test_dist_base.py 39.0 KB
Newer Older
X
Xin Pan 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13
#   Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
14 15

from __future__ import print_function
X
Xin Pan 已提交
16 17 18 19 20 21 22
import time

import unittest
import os
import sys
import signal
import subprocess
23
import six
W
Wu Yi 已提交
24
import argparse
W
Wu Yi 已提交
25
import pickle
26
import random
W
Wu Yi 已提交
27
import numpy as np
28
import time
29 30

import paddle
31
import paddle.fluid as fluid
32
from paddle.fluid import compiler
33 34 35
import paddle.fluid.dygraph as dygraph
from paddle.fluid.dygraph.base import to_variable
from paddle.fluid.dygraph.parallel import DataParallel
36

37 38 39
from paddle.fluid.incubate.fleet.collective import fleet, DistributedStrategy
import paddle.fluid.incubate.fleet.base.role_maker as role_maker

Y
Yan Xu 已提交
40
RUN_STEP = 5
41
DEFAULT_BATCH_SIZE = 2
42
DIST_UT_PORT = 0
43

T
typhoonzero 已提交
44

45 46 47 48 49 50 51 52
def print_to_out(out_losses):
    if six.PY2:
        print(pickle.dumps(out_losses))
    else:
        sys.stdout.buffer.write(pickle.dumps(out_losses))


def print_to_err(class_name, log_str):
53 54
    localtime = time.asctime(time.localtime(time.time()))
    print_str = localtime + "\t" + class_name + "\t" + log_str
G
guru4elephant 已提交
55
    if six.PY2:
56
        sys.stderr.write(pickle.dumps(print_str))
G
guru4elephant 已提交
57
    else:
58
        sys.stderr.buffer.write(pickle.dumps(print_str))
G
guru4elephant 已提交
59 60


61 62 63 64
def eprint(*args, **kwargs):
    print(*args, file=sys.stderr, **kwargs)


T
typhoonzero 已提交
65
class TestDistRunnerBase(object):
W
Wu Yi 已提交
66 67 68
    def get_model(self,
                  batch_size=DEFAULT_BATCH_SIZE,
                  lr=0.1,
69 70
                  single_device=False,
                  use_dgc=False):
T
typhoonzero 已提交
71 72 73
        raise NotImplementedError(
            "get_model should be implemented by child classes.")

74
    @staticmethod
W
Wu Yi 已提交
75 76 77 78 79
    def get_transpiler(trainer_id,
                       main_program,
                       pserver_endpoints,
                       trainers,
                       sync_mode,
80
                       dc_asgd=False,
81
                       current_endpoint=None,
T
tangwei12 已提交
82 83
                       nccl_comm_num=1,
                       hogwild_mode=False):
T
typhoonzero 已提交
84
        # NOTE: import fluid until runtime, or else forking processes will cause error.
85
        config = fluid.DistributeTranspilerConfig()
W
Wu Yi 已提交
86
        config.enable_dc_asgd = dc_asgd
87
        config.sync_mode = sync_mode
T
tangwei12 已提交
88 89
        config.runtime_split_send_recv = hogwild_mode

90 91
        if nccl_comm_num > 1:
            config.nccl_comm_num = nccl_comm_num
92
        # config.runtime_split_send_recv = True
93
        t = fluid.DistributeTranspiler(config=config)
T
typhoonzero 已提交
94 95 96 97
        t.transpile(
            trainer_id=trainer_id,
            program=main_program,
            pservers=pserver_endpoints,
W
Wu Yi 已提交
98
            trainers=trainers,
T
tangwei12 已提交
99
            sync_mode=sync_mode,
100
            current_endpoint=current_endpoint)
T
typhoonzero 已提交
101 102
        return t

W
Wu Yi 已提交
103
    def run_pserver(self, args):
W
Wu Yi 已提交
104
        self.lr = args.lr
105
        self.get_model(batch_size=args.batch_size)
106
        # NOTE: pserver should not call memory optimize
T
tangwei12 已提交
107 108 109 110 111 112 113 114 115

        t = self.get_transpiler(
            trainer_id=args.trainer_id,
            main_program=fluid.default_main_program(),
            pserver_endpoints=args.endpoints,
            trainers=args.trainers,
            sync_mode=args.sync_mode,
            dc_asgd=args.dc_asgd,
            hogwild_mode=args.hogwild)
W
Wu Yi 已提交
116 117 118
        pserver_prog = t.get_pserver_program(args.current_endpoint)
        startup_prog = t.get_startup_program(args.current_endpoint,
                                             pserver_prog)
Y
Yancey1989 已提交
119

T
typhoonzero 已提交
120 121 122
        place = fluid.CPUPlace()
        exe = fluid.Executor(place)
        exe.run(startup_prog)
123
        print_to_err(type(self).__name__, "run pserver startup program done.")
T
typhoonzero 已提交
124
        exe.run(pserver_prog)
125
        print_to_err(type(self).__name__, "run pserver main program done.")
T
typhoonzero 已提交
126

127 128 129 130 131 132 133 134 135 136
    def run_gpu_fleet_api_trainer(self, args):
        assert args.update_method == "nccl2"

        self.lr = args.lr

        exec_strategy = fluid.ExecutionStrategy()
        exec_strategy.num_threads = 1

        dist_strategy = DistributedStrategy()
        dist_strategy.exec_strategy = exec_strategy
T
tangwei12 已提交
137
        dist_strategy.fuse_memory_size = 1  # MB
138
        dist_strategy.fuse_laryer_size = 1
139 140 141 142
        if args.use_local_sgd:
            dist_strategy.use_local_sgd = True
        if args.ut4grad_allreduce:
            dist_strategy._ut4grad_allreduce = True
143 144
        if args.sync_batch_norm:
            dist_strategy.sync_batch_norm = True
145 146 147

        role = role_maker.PaddleCloudRoleMaker(is_collective=True)
        fleet.init(role)
148
        print_to_err("gpu_fleet", "fleet.node_num:")
T
tangwei12 已提交
149 150
        # "fleet.node_id:", fleet.node_id(),
        # "fleet.trainer_num:", fleet.worker_num())
151 152

        test_program, avg_cost, train_reader, test_reader, batch_acc, predict = \
T
tangwei12 已提交
153
            self.get_model(batch_size=args.batch_size, dist_strategy=dist_strategy)
154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169

        trainer_prog = fleet._origin_program
        dist_prog = fleet.main_program

        device_id = int(os.getenv("FLAGS_selected_gpus", "0"))
        place = fluid.CUDAPlace(device_id)

        exe = fluid.Executor(place)
        exe.run(fluid.default_startup_program())
        eprint(type(self).__name__, "run worker startup program done.")

        feed_var_list = [
            var for var in trainer_prog.global_block().vars.values()
            if var.is_data
        ]

170 171 172 173 174 175 176
        eprint("feed_var_list:", feed_var_list)

        # tmp add this code to pass python35 gcc8 CI
        # Fixme(gongweibao, wangxi), need fix fleet api program order
        if feed_var_list[0].name == 'label':
            feed_var_list = feed_var_list[::-1]

177 178 179 180 181 182 183 184 185 186 187 188 189 190
        feeder = fluid.DataFeeder(feed_var_list, place)
        reader_generator = train_reader()

        def get_data():
            origin_batch = next(reader_generator)
            if args.update_method != "local" and args.use_reader_alloc:
                new_batch = []
                for offset, item in enumerate(origin_batch):
                    if offset % 2 == args.trainer_id:
                        new_batch.append(item)
                return new_batch
            else:
                return origin_batch

191
        print_to_err(type(self).__name__, "begin to train on trainer")
192 193 194 195 196 197
        out_losses = []
        for i in six.moves.xrange(RUN_STEP):
            loss, = exe.run(dist_prog,
                            fetch_list=[avg_cost.name],
                            feed=feeder.feed(get_data()))
            out_losses.append(loss[0])
198 199
            print_to_err(type(self).__name__, "run step %d finished" % i)
        print_to_err(type(self).__name__, "trainer run finished")
200 201 202 203 204 205

        if six.PY2:
            print(pickle.dumps(out_losses))
        else:
            sys.stdout.buffer.write(pickle.dumps(out_losses))

206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235
        if args.save_model:
            model_save_dir = "/tmp"
            if fleet.worker_index() == 0:
                model_save_dir_fluid = os.path.join(model_save_dir,
                                                    "fluid_persistables")
                model_save_dir_fleet = os.path.join(model_save_dir,
                                                    "fleet_persistables")
                infer_save_dir_fluid = os.path.join(model_save_dir,
                                                    "fluid_infer")
                infer_save_dir_fleet = os.path.join(model_save_dir,
                                                    "fleet_infer")
            else:
                model_save_dir_fluid = os.path.join(model_save_dir,
                                                    "fluid_persistables_2")
                model_save_dir_fleet = os.path.join(model_save_dir,
                                                    "fleet_persistables_2")
                infer_save_dir_fluid = os.path.join(model_save_dir,
                                                    "fluid_infer_2")
                infer_save_dir_fleet = os.path.join(model_save_dir,
                                                    "fleet_infer_2")
            fluid.io.save_persistables(exe, model_save_dir_fluid,
                                       fleet._origin_program)
            fleet.save_persistables(executor=exe, dirname=model_save_dir_fleet)
            feeded_var_names = [var.name for var in feed_var_list]
            fluid.io.save_inference_model(infer_save_dir_fluid,
                                          feeded_var_names, [avg_cost], exe,
                                          fleet._origin_program)
            fleet.save_inference_model(exe, infer_save_dir_fleet,
                                       feeded_var_names, [avg_cost])

236
    def run_trainer(self, args):
W
Wu Yi 已提交
237
        self.lr = args.lr
W
Wu Yi 已提交
238 239 240
        if args.nccl2_reduce_layer_local_run:
            test_program, avg_cost, train_reader, test_reader, batch_acc, predict = \
                self.get_model(batch_size=args.batch_size, single_device=True)
241 242 243
        elif args.use_dgc:
            test_program, avg_cost, train_reader, test_reader, batch_acc, predict = \
                self.get_model(batch_size=args.batch_size, use_dgc=args.use_dgc)
W
Wu Yi 已提交
244 245 246
        else:
            test_program, avg_cost, train_reader, test_reader, batch_acc, predict = \
                self.get_model(batch_size=args.batch_size)
247

W
Wu Yi 已提交
248
        if args.update_method == "pserver":
249
            print_to_err(
250 251
                type(self).__name__,
                "begin to run transpile on trainer with pserver mode")
T
tangwei12 已提交
252 253 254 255 256 257 258 259 260
            t = self.get_transpiler(
                trainer_id=args.trainer_id,
                main_program=fluid.default_main_program(),
                pserver_endpoints=args.endpoints,
                trainers=args.trainers,
                sync_mode=args.sync_mode,
                dc_asgd=args.dc_asgd,
                hogwild_mode=args.hogwild)

T
typhoonzero 已提交
261
            trainer_prog = t.get_trainer_program()
262
            print_to_err(
263 264
                type(self).__name__,
                "get trainer program done with pserver mode.")
W
Wu Yi 已提交
265
        elif args.update_method == "nccl2" or args.update_method == "nccl2_reduce_layer":
W
Wu Yi 已提交
266 267 268
            # transpile for nccl2
            config = fluid.DistributeTranspilerConfig()
            config.mode = "nccl2"
269
            config.nccl_comm_num = args.nccl_comm_num
270 271 272
            if args.use_hallreduce:
                config.use_hierarchical_allreduce = True
                config.hierarchical_allreduce_inter_nranks = args.hallreduce_inter_nranks
273
            print_to_err(
274 275
                type(self).__name__,
                "begin to run transpile on trainer with nccl2 mode")
W
Wu Yi 已提交
276 277 278 279 280 281 282
            nccl2_t = fluid.DistributeTranspiler(config=config)
            nccl2_t.transpile(
                args.trainer_id,
                program=fluid.default_main_program(),
                startup_program=fluid.default_startup_program(),
                trainers=args.endpoints,
                current_endpoint=args.current_endpoint)
283
            print_to_err(
284 285
                type(self).__name__,
                "get trainer program done. with nccl2 mode")
W
Wu Yi 已提交
286
            trainer_prog = fluid.default_main_program()
T
typhoonzero 已提交
287
        else:
288
            print_to_err(
289 290
                type(self).__name__,
                "do nothing about main program, just use it")
T
typhoonzero 已提交
291
            trainer_prog = fluid.default_main_program()
292
            print_to_err(type(self).__name__, "use main program done.")
T
typhoonzero 已提交
293

294 295 296
        # FIXME(gongwb):wait pserver initialization.
        time.sleep(1)

297
        if args.use_cuda:
298 299
            device_id = int(os.getenv("FLAGS_selected_gpus", "0"))
            place = fluid.CUDAPlace(device_id)
300 301 302
        else:
            place = fluid.CPUPlace()

303 304
        exe = fluid.Executor(place)
        exe.run(fluid.default_startup_program())
305
        print_to_err(type(self).__name__, "run worker startup program done.")
T
typhoonzero 已提交
306

W
Wu Yi 已提交
307 308
        exec_strategy = fluid.ExecutionStrategy()
        exec_strategy.num_threads = 1
309

W
Wu Yi 已提交
310
        build_stra = fluid.BuildStrategy()
311 312 313
        # FIXME force disable enable_inplace and memory_optimize
        build_stra.enable_inplace = False
        build_stra.memory_optimize = False
W
Wu Yi 已提交
314

T
tangwei12 已提交
315 316 317
        if args.hogwild:
            build_stra.async_mode = True

318 319 320
        if args.enable_backward_deps:
            build_stra.enable_backward_optimizer_op_deps = True

W
Wu Yi 已提交
321 322 323 324 325
        if args.use_reduce:
            build_stra.reduce_strategy = fluid.BuildStrategy.ReduceStrategy.Reduce
        else:
            build_stra.reduce_strategy = fluid.BuildStrategy.ReduceStrategy.AllReduce

W
Wu Yi 已提交
326
        pass_builder = None
X
Xin Pan 已提交
327
        if args.batch_merge_repeat > 1:
X
fix  
Xin Pan 已提交
328
            pass_builder = build_stra._finalize_strategy_and_create_passes()
329
            mypass = pass_builder.insert_pass(0, "multi_batch_merge_pass")
330
            mypass.set("num_repeats", args.batch_merge_repeat)
X
Xin Pan 已提交
331

W
Wu Yi 已提交
332
        if args.update_method == "nccl2" or args.update_method == "nccl2_reduce_layer":
333 334
            build_stra.num_trainers = len(args.endpoints.split(","))
            build_stra.trainer_id = args.trainer_id
W
Wu Yi 已提交
335
        else:
W
Wu Yi 已提交
336
            # case args.update_method == "nccl2_reduce_layer":
337 338
            build_stra.num_trainers = 1
            build_stra.trainer_id = 0
W
Wu Yi 已提交
339

340
        print_to_err(type(self).__name__, "begin to compile with data parallel")
X
Xin Pan 已提交
341
        binary = compiler.CompiledProgram(trainer_prog).with_data_parallel(
W
Wu Yi 已提交
342
            loss_name=avg_cost.name,
W
Wu Yi 已提交
343
            build_strategy=build_stra,
W
Wu Yi 已提交
344
            exec_strategy=exec_strategy)
345
        print_to_err(type(self).__name__, "program compiled with data parallel")
T
typhoonzero 已提交
346 347 348 349 350 351 352

        feed_var_list = [
            var for var in trainer_prog.global_block().vars.values()
            if var.is_data
        ]

        feeder = fluid.DataFeeder(feed_var_list, place)
353
        reader_generator = train_reader()
T
typhoonzero 已提交
354

355 356
        def get_data():
            origin_batch = next(reader_generator)
W
Wu Yi 已提交
357
            if args.update_method != "local" and args.use_reader_alloc:
358 359 360 361 362 363 364
                new_batch = []
                for offset, item in enumerate(origin_batch):
                    if offset % 2 == args.trainer_id:
                        new_batch.append(item)
                return new_batch
            else:
                return origin_batch
T
typhoonzero 已提交
365

366
        print_to_err(type(self).__name__, "begin to train on trainer")
W
Wu Yi 已提交
367
        out_losses = []
368
        for i in six.moves.xrange(RUN_STEP):
369 370
            loss, = exe.run(binary,
                            fetch_list=[avg_cost.name],
371
                            feed=feeder.feed(get_data()))
W
Wu Yi 已提交
372
            out_losses.append(loss[0])
373 374
            print_to_err(type(self).__name__, "run step %d finished" % i)
        print_to_err(type(self).__name__, "trainer run finished")
375

376
        print_to_out(out_losses)
T
typhoonzero 已提交
377 378


379 380 381 382 383 384 385 386 387
class TestParallelDyGraphRunnerBase(object):
    def get_model(self):
        raise NotImplementedError(
            "get_model should be implemented by child classes.")

    def run_one_loop(self, model, opt, data):
        raise NotImplementedError(
            "train_one_loop should be implemented by the child classes.")

388 389 390 391 392 393 394 395 396 397
    def _get_data(self, batch, args):
        if args.update_method != "local":
            new_batch = []
            for offset, item in enumerate(batch):
                if offset % 2 == args.trainer_id:
                    new_batch.append(item)
            return new_batch
        else:
            return batch

398
    def run_trainer(self, args):
Y
Yan Xu 已提交
399

400 401 402 403 404 405 406
        seed = 90
        device_id = int(os.getenv("FLAGS_selected_gpus", "0"))
        place = fluid.CUDAPlace(device_id)

        with fluid.dygraph.guard(place):
            fluid.default_startup_program().random_seed = seed
            fluid.default_main_program().random_seed = seed
Y
Yan Xu 已提交
407 408 409
            np.random.seed(seed)
            import random
            random.seed = seed
410 411
            model, train_reader, opt = self.get_model()
            nranks = len(args.endpoints.split(",")) if args.endpoints else 1
Y
Yan Xu 已提交
412

413 414 415 416 417 418
            if args.update_method == "nccl2":
                strategy = dygraph.parallel.ParallelStrategy()
                strategy.nranks = nranks
                strategy.local_rank = args.trainer_id
                strategy.trainer_endpoints = args.endpoints.split(",")
                strategy.current_endpoint = args.current_endpoint
419
                print_to_err(
420 421
                    type(self).__name__,
                    "begin to prepare context in dygraph with nccl2")
422
                dygraph.parallel.prepare_context(strategy)
Y
Yan Xu 已提交
423
                model = dygraph.parallel.DataParallel(model, strategy)
424
                print_to_err(type(self).__name__, "model built in dygraph")
425
            out_losses = []
426
            print_to_err(type(self).__name__, "begin to run dygraph training")
427
            for step_id, data in enumerate(train_reader()):
428
                data = self._get_data(data, args)
429 430 431
                if step_id == RUN_STEP:
                    break
                loss = self.run_one_loop(model, opt, data)
G
guru4elephant 已提交
432
                if step_id % 10 == 0:
433
                    print_to_err(
434
                        type(self).__name__,
435
                        "loss at step %d: %f" % (step_id, loss.numpy()))
Y
Yan Xu 已提交
436
                out_losses.append(loss.numpy())
437

Y
Yan Xu 已提交
438 439 440
                # FIXME(Yancey1989): scale the loss inplace
                if args.update_method == "nccl2":
                    loss = model.scale_loss(loss)
441 442

                loss.backward()
Y
Yan Xu 已提交
443 444
                if args.update_method == "nccl2":
                    model.apply_collective_grads()
445 446 447

                opt.minimize(loss)
                model.clear_gradients()
448
        print_to_out(out_losses)
449

450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490
    def run_trainer_with_spawn(self, args):
        # 1. enable dygraph
        paddle.disable_static()

        # 2. init seed
        seed = 90
        paddle.static.default_startup_program().random_seed = seed
        paddle.static.default_main_program().random_seed = seed
        np.random.seed(seed)
        random.seed = seed
        # get trainer id
        args.trainer_id = paddle.distributed.get_rank()

        # 3. init parallel env
        if args.update_method == "nccl2":
            paddle.distributed.init_parallel_env()

        # 4. train model
        model, train_reader, opt = self.get_model()
        if args.update_method == "nccl2":
            model = paddle.DataParallel(model)

        out_losses = []
        for step_id, data in enumerate(train_reader()):
            data = self._get_data(data, args)
            if step_id == RUN_STEP:
                break
            loss = self.run_one_loop(model, opt, data)
            out_losses.append(loss.numpy())

            if args.update_method == "nccl2":
                loss = model.scale_loss(loss)

            loss.backward()
            if args.update_method == "nccl2":
                model.apply_collective_grads()

            opt.minimize(loss)
            model.clear_gradients()
        return out_losses

491

T
typhoonzero 已提交
492
def runtime_main(test_class):
W
Wu Yi 已提交
493 494 495 496
    parser = argparse.ArgumentParser(description='Run dist test.')
    parser.add_argument(
        '--role', type=str, required=True, choices=['pserver', 'trainer'])
    parser.add_argument('--endpoints', type=str, required=False, default="")
W
Wu Yi 已提交
497 498 499 500
    parser.add_argument(
        '--update_method',
        type=str,
        default="local",
W
Wu Yi 已提交
501
        choices=["pserver", "nccl2", "local", "nccl2_reduce_layer"])
W
Wu Yi 已提交
502 503
    parser.add_argument('--trainer_id', type=int, required=False, default=0)
    parser.add_argument('--trainers', type=int, required=False, default=1)
504
    parser.add_argument('--nccl_comm_num', type=int, required=False, default=1)
505 506
    parser.add_argument('--enable_backward_deps', action='store_true')
    parser.add_argument('--use_hallreduce', action='store_true')
507
    parser.add_argument('--gpu_fleet_api', action='store_true')
508 509
    parser.add_argument('--use_local_sgd', action='store_true')
    parser.add_argument('--ut4grad_allreduce', action='store_true')
510
    parser.add_argument(
511
        '--hallreduce_inter_nranks', type=int, required=False, default=2)
W
Wu Yi 已提交
512 513 514
    parser.add_argument(
        '--current_endpoint', type=str, required=False, default="")
    parser.add_argument('--sync_mode', action='store_true')
515
    parser.add_argument('--use_cuda', action='store_true')
516
    parser.add_argument('--use_dgc', action='store_true')
W
Wu Yi 已提交
517
    parser.add_argument('--use_reduce', action='store_true')
W
Wu Yi 已提交
518
    parser.add_argument('--dc_asgd', action='store_true')
T
tangwei12 已提交
519
    parser.add_argument('--hogwild', action='store_true')
520
    parser.add_argument('--save_model', action='store_true')
521
    parser.add_argument(
W
Wu Yi 已提交
522
        '--use_reader_alloc', action='store_true', required=False)
523
    parser.add_argument('--batch_size', required=False, type=int, default=2)
W
Wu Yi 已提交
524
    parser.add_argument('--lr', required=False, type=float, default=0.001)
525 526
    parser.add_argument(
        '--batch_merge_repeat', required=False, type=int, default=1)
W
Wu Yi 已提交
527 528 529 530 531
    parser.add_argument(
        '--nccl2_reduce_layer_local_run',
        required=False,
        type=bool,
        default=False)
532
    parser.add_argument('--sync_batch_norm', action='store_true')
W
Wu Yi 已提交
533 534

    args = parser.parse_args()
T
typhoonzero 已提交
535 536

    model = test_class()
W
Wu Yi 已提交
537
    if args.role == "pserver" and args.update_method == "pserver":
W
Wu Yi 已提交
538
        model.run_pserver(args)
539 540
    elif args.gpu_fleet_api:
        model.run_gpu_fleet_api_trainer(args)
T
typhoonzero 已提交
541
    else:
542
        model.run_trainer(args)
X
Xin Pan 已提交
543

M
minqiyang 已提交
544

M
minqiyang 已提交
545
import paddle.compat as cpt
Y
Yancey1989 已提交
546 547
import socket
from contextlib import closing
M
minqiyang 已提交
548

X
Xin Pan 已提交
549 550

class TestDistBase(unittest.TestCase):
W
Wu Yi 已提交
551 552 553
    def _setup_config(self):
        raise NotImplementedError("tests should have _setup_config implemented")

554 555 556
    def _after_setup_config(self):
        if self._enforce_place == "CPU":
            self.__use_cuda = False
557
            self._use_dgc = False
558 559 560 561 562 563 564
        elif self._enforce_place == "GPU":
            self.__use_cuda = True
        else:
            if fluid.core.is_compiled_with_cuda():
                self.__use_cuda = True
            else:
                self.__use_cuda = False
565 566 567 568
                self._use_dgc = False

        if self._use_reduce:
            assert not self._use_dgc
569

X
Xin Pan 已提交
570 571 572
    def setUp(self):
        self._trainers = 2
        self._pservers = 2
Y
Yancey1989 已提交
573
        self._port_set = set()
M
minqiyang 已提交
574
        self._python_interp = sys.executable
W
Wu Yi 已提交
575
        self._sync_mode = True
T
tangwei12 已提交
576
        self._hogwild_mode = False
577
        self._enforce_place = None
W
Wu Yi 已提交
578
        self._use_reduce = False
W
Wu Yi 已提交
579
        self._dc_asgd = False  # must use with async mode
580
        self._use_reader_alloc = True
W
Wu Yi 已提交
581
        self._nccl2_mode = False
582
        self._mp_mode = False
W
Wu Yi 已提交
583 584 585 586 587
        # FIXME(typhoonzero): I added this stupid argument to enable
        # testing allreduce layers, which users can call layers.allreduce
        # to accumulate tensors at anywhere. Find a better way to do this
        # test, reduce check this argument everywhere.
        self._nccl2_reduce_layer = False
W
Wu Yi 已提交
588
        self._lr = 0.001
589
        self._use_dgc = False
590
        self._dygraph = False
591
        self._nccl_comm_num = 1
592
        self._enable_backward_deps = False
593
        self._gpu_fleet_api = False
594 595
        self._use_local_sgd = False
        self._ut4grad_allreduce = False
596
        self._use_hallreduce = False
597
        self._save_model = False
W
Wu Yi 已提交
598
        self._setup_config()
599 600 601 602 603 604 605 606 607 608 609 610 611 612

        global DIST_UT_PORT
        if DIST_UT_PORT == 0 and os.getenv("PADDLE_DIST_UT_PORT"):
            DIST_UT_PORT = int(os.getenv("PADDLE_DIST_UT_PORT"))

        if DIST_UT_PORT == 0:
            self._ps_endpoints = "127.0.0.1:%s,127.0.0.1:%s" % (
                self._find_free_port(), self._find_free_port())
        else:
            print("set begin_port:", DIST_UT_PORT)
            self._ps_endpoints = "127.0.0.1:%s,127.0.0.1:%s" % (
                DIST_UT_PORT, DIST_UT_PORT + 1)
            DIST_UT_PORT += 2

613
        self._after_setup_config()
X
Xin Pan 已提交
614

Y
Yancey1989 已提交
615
    def _find_free_port(self):
Y
Yancey1989 已提交
616 617 618 619
        def __free_port():
            with closing(socket.socket(socket.AF_INET,
                                       socket.SOCK_STREAM)) as s:
                s.bind(('', 0))
620
                print_to_err(
621
                    type(self).__name__, "socket name: %s" % s.getsockname()[1])
Y
Yancey1989 已提交
622 623 624 625 626 627 628
                return s.getsockname()[1]

        while True:
            port = __free_port()
            if port not in self._port_set:
                self._port_set.add(port)
                return port
Y
Yancey1989 已提交
629

630 631 632 633 634
    def start_pserver(self,
                      model_file,
                      check_error_log,
                      required_envs,
                      log_name=""):
X
Xin Pan 已提交
635
        ps0_ep, ps1_ep = self._ps_endpoints.split(",")
636 637 638 639 640 641 642 643
        ps_cmd = "%s"

        if os.getenv('WITH_COVERAGE', 'OFF') == 'ON':
            required_envs['COVERAGE_FILE'] = os.getenv('COVERAGE_FILE', '')
            ps_cmd += " -m coverage run --branch -p"

        ps_cmd += " %s --role pserver --endpoints %s --trainer_id 0 --current_endpoint %s --trainers %d --update_method pserver"

W
Wu Yi 已提交
644
        ps0_cmd = ps_cmd % \
645 646
                  (self._python_interp, model_file, self._ps_endpoints, ps0_ep,
                   self._trainers)
W
Wu Yi 已提交
647
        ps1_cmd = ps_cmd % \
648 649
                  (self._python_interp, model_file, self._ps_endpoints, ps1_ep,
                   self._trainers)
W
Wu Yi 已提交
650 651 652 653

        if self._sync_mode:
            ps0_cmd += " --sync_mode"
            ps1_cmd += " --sync_mode"
X
Xin Pan 已提交
654

655 656
        print(ps0_cmd)
        print(ps1_cmd)
657 658
        ps0_pipe = open(log_name + "_ps0_err.log", "wb")
        ps1_pipe = open(log_name + "_ps1_err.log", "wb")
G
gongweibao 已提交
659

660
        print_to_err(type(self).__name__, "going to start pserver process 0")
X
Xin Pan 已提交
661
        ps0_proc = subprocess.Popen(
662 663 664 665
            ps0_cmd.strip().split(" "),
            stdout=subprocess.PIPE,
            stderr=ps0_pipe,
            env=required_envs)
666
        print_to_err(type(self).__name__, "going to start pserver process 1")
X
Xin Pan 已提交
667
        ps1_proc = subprocess.Popen(
668 669 670 671
            ps1_cmd.strip().split(" "),
            stdout=subprocess.PIPE,
            stderr=ps1_pipe,
            env=required_envs)
G
gongweibao 已提交
672

673
        return ps0_proc, ps1_proc, ps0_pipe, ps1_pipe
X
Xin Pan 已提交
674

675 676 677 678 679
    def _run_local(self,
                   model,
                   envs,
                   check_error_log=False,
                   batch_size=DEFAULT_BATCH_SIZE,
680
                   batch_merge_repeat=1,
681 682
                   log_name="",
                   gpus="0"):
G
gongweibao 已提交
683

684 685 686 687 688 689 690 691
        cmd = self._python_interp

        if os.getenv('WITH_COVERAGE', 'OFF') == 'ON':
            envs['COVERAGE_FILE'] = os.getenv('COVERAGE_FILE', '')
            cmd += " -m coverage run --branch -p"

        cmd += " %s --role trainer --lr %f" % (model, self._lr)

692 693 694 695
        if batch_size != DEFAULT_BATCH_SIZE:
            cmd += " --batch_size %d" % batch_size
        if batch_merge_repeat > 1:
            cmd += " --batch_merge_repeat %d" % batch_merge_repeat
W
Wu Yi 已提交
696 697
        if self._nccl2_reduce_layer:
            cmd += " --nccl2_reduce_layer_local_run 1"
698

699
        if self.__use_cuda:
700
            cmd += " --use_cuda"
W
Wu Yi 已提交
701
            env_local = {
702
                "CUDA_VISIBLE_DEVICES": gpus,
W
Wu Yi 已提交
703 704 705
                "PADDLE_TRAINERS_NUM": "1",
                "PADDLE_TRAINER_ID": "0"
            }
706 707 708
        else:
            env_local = {'CPU_NUM': '1'}

709 710 711 712
        # not use dgc in single card
        if len(gpus) > 1 and self._use_dgc:
            cmd += " --use_dgc"

W
Wu Yi 已提交
713 714
        env_local.update(envs)
        print("local_cmd: {}, env: {}".format(cmd, env_local))
G
gongweibao 已提交
715

716
        if check_error_log:
717
            err_log = open(log_name + "_local.log", "wb")
G
gongweibao 已提交
718
            local_proc = subprocess.Popen(
719
                cmd.split(" "),
G
gongweibao 已提交
720
                stdout=subprocess.PIPE,
721
                stderr=err_log,
W
Wu Yi 已提交
722
                env=env_local)
G
gongweibao 已提交
723 724
        else:
            local_proc = subprocess.Popen(
725
                cmd.split(" "),
G
gongweibao 已提交
726
                stdout=subprocess.PIPE,
727
                stderr=subprocess.PIPE,
W
Wu Yi 已提交
728
                env=env_local)
G
gongweibao 已提交
729

730 731 732 733 734 735
        local_out, local_err = local_proc.communicate()

        if check_error_log:
            err_log.close()

        sys.stderr.write('local_stderr: %s\n' % local_err)
W
Wu Yi 已提交
736
        sys.stderr.write('local_stdout: %s\n' % pickle.loads(local_out))
X
Xin Pan 已提交
737

W
Wu Yi 已提交
738
        return pickle.loads(local_out)
739

740
    def _run_cluster(self, model, envs, check_error_log, log_name):
X
Xin Pan 已提交
741
        # Run dist train to compare with local results
742 743
        ps0, ps1, ps0_pipe, ps1_pipe = self.start_pserver(
            model, check_error_log, envs, log_name=log_name)
W
Wu Yi 已提交
744

X
Xin Pan 已提交
745
        ps0_ep, ps1_ep = self._ps_endpoints.split(",")
746

747 748 749 750 751 752 753 754
        tr_cmd = "%s"

        if os.getenv('WITH_COVERAGE', 'OFF') == 'ON':
            envs['COVERAGE_FILE'] = os.getenv('COVERAGE_FILE', '')
            tr_cmd += " -m coverage run --branch -p"

        tr_cmd += " %s --role trainer --endpoints %s --trainer_id %d --current_endpoint %s --trainers %d --update_method pserver --lr %f"

W
Wu Yi 已提交
755
        tr0_cmd = tr_cmd % \
756
                  (self._python_interp, model, self._ps_endpoints,
W
Wu Yi 已提交
757
                   0, ps0_ep, self._trainers, self._lr)
W
Wu Yi 已提交
758
        tr1_cmd = tr_cmd % \
759
                  (self._python_interp, model, self._ps_endpoints,
W
Wu Yi 已提交
760
                   1, ps1_ep, self._trainers, self._lr)
W
Wu Yi 已提交
761 762 763 764

        if self._sync_mode:
            tr0_cmd += " --sync_mode"
            tr1_cmd += " --sync_mode"
T
tangwei12 已提交
765 766 767
        if self._hogwild_mode:
            tr0_cmd += " --hogwild"
            tr1_cmd += " --hogwild"
W
Wu Yi 已提交
768 769 770
        if self._use_reduce:
            tr0_cmd += " --use_reduce"
            tr1_cmd += " --use_reduce"
771 772 773
        if self._use_reader_alloc:
            tr0_cmd += " --use_reader_alloc"
            tr1_cmd += " --use_reader_alloc"
774
        if self.__use_cuda:
775 776 777 778 779 780 781 782 783 784
            tr0_cmd += " --use_cuda"
            tr1_cmd += " --use_cuda"
            env0 = {"CUDA_VISIBLE_DEVICES": "0"}
            env1 = {"CUDA_VISIBLE_DEVICES": "1"}
        else:
            env0 = {'CPU_NUM': '1'}
            env1 = {'CPU_NUM': '1'}

        env0.update(envs)
        env1.update(envs)
X
Xin Pan 已提交
785

W
Wu Yi 已提交
786 787
        print("tr0_cmd: {}, env: {}".format(tr0_cmd, env0))
        print("tr1_cmd: {}, env: {}".format(tr1_cmd, env1))
788 789
        tr0_pipe = open(log_name + "_tr0_err.log", "wb")
        tr1_pipe = open(log_name + "_tr1_err.log", "wb")
G
gongweibao 已提交
790

791
        print_to_err(type(self).__name__, "going to start trainer process 0")
X
Xin Pan 已提交
792
        tr0_proc = subprocess.Popen(
W
Wu Yi 已提交
793
            tr0_cmd.strip().split(" "),
X
Xin Pan 已提交
794
            stdout=subprocess.PIPE,
G
gongweibao 已提交
795
            stderr=tr0_pipe,
X
Xin Pan 已提交
796
            env=env0)
797
        print_to_err(type(self).__name__, "going to start trainer process 1")
X
Xin Pan 已提交
798
        tr1_proc = subprocess.Popen(
W
Wu Yi 已提交
799
            tr1_cmd.strip().split(" "),
X
Xin Pan 已提交
800
            stdout=subprocess.PIPE,
G
gongweibao 已提交
801
            stderr=tr1_pipe,
X
Xin Pan 已提交
802 803
            env=env1)

804 805 806 807 808 809 810 811 812 813 814 815
        # Wait until trainer process terminate
        while True:
            stat0 = tr0_proc.poll()
            time.sleep(0.1)
            if stat0 is not None:
                break
        while True:
            stat1 = tr1_proc.poll()
            time.sleep(0.1)
            if stat1 is not None:
                break

816 817
        tr0_out, tr0_err = tr0_proc.communicate()
        tr1_out, tr1_err = tr1_proc.communicate()
X
Xin Pan 已提交
818

G
gongweibao 已提交
819
        # close trainer file
820 821 822 823
        tr0_pipe.close()
        tr1_pipe.close()
        ps0_pipe.close()
        ps1_pipe.close()
W
Wu Yi 已提交
824

W
Wu Yi 已提交
825 826
        ps0.terminate()
        ps1.terminate()
T
typhoonzero 已提交
827

W
Wu Yi 已提交
828 829
        return pickle.loads(tr0_out), pickle.loads(tr1_out)

830 831 832
    def _get_nccl2_trainer_cmd(self, model, ep, update_method, trainer_id,
                               trainer_num):
        env = {}
833 834 835 836 837 838 839
        tr_cmd = "%s -u"

        if os.getenv('WITH_COVERAGE', 'OFF') == 'ON':
            tr_cmd += " -m coverage run --branch -p"

        tr_cmd += " %s --role trainer --endpoints %s --trainer_id %d --current_endpoint %s --update_method %s --lr %f"

840
        tr_cmd = tr_cmd % \
T
tangwei12 已提交
841 842
                 (self._python_interp, model, self._ps_endpoints,
                  trainer_id, ep, update_method, self._lr)
W
Wu Yi 已提交
843 844

        if self._use_reduce:
845
            tr_cmd += " --use_reduce"
W
Wu Yi 已提交
846
        if self._use_reader_alloc:
847
            tr_cmd += " --use_reader_alloc"
848 849
        if self._save_model:
            tr_cmd += " --save_model"
W
Wu Yi 已提交
850
        if self.__use_cuda:
851 852
            tr_cmd += " --use_cuda"
            env.update({
853
                "CUDA_VISIBLE_DEVICES": "{}".format(trainer_id % 2),
854
                "PADDLE_TRAINERS_NUM": "{}".format(trainer_num),
855 856 857
                "PADDLE_TRAINER_ID": "{}".format(trainer_id),
                "PADDLE_TRAINER_ENDPOINTS": self._ps_endpoints,
                "PADDLE_CURRENT_ENDPOINT": ep,
858
            })
W
Wu Yi 已提交
859
        else:
860
            env.update({'CPU_NUM': '1'})
W
Wu Yi 已提交
861

862
        if self._use_dgc:
863 864 865
            tr_cmd += " --use_dgc"

        if self._mp_mode:
866
            env = {"FLAGS_selected_gpus": "{}".format(trainer_id % 2)}
867 868

        if self._nccl_comm_num > 1:
869
            tr_cmd += " --nccl_comm_num {}".format(self._nccl_comm_num)
870

871 872
        if self._use_hallreduce:
            tr_cmd += " --use_hallreduce --hallreduce_inter_nranks 2"
873

874
        if self._enable_backward_deps:
875
            tr_cmd += " --enable_backward_deps"
876

877 878
        if self._gpu_fleet_api:
            tr_cmd += " --gpu_fleet_api"
879 880 881 882
            if self._use_local_sgd:
                tr_cmd += " --use_local_sgd"
            if self._ut4grad_allreduce:
                tr_cmd += " --ut4grad_allreduce"
883 884
            if hasattr(self, '_sync_batch_norm') and self._sync_batch_norm:
                tr_cmd += " --sync_batch_norm"
885

886 887 888
        if os.getenv('WITH_COVERAGE', 'OFF') == 'ON':
            env['COVERAGE_FILE'] = os.getenv('COVERAGE_FILE', '')

889
        return tr_cmd, env
W
Wu Yi 已提交
890

891
    def _run_cluster_nccl2(self, model, envs, nccl2_reduce_layer,
892
                           check_error_log, log_name):
893 894
        if self._use_hallreduce:
            self._ps_endpoints = ""
895 896 897 898 899 900 901 902 903 904

            global DIST_UT_PORT
            if DIST_UT_PORT == 0:
                for i in range(0, 4):
                    self._ps_endpoints += "127.0.0.1:%s," % (
                        self._find_free_port())
            else:
                for i in range(0, 4):
                    self._ps_endpoints += "127.0.0.1:%s," % (DIST_UT_PORT + i)
                DIST_UT_PORT += 4
905
            self._ps_endpoints = self._ps_endpoints[:-1]
W
Wu Yi 已提交
906

907 908 909 910 911 912
        # NOTE: we reuse ps_endpoints as nccl2 worker endpoints
        worker_endpoints = self._ps_endpoints.split(",")
        if nccl2_reduce_layer:
            update_method = "nccl2_reduce_layer"
        else:
            update_method = "nccl2"
W
Wu Yi 已提交
913

914
        trainer_num = len(worker_endpoints)
W
Wu Yi 已提交
915

916 917 918 919 920 921 922 923
        procs = []
        pipes = []
        for i in range(0, trainer_num):
            tr_cmd, tr_env = self._get_nccl2_trainer_cmd(
                model, worker_endpoints[i], update_method, i, trainer_num)
            tr_env.update(envs)
            print("use_hallreduce:{} tr_cmd:{}, env: {}".format(
                self._use_hallreduce, tr_cmd, tr_env))
W
Wu Yi 已提交
924

925
            tr_pipe = open(log_name + "_tr{}_err.log".format(i), "wb")
W
Wu Yi 已提交
926

927
            print_to_err(
928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945
                type(self).__name__,
                "going to start process {} with nccl2".format(i))
            tr_proc = subprocess.Popen(
                tr_cmd.strip().split(" "),
                stdout=subprocess.PIPE,
                stderr=tr_pipe,
                env=tr_env)

            procs.append(tr_proc)
            pipes.append(tr_pipe)

        outs = []
        for i in range(0, trainer_num):
            tr_out, tr_err = procs[i].communicate()
            outs.append(tr_out)
            pipes[i].close()
            sys.stderr.write('trainer {} stderr: {}\n'.format(i, tr_err))

946 947 948
        if check_error_log:
            print("outs[0]:", outs[0])
            print("outs[1]:", outs[1])
949
        return pickle.loads(outs[0]), pickle.loads(outs[1])
950

951
    def _get_required_envs(self, check_error_log=False, need_envs={}):
952 953 954 955 956 957
        # TODO(typhoonzero): should auto adapt GPU count on the machine.
        required_envs = {
            "PATH": os.getenv("PATH", ""),
            "PYTHONPATH": os.getenv("PYTHONPATH", ""),
            "LD_LIBRARY_PATH": os.getenv("LD_LIBRARY_PATH", ""),
            "FLAGS_fraction_of_gpu_memory_to_use": "0.15",
G
guru4elephant 已提交
958
            "FLAGS_rpc_deadline": "30000",  # 5sec to fail fast
959
            "FLAGS_rpc_retry_bind_port": "50",
960
            "FLAGS_cudnn_deterministic": "1",
961
            "FLAGS_rpc_disable_reuse_port": "1",
W
Wu Yi 已提交
962
            "http_proxy": "",
963 964
            "NCCL_P2P_DISABLE": "1",
            "NCCL_SHM_DISABLE": "1"
965 966 967
        }

        if check_error_log:
968
            required_envs["GLOG_vmodule"] = \
969 970
                "fused_all_reduce_op_handle=10,all_reduce_op_handle=10,alloc_continuous_space_op=10,fuse_all_reduce_op_pass=10," \
                "alloc_continuous_space_for_grad_pass=10,fast_threaded_ssa_graph_executor=10,executor=10,operator=10," \
971
                "sparse_all_reduce_op_handle=10,gen_nccl_id_op=10,nccl_helper=10,grpc_client=10,grpc_server=10,request_handler_impl=10"
972 973
            required_envs["GLOG_logtostderr"] = "1"

974 975 976 977 978 979 980 981 982
        required_envs.update(need_envs)
        return required_envs

    def check_with_place(self,
                         model_file,
                         delta=1e-3,
                         check_error_log=False,
                         need_envs={},
                         log_name=""):
983

984 985
        required_envs = self._get_required_envs(check_error_log, need_envs)

T
tangwei12 已提交
986
        local_losses \
987
            = self._run_local(model_file, required_envs,
988 989
                              check_error_log, log_name=log_name)

W
Wu Yi 已提交
990
        if self._nccl2_mode:
W
Wu Yi 已提交
991 992
            if self._nccl2_reduce_layer:
                tr0_losses, tr1_losses = self._run_cluster_nccl2(
993 994 995 996 997
                    model_file,
                    required_envs,
                    True,
                    check_error_log,
                    log_name=log_name)
W
Wu Yi 已提交
998 999
            else:
                tr0_losses, tr1_losses = self._run_cluster_nccl2(
1000 1001 1002 1003 1004
                    model_file,
                    required_envs,
                    False,
                    check_error_log,
                    log_name=log_name)
W
Wu Yi 已提交
1005 1006
        else:
            tr0_losses, tr1_losses = self._run_cluster(
1007
                model_file, required_envs, check_error_log, log_name=log_name)
1008 1009

        for step_id in range(RUN_STEP):
W
Wu Yi 已提交
1010 1011 1012
            local_loss = local_losses[step_id]
            tr0_loss = tr0_losses[step_id]
            tr1_loss = tr1_losses[step_id]
Y
Yan Xu 已提交
1013
            dist_loss = (np.array([tr0_loss]) + np.array([tr1_loss])) / 2
W
Wu Yi 已提交
1014 1015
            print("=======", local_loss, ":", dist_loss[0], "=======")
            self.assertAlmostEqual(local_loss, dist_loss[0], delta=delta)
1016 1017 1018 1019 1020 1021 1022

    def check_with_place_multi_cards(self,
                                     model_file,
                                     delta=1e-3,
                                     check_error_log=False,
                                     need_envs={},
                                     log_name=""):
1023

1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051
        # need open p2p or shm otherwise multi cards mode will hang
        need_envs.update({"NCCL_P2P_DISABLE": "0", "NCCL_SHM_DISABLE": "0"})

        required_envs = self._get_required_envs(check_error_log, need_envs)

        if self._use_dgc:
            multi_cards_losses = self._run_local(
                model_file,
                required_envs,
                check_error_log,
                log_name=log_name + "_dgc_2cards",
                gpus="0,1")

            self._use_dgc = False
            base_losses = self._run_local(
                model_file,
                required_envs,
                check_error_log,
                log_name=log_name + "_base_2cards",
                gpus="0,1")

            self._use_dgc = True

            for step_id in range(RUN_STEP):
                base_loss = base_losses[step_id]
                multi_cards_loss = multi_cards_losses[step_id]
                print("=======", base_loss, ":", multi_cards_loss, "=======")
                self.assertAlmostEqual(base_loss, multi_cards_loss, delta=delta)