += " --enable_backward_deps"
1258

1259 1260 1261
        if self._fuse_all_reduce is not None:
            tr_cmd += " --fuse_all_reduce {}".format(self._fuse_all_reduce)

1262
        if self._use_fleet_api:
1263
            tr_cmd += " --use_fleet_api_20" if self._use_fleet_api_20 else " --use_fleet_api"
1264 1265 1266 1267
            if self._use_local_sgd:
                tr_cmd += " --use_local_sgd"
            if self._ut4grad_allreduce:
                tr_cmd += " --ut4grad_allreduce"
1268 1269
            if hasattr(self, '_sync_batch_norm') and self._sync_batch_norm:
                tr_cmd += " --sync_batch_norm"
1270

1271 1272 1273
        if os.getenv('WITH_COVERAGE', 'OFF') == 'ON':
            env['COVERAGE_FILE'] = os.getenv('COVERAGE_FILE', '')

1274
        return tr_cmd, env
W
Wu Yi 已提交
1275

X
xiongkun 已提交
1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326
    def _run_cluster_gloo(self, model, envs, update_method, check_error_log,
                          log_name):
        assert update_method == "gloo", "_run_cluster_gloo must have update_method: gloo, but get %s" % update_method
        assert not self._use_hallreduce, "_run_cluster_gloo must have _use_hallreduce = false"

        worker_endpoints = self._ps_endpoints.split(",")

        trainer_num = len(worker_endpoints)

        procs = []
        pipes = []
        for i in range(0, trainer_num):
            tr_cmd, tr_env = self._get_gloo_trainer_cmd(
                model, worker_endpoints[i], update_method, i, trainer_num)
            tr_env.update(envs)
            tr_env["GLOG_vmodule"] = 'gloo_context=4'
            tr_env["GLOG_v"] = '3'
            print("use_hallreduce:{} tr_cmd:{}, env: {}".format(
                self._use_hallreduce, tr_cmd, tr_env))

            tr_pipe = open(log_name + "_tr{}_err.log".format(i), "wb")

            print_to_err(
                type(self).__name__,
                "going to start process {} with nccl2".format(i))
            tr_proc = subprocess.Popen(
                tr_cmd.strip().split(" "),
                stdout=subprocess.PIPE,
                stderr=tr_pipe,
                env=tr_env)

            procs.append(tr_proc)
            pipes.append(tr_pipe)

        outs = []
        for i in range(0, trainer_num):
            tr_out, tr_err = procs[i].communicate()
            outs.append(tr_out)
            pipes[i].close()
            sys.stderr.write('trainer {} stderr: {}\n'.format(i, tr_err))

        if trainer_num == 1:
            if check_error_log: print("outs[0]:", outs[0])
            return pickle.loads(outs[0])

        else:
            if check_error_log:
                print("outs[0]:", outs[0])
                print("outs[1]:", outs[1])
            return pickle.loads(outs[0]), pickle.loads(outs[1])

1327 1328
    def _run_cluster_nccl2(self, model, envs, update_method, check_error_log,
                           log_name):
1329 1330
        if self._use_hallreduce:
            self._ps_endpoints = ""
1331 1332 1333

            global DIST_UT_PORT
            if DIST_UT_PORT == 0:
W
WangXi 已提交
1334
                # NOTE(wangxi). hallreduce test must use 4cards after nccl>=2.7
1335 1336 1337 1338 1339 1340 1341
                for i in range(0, 4):
                    self._ps_endpoints += "127.0.0.1:%s," % (
                        self._find_free_port())
            else:
                for i in range(0, 4):
                    self._ps_endpoints += "127.0.0.1:%s," % (DIST_UT_PORT + i)
                DIST_UT_PORT += 4
1342
            self._ps_endpoints = self._ps_endpoints[:-1]
W
Wu Yi 已提交
1343

1344 1345
        # NOTE: we reuse ps_endpoints as nccl2 worker endpoints
        worker_endpoints = self._ps_endpoints.split(",")
W
Wu Yi 已提交
1346

1347
        trainer_num = len(worker_endpoints)
W
Wu Yi 已提交
1348

1349 1350 1351 1352 1353 1354 1355 1356
        procs = []
        pipes = []
        for i in range(0, trainer_num):
            tr_cmd, tr_env = self._get_nccl2_trainer_cmd(
                model, worker_endpoints[i], update_method, i, trainer_num)
            tr_env.update(envs)
            print("use_hallreduce:{} tr_cmd:{}, env: {}".format(
                self._use_hallreduce, tr_cmd, tr_env))
W
Wu Yi 已提交
1357

1358
            tr_pipe = open(log_name + "_tr{}_err.log".format(i), "wb")
W
Wu Yi 已提交
1359

1360
            print_to_err(
1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378
                type(self).__name__,
                "going to start process {} with nccl2".format(i))
            tr_proc = subprocess.Popen(
                tr_cmd.strip().split(" "),
                stdout=subprocess.PIPE,
                stderr=tr_pipe,
                env=tr_env)

            procs.append(tr_proc)
            pipes.append(tr_pipe)

        outs = []
        for i in range(0, trainer_num):
            tr_out, tr_err = procs[i].communicate()
            outs.append(tr_out)
            pipes[i].close()
            sys.stderr.write('trainer {} stderr: {}\n'.format(i, tr_err))

1379 1380 1381
        if check_error_log:
            print("outs[0]:", outs[0])
            print("outs[1]:", outs[1])
1382

1383
        return pickle.loads(outs[0]), pickle.loads(outs[1])
1384

1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429
    def _run_pipeline(self, model, envs, check_error_log, log_name):
        # NOTE: we reuse ps_endpoints as nccl2 worker endpoints
        worker_endpoints = self._ps_endpoints.split(",")
        update_method = "nccl2"

        trainer_num = len(worker_endpoints)

        procs = []
        pipes = []
        for i in range(0, trainer_num):
            tr_cmd, tr_env = self._get_nccl2_trainer_cmd(
                model, worker_endpoints[i], update_method, i, trainer_num)
            tr_env.update(envs)
            tr_env['CUDA_VISIBLE_DEVICES'] = "0,1"
            tr_env['NCCL_SHM_DISABLE'] = '1'
            tr_env['FLAGS_selected_gpus'] = str(i)
            tr_env['FLAGS_cudnn_deterministic'] = '0'
            print("tr_cmd:{}, env: {}".format(tr_cmd, tr_env))

            tr_pipe = open("/tmp/" + "tr{}_err.log".format(i), "wb")

            print_to_err(
                type(self).__name__,
                "going to start process {} with nccl2".format(i))
            tr_proc = subprocess.Popen(
                tr_cmd.strip().split(" "),
                stdout=subprocess.PIPE,
                stderr=tr_pipe,
                env=tr_env)

            procs.append(tr_proc)
            pipes.append(tr_pipe)

        outs = []
        for i in range(0, trainer_num):
            tr_out, tr_err = procs[i].communicate()
            outs.append(tr_out)
            pipes[i].close()
            sys.stderr.write('trainer {} stderr: {}\n'.format(i, tr_err))

        if check_error_log:
            print("outs[0]:", outs[0])
            print("outs[1]:", outs[1])
        return pickle.loads(outs[0]), pickle.loads(outs[1])

1430
    def _get_required_envs(self, check_error_log=False, need_envs={}):
1431 1432 1433 1434 1435 1436
        # TODO(typhoonzero): should auto adapt GPU count on the machine.
        required_envs = {
            "PATH": os.getenv("PATH", ""),
            "PYTHONPATH": os.getenv("PYTHONPATH", ""),
            "LD_LIBRARY_PATH": os.getenv("LD_LIBRARY_PATH", ""),
            "FLAGS_fraction_of_gpu_memory_to_use": "0.15",
G
guru4elephant 已提交
1437
            "FLAGS_rpc_deadline": "30000",  # 5sec to fail fast
1438
            "FLAGS_rpc_retry_bind_port": "50",
1439
            "FLAGS_cudnn_deterministic": "1",
1440
            "FLAGS_rpc_disable_reuse_port": "1",
W
Wu Yi 已提交
1441
            "http_proxy": "",
1442 1443
            "NCCL_P2P_DISABLE": "1",
            "NCCL_SHM_DISABLE": "1"
1444 1445 1446
        }

        if check_error_log:
1447
            required_envs["GLOG_vmodule"] = \
1448 1449
                "fused_all_reduce_op_handle=10,all_reduce_op_handle=10,alloc_continuous_space_op=10,fuse_all_reduce_op_pass=10," \
                "alloc_continuous_space_for_grad_pass=10,fast_threaded_ssa_graph_executor=10,executor=10,operator=10," \
W
WangXi 已提交
1450
                "sparse_all_reduce_op_handle=10,gen_nccl_id_op=10,gen_nccl_id_op_help=10,nccl_helper=10,grpc_client=10," \
1451
                "grpc_server=10,request_handler_impl=10,section_worker=10"
1452 1453
            required_envs["GLOG_logtostderr"] = "1"

1454 1455 1456 1457 1458 1459 1460 1461 1462
        required_envs.update(need_envs)
        return required_envs

    def check_with_place(self,
                         model_file,
                         delta=1e-3,
                         check_error_log=False,
                         need_envs={},
                         log_name=""):
1463

1464 1465
        required_envs = self._get_required_envs(check_error_log, need_envs)

X
xiongkun 已提交
1466 1467 1468 1469 1470 1471
        if self._gloo_mode:
            local_losses \
                = self._run_local_gloo(model_file, required_envs,
                                  check_error_log, log_name=log_name)
        else:
            local_losses \
1472
            = self._run_local(model_file, required_envs,
1473 1474
                              check_error_log, log_name=log_name)

W
Wu Yi 已提交
1475
        if self._nccl2_mode:
W
Wu Yi 已提交
1476 1477
            if self._nccl2_reduce_layer:
                tr0_losses, tr1_losses = self._run_cluster_nccl2(
1478 1479
                    model_file,
                    required_envs,
1480 1481
                    update_method="nccl2_reduce_layer",
                    check_error_log=check_error_log,
1482
                    log_name=log_name)
W
Wu Yi 已提交
1483 1484
            else:
                tr0_losses, tr1_losses = self._run_cluster_nccl2(
1485 1486
                    model_file,
                    required_envs,
1487 1488
                    update_method='nccl2',
                    check_error_log=check_error_log,
1489
                    log_name=log_name)
1490 1491 1492 1493 1494 1495 1496
        elif self._bkcl_mode:
            tr0_losses, tr1_losses = self._run_cluster_nccl2(
                model_file,
                required_envs,
                update_method='bkcl',
                check_error_log=check_error_log,
                log_name=log_name)
X
xiongkun 已提交
1497 1498 1499 1500 1501 1502 1503 1504
        elif self._gloo_mode:
            # gloo mode, cpu only parallel train @xiongkun03
            tr0_losses, tr1_losses = self._run_cluster_gloo(
                model_file,
                required_envs,
                update_method='gloo',
                check_error_log=check_error_log,
                log_name=log_name)
1505 1506 1507 1508 1509 1510 1511
        elif self._hccl_mode:
            tr0_losses, tr1_losses = self._run_cluster_nccl2(
                model_file,
                required_envs,
                update_method='hccl',
                check_error_log=check_error_log,
                log_name=log_name)
1512

1513 1514 1515
        elif self._pipeline_mode:
            tr0_losses, tr1_losses = self._run_pipeline(
                model_file, required_envs, check_error_log, log_name=log_name)
W
Wu Yi 已提交
1516 1517
        else:
            tr0_losses, tr1_losses = self._run_cluster(
1518
                model_file, required_envs, check_error_log, log_name=log_name)
1519 1520

        for step_id in range(RUN_STEP):
W
Wu Yi 已提交
1521 1522 1523
            local_loss = local_losses[step_id]
            tr0_loss = tr0_losses[step_id]
            tr1_loss = tr1_losses[step_id]
1524 1525 1526 1527
            if self._pipeline_mode:
                dist_loss = np.array([tr1_loss])
            else:
                dist_loss = (np.array([tr0_loss]) + np.array([tr1_loss])) / 2
W
Wu Yi 已提交
1528 1529
            print("=======", local_loss, ":", dist_loss[0], "=======")
            self.assertAlmostEqual(local_loss, dist_loss[0], delta=delta)
1530 1531 1532 1533 1534 1535 1536

    def check_with_place_multi_cards(self,
                                     model_file,
                                     delta=1e-3,
                                     check_error_log=False,
                                     need_envs={},
                                     log_name=""):
1537

1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548
        # need open p2p or shm otherwise multi cards mode will hang
        need_envs.update({"NCCL_P2P_DISABLE": "0", "NCCL_SHM_DISABLE": "0"})

        required_envs = self._get_required_envs(check_error_log, need_envs)

        if self._use_dgc:
            multi_cards_losses = self._run_local(
                model_file,
                required_envs,
                check_error_log,
                log_name=log_name + "_dgc_2cards",
1549
                devices="0,1")
1550 1551 1552 1553 1554 1555 1556

            self._use_dgc = False
            base_losses = self._run_local(
                model_file,
                required_envs,
                check_error_log,
                log_name=log_name + "_base_2cards",
1557
                devices="0,1")
1558 1559 1560 1561 1562 1563 1564 1565

            self._use_dgc = True

            for step_id in range(RUN_STEP):
                base_loss = base_losses[step_id]
                multi_cards_loss = multi_cards_losses[step_id]
                print("=======", base_loss, ":", multi_cards_loss, "=======")
                self.assertAlmostEqual(base_loss, multi_cards_loss, delta=delta)