test_dist_base.py 51.7 KB
Newer Older
X
Xin Pan 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13
#   Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
14 15

from __future__ import print_function
X
Xin Pan 已提交
16 17
import time

18
import ast
X
Xin Pan 已提交
19 20 21 22 23
import unittest
import os
import sys
import signal
import subprocess
24
import six
W
Wu Yi 已提交
25
import argparse
W
Wu Yi 已提交
26
import pickle
27
import random
W
Wu Yi 已提交
28
import numpy as np
29
import time
30 31

import paddle
32
import paddle.fluid as fluid
33
from paddle.fluid import compiler
34 35 36
import paddle.fluid.dygraph as dygraph
from paddle.fluid.dygraph.base import to_variable
from paddle.fluid.dygraph.parallel import DataParallel
37

38 39 40
from paddle.fluid.incubate.fleet.collective import fleet, DistributedStrategy
import paddle.fluid.incubate.fleet.base.role_maker as role_maker

Y
Yan Xu 已提交
41
RUN_STEP = 5
42
DEFAULT_BATCH_SIZE = 2
43
DIST_UT_PORT = 0
44

T
typhoonzero 已提交
45

46
def print_to_out(out_losses):
T
tianshuo78520a 已提交
47
    sys.stdout.buffer.write(pickle.dumps(out_losses))
48 49 50


def print_to_err(class_name, log_str):
51 52
    localtime = time.asctime(time.localtime(time.time()))
    print_str = localtime + "\t" + class_name + "\t" + log_str
T
tianshuo78520a 已提交
53
    sys.stderr.buffer.write(pickle.dumps(print_str))
G
guru4elephant 已提交
54 55


56 57 58 59
def eprint(*args, **kwargs):
    print(*args, file=sys.stderr, **kwargs)


T
typhoonzero 已提交
60
class TestDistRunnerBase(object):
W
Wu Yi 已提交
61 62 63
    def get_model(self,
                  batch_size=DEFAULT_BATCH_SIZE,
                  lr=0.1,
64
                  single_device=False,
J
Jiangxinz 已提交
65 66
                  use_dgc=False,
                  dist_strategy=None):
T
typhoonzero 已提交
67 68 69
        raise NotImplementedError(
            "get_model should be implemented by child classes.")

70
    @staticmethod
W
Wu Yi 已提交
71 72 73 74 75
    def get_transpiler(trainer_id,
                       main_program,
                       pserver_endpoints,
                       trainers,
                       sync_mode,
76
                       dc_asgd=False,
77
                       current_endpoint=None,
T
tangwei12 已提交
78 79
                       nccl_comm_num=1,
                       hogwild_mode=False):
T
typhoonzero 已提交
80
        # NOTE: import fluid until runtime, or else forking processes will cause error.
81
        config = fluid.DistributeTranspilerConfig()
W
Wu Yi 已提交
82
        config.enable_dc_asgd = dc_asgd
83
        config.sync_mode = sync_mode
T
tangwei12 已提交
84 85
        config.runtime_split_send_recv = hogwild_mode

86 87
        if nccl_comm_num > 1:
            config.nccl_comm_num = nccl_comm_num
88
        # config.runtime_split_send_recv = True
89
        t = fluid.DistributeTranspiler(config=config)
T
typhoonzero 已提交
90 91 92 93
        t.transpile(
            trainer_id=trainer_id,
            program=main_program,
            pservers=pserver_endpoints,
W
Wu Yi 已提交
94
            trainers=trainers,
T
tangwei12 已提交
95
            sync_mode=sync_mode,
96
            current_endpoint=current_endpoint)
T
typhoonzero 已提交
97 98
        return t

W
Wu Yi 已提交
99
    def run_pserver(self, args):
W
Wu Yi 已提交
100
        self.lr = args.lr
101
        self.get_model(batch_size=args.batch_size)
102
        # NOTE: pserver should not call memory optimize
T
tangwei12 已提交
103 104 105 106 107 108 109 110 111

        t = self.get_transpiler(
            trainer_id=args.trainer_id,
            main_program=fluid.default_main_program(),
            pserver_endpoints=args.endpoints,
            trainers=args.trainers,
            sync_mode=args.sync_mode,
            dc_asgd=args.dc_asgd,
            hogwild_mode=args.hogwild)
W
Wu Yi 已提交
112 113 114
        pserver_prog = t.get_pserver_program(args.current_endpoint)
        startup_prog = t.get_startup_program(args.current_endpoint,
                                             pserver_prog)
Y
Yancey1989 已提交
115

T
typhoonzero 已提交
116 117 118
        place = fluid.CPUPlace()
        exe = fluid.Executor(place)
        exe.run(startup_prog)
119
        print_to_err(type(self).__name__, "run pserver startup program done.")
T
typhoonzero 已提交
120
        exe.run(pserver_prog)
121
        print_to_err(type(self).__name__, "run pserver main program done.")
T
typhoonzero 已提交
122

123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146
    def run_pipeline_trainer(self, args):
        self.lr = args.lr

        dist_strategy = DistributedStrategy()
        test_program, avg_cost, train_reader, test_reader, batch_acc, predict, data_loader = \
            self.get_model(batch_size=args.batch_size, dist_strategy=dist_strategy)

        device_id = int(os.getenv("FLAGS_selected_gpus", "0"))
        eprint(type(self).__name__, "device_id: %d." % device_id)
        place = fluid.CUDAPlace(device_id)

        exe = fluid.Executor(place)
        exe.run(fluid.default_startup_program())
        eprint(type(self).__name__, "run worker startup program done.")

        data_loader.set_sample_list_generator(train_reader, place)
        data_loader.start()
        print_to_err(type(self).__name__, "begin to train on trainer")
        out_losses = []
        for i in six.moves.xrange(RUN_STEP):
            loss = exe.run(fluid.default_main_program(), fetch_list=[avg_cost])
            loss = loss[0] if loss else None
            out_losses.append(loss)
            print_to_err(type(self).__name__, "run step %d finished" % i)
147
        data_loader.reset()
148 149
        print_to_err(type(self).__name__, "trainer run finished")

T
tianshuo78520a 已提交
150
        sys.stdout.buffer.write(pickle.dumps(out_losses))
151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181

        if args.save_model:
            model_save_dir = "/tmp"
            if fleet.worker_index() == 0:
                model_save_dir_fluid = os.path.join(model_save_dir,
                                                    "fluid_persistables")
                model_save_dir_fleet = os.path.join(model_save_dir,
                                                    "fleet_persistables")
                infer_save_dir_fluid = os.path.join(model_save_dir,
                                                    "fluid_infer")
                infer_save_dir_fleet = os.path.join(model_save_dir,
                                                    "fleet_infer")
            else:
                model_save_dir_fluid = os.path.join(model_save_dir,
                                                    "fluid_persistables_2")
                model_save_dir_fleet = os.path.join(model_save_dir,
                                                    "fleet_persistables_2")
                infer_save_dir_fluid = os.path.join(model_save_dir,
                                                    "fluid_infer_2")
                infer_save_dir_fleet = os.path.join(model_save_dir,
                                                    "fleet_infer_2")
            fluid.io.save_persistables(exe, model_save_dir_fluid,
                                       fleet._origin_program)
            fleet.save_persistables(executor=exe, dirname=model_save_dir_fleet)
            feeded_var_names = [var.name for var in feed_var_list]
            fluid.io.save_inference_model(infer_save_dir_fluid,
                                          feeded_var_names, [avg_cost], exe,
                                          fleet._origin_program)
            fleet.save_inference_model(exe, infer_save_dir_fleet,
                                       feeded_var_names, [avg_cost])

182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246
    def run_use_fleet_api_20_trainer(self, args):
        """
        1. remove codes for DistributedStrategy and leave the DistributedStrategy part to get_model()
        2. to run with fleet 2.0 api, set flags _use_fleet_api and _use_fleet_api_20 to True
        3. for now, not support test for model save
        """
        assert args.update_method == "nccl2" or "bkcl"

        self.lr = args.lr
        print_to_err("use_fleet 2.0", "fleet.node_num:")

        test_program, avg_cost, train_reader, test_reader, batch_acc, predict = \
            self.get_model(batch_size=args.batch_size)

        if fluid.core.is_compiled_with_cuda():
            device_id = int(os.getenv("FLAGS_selected_gpus", "0"))
            place = fluid.CUDAPlace(device_id)
        elif fluid.core.is_compiled_with_xpu():
            device_id = int(os.getenv("FLAGS_selected_xpus", "0"))
            place = fluid.XPUPlace(device_id)
        else:
            raise ValueError(
                "fleet dygraph api must in paddlepaddle-xpu or paddlepaddle-gpu."
            )

        exe = fluid.Executor(place)
        exe.run(fluid.default_startup_program())
        eprint(type(self).__name__, "run worker startup program done.")

        feed_var_list = [
            var
            for var in fluid.default_main_program().global_block().vars.values()
            if var.is_data
        ]

        eprint("feed_var_list:", feed_var_list)

        if feed_var_list[0].name == 'label':
            feed_var_list = feed_var_list[::-1]

        feeder = fluid.DataFeeder(feed_var_list, place)
        reader_generator = train_reader()

        def get_data():
            origin_batch = next(reader_generator)
            if args.update_method != "local" and args.use_reader_alloc:
                new_batch = []
                for offset, item in enumerate(origin_batch):
                    if offset % 2 == args.trainer_id:
                        new_batch.append(item)
                return new_batch
            else:
                return origin_batch

        print_to_err(type(self).__name__, "begin to train on trainer")
        out_losses = []
        for i in six.moves.xrange(RUN_STEP):
            loss, = exe.run(fluid.default_main_program(),
                            fetch_list=[avg_cost.name],
                            feed=feeder.feed(get_data()))
            out_losses.append(loss[0])
            print_to_err(type(self).__name__, "run step %d finished" % i)
        print_to_err(type(self).__name__, "trainer run finished")
        print_to_err(type(self).__name__, "dist losses: {}".format(out_losses))

T
tianshuo78520a 已提交
247
        sys.stdout.buffer.write(pickle.dumps(out_losses))
248

249 250
    def run_use_fleet_api_trainer(self, args):
        assert args.update_method == "nccl2" or "bkcl"
251 252 253 254 255 256 257 258

        self.lr = args.lr

        exec_strategy = fluid.ExecutionStrategy()
        exec_strategy.num_threads = 1

        dist_strategy = DistributedStrategy()
        dist_strategy.exec_strategy = exec_strategy
T
tangwei12 已提交
259
        dist_strategy.fuse_memory_size = 1  # MB
260
        dist_strategy.fuse_laryer_size = 1
261 262 263 264
        if args.use_local_sgd:
            dist_strategy.use_local_sgd = True
        if args.ut4grad_allreduce:
            dist_strategy._ut4grad_allreduce = True
265 266
        if args.sync_batch_norm:
            dist_strategy.sync_batch_norm = True
267 268 269

        role = role_maker.PaddleCloudRoleMaker(is_collective=True)
        fleet.init(role)
270
        print_to_err("use_fleet", "fleet.node_num:")
T
tangwei12 已提交
271 272
        # "fleet.node_id:", fleet.node_id(),
        # "fleet.trainer_num:", fleet.worker_num())
273 274

        test_program, avg_cost, train_reader, test_reader, batch_acc, predict = \
T
tangwei12 已提交
275
            self.get_model(batch_size=args.batch_size, dist_strategy=dist_strategy)
276 277 278 279

        trainer_prog = fleet._origin_program
        dist_prog = fleet.main_program

280 281 282 283 284 285 286 287 288 289
        if fluid.core.is_compiled_with_cuda():
            device_id = int(os.getenv("FLAGS_selected_gpus", "0"))
            place = fluid.CUDAPlace(device_id)
        elif fluid.core.is_compiled_with_xpu():
            device_id = int(os.getenv("FLAGS_selected_xpus", "0"))
            place = fluid.XPUPlace(device_id)
        else:
            raise ValueError(
                "fleet dygraph api must in paddlepaddle-xpu or paddlepaddle-gpu."
            )
290 291 292 293 294 295 296 297 298 299

        exe = fluid.Executor(place)
        exe.run(fluid.default_startup_program())
        eprint(type(self).__name__, "run worker startup program done.")

        feed_var_list = [
            var for var in trainer_prog.global_block().vars.values()
            if var.is_data
        ]

300 301 302 303 304 305 306
        eprint("feed_var_list:", feed_var_list)

        # tmp add this code to pass python35 gcc8 CI
        # Fixme(gongweibao, wangxi), need fix fleet api program order
        if feed_var_list[0].name == 'label':
            feed_var_list = feed_var_list[::-1]

307 308 309 310 311 312 313 314 315 316 317 318 319 320
        feeder = fluid.DataFeeder(feed_var_list, place)
        reader_generator = train_reader()

        def get_data():
            origin_batch = next(reader_generator)
            if args.update_method != "local" and args.use_reader_alloc:
                new_batch = []
                for offset, item in enumerate(origin_batch):
                    if offset % 2 == args.trainer_id:
                        new_batch.append(item)
                return new_batch
            else:
                return origin_batch

321
        print_to_err(type(self).__name__, "begin to train on trainer")
322 323 324 325 326 327
        out_losses = []
        for i in six.moves.xrange(RUN_STEP):
            loss, = exe.run(dist_prog,
                            fetch_list=[avg_cost.name],
                            feed=feeder.feed(get_data()))
            out_losses.append(loss[0])
328 329
            print_to_err(type(self).__name__, "run step %d finished" % i)
        print_to_err(type(self).__name__, "trainer run finished")
330

T
tianshuo78520a 已提交
331
        sys.stdout.buffer.write(pickle.dumps(out_losses))
332

333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362
        if args.save_model:
            model_save_dir = "/tmp"
            if fleet.worker_index() == 0:
                model_save_dir_fluid = os.path.join(model_save_dir,
                                                    "fluid_persistables")
                model_save_dir_fleet = os.path.join(model_save_dir,
                                                    "fleet_persistables")
                infer_save_dir_fluid = os.path.join(model_save_dir,
                                                    "fluid_infer")
                infer_save_dir_fleet = os.path.join(model_save_dir,
                                                    "fleet_infer")
            else:
                model_save_dir_fluid = os.path.join(model_save_dir,
                                                    "fluid_persistables_2")
                model_save_dir_fleet = os.path.join(model_save_dir,
                                                    "fleet_persistables_2")
                infer_save_dir_fluid = os.path.join(model_save_dir,
                                                    "fluid_infer_2")
                infer_save_dir_fleet = os.path.join(model_save_dir,
                                                    "fleet_infer_2")
            fluid.io.save_persistables(exe, model_save_dir_fluid,
                                       fleet._origin_program)
            fleet.save_persistables(executor=exe, dirname=model_save_dir_fleet)
            feeded_var_names = [var.name for var in feed_var_list]
            fluid.io.save_inference_model(infer_save_dir_fluid,
                                          feeded_var_names, [avg_cost], exe,
                                          fleet._origin_program)
            fleet.save_inference_model(exe, infer_save_dir_fleet,
                                       feeded_var_names, [avg_cost])

363
    def run_trainer(self, args):
W
Wu Yi 已提交
364
        self.lr = args.lr
W
Wu Yi 已提交
365 366 367
        if args.nccl2_reduce_layer_local_run:
            test_program, avg_cost, train_reader, test_reader, batch_acc, predict = \
                self.get_model(batch_size=args.batch_size, single_device=True)
368 369 370
        elif args.use_dgc:
            test_program, avg_cost, train_reader, test_reader, batch_acc, predict = \
                self.get_model(batch_size=args.batch_size, use_dgc=args.use_dgc)
W
Wu Yi 已提交
371 372 373
        else:
            test_program, avg_cost, train_reader, test_reader, batch_acc, predict = \
                self.get_model(batch_size=args.batch_size)
374

W
Wu Yi 已提交
375
        if args.update_method == "pserver":
376
            print_to_err(
377 378
                type(self).__name__,
                "begin to run transpile on trainer with pserver mode")
T
tangwei12 已提交
379 380 381 382 383 384 385 386 387
            t = self.get_transpiler(
                trainer_id=args.trainer_id,
                main_program=fluid.default_main_program(),
                pserver_endpoints=args.endpoints,
                trainers=args.trainers,
                sync_mode=args.sync_mode,
                dc_asgd=args.dc_asgd,
                hogwild_mode=args.hogwild)

T
typhoonzero 已提交
388
            trainer_prog = t.get_trainer_program()
389
            print_to_err(
390 391
                type(self).__name__,
                "get trainer program done with pserver mode.")
W
Wu Yi 已提交
392
        elif args.update_method == "nccl2" or args.update_method == "nccl2_reduce_layer":
W
Wu Yi 已提交
393 394 395
            # transpile for nccl2
            config = fluid.DistributeTranspilerConfig()
            config.mode = "nccl2"
396
            config.nccl_comm_num = args.nccl_comm_num
397 398 399
            if args.use_hallreduce:
                config.use_hierarchical_allreduce = True
                config.hierarchical_allreduce_inter_nranks = args.hallreduce_inter_nranks
400
            print_to_err(
401 402
                type(self).__name__,
                "begin to run transpile on trainer with nccl2 mode")
W
Wu Yi 已提交
403 404 405 406 407 408 409
            nccl2_t = fluid.DistributeTranspiler(config=config)
            nccl2_t.transpile(
                args.trainer_id,
                program=fluid.default_main_program(),
                startup_program=fluid.default_startup_program(),
                trainers=args.endpoints,
                current_endpoint=args.current_endpoint)
410
            print_to_err(
411 412
                type(self).__name__,
                "get trainer program done. with nccl2 mode")
W
Wu Yi 已提交
413
            trainer_prog = fluid.default_main_program()
T
typhoonzero 已提交
414
        else:
415
            print_to_err(
416 417
                type(self).__name__,
                "do nothing about main program, just use it")
T
typhoonzero 已提交
418
            trainer_prog = fluid.default_main_program()
419
            print_to_err(type(self).__name__, "use main program done.")
T
typhoonzero 已提交
420

421 422 423
        # FIXME(gongwb):wait pserver initialization.
        time.sleep(1)

424
        if args.use_cuda:
425 426
            device_id = int(os.getenv("FLAGS_selected_gpus", "0"))
            place = fluid.CUDAPlace(device_id)
427 428 429
        else:
            place = fluid.CPUPlace()

430 431
        exe = fluid.Executor(place)
        exe.run(fluid.default_startup_program())
432
        print_to_err(type(self).__name__, "run worker startup program done.")
T
typhoonzero 已提交
433

W
Wu Yi 已提交
434 435
        exec_strategy = fluid.ExecutionStrategy()
        exec_strategy.num_threads = 1
436

W
Wu Yi 已提交
437
        build_stra = fluid.BuildStrategy()
438 439 440
        # FIXME force disable enable_inplace and memory_optimize
        build_stra.enable_inplace = False
        build_stra.memory_optimize = False
W
Wu Yi 已提交
441

442 443 444 445
        if args.fuse_all_reduce is not None:
            sys.stderr.write('fuse_all_reduce={}'.format(args.fuse_all_reduce))
            build_stra.fuse_all_reduce_ops = args.fuse_all_reduce

T
tangwei12 已提交
446 447 448
        if args.hogwild:
            build_stra.async_mode = True

449 450 451
        if args.enable_backward_deps:
            build_stra.enable_backward_optimizer_op_deps = True

W
Wu Yi 已提交
452 453 454 455 456
        if args.use_reduce:
            build_stra.reduce_strategy = fluid.BuildStrategy.ReduceStrategy.Reduce
        else:
            build_stra.reduce_strategy = fluid.BuildStrategy.ReduceStrategy.AllReduce

W
Wu Yi 已提交
457
        pass_builder = None
X
Xin Pan 已提交
458
        if args.batch_merge_repeat > 1:
X
fix  
Xin Pan 已提交
459
            pass_builder = build_stra._finalize_strategy_and_create_passes()
460
            mypass = pass_builder.insert_pass(0, "multi_batch_merge_pass")
461
            mypass.set("num_repeats", args.batch_merge_repeat)
X
Xin Pan 已提交
462

W
Wu Yi 已提交
463
        if args.update_method == "nccl2" or args.update_method == "nccl2_reduce_layer":
464 465
            build_stra.num_trainers = len(args.endpoints.split(","))
            build_stra.trainer_id = args.trainer_id
W
Wu Yi 已提交
466
        else:
W
Wu Yi 已提交
467
            # case args.update_method == "nccl2_reduce_layer":
468 469
            build_stra.num_trainers = 1
            build_stra.trainer_id = 0
W
Wu Yi 已提交
470

471
        print_to_err(type(self).__name__, "begin to compile with data parallel")
X
Xin Pan 已提交
472
        binary = compiler.CompiledProgram(trainer_prog).with_data_parallel(
W
Wu Yi 已提交
473
            loss_name=avg_cost.name,
W
Wu Yi 已提交
474
            build_strategy=build_stra,
W
Wu Yi 已提交
475
            exec_strategy=exec_strategy)
476
        print_to_err(type(self).__name__, "program compiled with data parallel")
T
typhoonzero 已提交
477 478 479 480 481 482 483

        feed_var_list = [
            var for var in trainer_prog.global_block().vars.values()
            if var.is_data
        ]

        feeder = fluid.DataFeeder(feed_var_list, place)
484
        reader_generator = train_reader()
T
typhoonzero 已提交
485

486 487
        def get_data():
            origin_batch = next(reader_generator)
W
Wu Yi 已提交
488
            if args.update_method != "local" and args.use_reader_alloc:
489 490 491 492 493 494 495
                new_batch = []
                for offset, item in enumerate(origin_batch):
                    if offset % 2 == args.trainer_id:
                        new_batch.append(item)
                return new_batch
            else:
                return origin_batch
T
typhoonzero 已提交
496

497
        print_to_err(type(self).__name__, "begin to train on trainer")
W
Wu Yi 已提交
498
        out_losses = []
499
        for i in six.moves.xrange(RUN_STEP):
500 501
            loss, = exe.run(binary,
                            fetch_list=[avg_cost.name],
502
                            feed=feeder.feed(get_data()))
W
Wu Yi 已提交
503
            out_losses.append(loss[0])
504 505
            print_to_err(type(self).__name__, "run step %d finished" % i)
        print_to_err(type(self).__name__, "trainer run finished")
506

507
        print_to_out(out_losses)
T
typhoonzero 已提交
508 509


510 511 512 513 514 515 516 517 518
class TestParallelDyGraphRunnerBase(object):
    def get_model(self):
        raise NotImplementedError(
            "get_model should be implemented by child classes.")

    def run_one_loop(self, model, opt, data):
        raise NotImplementedError(
            "train_one_loop should be implemented by the child classes.")

519 520 521 522 523 524 525 526 527 528
    def _get_data(self, batch, args):
        if args.update_method != "local":
            new_batch = []
            for offset, item in enumerate(batch):
                if offset % 2 == args.trainer_id:
                    new_batch.append(item)
            return new_batch
        else:
            return batch

529
    def run_trainer(self, args):
Y
Yan Xu 已提交
530

531
        seed = 90
532 533 534 535 536 537 538 539
        if fluid.core.is_compiled_with_cuda():
            device_id = int(os.getenv("FLAGS_selected_gpus", "0"))
            place = fluid.CUDAPlace(device_id)
        elif fluid.core.is_compiled_with_xpu():
            device_id = int(os.getenv("FLAGS_selected_xpus", "0"))
            place = fluid.XPUPlace(device_id)
        else:
            assert ("Only support CUDAPlace or XPUPlace for now.")
540 541 542 543

        with fluid.dygraph.guard(place):
            fluid.default_startup_program().random_seed = seed
            fluid.default_main_program().random_seed = seed
Y
Yan Xu 已提交
544 545
            np.random.seed(seed)
            import random
546
            random.seed(seed)
547 548
            model, train_reader, opt = self.get_model()
            nranks = len(args.endpoints.split(",")) if args.endpoints else 1
Y
Yan Xu 已提交
549

550 551
            #if args.update_method == "nccl2":
            if args.update_method == "nccl2" or args.update_method == "bkcl":
552 553 554 555 556
                strategy = dygraph.parallel.ParallelStrategy()
                strategy.nranks = nranks
                strategy.local_rank = args.trainer_id
                strategy.trainer_endpoints = args.endpoints.split(",")
                strategy.current_endpoint = args.current_endpoint
557
                print_to_err(
558 559
                    type(self).__name__,
                    "begin to prepare context in dygraph with nccl2")
560
                dygraph.parallel.prepare_context(strategy)
561 562 563 564 565 566
                if not args.find_unused_parameters:
                    model = dygraph.parallel.DataParallel(
                        model, strategy, find_unused_parameters=False)
                else:
                    model = dygraph.parallel.DataParallel(
                        model, strategy, find_unused_parameters=True)
567
                print_to_err(type(self).__name__, "model built in dygraph")
568
            out_losses = []
569
            print_to_err(type(self).__name__, "begin to run dygraph training")
570
            for step_id, data in enumerate(train_reader()):
571
                data = self._get_data(data, args)
572 573 574
                if step_id == RUN_STEP:
                    break
                loss = self.run_one_loop(model, opt, data)
G
guru4elephant 已提交
575
                if step_id % 10 == 0:
576
                    print_to_err(
577
                        type(self).__name__,
578
                        "loss at step %d: %f" % (step_id, loss.numpy()))
Y
Yan Xu 已提交
579
                out_losses.append(loss.numpy())
580 581 582 583

                loss.backward()

                opt.minimize(loss)
584 585
                if not args.accumulate_gradient:
                    model.clear_gradients()
586
        print_to_out(out_losses)
587

588 589 590 591 592 593 594 595 596
    def run_trainer_with_spawn(self, args):
        # 1. enable dygraph
        paddle.disable_static()

        # 2. init seed
        seed = 90
        paddle.static.default_startup_program().random_seed = seed
        paddle.static.default_main_program().random_seed = seed
        np.random.seed(seed)
597
        random.seed(seed)
598 599 600 601 602 603 604 605 606 607
        # get trainer id
        args.trainer_id = paddle.distributed.get_rank()

        # 3. init parallel env
        if args.update_method == "nccl2":
            paddle.distributed.init_parallel_env()

        # 4. train model
        model, train_reader, opt = self.get_model()
        if args.update_method == "nccl2":
608 609 610 611
            if args.find_unused_parameters:
                model = paddle.DataParallel(model, find_unused_parameters=True)
            else:
                model = paddle.DataParallel(model, find_unused_parameters=False)
612 613 614 615 616 617 618 619 620 621 622 623 624 625 626

        out_losses = []
        for step_id, data in enumerate(train_reader()):
            data = self._get_data(data, args)
            if step_id == RUN_STEP:
                break
            loss = self.run_one_loop(model, opt, data)
            out_losses.append(loss.numpy())

            loss.backward()

            opt.minimize(loss)
            model.clear_gradients()
        return out_losses

627
    def run_use_fleet_api_trainer(self, args):
628 629 630 631 632 633 634 635 636 637
        import paddle.distributed.fleet as fleet
        import paddle.distributed.fleet.base.role_maker as role_maker
        # 1. enable dygraph
        paddle.disable_static()

        # 2. init seed
        seed = 90
        paddle.static.default_startup_program().random_seed = seed
        paddle.static.default_main_program().random_seed = seed
        np.random.seed(seed)
638
        random.seed(seed)
639 640 641
        # get trainer id
        args.trainer_id = paddle.distributed.get_rank()

642 643
        # set strategy
        strategy = fleet.DistributedStrategy()
644 645
        if args.find_unused_parameters:
            strategy.find_unused_parameters = True
646

647
        # 3. init parallel env
648
        if args.update_method == "nccl2" or "bkcl":
649
            fleet.init(is_collective=True, strategy=strategy)
650 651 652

        # 4. train model
        model, train_reader, opt = self.get_model()
653
        if args.update_method == "nccl2" or "bkcl":
654 655 656 657 658 659 660 661 662 663 664 665 666 667
            opt = fleet.distributed_optimizer(opt)
            model = fleet.distributed_model(model)

        out_losses = []
        for step_id, data in enumerate(train_reader()):
            data = self._get_data(data, args)
            if step_id == RUN_STEP:
                break
            loss = self.run_one_loop(model, opt, data)
            out_losses.append(loss.numpy())

            loss.backward()

            opt.step()
668 669
            if not args.accumulate_gradient:
                opt.clear_grad()
670 671
        print_to_out(out_losses)

672

T
typhoonzero 已提交
673
def runtime_main(test_class):
W
Wu Yi 已提交
674 675 676 677
    parser = argparse.ArgumentParser(description='Run dist test.')
    parser.add_argument(
        '--role', type=str, required=True, choices=['pserver', 'trainer'])
    parser.add_argument('--endpoints', type=str, required=False, default="")
W
Wu Yi 已提交
678 679 680 681
    parser.add_argument(
        '--update_method',
        type=str,
        default="local",
682
        choices=["pserver", "nccl2", "bkcl", "local", "nccl2_reduce_layer"])
W
Wu Yi 已提交
683 684
    parser.add_argument('--trainer_id', type=int, required=False, default=0)
    parser.add_argument('--trainers', type=int, required=False, default=1)
685
    parser.add_argument('--nccl_comm_num', type=int, required=False, default=1)
686 687
    parser.add_argument('--enable_backward_deps', action='store_true')
    parser.add_argument('--use_hallreduce', action='store_true')
688
    parser.add_argument('--use_pipeline', action='store_true')
689
    parser.add_argument('--use_fleet_api', action='store_true')
690
    parser.add_argument('--use_fleet_api_20', action='store_true')
691 692
    parser.add_argument('--use_local_sgd', action='store_true')
    parser.add_argument('--ut4grad_allreduce', action='store_true')
693
    parser.add_argument(
694
        '--hallreduce_inter_nranks', type=int, required=False, default=2)
W
Wu Yi 已提交
695 696 697
    parser.add_argument(
        '--current_endpoint', type=str, required=False, default="")
    parser.add_argument('--sync_mode', action='store_true')
698
    parser.add_argument('--use_cuda', action='store_true')
699
    parser.add_argument('--use_xpu', action='store_true')
700
    parser.add_argument('--use_dgc', action='store_true')
701
    parser.add_argument('--accumulate_gradient', action='store_true')
702
    parser.add_argument('--find_unused_parameters', action='store_true')
W
Wu Yi 已提交
703
    parser.add_argument('--use_reduce', action='store_true')
W
Wu Yi 已提交
704
    parser.add_argument('--dc_asgd', action='store_true')
T
tangwei12 已提交
705
    parser.add_argument('--hogwild', action='store_true')
706
    parser.add_argument('--save_model', action='store_true')
707
    parser.add_argument(
W
Wu Yi 已提交
708
        '--use_reader_alloc', action='store_true', required=False)
709
    parser.add_argument('--batch_size', required=False, type=int, default=2)
W
Wu Yi 已提交
710
    parser.add_argument('--lr', required=False, type=float, default=0.001)
711 712
    parser.add_argument(
        '--batch_merge_repeat', required=False, type=int, default=1)
W
Wu Yi 已提交
713 714 715 716 717
    parser.add_argument(
        '--nccl2_reduce_layer_local_run',
        required=False,
        type=bool,
        default=False)
718
    parser.add_argument('--sync_batch_norm', action='store_true')
719 720 721 722 723
    parser.add_argument(
        '--fuse_all_reduce',
        required=False,
        type=ast.literal_eval,
        default=None)
W
Wu Yi 已提交
724 725

    args = parser.parse_args()
T
typhoonzero 已提交
726 727

    model = test_class()
W
Wu Yi 已提交
728
    if args.role == "pserver" and args.update_method == "pserver":
W
Wu Yi 已提交
729
        model.run_pserver(args)
730 731
    elif args.use_fleet_api:
        model.run_use_fleet_api_trainer(args)
732 733
    elif args.use_fleet_api_20:
        model.run_use_fleet_api_20_trainer(args)
734 735
    elif args.use_pipeline:
        model.run_pipeline_trainer(args)
T
typhoonzero 已提交
736
    else:
737
        model.run_trainer(args)
X
Xin Pan 已提交
738

M
minqiyang 已提交
739

M
minqiyang 已提交
740
import paddle.compat as cpt
Y
Yancey1989 已提交
741 742
import socket
from contextlib import closing
M
minqiyang 已提交
743

X
Xin Pan 已提交
744 745

class TestDistBase(unittest.TestCase):
W
Wu Yi 已提交
746 747 748
    def _setup_config(self):
        raise NotImplementedError("tests should have _setup_config implemented")

749 750 751
    def _after_setup_config(self):
        if self._enforce_place == "CPU":
            self.__use_cuda = False
752
            self.__use_xpu = False
753
            self._use_dgc = False
754 755
        elif self._enforce_place == "GPU":
            self.__use_cuda = True
756 757 758 759 760
            self.__use_xpu = False
        elif self._enforce_place == "XPU":
            self.__use_cuda = False
            self.__use_xpu = True
            self._use_dgc = False
761 762 763 764 765
        else:
            if fluid.core.is_compiled_with_cuda():
                self.__use_cuda = True
            else:
                self.__use_cuda = False
766 767 768 769
                self._use_dgc = False

        if self._use_reduce:
            assert not self._use_dgc
770

X
Xin Pan 已提交
771 772 773
    def setUp(self):
        self._trainers = 2
        self._pservers = 2
Y
Yancey1989 已提交
774
        self._port_set = set()
M
minqiyang 已提交
775
        self._python_interp = sys.executable
W
Wu Yi 已提交
776
        self._sync_mode = True
T
tangwei12 已提交
777
        self._hogwild_mode = False
778
        self._enforce_place = None
W
Wu Yi 已提交
779
        self._use_reduce = False
W
Wu Yi 已提交
780
        self._dc_asgd = False  # must use with async mode
781
        self._use_reader_alloc = True
W
Wu Yi 已提交
782
        self._nccl2_mode = False
783
        self._bkcl_mode = False
784
        self._pipeline_mode = False
785
        self._mp_mode = False
W
Wu Yi 已提交
786 787 788 789 790
        # FIXME(typhoonzero): I added this stupid argument to enable
        # testing allreduce layers, which users can call layers.allreduce
        # to accumulate tensors at anywhere. Find a better way to do this
        # test, reduce check this argument everywhere.
        self._nccl2_reduce_layer = False
W
Wu Yi 已提交
791
        self._lr = 0.001
792
        self._use_dgc = False
793
        self._dygraph = False
794
        self._nccl_comm_num = 1
795
        self._enable_backward_deps = False
796
        self._use_fleet_api = False
797
        self._use_fleet_api_20 = False
798 799
        self._use_local_sgd = False
        self._ut4grad_allreduce = False
800
        self._use_hallreduce = False
801
        self._save_model = False
802
        self._fuse_all_reduce = None
803
        self._accumulate_gradient = False
804
        self._find_unused_parameters = False
W
Wu Yi 已提交
805
        self._setup_config()
806 807 808 809 810 811 812 813 814 815 816 817 818 819

        global DIST_UT_PORT
        if DIST_UT_PORT == 0 and os.getenv("PADDLE_DIST_UT_PORT"):
            DIST_UT_PORT = int(os.getenv("PADDLE_DIST_UT_PORT"))

        if DIST_UT_PORT == 0:
            self._ps_endpoints = "127.0.0.1:%s,127.0.0.1:%s" % (
                self._find_free_port(), self._find_free_port())
        else:
            print("set begin_port:", DIST_UT_PORT)
            self._ps_endpoints = "127.0.0.1:%s,127.0.0.1:%s" % (
                DIST_UT_PORT, DIST_UT_PORT + 1)
            DIST_UT_PORT += 2

820
        self._after_setup_config()
X
Xin Pan 已提交
821

Y
Yancey1989 已提交
822
    def _find_free_port(self):
Y
Yancey1989 已提交
823 824 825 826
        def __free_port():
            with closing(socket.socket(socket.AF_INET,
                                       socket.SOCK_STREAM)) as s:
                s.bind(('', 0))
827
                print_to_err(
828
                    type(self).__name__, "socket name: %s" % s.getsockname()[1])
Y
Yancey1989 已提交
829 830 831 832 833 834 835
                return s.getsockname()[1]

        while True:
            port = __free_port()
            if port not in self._port_set:
                self._port_set.add(port)
                return port
Y
Yancey1989 已提交
836

837 838 839 840 841
    def start_pserver(self,
                      model_file,
                      check_error_log,
                      required_envs,
                      log_name=""):
X
Xin Pan 已提交
842
        ps0_ep, ps1_ep = self._ps_endpoints.split(",")
843 844 845 846 847 848 849 850
        ps_cmd = "%s"

        if os.getenv('WITH_COVERAGE', 'OFF') == 'ON':
            required_envs['COVERAGE_FILE'] = os.getenv('COVERAGE_FILE', '')
            ps_cmd += " -m coverage run --branch -p"

        ps_cmd += " %s --role pserver --endpoints %s --trainer_id 0 --current_endpoint %s --trainers %d --update_method pserver"

W
Wu Yi 已提交
851
        ps0_cmd = ps_cmd % \
852 853
                  (self._python_interp, model_file, self._ps_endpoints, ps0_ep,
                   self._trainers)
W
Wu Yi 已提交
854
        ps1_cmd = ps_cmd % \
855 856
                  (self._python_interp, model_file, self._ps_endpoints, ps1_ep,
                   self._trainers)
W
Wu Yi 已提交
857 858 859 860

        if self._sync_mode:
            ps0_cmd += " --sync_mode"
            ps1_cmd += " --sync_mode"
X
Xin Pan 已提交
861

862 863
        print(ps0_cmd)
        print(ps1_cmd)
864 865
        ps0_pipe = open(log_name + "_ps0_err.log", "wb")
        ps1_pipe = open(log_name + "_ps1_err.log", "wb")
G
gongweibao 已提交
866

867
        print_to_err(type(self).__name__, "going to start pserver process 0")
X
Xin Pan 已提交
868
        ps0_proc = subprocess.Popen(
869 870 871 872
            ps0_cmd.strip().split(" "),
            stdout=subprocess.PIPE,
            stderr=ps0_pipe,
            env=required_envs)
873
        print_to_err(type(self).__name__, "going to start pserver process 1")
X
Xin Pan 已提交
874
        ps1_proc = subprocess.Popen(
875 876 877 878
            ps1_cmd.strip().split(" "),
            stdout=subprocess.PIPE,
            stderr=ps1_pipe,
            env=required_envs)
G
gongweibao 已提交
879

880
        return ps0_proc, ps1_proc, ps0_pipe, ps1_pipe
X
Xin Pan 已提交
881

882 883 884 885 886
    def _run_local(self,
                   model,
                   envs,
                   check_error_log=False,
                   batch_size=DEFAULT_BATCH_SIZE,
887
                   batch_merge_repeat=1,
888
                   log_name="",
889
                   devices="0"):
G
gongweibao 已提交
890

891 892 893 894 895 896
        cmd = self._python_interp

        if os.getenv('WITH_COVERAGE', 'OFF') == 'ON':
            envs['COVERAGE_FILE'] = os.getenv('COVERAGE_FILE', '')
            cmd += " -m coverage run --branch -p"

897 898
        cmd += " %s --role trainer --update_method local --lr %f" % (model,
                                                                     self._lr)
899

900 901 902 903
        if batch_size != DEFAULT_BATCH_SIZE:
            cmd += " --batch_size %d" % batch_size
        if batch_merge_repeat > 1:
            cmd += " --batch_merge_repeat %d" % batch_merge_repeat
W
Wu Yi 已提交
904 905
        if self._nccl2_reduce_layer:
            cmd += " --nccl2_reduce_layer_local_run 1"
906

907
        if self.__use_cuda:
908
            cmd += " --use_cuda"
W
Wu Yi 已提交
909
            env_local = {
910 911 912 913 914 915 916 917
                "CUDA_VISIBLE_DEVICES": devices,
                "PADDLE_TRAINERS_NUM": "1",
                "PADDLE_TRAINER_ID": "0"
            }
        elif self.__use_xpu:
            cmd += " --use_xpu"
            env_local = {
                "FLAGS_selected_xpus": devices,
W
Wu Yi 已提交
918 919 920
                "PADDLE_TRAINERS_NUM": "1",
                "PADDLE_TRAINER_ID": "0"
            }
921 922 923
        else:
            env_local = {'CPU_NUM': '1'}

924
        # not use dgc in single card
925
        if len(devices) > 1 and self._use_dgc:
926 927
            cmd += " --use_dgc"

928 929 930
        if self._accumulate_gradient:
            cmd += " --accumulate_gradient"

931 932 933
        if self._find_unused_parameters:
            cmd += " --find_unused_parameters"

W
Wu Yi 已提交
934 935
        env_local.update(envs)
        print("local_cmd: {}, env: {}".format(cmd, env_local))
G
gongweibao 已提交
936

937
        if check_error_log:
938
            err_log = open(log_name + "_local.log", "wb")
G
gongweibao 已提交
939
            local_proc = subprocess.Popen(
940
                cmd.split(" "),
G
gongweibao 已提交
941
                stdout=subprocess.PIPE,
942
                stderr=err_log,
W
Wu Yi 已提交
943
                env=env_local)
G
gongweibao 已提交
944 945
        else:
            local_proc = subprocess.Popen(
946
                cmd.split(" "),
G
gongweibao 已提交
947
                stdout=subprocess.PIPE,
948
                stderr=subprocess.PIPE,
W
Wu Yi 已提交
949
                env=env_local)
G
gongweibao 已提交
950

951 952 953 954 955 956
        local_out, local_err = local_proc.communicate()

        if check_error_log:
            err_log.close()

        sys.stderr.write('local_stderr: %s\n' % local_err)
W
Wu Yi 已提交
957
        sys.stderr.write('local_stdout: %s\n' % pickle.loads(local_out))
X
Xin Pan 已提交
958

W
Wu Yi 已提交
959
        return pickle.loads(local_out)
960

961
    def _run_cluster(self, model, envs, check_error_log, log_name):
X
Xin Pan 已提交
962
        # Run dist train to compare with local results
963 964
        ps0, ps1, ps0_pipe, ps1_pipe = self.start_pserver(
            model, check_error_log, envs, log_name=log_name)
W
Wu Yi 已提交
965

X
Xin Pan 已提交
966
        ps0_ep, ps1_ep = self._ps_endpoints.split(",")
967

968 969 970 971 972 973 974 975
        tr_cmd = "%s"

        if os.getenv('WITH_COVERAGE', 'OFF') == 'ON':
            envs['COVERAGE_FILE'] = os.getenv('COVERAGE_FILE', '')
            tr_cmd += " -m coverage run --branch -p"

        tr_cmd += " %s --role trainer --endpoints %s --trainer_id %d --current_endpoint %s --trainers %d --update_method pserver --lr %f"

W
Wu Yi 已提交
976
        tr0_cmd = tr_cmd % \
977
                  (self._python_interp, model, self._ps_endpoints,
W
Wu Yi 已提交
978
                   0, ps0_ep, self._trainers, self._lr)
W
Wu Yi 已提交
979
        tr1_cmd = tr_cmd % \
980
                  (self._python_interp, model, self._ps_endpoints,
W
Wu Yi 已提交
981
                   1, ps1_ep, self._trainers, self._lr)
W
Wu Yi 已提交
982 983 984 985

        if self._sync_mode:
            tr0_cmd += " --sync_mode"
            tr1_cmd += " --sync_mode"
T
tangwei12 已提交
986 987 988
        if self._hogwild_mode:
            tr0_cmd += " --hogwild"
            tr1_cmd += " --hogwild"
W
Wu Yi 已提交
989 990 991
        if self._use_reduce:
            tr0_cmd += " --use_reduce"
            tr1_cmd += " --use_reduce"
992 993 994
        if self._use_reader_alloc:
            tr0_cmd += " --use_reader_alloc"
            tr1_cmd += " --use_reader_alloc"
995
        if self.__use_cuda:
996 997 998 999 1000 1001 1002 1003 1004 1005
            tr0_cmd += " --use_cuda"
            tr1_cmd += " --use_cuda"
            env0 = {"CUDA_VISIBLE_DEVICES": "0"}
            env1 = {"CUDA_VISIBLE_DEVICES": "1"}
        else:
            env0 = {'CPU_NUM': '1'}
            env1 = {'CPU_NUM': '1'}

        env0.update(envs)
        env1.update(envs)
X
Xin Pan 已提交
1006

W
Wu Yi 已提交
1007 1008
        print("tr0_cmd: {}, env: {}".format(tr0_cmd, env0))
        print("tr1_cmd: {}, env: {}".format(tr1_cmd, env1))
1009 1010
        tr0_pipe = open(log_name + "_tr0_err.log", "wb")
        tr1_pipe = open(log_name + "_tr1_err.log", "wb")
G
gongweibao 已提交
1011

1012
        print_to_err(type(self).__name__, "going to start trainer process 0")
X
Xin Pan 已提交
1013
        tr0_proc = subprocess.Popen(
W
Wu Yi 已提交
1014
            tr0_cmd.strip().split(" "),
X
Xin Pan 已提交
1015
            stdout=subprocess.PIPE,
G
gongweibao 已提交
1016
            stderr=tr0_pipe,
X
Xin Pan 已提交
1017
            env=env0)
1018
        print_to_err(type(self).__name__, "going to start trainer process 1")
X
Xin Pan 已提交
1019
        tr1_proc = subprocess.Popen(
W
Wu Yi 已提交
1020
            tr1_cmd.strip().split(" "),
X
Xin Pan 已提交
1021
            stdout=subprocess.PIPE,
G
gongweibao 已提交
1022
            stderr=tr1_pipe,
X
Xin Pan 已提交
1023 1024
            env=env1)

1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036
        # Wait until trainer process terminate
        while True:
            stat0 = tr0_proc.poll()
            time.sleep(0.1)
            if stat0 is not None:
                break
        while True:
            stat1 = tr1_proc.poll()
            time.sleep(0.1)
            if stat1 is not None:
                break

1037 1038
        tr0_out, tr0_err = tr0_proc.communicate()
        tr1_out, tr1_err = tr1_proc.communicate()
X
Xin Pan 已提交
1039

G
gongweibao 已提交
1040
        # close trainer file
1041 1042 1043 1044
        tr0_pipe.close()
        tr1_pipe.close()
        ps0_pipe.close()
        ps1_pipe.close()
W
Wu Yi 已提交
1045

W
Wu Yi 已提交
1046 1047
        ps0.terminate()
        ps1.terminate()
T
typhoonzero 已提交
1048

W
Wu Yi 已提交
1049 1050
        return pickle.loads(tr0_out), pickle.loads(tr1_out)

1051 1052 1053
    def _get_nccl2_trainer_cmd(self, model, ep, update_method, trainer_id,
                               trainer_num):
        env = {}
1054 1055 1056 1057 1058 1059 1060
        tr_cmd = "%s -u"

        if os.getenv('WITH_COVERAGE', 'OFF') == 'ON':
            tr_cmd += " -m coverage run --branch -p"

        tr_cmd += " %s --role trainer --endpoints %s --trainer_id %d --current_endpoint %s --update_method %s --lr %f"

1061
        tr_cmd = tr_cmd % \
T
tangwei12 已提交
1062 1063
                 (self._python_interp, model, self._ps_endpoints,
                  trainer_id, ep, update_method, self._lr)
W
Wu Yi 已提交
1064 1065

        if self._use_reduce:
1066
            tr_cmd += " --use_reduce"
W
Wu Yi 已提交
1067
        if self._use_reader_alloc:
1068
            tr_cmd += " --use_reader_alloc"
1069 1070
        if self._save_model:
            tr_cmd += " --save_model"
W
Wu Yi 已提交
1071
        if self.__use_cuda:
1072 1073
            tr_cmd += " --use_cuda"
            env.update({
1074
                "FLAGS_selected_gpus": "{}".format(0),
W
WangXi 已提交
1075
                "CUDA_VISIBLE_DEVICES": "{}".format(trainer_id),
1076
                "PADDLE_TRAINERS_NUM": "{}".format(trainer_num),
1077 1078 1079
                "PADDLE_TRAINER_ID": "{}".format(trainer_id),
                "PADDLE_TRAINER_ENDPOINTS": self._ps_endpoints,
                "PADDLE_CURRENT_ENDPOINT": ep,
1080
            })
1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093
        # TODO(liuyuhui):XPU_VISIBLE_DEVICES is not working right now,
        # will update it after Badiu Kunlun partners' support.
        elif self.__use_xpu:
            tr_cmd += " --use_xpu"
            env.update({
                "FLAGS_selected_xpus": "{}".format(trainer_id),
                #"XPU_VISIBLE_DEVICES": "{}".format(trainer_id + 1),
                "PADDLE_TRAINERS_NUM": "{}".format(trainer_num),
                "PADDLE_TRAINER_ID": "{}".format(trainer_id),
                "PADDLE_TRAINER_ENDPOINTS": self._ps_endpoints,
                "PADDLE_CURRENT_ENDPOINT": ep,
                "GLOG_v": "2",
            })
W
Wu Yi 已提交
1094
        else:
1095
            env.update({'CPU_NUM': '1'})
W
Wu Yi 已提交
1096

1097
        if self._use_dgc:
1098 1099
            tr_cmd += " --use_dgc"

1100 1101 1102
        if self._accumulate_gradient:
            tr_cmd += " --accumulate_gradient"

1103 1104 1105
        if self._find_unused_parameters:
            tr_cmd += " --find_unused_parameters"

1106 1107
        if self._pipeline_mode:
            tr_cmd += " --use_pipeline"
1108
        if self._mp_mode:
W
WangXi 已提交
1109
            env = {"FLAGS_selected_gpus": "{}".format(trainer_id)}
1110 1111

        if self._nccl_comm_num > 1:
1112
            tr_cmd += " --nccl_comm_num {}".format(self._nccl_comm_num)
1113

1114 1115
        if self._use_hallreduce:
            tr_cmd += " --use_hallreduce --hallreduce_inter_nranks 2"
1116

1117
        if self._enable_backward_deps:
1118
            tr_cmd += " --enable_backward_deps"
1119

1120 1121 1122
        if self._fuse_all_reduce is not None:
            tr_cmd += " --fuse_all_reduce {}".format(self._fuse_all_reduce)

1123
        if self._use_fleet_api:
1124
            tr_cmd += " --use_fleet_api_20" if self._use_fleet_api_20 else " --use_fleet_api"
1125 1126 1127 1128
            if self._use_local_sgd:
                tr_cmd += " --use_local_sgd"
            if self._ut4grad_allreduce:
                tr_cmd += " --ut4grad_allreduce"
1129 1130
            if hasattr(self, '_sync_batch_norm') and self._sync_batch_norm:
                tr_cmd += " --sync_batch_norm"
1131

1132 1133 1134
        if os.getenv('WITH_COVERAGE', 'OFF') == 'ON':
            env['COVERAGE_FILE'] = os.getenv('COVERAGE_FILE', '')

1135
        return tr_cmd, env
W
Wu Yi 已提交
1136

1137 1138
    def _run_cluster_nccl2(self, model, envs, update_method, check_error_log,
                           log_name):
1139 1140
        if self._use_hallreduce:
            self._ps_endpoints = ""
1141 1142 1143

            global DIST_UT_PORT
            if DIST_UT_PORT == 0:
W
WangXi 已提交
1144
                # NOTE(wangxi). hallreduce test must use 4cards after nccl>=2.7
1145 1146 1147 1148 1149 1150 1151
                for i in range(0, 4):
                    self._ps_endpoints += "127.0.0.1:%s," % (
                        self._find_free_port())
            else:
                for i in range(0, 4):
                    self._ps_endpoints += "127.0.0.1:%s," % (DIST_UT_PORT + i)
                DIST_UT_PORT += 4
1152
            self._ps_endpoints = self._ps_endpoints[:-1]
W
Wu Yi 已提交
1153

1154 1155
        # NOTE: we reuse ps_endpoints as nccl2 worker endpoints
        worker_endpoints = self._ps_endpoints.split(",")
W
Wu Yi 已提交
1156

1157
        trainer_num = len(worker_endpoints)
W
Wu Yi 已提交
1158

1159 1160 1161 1162 1163 1164 1165 1166
        procs = []
        pipes = []
        for i in range(0, trainer_num):
            tr_cmd, tr_env = self._get_nccl2_trainer_cmd(
                model, worker_endpoints[i], update_method, i, trainer_num)
            tr_env.update(envs)
            print("use_hallreduce:{} tr_cmd:{}, env: {}".format(
                self._use_hallreduce, tr_cmd, tr_env))
W
Wu Yi 已提交
1167

1168
            tr_pipe = open(log_name + "_tr{}_err.log".format(i), "wb")
W
Wu Yi 已提交
1169

1170
            print_to_err(
1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188
                type(self).__name__,
                "going to start process {} with nccl2".format(i))
            tr_proc = subprocess.Popen(
                tr_cmd.strip().split(" "),
                stdout=subprocess.PIPE,
                stderr=tr_pipe,
                env=tr_env)

            procs.append(tr_proc)
            pipes.append(tr_pipe)

        outs = []
        for i in range(0, trainer_num):
            tr_out, tr_err = procs[i].communicate()
            outs.append(tr_out)
            pipes[i].close()
            sys.stderr.write('trainer {} stderr: {}\n'.format(i, tr_err))

1189 1190 1191
        if check_error_log:
            print("outs[0]:", outs[0])
            print("outs[1]:", outs[1])
1192

1193
        return pickle.loads(outs[0]), pickle.loads(outs[1])
1194

1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239
    def _run_pipeline(self, model, envs, check_error_log, log_name):
        # NOTE: we reuse ps_endpoints as nccl2 worker endpoints
        worker_endpoints = self._ps_endpoints.split(",")
        update_method = "nccl2"

        trainer_num = len(worker_endpoints)

        procs = []
        pipes = []
        for i in range(0, trainer_num):
            tr_cmd, tr_env = self._get_nccl2_trainer_cmd(
                model, worker_endpoints[i], update_method, i, trainer_num)
            tr_env.update(envs)
            tr_env['CUDA_VISIBLE_DEVICES'] = "0,1"
            tr_env['NCCL_SHM_DISABLE'] = '1'
            tr_env['FLAGS_selected_gpus'] = str(i)
            tr_env['FLAGS_cudnn_deterministic'] = '0'
            print("tr_cmd:{}, env: {}".format(tr_cmd, tr_env))

            tr_pipe = open("/tmp/" + "tr{}_err.log".format(i), "wb")

            print_to_err(
                type(self).__name__,
                "going to start process {} with nccl2".format(i))
            tr_proc = subprocess.Popen(
                tr_cmd.strip().split(" "),
                stdout=subprocess.PIPE,
                stderr=tr_pipe,
                env=tr_env)

            procs.append(tr_proc)
            pipes.append(tr_pipe)

        outs = []
        for i in range(0, trainer_num):
            tr_out, tr_err = procs[i].communicate()
            outs.append(tr_out)
            pipes[i].close()
            sys.stderr.write('trainer {} stderr: {}\n'.format(i, tr_err))

        if check_error_log:
            print("outs[0]:", outs[0])
            print("outs[1]:", outs[1])
        return pickle.loads(outs[0]), pickle.loads(outs[1])

1240
    def _get_required_envs(self, check_error_log=False, need_envs={}):
1241 1242 1243 1244 1245 1246
        # TODO(typhoonzero): should auto adapt GPU count on the machine.
        required_envs = {
            "PATH": os.getenv("PATH", ""),
            "PYTHONPATH": os.getenv("PYTHONPATH", ""),
            "LD_LIBRARY_PATH": os.getenv("LD_LIBRARY_PATH", ""),
            "FLAGS_fraction_of_gpu_memory_to_use": "0.15",
G
guru4elephant 已提交
1247
            "FLAGS_rpc_deadline": "30000",  # 5sec to fail fast
1248
            "FLAGS_rpc_retry_bind_port": "50",
1249
            "FLAGS_cudnn_deterministic": "1",
1250
            "FLAGS_rpc_disable_reuse_port": "1",
W
Wu Yi 已提交
1251
            "http_proxy": "",
1252 1253
            "NCCL_P2P_DISABLE": "1",
            "NCCL_SHM_DISABLE": "1"
1254 1255 1256
        }

        if check_error_log:
1257
            required_envs["GLOG_vmodule"] = \
1258 1259
                "fused_all_reduce_op_handle=10,all_reduce_op_handle=10,alloc_continuous_space_op=10,fuse_all_reduce_op_pass=10," \
                "alloc_continuous_space_for_grad_pass=10,fast_threaded_ssa_graph_executor=10,executor=10,operator=10," \
W
WangXi 已提交
1260 1261
                "sparse_all_reduce_op_handle=10,gen_nccl_id_op=10,gen_nccl_id_op_help=10,nccl_helper=10,grpc_client=10," \
                "grpc_server=10,request_handler_impl=10"
1262 1263
            required_envs["GLOG_logtostderr"] = "1"

1264 1265 1266 1267 1268 1269 1270 1271 1272
        required_envs.update(need_envs)
        return required_envs

    def check_with_place(self,
                         model_file,
                         delta=1e-3,
                         check_error_log=False,
                         need_envs={},
                         log_name=""):
1273

1274 1275
        required_envs = self._get_required_envs(check_error_log, need_envs)

T
tangwei12 已提交
1276
        local_losses \
1277
            = self._run_local(model_file, required_envs,
1278 1279
                              check_error_log, log_name=log_name)

W
Wu Yi 已提交
1280
        if self._nccl2_mode:
W
Wu Yi 已提交
1281 1282
            if self._nccl2_reduce_layer:
                tr0_losses, tr1_losses = self._run_cluster_nccl2(
1283 1284
                    model_file,
                    required_envs,
1285 1286
                    update_method="nccl2_reduce_layer",
                    check_error_log=check_error_log,
1287
                    log_name=log_name)
W
Wu Yi 已提交
1288 1289
            else:
                tr0_losses, tr1_losses = self._run_cluster_nccl2(
1290 1291
                    model_file,
                    required_envs,
1292 1293
                    update_method='nccl2',
                    check_error_log=check_error_log,
1294
                    log_name=log_name)
1295 1296 1297 1298 1299 1300 1301 1302
        elif self._bkcl_mode:
            tr0_losses, tr1_losses = self._run_cluster_nccl2(
                model_file,
                required_envs,
                update_method='bkcl',
                check_error_log=check_error_log,
                log_name=log_name)

1303 1304 1305
        elif self._pipeline_mode:
            tr0_losses, tr1_losses = self._run_pipeline(
                model_file, required_envs, check_error_log, log_name=log_name)
W
Wu Yi 已提交
1306 1307
        else:
            tr0_losses, tr1_losses = self._run_cluster(
1308
                model_file, required_envs, check_error_log, log_name=log_name)
1309 1310

        for step_id in range(RUN_STEP):
W
Wu Yi 已提交
1311 1312 1313
            local_loss = local_losses[step_id]
            tr0_loss = tr0_losses[step_id]
            tr1_loss = tr1_losses[step_id]
1314 1315 1316 1317
            if self._pipeline_mode:
                dist_loss = np.array([tr1_loss])
            else:
                dist_loss = (np.array([tr0_loss]) + np.array([tr1_loss])) / 2
W
Wu Yi 已提交
1318 1319
            print("=======", local_loss, ":", dist_loss[0], "=======")
            self.assertAlmostEqual(local_loss, dist_loss[0], delta=delta)
1320 1321 1322 1323 1324 1325 1326

    def check_with_place_multi_cards(self,
                                     model_file,
                                     delta=1e-3,
                                     check_error_log=False,
                                     need_envs={},
                                     log_name=""):
1327

1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338
        # need open p2p or shm otherwise multi cards mode will hang
        need_envs.update({"NCCL_P2P_DISABLE": "0", "NCCL_SHM_DISABLE": "0"})

        required_envs = self._get_required_envs(check_error_log, need_envs)

        if self._use_dgc:
            multi_cards_losses = self._run_local(
                model_file,
                required_envs,
                check_error_log,
                log_name=log_name + "_dgc_2cards",
1339
                devices="0,1")
1340 1341 1342 1343 1344 1345 1346

            self._use_dgc = False
            base_losses = self._run_local(
                model_file,
                required_envs,
                check_error_log,
                log_name=log_name + "_base_2cards",
1347
                devices="0,1")
1348 1349 1350 1351 1352 1353 1354 1355

            self._use_dgc = True

            for step_id in range(RUN_STEP):
                base_loss = base_losses[step_id]
                multi_cards_loss = multi_cards_losses[step_id]
                print("=======", base_loss, ":", multi_cards_loss, "=======")
                self.assertAlmostEqual(base_loss, multi_cards_loss, delta=delta)