test_dist_base.py 67.3 KB
Newer Older
X
Xin Pan 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13
#   Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
14 15

from __future__ import print_function
X
Xin Pan 已提交
16 17
import time

18
import ast
X
Xin Pan 已提交
19 20 21 22 23
import unittest
import os
import sys
import signal
import subprocess
24
import six
W
Wu Yi 已提交
25
import argparse
W
Wu Yi 已提交
26
import pickle
27
import random
W
Wu Yi 已提交
28
import numpy as np
29
import time
30 31

import paddle
32
import paddle.fluid as fluid
33
from paddle.fluid import compiler
34
import paddle.fluid.core as core
35 36
import paddle.fluid.dygraph as dygraph
from paddle.fluid.dygraph.base import to_variable
37 38
from paddle.fluid.dygraph.parallel import DataParallel, ParallelEnv
from paddle.fluid.framework import _test_eager_guard
39

40 41 42
from paddle.fluid.incubate.fleet.collective import fleet, DistributedStrategy
import paddle.fluid.incubate.fleet.base.role_maker as role_maker

Y
Yan Xu 已提交
43
RUN_STEP = 5
44
DEFAULT_BATCH_SIZE = 2
45
DIST_UT_PORT = 0
46

T
typhoonzero 已提交
47

48
def print_to_out(out_losses):
T
tianshuo78520a 已提交
49
    sys.stdout.buffer.write(pickle.dumps(out_losses))
50 51 52


def print_to_err(class_name, log_str):
53 54
    localtime = time.asctime(time.localtime(time.time()))
    print_str = localtime + "\t" + class_name + "\t" + log_str
T
tianshuo78520a 已提交
55
    sys.stderr.buffer.write(pickle.dumps(print_str))
G
guru4elephant 已提交
56 57


58 59 60 61
def eprint(*args, **kwargs):
    print(*args, file=sys.stderr, **kwargs)


T
typhoonzero 已提交
62
class TestDistRunnerBase(object):
W
Wu Yi 已提交
63 64 65
    def get_model(self,
                  batch_size=DEFAULT_BATCH_SIZE,
                  lr=0.1,
66
                  single_device=False,
J
Jiangxinz 已提交
67 68
                  use_dgc=False,
                  dist_strategy=None):
T
typhoonzero 已提交
69 70 71
        raise NotImplementedError(
            "get_model should be implemented by child classes.")

72
    @staticmethod
W
Wu Yi 已提交
73 74 75 76 77
    def get_transpiler(trainer_id,
                       main_program,
                       pserver_endpoints,
                       trainers,
                       sync_mode,
78
                       dc_asgd=False,
79
                       current_endpoint=None,
T
tangwei12 已提交
80 81
                       nccl_comm_num=1,
                       hogwild_mode=False):
T
typhoonzero 已提交
82
        # NOTE: import fluid until runtime, or else forking processes will cause error.
83
        config = fluid.DistributeTranspilerConfig()
W
Wu Yi 已提交
84
        config.enable_dc_asgd = dc_asgd
85
        config.sync_mode = sync_mode
T
tangwei12 已提交
86 87
        config.runtime_split_send_recv = hogwild_mode

88 89
        if nccl_comm_num > 1:
            config.nccl_comm_num = nccl_comm_num
90
        # config.runtime_split_send_recv = True
91
        t = fluid.DistributeTranspiler(config=config)
T
typhoonzero 已提交
92 93 94 95
        t.transpile(
            trainer_id=trainer_id,
            program=main_program,
            pservers=pserver_endpoints,
W
Wu Yi 已提交
96
            trainers=trainers,
T
tangwei12 已提交
97
            sync_mode=sync_mode,
98
            current_endpoint=current_endpoint)
T
typhoonzero 已提交
99 100
        return t

101 102 103 104 105 106 107 108 109
    @staticmethod
    def get_lr_scheduler(program):
        lr_sheduler = None
        if hasattr(program, 'lr_sheduler'):
            from paddle.optimizer.lr import LRScheduler
            lr_sheduler = program.lr_sheduler
            assert isinstance(lr_sheduler, LRScheduler), "must be LRScheduler"
        return lr_sheduler

W
Wu Yi 已提交
110
    def run_pserver(self, args):
W
Wu Yi 已提交
111
        self.lr = args.lr
112
        self.get_model(batch_size=args.batch_size)
113
        # NOTE: pserver should not call memory optimize
T
tangwei12 已提交
114 115 116 117 118 119 120 121 122

        t = self.get_transpiler(
            trainer_id=args.trainer_id,
            main_program=fluid.default_main_program(),
            pserver_endpoints=args.endpoints,
            trainers=args.trainers,
            sync_mode=args.sync_mode,
            dc_asgd=args.dc_asgd,
            hogwild_mode=args.hogwild)
W
Wu Yi 已提交
123 124 125
        pserver_prog = t.get_pserver_program(args.current_endpoint)
        startup_prog = t.get_startup_program(args.current_endpoint,
                                             pserver_prog)
Y
Yancey1989 已提交
126

T
typhoonzero 已提交
127 128 129
        place = fluid.CPUPlace()
        exe = fluid.Executor(place)
        exe.run(startup_prog)
130
        print_to_err(type(self).__name__, "run pserver startup program done.")
T
typhoonzero 已提交
131
        exe.run(pserver_prog)
132
        print_to_err(type(self).__name__, "run pserver main program done.")
T
typhoonzero 已提交
133

134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152
    def run_pipeline_trainer(self, args):
        self.lr = args.lr

        dist_strategy = DistributedStrategy()
        test_program, avg_cost, train_reader, test_reader, batch_acc, predict, data_loader = \
            self.get_model(batch_size=args.batch_size, dist_strategy=dist_strategy)

        device_id = int(os.getenv("FLAGS_selected_gpus", "0"))
        eprint(type(self).__name__, "device_id: %d." % device_id)
        place = fluid.CUDAPlace(device_id)

        exe = fluid.Executor(place)
        exe.run(fluid.default_startup_program())
        eprint(type(self).__name__, "run worker startup program done.")

        data_loader.set_sample_list_generator(train_reader, place)
        data_loader.start()
        print_to_err(type(self).__name__, "begin to train on trainer")
        out_losses = []
153 154 155

        main_program = fluid.default_main_program()
        lr_sheduler = self.get_lr_scheduler(main_program)
156
        for i in six.moves.xrange(RUN_STEP):
157
            loss = exe.run(main_program, fetch_list=[avg_cost])
158 159 160
            loss = loss[0] if loss else None
            out_losses.append(loss)
            print_to_err(type(self).__name__, "run step %d finished" % i)
161 162 163
            if lr_sheduler is not None:
                lr_sheduler.step()

164
        data_loader.reset()
165 166
        print_to_err(type(self).__name__, "trainer run finished")

T
tianshuo78520a 已提交
167
        sys.stdout.buffer.write(pickle.dumps(out_losses))
168

169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213
    def run_use_fleet_api_20_trainer(self, args):
        """
        1. remove codes for DistributedStrategy and leave the DistributedStrategy part to get_model()
        2. to run with fleet 2.0 api, set flags _use_fleet_api and _use_fleet_api_20 to True
        3. for now, not support test for model save
        """
        assert args.update_method == "nccl2" or "bkcl"

        self.lr = args.lr
        print_to_err("use_fleet 2.0", "fleet.node_num:")

        test_program, avg_cost, train_reader, test_reader, batch_acc, predict = \
            self.get_model(batch_size=args.batch_size)

        if fluid.core.is_compiled_with_cuda():
            device_id = int(os.getenv("FLAGS_selected_gpus", "0"))
            place = fluid.CUDAPlace(device_id)
        elif fluid.core.is_compiled_with_xpu():
            device_id = int(os.getenv("FLAGS_selected_xpus", "0"))
            place = fluid.XPUPlace(device_id)
        else:
            raise ValueError(
                "fleet dygraph api must in paddlepaddle-xpu or paddlepaddle-gpu."
            )

        exe = fluid.Executor(place)
        exe.run(fluid.default_startup_program())
        eprint(type(self).__name__, "run worker startup program done.")

        feed_var_list = [
            var
            for var in fluid.default_main_program().global_block().vars.values()
            if var.is_data
        ]

        eprint("feed_var_list:", feed_var_list)

        if feed_var_list[0].name == 'label':
            feed_var_list = feed_var_list[::-1]

        feeder = fluid.DataFeeder(feed_var_list, place)
        reader_generator = train_reader()

        def get_data():
            origin_batch = next(reader_generator)
X
xiongkun 已提交
214 215 216 217 218
            if paddle.distributed.get_world_size(
            ) == 1 and args.update_method == 'gloo':  # Gloo single mode
                return origin_batch

            elif args.update_method != "local" and args.use_reader_alloc:
219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237
                new_batch = []
                for offset, item in enumerate(origin_batch):
                    if offset % 2 == args.trainer_id:
                        new_batch.append(item)
                return new_batch
            else:
                return origin_batch

        print_to_err(type(self).__name__, "begin to train on trainer")
        out_losses = []
        for i in six.moves.xrange(RUN_STEP):
            loss, = exe.run(fluid.default_main_program(),
                            fetch_list=[avg_cost.name],
                            feed=feeder.feed(get_data()))
            out_losses.append(loss[0])
            print_to_err(type(self).__name__, "run step %d finished" % i)
        print_to_err(type(self).__name__, "trainer run finished")
        print_to_err(type(self).__name__, "dist losses: {}".format(out_losses))

T
tianshuo78520a 已提交
238
        sys.stdout.buffer.write(pickle.dumps(out_losses))
239

240 241
    def run_use_fleet_api_trainer(self, args):
        assert args.update_method == "nccl2" or "bkcl"
242 243 244 245 246 247 248 249

        self.lr = args.lr

        exec_strategy = fluid.ExecutionStrategy()
        exec_strategy.num_threads = 1

        dist_strategy = DistributedStrategy()
        dist_strategy.exec_strategy = exec_strategy
T
tangwei12 已提交
250
        dist_strategy.fuse_memory_size = 1  # MB
251
        dist_strategy.fuse_laryer_size = 1
252 253 254 255
        if args.use_local_sgd:
            dist_strategy.use_local_sgd = True
        if args.ut4grad_allreduce:
            dist_strategy._ut4grad_allreduce = True
256 257
        if args.sync_batch_norm:
            dist_strategy.sync_batch_norm = True
258 259 260

        role = role_maker.PaddleCloudRoleMaker(is_collective=True)
        fleet.init(role)
261
        print_to_err("use_fleet", "fleet.node_num:")
T
tangwei12 已提交
262 263
        # "fleet.node_id:", fleet.node_id(),
        # "fleet.trainer_num:", fleet.worker_num())
264 265

        test_program, avg_cost, train_reader, test_reader, batch_acc, predict = \
T
tangwei12 已提交
266
            self.get_model(batch_size=args.batch_size, dist_strategy=dist_strategy)
267 268 269 270

        trainer_prog = fleet._origin_program
        dist_prog = fleet.main_program

271 272 273 274 275 276 277 278 279 280
        if fluid.core.is_compiled_with_cuda():
            device_id = int(os.getenv("FLAGS_selected_gpus", "0"))
            place = fluid.CUDAPlace(device_id)
        elif fluid.core.is_compiled_with_xpu():
            device_id = int(os.getenv("FLAGS_selected_xpus", "0"))
            place = fluid.XPUPlace(device_id)
        else:
            raise ValueError(
                "fleet dygraph api must in paddlepaddle-xpu or paddlepaddle-gpu."
            )
281 282 283 284 285 286 287 288 289 290

        exe = fluid.Executor(place)
        exe.run(fluid.default_startup_program())
        eprint(type(self).__name__, "run worker startup program done.")

        feed_var_list = [
            var for var in trainer_prog.global_block().vars.values()
            if var.is_data
        ]

291 292 293 294 295 296 297
        eprint("feed_var_list:", feed_var_list)

        # tmp add this code to pass python35 gcc8 CI
        # Fixme(gongweibao, wangxi), need fix fleet api program order
        if feed_var_list[0].name == 'label':
            feed_var_list = feed_var_list[::-1]

298 299 300 301 302 303 304 305 306 307 308 309 310 311
        feeder = fluid.DataFeeder(feed_var_list, place)
        reader_generator = train_reader()

        def get_data():
            origin_batch = next(reader_generator)
            if args.update_method != "local" and args.use_reader_alloc:
                new_batch = []
                for offset, item in enumerate(origin_batch):
                    if offset % 2 == args.trainer_id:
                        new_batch.append(item)
                return new_batch
            else:
                return origin_batch

312
        print_to_err(type(self).__name__, "begin to train on trainer")
313 314 315 316 317 318
        out_losses = []
        for i in six.moves.xrange(RUN_STEP):
            loss, = exe.run(dist_prog,
                            fetch_list=[avg_cost.name],
                            feed=feeder.feed(get_data()))
            out_losses.append(loss[0])
319 320
            print_to_err(type(self).__name__, "run step %d finished" % i)
        print_to_err(type(self).__name__, "trainer run finished")
321

T
tianshuo78520a 已提交
322
        sys.stdout.buffer.write(pickle.dumps(out_losses))
323

324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353
        if args.save_model:
            model_save_dir = "/tmp"
            if fleet.worker_index() == 0:
                model_save_dir_fluid = os.path.join(model_save_dir,
                                                    "fluid_persistables")
                model_save_dir_fleet = os.path.join(model_save_dir,
                                                    "fleet_persistables")
                infer_save_dir_fluid = os.path.join(model_save_dir,
                                                    "fluid_infer")
                infer_save_dir_fleet = os.path.join(model_save_dir,
                                                    "fleet_infer")
            else:
                model_save_dir_fluid = os.path.join(model_save_dir,
                                                    "fluid_persistables_2")
                model_save_dir_fleet = os.path.join(model_save_dir,
                                                    "fleet_persistables_2")
                infer_save_dir_fluid = os.path.join(model_save_dir,
                                                    "fluid_infer_2")
                infer_save_dir_fleet = os.path.join(model_save_dir,
                                                    "fleet_infer_2")
            fluid.io.save_persistables(exe, model_save_dir_fluid,
                                       fleet._origin_program)
            fleet.save_persistables(executor=exe, dirname=model_save_dir_fleet)
            feeded_var_names = [var.name for var in feed_var_list]
            fluid.io.save_inference_model(infer_save_dir_fluid,
                                          feeded_var_names, [avg_cost], exe,
                                          fleet._origin_program)
            fleet.save_inference_model(exe, infer_save_dir_fleet,
                                       feeded_var_names, [avg_cost])

354
    def run_trainer(self, args):
W
Wu Yi 已提交
355
        self.lr = args.lr
W
Wu Yi 已提交
356 357 358
        if args.nccl2_reduce_layer_local_run:
            test_program, avg_cost, train_reader, test_reader, batch_acc, predict = \
                self.get_model(batch_size=args.batch_size, single_device=True)
359 360 361
        elif args.use_dgc:
            test_program, avg_cost, train_reader, test_reader, batch_acc, predict = \
                self.get_model(batch_size=args.batch_size, use_dgc=args.use_dgc)
W
Wu Yi 已提交
362 363 364
        else:
            test_program, avg_cost, train_reader, test_reader, batch_acc, predict = \
                self.get_model(batch_size=args.batch_size)
365

W
Wu Yi 已提交
366
        if args.update_method == "pserver":
367
            print_to_err(
368 369
                type(self).__name__,
                "begin to run transpile on trainer with pserver mode")
T
tangwei12 已提交
370 371 372 373 374 375 376 377 378
            t = self.get_transpiler(
                trainer_id=args.trainer_id,
                main_program=fluid.default_main_program(),
                pserver_endpoints=args.endpoints,
                trainers=args.trainers,
                sync_mode=args.sync_mode,
                dc_asgd=args.dc_asgd,
                hogwild_mode=args.hogwild)

T
typhoonzero 已提交
379
            trainer_prog = t.get_trainer_program()
380
            print_to_err(
381 382
                type(self).__name__,
                "get trainer program done with pserver mode.")
W
Wu Yi 已提交
383
        elif args.update_method == "nccl2" or args.update_method == "nccl2_reduce_layer":
W
Wu Yi 已提交
384 385 386
            # transpile for nccl2
            config = fluid.DistributeTranspilerConfig()
            config.mode = "nccl2"
387
            config.nccl_comm_num = args.nccl_comm_num
388 389 390
            if args.use_hallreduce:
                config.use_hierarchical_allreduce = True
                config.hierarchical_allreduce_inter_nranks = args.hallreduce_inter_nranks
391
            print_to_err(
392 393
                type(self).__name__,
                "begin to run transpile on trainer with nccl2 mode")
W
Wu Yi 已提交
394 395 396 397 398 399 400
            nccl2_t = fluid.DistributeTranspiler(config=config)
            nccl2_t.transpile(
                args.trainer_id,
                program=fluid.default_main_program(),
                startup_program=fluid.default_startup_program(),
                trainers=args.endpoints,
                current_endpoint=args.current_endpoint)
401
            print_to_err(
402 403
                type(self).__name__,
                "get trainer program done. with nccl2 mode")
W
Wu Yi 已提交
404
            trainer_prog = fluid.default_main_program()
T
typhoonzero 已提交
405
        else:
406
            print_to_err(
407 408
                type(self).__name__,
                "do nothing about main program, just use it")
T
typhoonzero 已提交
409
            trainer_prog = fluid.default_main_program()
410
            print_to_err(type(self).__name__, "use main program done.")
T
typhoonzero 已提交
411

412 413 414
        # FIXME(gongwb):wait pserver initialization.
        time.sleep(1)

415
        if args.use_cuda:
416 417
            device_id = int(os.getenv("FLAGS_selected_gpus", "0"))
            place = fluid.CUDAPlace(device_id)
418 419 420
        else:
            place = fluid.CPUPlace()

421 422
        exe = fluid.Executor(place)
        exe.run(fluid.default_startup_program())
423
        print_to_err(type(self).__name__, "run worker startup program done.")
T
typhoonzero 已提交
424

W
Wu Yi 已提交
425 426
        exec_strategy = fluid.ExecutionStrategy()
        exec_strategy.num_threads = 1
427

W
Wu Yi 已提交
428
        build_stra = fluid.BuildStrategy()
429 430 431
        # FIXME force disable enable_inplace and memory_optimize
        build_stra.enable_inplace = False
        build_stra.memory_optimize = False
W
Wu Yi 已提交
432

433 434 435 436
        if args.fuse_all_reduce is not None:
            sys.stderr.write('fuse_all_reduce={}'.format(args.fuse_all_reduce))
            build_stra.fuse_all_reduce_ops = args.fuse_all_reduce

T
tangwei12 已提交
437 438 439
        if args.hogwild:
            build_stra.async_mode = True

440 441 442
        if args.enable_backward_deps:
            build_stra.enable_backward_optimizer_op_deps = True

W
Wu Yi 已提交
443 444 445 446 447
        if args.use_reduce:
            build_stra.reduce_strategy = fluid.BuildStrategy.ReduceStrategy.Reduce
        else:
            build_stra.reduce_strategy = fluid.BuildStrategy.ReduceStrategy.AllReduce

W
Wu Yi 已提交
448
        pass_builder = None
X
Xin Pan 已提交
449
        if args.batch_merge_repeat > 1:
X
fix  
Xin Pan 已提交
450
            pass_builder = build_stra._finalize_strategy_and_create_passes()
451
            mypass = pass_builder.insert_pass(0, "multi_batch_merge_pass")
452
            mypass.set("num_repeats", args.batch_merge_repeat)
X
Xin Pan 已提交
453

W
Wu Yi 已提交
454
        if args.update_method == "nccl2" or args.update_method == "nccl2_reduce_layer":
455 456
            build_stra.num_trainers = len(args.endpoints.split(","))
            build_stra.trainer_id = args.trainer_id
W
Wu Yi 已提交
457
        else:
W
Wu Yi 已提交
458
            # case args.update_method == "nccl2_reduce_layer":
459 460
            build_stra.num_trainers = 1
            build_stra.trainer_id = 0
W
Wu Yi 已提交
461

462
        print_to_err(type(self).__name__, "begin to compile with data parallel")
X
Xin Pan 已提交
463
        binary = compiler.CompiledProgram(trainer_prog).with_data_parallel(
W
Wu Yi 已提交
464
            loss_name=avg_cost.name,
W
Wu Yi 已提交
465
            build_strategy=build_stra,
W
Wu Yi 已提交
466
            exec_strategy=exec_strategy)
467
        print_to_err(type(self).__name__, "program compiled with data parallel")
T
typhoonzero 已提交
468 469 470 471 472 473 474

        feed_var_list = [
            var for var in trainer_prog.global_block().vars.values()
            if var.is_data
        ]

        feeder = fluid.DataFeeder(feed_var_list, place)
475
        reader_generator = train_reader()
T
typhoonzero 已提交
476

477 478
        def get_data():
            origin_batch = next(reader_generator)
W
Wu Yi 已提交
479
            if args.update_method != "local" and args.use_reader_alloc:
480 481 482 483 484 485 486
                new_batch = []
                for offset, item in enumerate(origin_batch):
                    if offset % 2 == args.trainer_id:
                        new_batch.append(item)
                return new_batch
            else:
                return origin_batch
T
typhoonzero 已提交
487

488
        lr_scheduler = self.get_lr_scheduler(trainer_prog)
489
        print_to_err(type(self).__name__, "begin to train on trainer")
W
Wu Yi 已提交
490
        out_losses = []
491
        for i in six.moves.xrange(RUN_STEP):
492 493
            loss, = exe.run(binary,
                            fetch_list=[avg_cost.name],
494
                            feed=feeder.feed(get_data()))
W
Wu Yi 已提交
495
            out_losses.append(loss[0])
496
            print_to_err(type(self).__name__, "run step %d finished" % i)
497 498 499
            if lr_scheduler is not None:
                lr_scheduler.step()

500
        print_to_err(type(self).__name__, "trainer run finished")
501

502
        print_to_out(out_losses)
T
typhoonzero 已提交
503 504


505 506 507 508 509 510 511 512 513
class TestParallelDyGraphRunnerBase(object):
    def get_model(self):
        raise NotImplementedError(
            "get_model should be implemented by child classes.")

    def run_one_loop(self, model, opt, data):
        raise NotImplementedError(
            "train_one_loop should be implemented by the child classes.")

514
    def _get_data(self, batch, args):
X
xiongkun 已提交
515 516 517 518
        if paddle.distributed.get_world_size(
        ) == 1 and args.update_method == 'gloo':  # Gloo single mode
            return batch
        elif args.update_method != "local":
519
            new_batch = []
520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541

            # NOTE(@xiongkun03) args.diff_batch means batch length is different: 
            # such as : batch = [2,3,4,5], then the first rank will get [2]  and 
            # the second rank will get [3,4,5]. 
            # this function is for test sparse_embedding_differ_length
            if hasattr(args, "diff_batch") and args.diff_batch:
                assert len(
                    batch) > 2, "in differ_batch mode, len(batch) must > 2."
                if paddle.distributed.get_rank() == 0:
                    new_batch.append(batch[0])
                elif paddle.distributed.get_rank() == 1:
                    new_batch.extend([_ for _ in batch[1:]])
                else:
                    raise NotImplementedError(
                        "Current TestParallelDyGraphRunnerBase don't support world_size > 2"
                    )
                return new_batch
            else:
                for offset, item in enumerate(batch):
                    if offset % 2 == args.trainer_id:
                        new_batch.append(item)
                return new_batch
542 543 544
        else:
            return batch

545
    def run_trainer(self, args):
546 547 548 549
        if args.eager_mode:
            self.run_trainer_in_eager_mode(args)
        else:
            self.run_trainer_func(args)
Y
Yan Xu 已提交
550

551
    def run_trainer_func(self, args):
552
        seed = 90
X
xiongkun 已提交
553 554 555
        if args.update_method == 'gloo':
            place = fluid.CPUPlace()
        elif fluid.core.is_compiled_with_cuda():
556 557 558 559 560
            device_id = int(os.getenv("FLAGS_selected_gpus", "0"))
            place = fluid.CUDAPlace(device_id)
        elif fluid.core.is_compiled_with_xpu():
            device_id = int(os.getenv("FLAGS_selected_xpus", "0"))
            place = fluid.XPUPlace(device_id)
561 562 563
        elif fluid.core.is_compiled_with_npu():
            device_id = int(os.getenv("FLAGS_selected_npus", "0"))
            place = fluid.NPUPlace(device_id)
564
        else:
X
xiongkun 已提交
565
            assert ("Only support CUDAPlace or XPUPlace or CPU(Gloo) for now.")
566 567 568 569

        with fluid.dygraph.guard(place):
            fluid.default_startup_program().random_seed = seed
            fluid.default_main_program().random_seed = seed
Y
Yan Xu 已提交
570 571
            np.random.seed(seed)
            import random
572
            random.seed(seed)
573 574
            model, train_reader, opt = self.get_model()
            nranks = len(args.endpoints.split(",")) if args.endpoints else 1
Y
Yan Xu 已提交
575

576
            #if args.update_method == "nccl2":
577
            if args.update_method == "nccl2" or args.update_method == "bkcl" or args.update_method == "hccl":
578 579 580 581 582
                strategy = dygraph.parallel.ParallelStrategy()
                strategy.nranks = nranks
                strategy.local_rank = args.trainer_id
                strategy.trainer_endpoints = args.endpoints.split(",")
                strategy.current_endpoint = args.current_endpoint
583
                print_to_err(
584 585
                    type(self).__name__,
                    "begin to prepare context in dygraph with nccl2")
586
                dygraph.parallel.prepare_context(strategy)
587 588 589 590 591 592
                if not args.find_unused_parameters:
                    model = dygraph.parallel.DataParallel(
                        model, strategy, find_unused_parameters=False)
                else:
                    model = dygraph.parallel.DataParallel(
                        model, strategy, find_unused_parameters=True)
593
                print_to_err(type(self).__name__, "model built in dygraph")
X
xiongkun 已提交
594 595 596 597 598 599 600 601 602 603

            elif args.update_method == "gloo":
                paddle.distributed.init_parallel_env()
                if not args.find_unused_parameters:
                    model = dygraph.parallel.DataParallel(
                        model, find_unused_parameters=False)
                else:
                    model = dygraph.parallel.DataParallel(
                        model, find_unused_parameters=True)

604
            out_losses = []
605
            print_to_err(type(self).__name__, "begin to run dygraph training")
606
            for step_id, data in enumerate(train_reader()):
607
                data = self._get_data(data, args)
608 609 610
                if step_id == RUN_STEP:
                    break
                loss = self.run_one_loop(model, opt, data)
G
guru4elephant 已提交
611
                if step_id % 10 == 0:
612
                    print_to_err(
613
                        type(self).__name__,
614
                        "loss at step %d: %f" % (step_id, loss.numpy()))
Y
Yan Xu 已提交
615
                out_losses.append(loss.numpy())
616 617 618 619

                loss.backward()

                opt.minimize(loss)
620 621
                if not args.accumulate_gradient:
                    model.clear_gradients()
622
        print_to_out(out_losses)
623

624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692
    def run_trainer_in_eager_mode(self, args):
        seed = 90
        if args.update_method == 'gloo':
            place = fluid.CPUPlace()
        elif fluid.core.is_compiled_with_cuda():
            device_id = int(os.getenv("FLAGS_selected_gpus", "0"))
            place = fluid.CUDAPlace(device_id)
        elif fluid.core.is_compiled_with_xpu():
            device_id = int(os.getenv("FLAGS_selected_xpus", "0"))
            place = fluid.XPUPlace(device_id)
        elif fluid.core.is_compiled_with_npu():
            device_id = int(os.getenv("FLAGS_selected_npus", "0"))
            place = fluid.NPUPlace(device_id)
        else:
            assert ("Only support CUDAPlace or XPUPlace or CPU(Gloo) for now.")

        with _test_eager_guard():
            with fluid.dygraph.guard(place):
                fluid.default_startup_program().random_seed = seed
                fluid.default_main_program().random_seed = seed
                np.random.seed(seed)
                import random
                random.seed(seed)

                model, train_reader, opt = self.get_model()

                #if args.update_method == "nccl2":
                if args.update_method in ["nccl2", "gloo"]:
                    paddle.distributed.init_parallel_env()
                    nranks = ParallelEnv().nranks
                    rank = ParallelEnv().local_rank
                    is_master = True if rank == 0 else False
                    store = paddle.fluid.core.TCPStore(
                        "127.0.0.1", args.dist_port, is_master, nranks)
                    if args.update_method == "nccl2":
                        group = core.ProcessGroupNCCL(store, rank, nranks)
                    elif args.update_method == "gloo":
                        group = core.ProcessGroupGloo(store, rank, nranks)

                    print_to_err(
                        type(self).__name__,
                        "begin to prepare context in dygraph with nccl2")
                    model = dygraph.parallel.DataParallel(
                        model,
                        process_group=group,
                        find_unused_parameters=args.find_unused_parameters)
                    print_to_err(type(self).__name__, "model built in dygraph")

                out_losses = []
                print_to_err(
                    type(self).__name__, "begin to run dygraph training")
                for step_id, data in enumerate(train_reader()):
                    data = self._get_data(data, args)
                    if step_id == RUN_STEP:
                        break
                    loss = self.run_one_loop(model, opt, data)
                    if step_id % 10 == 0:
                        print_to_err(
                            type(self).__name__,
                            "loss at step %d: %f" % (step_id, loss.numpy()))
                    out_losses.append(loss.numpy())

                    loss.backward()

                    opt.minimize(loss)
                    if not args.accumulate_gradient:
                        model.clear_gradients()
            print_to_out(out_losses)

693
    def run_trainer_with_spawn(self, args):
694 695 696 697 698 699
        if args.eager_mode:
            return self.run_trainer_with_spawn_in_eager_mode(args)
        else:
            return self.run_trainer_with_spawn_func(args)

    def run_trainer_with_spawn_func(self, args):
700 701 702 703 704 705 706 707
        # 1. enable dygraph
        paddle.disable_static()

        # 2. init seed
        seed = 90
        paddle.static.default_startup_program().random_seed = seed
        paddle.static.default_main_program().random_seed = seed
        np.random.seed(seed)
708
        random.seed(seed)
709 710 711 712
        # get trainer id
        args.trainer_id = paddle.distributed.get_rank()

        # 3. init parallel env
X
xiongkun 已提交
713
        if args.update_method in ["nccl2", "gloo"]:
714 715 716 717
            paddle.distributed.init_parallel_env()

        # 4. train model
        model, train_reader, opt = self.get_model()
X
xiongkun 已提交
718
        if args.update_method in ["nccl2", "gloo"]:
719 720
            model = paddle.DataParallel(
                model, find_unused_parameters=args.find_unused_parameters)
721 722 723 724 725 726 727 728 729 730 731 732 733 734 735

        out_losses = []
        for step_id, data in enumerate(train_reader()):
            data = self._get_data(data, args)
            if step_id == RUN_STEP:
                break
            loss = self.run_one_loop(model, opt, data)
            out_losses.append(loss.numpy())

            loss.backward()

            opt.minimize(loss)
            model.clear_gradients()
        return out_losses

736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786
    def run_trainer_with_spawn_in_eager_mode(self, args):
        # 1. enable dygraph
        paddle.disable_static()

        # 2. init seed
        seed = 90
        paddle.static.default_startup_program().random_seed = seed
        paddle.static.default_main_program().random_seed = seed
        np.random.seed(seed)
        random.seed(seed)
        # get trainer id
        args.trainer_id = paddle.distributed.get_rank()

        # 3. init parallel env
        if args.update_method in ["nccl2", "gloo"]:
            paddle.distributed.init_parallel_env()

            # 4. build process group
            nranks = ParallelEnv().nranks
            rank = ParallelEnv().local_rank
            is_master = True if rank == 0 else False
            store = paddle.fluid.core.TCPStore("127.0.0.1", args.dist_port,
                                               is_master, nranks)
            if args.update_method == "nccl2":
                group = core.ProcessGroupNCCL(store, rank, nranks)
            elif args.update_method == "gloo":
                group = core.ProcessGroupGloo(store, rank, nranks)

        # 5. train model
        with _test_eager_guard():
            model, train_reader, opt = self.get_model()
            if args.update_method in ["nccl2", "gloo"]:
                model = paddle.DataParallel(
                    model,
                    process_group=group,
                    find_unused_parameters=args.find_unused_parameters)

            out_losses = []
            for step_id, data in enumerate(train_reader()):
                data = self._get_data(data, args)
                if step_id == RUN_STEP:
                    break
                loss = self.run_one_loop(model, opt, data)
                out_losses.append(loss.numpy())

                loss.backward()

                opt.minimize(loss)
                model.clear_gradients()
        return out_losses

787
    def run_use_fleet_api_trainer(self, args):
788 789 790 791 792 793
        if args.eager_mode:
            self.run_use_fleet_api_trainer_in_eager_mode(args)
        else:
            self.run_use_fleet_api_trainer_func(args)

    def run_use_fleet_api_trainer_func(self, args):
794 795 796 797 798 799 800 801 802 803
        import paddle.distributed.fleet as fleet
        import paddle.distributed.fleet.base.role_maker as role_maker
        # 1. enable dygraph
        paddle.disable_static()

        # 2. init seed
        seed = 90
        paddle.static.default_startup_program().random_seed = seed
        paddle.static.default_main_program().random_seed = seed
        np.random.seed(seed)
804
        random.seed(seed)
805 806 807
        # get trainer id
        args.trainer_id = paddle.distributed.get_rank()

808 809
        # set strategy
        strategy = fleet.DistributedStrategy()
810 811
        if args.find_unused_parameters:
            strategy.find_unused_parameters = True
812

813
        # 3. init parallel env
814
        if args.update_method == "nccl2" or "bkcl" or "hccl":
815
            fleet.init(is_collective=True, strategy=strategy)
816 817 818

        # 4. train model
        model, train_reader, opt = self.get_model()
819
        if args.update_method == "nccl2" or "bkcl" or "hccl":
820 821 822 823 824 825 826 827 828 829 830 831 832 833
            opt = fleet.distributed_optimizer(opt)
            model = fleet.distributed_model(model)

        out_losses = []
        for step_id, data in enumerate(train_reader()):
            data = self._get_data(data, args)
            if step_id == RUN_STEP:
                break
            loss = self.run_one_loop(model, opt, data)
            out_losses.append(loss.numpy())

            loss.backward()

            opt.step()
834 835
            if not args.accumulate_gradient:
                opt.clear_grad()
836 837
        print_to_out(out_losses)

838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883
    def run_use_fleet_api_trainer_in_eager_mode(self, args):
        import paddle.distributed.fleet as fleet
        import paddle.distributed.fleet.base.role_maker as role_maker
        # 1. enable dygraph
        paddle.disable_static()

        # 2. init seed
        seed = 90
        paddle.static.default_startup_program().random_seed = seed
        paddle.static.default_main_program().random_seed = seed
        np.random.seed(seed)
        random.seed(seed)
        # get trainer id
        args.trainer_id = paddle.distributed.get_rank()

        # set strategy
        strategy = fleet.DistributedStrategy()
        if args.find_unused_parameters:
            strategy.find_unused_parameters = True

        # 3. init parallel env
        if args.update_method == "nccl2" or "bkcl" or "hccl":
            fleet.init(is_collective=True, strategy=strategy)

        # 4. train model
        with _test_eager_guard():
            model, train_reader, opt = self.get_model()
            if args.update_method == "nccl2" or "bkcl" or "hccl":
                opt = fleet.distributed_optimizer(opt)
                model = fleet.distributed_model(model)

            out_losses = []
            for step_id, data in enumerate(train_reader()):
                data = self._get_data(data, args)
                if step_id == RUN_STEP:
                    break
                loss = self.run_one_loop(model, opt, data)
                out_losses.append(loss.numpy())

                loss.backward()

                opt.step()
                if not args.accumulate_gradient:
                    opt.clear_grad()
        print_to_out(out_losses)

884

T
typhoonzero 已提交
885
def runtime_main(test_class):
W
Wu Yi 已提交
886 887 888 889
    parser = argparse.ArgumentParser(description='Run dist test.')
    parser.add_argument(
        '--role', type=str, required=True, choices=['pserver', 'trainer'])
    parser.add_argument('--endpoints', type=str, required=False, default="")
W
Wu Yi 已提交
890 891 892 893
    parser.add_argument(
        '--update_method',
        type=str,
        default="local",
X
xiongkun 已提交
894
        choices=[
895 896
            "pserver", "nccl2", "bkcl", "local", "nccl2_reduce_layer", "gloo",
            "hccl"
X
xiongkun 已提交
897
        ])
W
Wu Yi 已提交
898 899
    parser.add_argument('--trainer_id', type=int, required=False, default=0)
    parser.add_argument('--trainers', type=int, required=False, default=1)
900
    parser.add_argument('--nccl_comm_num', type=int, required=False, default=1)
901 902
    parser.add_argument('--enable_backward_deps', action='store_true')
    parser.add_argument('--use_hallreduce', action='store_true')
903
    parser.add_argument('--use_pipeline', action='store_true')
904
    parser.add_argument('--use_fleet_api', action='store_true')
905
    parser.add_argument('--use_fleet_api_20', action='store_true')
906
    parser.add_argument('--use_local_sgd', action='store_true')
907
    parser.add_argument('--diff_batch', action='store_true')
908
    parser.add_argument('--ut4grad_allreduce', action='store_true')
909
    parser.add_argument(
910
        '--hallreduce_inter_nranks', type=int, required=False, default=2)
W
Wu Yi 已提交
911 912 913
    parser.add_argument(
        '--current_endpoint', type=str, required=False, default="")
    parser.add_argument('--sync_mode', action='store_true')
914 915
    parser.add_argument('--eager_mode', action='store_true')
    parser.add_argument('--dist_port', type=int, required=False, default=6175)
916
    parser.add_argument('--use_cuda', action='store_true')
X
xiongkun 已提交
917
    parser.add_argument('--use_cpu', action='store_true')
918
    parser.add_argument('--use_xpu', action='store_true')
919
    parser.add_argument('--use_dgc', action='store_true')
920
    parser.add_argument('--use_npu', action='store_true')
921
    parser.add_argument('--accumulate_gradient', action='store_true')
922
    parser.add_argument('--find_unused_parameters', action='store_true')
W
Wu Yi 已提交
923
    parser.add_argument('--use_reduce', action='store_true')
W
Wu Yi 已提交
924
    parser.add_argument('--dc_asgd', action='store_true')
T
tangwei12 已提交
925
    parser.add_argument('--hogwild', action='store_true')
926
    parser.add_argument('--save_model', action='store_true')
927
    parser.add_argument(
W
Wu Yi 已提交
928
        '--use_reader_alloc', action='store_true', required=False)
929
    parser.add_argument('--batch_size', required=False, type=int, default=2)
W
Wu Yi 已提交
930
    parser.add_argument('--lr', required=False, type=float, default=0.001)
931 932
    parser.add_argument(
        '--batch_merge_repeat', required=False, type=int, default=1)
W
Wu Yi 已提交
933 934 935 936 937
    parser.add_argument(
        '--nccl2_reduce_layer_local_run',
        required=False,
        type=bool,
        default=False)
938
    parser.add_argument('--sync_batch_norm', action='store_true')
939 940 941 942 943
    parser.add_argument(
        '--fuse_all_reduce',
        required=False,
        type=ast.literal_eval,
        default=None)
W
Wu Yi 已提交
944 945

    args = parser.parse_args()
T
typhoonzero 已提交
946

X
xiongkun 已提交
947 948 949
    if args.update_method == 'gloo':
        paddle.set_device("cpu")

T
typhoonzero 已提交
950
    model = test_class()
W
Wu Yi 已提交
951
    if args.role == "pserver" and args.update_method == "pserver":
W
Wu Yi 已提交
952
        model.run_pserver(args)
953 954
    elif args.use_fleet_api:
        model.run_use_fleet_api_trainer(args)
955 956
    elif args.use_fleet_api_20:
        model.run_use_fleet_api_20_trainer(args)
957 958
    elif args.use_pipeline:
        model.run_pipeline_trainer(args)
T
typhoonzero 已提交
959
    else:
960
        model.run_trainer(args)
X
Xin Pan 已提交
961

M
minqiyang 已提交
962

M
minqiyang 已提交
963
import paddle.compat as cpt
Y
Yancey1989 已提交
964 965
import socket
from contextlib import closing
M
minqiyang 已提交
966

X
Xin Pan 已提交
967 968

class TestDistBase(unittest.TestCase):
W
Wu Yi 已提交
969 970 971
    def _setup_config(self):
        raise NotImplementedError("tests should have _setup_config implemented")

972 973 974
    def _after_setup_config(self):
        if self._enforce_place == "CPU":
            self.__use_cuda = False
975
            self.__use_xpu = False
976
            self._use_dgc = False
977
            self.__use_npu = False
978 979
        elif self._enforce_place == "GPU":
            self.__use_cuda = True
980
            self.__use_xpu = False
981
            self.__use_npu = False
982 983 984 985
        elif self._enforce_place == "XPU":
            self.__use_cuda = False
            self.__use_xpu = True
            self._use_dgc = False
986 987 988 989 990 991
            self.__use_npu = False
        elif self._enforce_place == "NPU":
            self.__use_cuda = False
            self.__use_xpu = False
            self._use_dgc = False
            self.__use_npu = True
992 993 994 995 996
        else:
            if fluid.core.is_compiled_with_cuda():
                self.__use_cuda = True
            else:
                self.__use_cuda = False
997 998 999 1000
                self._use_dgc = False

        if self._use_reduce:
            assert not self._use_dgc
1001

X
Xin Pan 已提交
1002 1003 1004
    def setUp(self):
        self._trainers = 2
        self._pservers = 2
Y
Yancey1989 已提交
1005
        self._port_set = set()
M
minqiyang 已提交
1006
        self._python_interp = sys.executable
W
Wu Yi 已提交
1007
        self._sync_mode = True
1008 1009
        self._dist_port = 6175
        self._eager_mode = False
T
tangwei12 已提交
1010
        self._hogwild_mode = False
1011
        self._enforce_place = None
W
Wu Yi 已提交
1012
        self._use_reduce = False
W
Wu Yi 已提交
1013
        self._dc_asgd = False  # must use with async mode
1014
        self._use_reader_alloc = True
W
Wu Yi 已提交
1015
        self._nccl2_mode = False
1016
        self._bkcl_mode = False
X
xiongkun 已提交
1017
        self._gloo_mode = False  # now, support gloo backend
1018
        self._hccl_mode = False
1019
        self._pipeline_mode = False
1020
        self._mp_mode = False
1021
        self._diff_batch = False
W
Wu Yi 已提交
1022 1023 1024 1025 1026
        # FIXME(typhoonzero): I added this stupid argument to enable
        # testing allreduce layers, which users can call layers.allreduce
        # to accumulate tensors at anywhere. Find a better way to do this
        # test, reduce check this argument everywhere.
        self._nccl2_reduce_layer = False
W
Wu Yi 已提交
1027
        self._lr = 0.001
1028
        self._use_dgc = False
1029
        self._dygraph = False
1030
        self._nccl_comm_num = 1
1031
        self._enable_backward_deps = False
1032
        self._use_fleet_api = False
1033
        self._use_fleet_api_20 = False
1034 1035
        self._use_local_sgd = False
        self._ut4grad_allreduce = False
1036
        self._use_hallreduce = False
1037
        self._save_model = False
1038
        self._fuse_all_reduce = None
1039
        self._accumulate_gradient = False
1040
        self._find_unused_parameters = False
W
Wu Yi 已提交
1041
        self._setup_config()
1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053

        global DIST_UT_PORT
        if DIST_UT_PORT == 0 and os.getenv("PADDLE_DIST_UT_PORT"):
            DIST_UT_PORT = int(os.getenv("PADDLE_DIST_UT_PORT"))

        if DIST_UT_PORT == 0:
            self._ps_endpoints = "127.0.0.1:%s,127.0.0.1:%s" % (
                self._find_free_port(), self._find_free_port())
        else:
            self._ps_endpoints = "127.0.0.1:%s,127.0.0.1:%s" % (
                DIST_UT_PORT, DIST_UT_PORT + 1)
            DIST_UT_PORT += 2
1054
            self._dist_port = DIST_UT_PORT
1055

1056
        self._after_setup_config()
X
Xin Pan 已提交
1057

Y
Yancey1989 已提交
1058
    def _find_free_port(self):
Y
Yancey1989 已提交
1059 1060 1061 1062
        def __free_port():
            with closing(socket.socket(socket.AF_INET,
                                       socket.SOCK_STREAM)) as s:
                s.bind(('', 0))
1063
                print_to_err(
1064
                    type(self).__name__, "socket name: %s" % s.getsockname()[1])
Y
Yancey1989 已提交
1065 1066 1067 1068 1069 1070 1071
                return s.getsockname()[1]

        while True:
            port = __free_port()
            if port not in self._port_set:
                self._port_set.add(port)
                return port
Y
Yancey1989 已提交
1072

1073 1074 1075 1076 1077
    def start_pserver(self,
                      model_file,
                      check_error_log,
                      required_envs,
                      log_name=""):
X
Xin Pan 已提交
1078
        ps0_ep, ps1_ep = self._ps_endpoints.split(",")
1079 1080 1081 1082 1083 1084 1085 1086
        ps_cmd = "%s"

        if os.getenv('WITH_COVERAGE', 'OFF') == 'ON':
            required_envs['COVERAGE_FILE'] = os.getenv('COVERAGE_FILE', '')
            ps_cmd += " -m coverage run --branch -p"

        ps_cmd += " %s --role pserver --endpoints %s --trainer_id 0 --current_endpoint %s --trainers %d --update_method pserver"

W
Wu Yi 已提交
1087
        ps0_cmd = ps_cmd % \
1088 1089
                  (self._python_interp, model_file, self._ps_endpoints, ps0_ep,
                   self._trainers)
W
Wu Yi 已提交
1090
        ps1_cmd = ps_cmd % \
1091 1092
                  (self._python_interp, model_file, self._ps_endpoints, ps1_ep,
                   self._trainers)
W
Wu Yi 已提交
1093 1094 1095 1096

        if self._sync_mode:
            ps0_cmd += " --sync_mode"
            ps1_cmd += " --sync_mode"
X
Xin Pan 已提交
1097

1098 1099
        print(ps0_cmd)
        print(ps1_cmd)
1100 1101
        ps0_pipe = open(log_name + "_ps0_err.log", "wb")
        ps1_pipe = open(log_name + "_ps1_err.log", "wb")
G
gongweibao 已提交
1102

1103
        print_to_err(type(self).__name__, "going to start pserver process 0")
X
Xin Pan 已提交
1104
        ps0_proc = subprocess.Popen(
1105 1106 1107 1108
            ps0_cmd.strip().split(" "),
            stdout=subprocess.PIPE,
            stderr=ps0_pipe,
            env=required_envs)
1109
        print_to_err(type(self).__name__, "going to start pserver process 1")
X
Xin Pan 已提交
1110
        ps1_proc = subprocess.Popen(
1111 1112 1113 1114
            ps1_cmd.strip().split(" "),
            stdout=subprocess.PIPE,
            stderr=ps1_pipe,
            env=required_envs)
G
gongweibao 已提交
1115

1116
        return ps0_proc, ps1_proc, ps0_pipe, ps1_pipe
X
Xin Pan 已提交
1117

1118 1119 1120 1121 1122
    def _run_local(self,
                   model,
                   envs,
                   check_error_log=False,
                   batch_size=DEFAULT_BATCH_SIZE,
1123
                   batch_merge_repeat=1,
1124
                   log_name="",
X
xiongkun 已提交
1125
                   devices="1"):
G
gongweibao 已提交
1126

1127 1128 1129 1130 1131 1132
        cmd = self._python_interp

        if os.getenv('WITH_COVERAGE', 'OFF') == 'ON':
            envs['COVERAGE_FILE'] = os.getenv('COVERAGE_FILE', '')
            cmd += " -m coverage run --branch -p"

1133 1134
        cmd += " %s --role trainer --update_method local --lr %f" % (model,
                                                                     self._lr)
1135

1136 1137 1138 1139
        if batch_size != DEFAULT_BATCH_SIZE:
            cmd += " --batch_size %d" % batch_size
        if batch_merge_repeat > 1:
            cmd += " --batch_merge_repeat %d" % batch_merge_repeat
W
Wu Yi 已提交
1140 1141
        if self._nccl2_reduce_layer:
            cmd += " --nccl2_reduce_layer_local_run 1"
1142

1143
        if self.__use_cuda:
1144
            cmd += " --use_cuda"
W
Wu Yi 已提交
1145
            env_local = {
1146 1147 1148 1149 1150 1151 1152 1153
                "CUDA_VISIBLE_DEVICES": devices,
                "PADDLE_TRAINERS_NUM": "1",
                "PADDLE_TRAINER_ID": "0"
            }
        elif self.__use_xpu:
            cmd += " --use_xpu"
            env_local = {
                "FLAGS_selected_xpus": devices,
W
Wu Yi 已提交
1154 1155 1156
                "PADDLE_TRAINERS_NUM": "1",
                "PADDLE_TRAINER_ID": "0"
            }
1157 1158 1159 1160 1161 1162 1163
        elif self.__use_npu:
            cmd += " --use_npu"
            env_local = {
                "FLAGS_selected_npus": devices,
                "PADDLE_TRAINERS_NUM": "1",
                "PADDLE_TRAINER_ID": "0"
            }
1164 1165 1166
        else:
            env_local = {'CPU_NUM': '1'}

1167
        # not use dgc in single card
1168
        if len(devices) > 1 and self._use_dgc:
1169 1170
            cmd += " --use_dgc"

1171 1172 1173 1174
        if self._eager_mode:
            cmd += " --eager_mode"
            cmd += " --dist_port {}".format(self._dist_port)

1175 1176 1177
        if self._accumulate_gradient:
            cmd += " --accumulate_gradient"

1178 1179 1180
        if self._find_unused_parameters:
            cmd += " --find_unused_parameters"

W
Wu Yi 已提交
1181 1182
        env_local.update(envs)
        print("local_cmd: {}, env: {}".format(cmd, env_local))
G
gongweibao 已提交
1183

1184
        if check_error_log:
1185
            err_log = open(log_name + "_local.log", "wb")
G
gongweibao 已提交
1186
            local_proc = subprocess.Popen(
1187
                cmd.split(" "),
G
gongweibao 已提交
1188
                stdout=subprocess.PIPE,
1189
                stderr=err_log,
W
Wu Yi 已提交
1190
                env=env_local)
G
gongweibao 已提交
1191 1192
        else:
            local_proc = subprocess.Popen(
1193
                cmd.split(" "),
G
gongweibao 已提交
1194
                stdout=subprocess.PIPE,
1195
                stderr=subprocess.PIPE,
W
Wu Yi 已提交
1196
                env=env_local)
G
gongweibao 已提交
1197

1198 1199 1200 1201 1202 1203
        local_out, local_err = local_proc.communicate()

        if check_error_log:
            err_log.close()

        sys.stderr.write('local_stderr: %s\n' % local_err)
W
Wu Yi 已提交
1204
        sys.stderr.write('local_stdout: %s\n' % pickle.loads(local_out))
X
Xin Pan 已提交
1205

W
Wu Yi 已提交
1206
        return pickle.loads(local_out)
1207

X
xiongkun 已提交
1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222
    def _run_local_gloo(self,
                        model,
                        envs,
                        check_error_log=False,
                        batch_size=DEFAULT_BATCH_SIZE,
                        batch_merge_repeat=1,
                        log_name="",
                        devices="0"):
        saved_endpoints = self._ps_endpoints
        self._ps_endpoints = self._ps_endpoints.split(',')[0]
        result = self._run_cluster_gloo(model, envs, 'gloo', check_error_log,
                                        log_name)
        self._ps_endpoints = saved_endpoints
        return result

1223
    def _run_cluster(self, model, envs, check_error_log, log_name):
X
Xin Pan 已提交
1224
        # Run dist train to compare with local results
1225 1226
        ps0, ps1, ps0_pipe, ps1_pipe = self.start_pserver(
            model, check_error_log, envs, log_name=log_name)
W
Wu Yi 已提交
1227

X
Xin Pan 已提交
1228
        ps0_ep, ps1_ep = self._ps_endpoints.split(",")
1229

1230 1231 1232 1233 1234 1235 1236 1237
        tr_cmd = "%s"

        if os.getenv('WITH_COVERAGE', 'OFF') == 'ON':
            envs['COVERAGE_FILE'] = os.getenv('COVERAGE_FILE', '')
            tr_cmd += " -m coverage run --branch -p"

        tr_cmd += " %s --role trainer --endpoints %s --trainer_id %d --current_endpoint %s --trainers %d --update_method pserver --lr %f"

W
Wu Yi 已提交
1238
        tr0_cmd = tr_cmd % \
1239
                  (self._python_interp, model, self._ps_endpoints,
W
Wu Yi 已提交
1240
                   0, ps0_ep, self._trainers, self._lr)
W
Wu Yi 已提交
1241
        tr1_cmd = tr_cmd % \
1242
                  (self._python_interp, model, self._ps_endpoints,
W
Wu Yi 已提交
1243
                   1, ps1_ep, self._trainers, self._lr)
W
Wu Yi 已提交
1244 1245 1246 1247

        if self._sync_mode:
            tr0_cmd += " --sync_mode"
            tr1_cmd += " --sync_mode"
1248 1249 1250 1251 1252
        if self._eager_mode:
            tr0_cmd += " --eager_mode"
            tr1_cmd += " --eager_mode"
            tr0_cmd += " --dist_port {}".format(self._dist_port)
            tr1_cmd += " --dist_port {}".format(self._dist_port)
T
tangwei12 已提交
1253 1254 1255
        if self._hogwild_mode:
            tr0_cmd += " --hogwild"
            tr1_cmd += " --hogwild"
W
Wu Yi 已提交
1256 1257 1258
        if self._use_reduce:
            tr0_cmd += " --use_reduce"
            tr1_cmd += " --use_reduce"
1259 1260 1261
        if self._use_reader_alloc:
            tr0_cmd += " --use_reader_alloc"
            tr1_cmd += " --use_reader_alloc"
1262
        if self.__use_cuda:
1263 1264 1265 1266 1267 1268 1269 1270 1271 1272
            tr0_cmd += " --use_cuda"
            tr1_cmd += " --use_cuda"
            env0 = {"CUDA_VISIBLE_DEVICES": "0"}
            env1 = {"CUDA_VISIBLE_DEVICES": "1"}
        else:
            env0 = {'CPU_NUM': '1'}
            env1 = {'CPU_NUM': '1'}

        env0.update(envs)
        env1.update(envs)
X
Xin Pan 已提交
1273

W
Wu Yi 已提交
1274 1275
        print("tr0_cmd: {}, env: {}".format(tr0_cmd, env0))
        print("tr1_cmd: {}, env: {}".format(tr1_cmd, env1))
1276 1277
        tr0_pipe = open(log_name + "_tr0_err.log", "wb")
        tr1_pipe = open(log_name + "_tr1_err.log", "wb")
G
gongweibao 已提交
1278

1279
        print_to_err(type(self).__name__, "going to start trainer process 0")
X
Xin Pan 已提交
1280
        tr0_proc = subprocess.Popen(
W
Wu Yi 已提交
1281
            tr0_cmd.strip().split(" "),
X
Xin Pan 已提交
1282
            stdout=subprocess.PIPE,
G
gongweibao 已提交
1283
            stderr=tr0_pipe,
X
Xin Pan 已提交
1284
            env=env0)
1285
        print_to_err(type(self).__name__, "going to start trainer process 1")
X
Xin Pan 已提交
1286
        tr1_proc = subprocess.Popen(
W
Wu Yi 已提交
1287
            tr1_cmd.strip().split(" "),
X
Xin Pan 已提交
1288
            stdout=subprocess.PIPE,
G
gongweibao 已提交
1289
            stderr=tr1_pipe,
X
Xin Pan 已提交
1290 1291
            env=env1)

1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303
        # Wait until trainer process terminate
        while True:
            stat0 = tr0_proc.poll()
            time.sleep(0.1)
            if stat0 is not None:
                break
        while True:
            stat1 = tr1_proc.poll()
            time.sleep(0.1)
            if stat1 is not None:
                break

1304 1305
        tr0_out, tr0_err = tr0_proc.communicate()
        tr1_out, tr1_err = tr1_proc.communicate()
X
Xin Pan 已提交
1306

G
gongweibao 已提交
1307
        # close trainer file
1308 1309 1310 1311
        tr0_pipe.close()
        tr1_pipe.close()
        ps0_pipe.close()
        ps1_pipe.close()
W
Wu Yi 已提交
1312

W
Wu Yi 已提交
1313 1314
        ps0.terminate()
        ps1.terminate()
T
typhoonzero 已提交
1315

W
Wu Yi 已提交
1316 1317
        return pickle.loads(tr0_out), pickle.loads(tr1_out)

X
xiongkun 已提交
1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339
    def _get_gloo_trainer_cmd(self, model, ep, update_method, trainer_id,
                              trainer_num):
        env = {}
        tr_cmd = "%s -u"

        if os.getenv('WITH_COVERAGE', 'OFF') == 'ON':
            tr_cmd += " -m coverage run --branch -p"

        tr_cmd += " %s --role trainer --endpoints %s --trainer_id %d --current_endpoint %s --update_method %s --lr %f"

        tr_cmd = tr_cmd % \
                 (self._python_interp, model, self._ps_endpoints,
                  trainer_id, ep, update_method, self._lr)

        if self._use_reduce:
            tr_cmd += " --use_reduce"
        if self._use_reader_alloc:
            tr_cmd += " --use_reader_alloc"
        #assert self._use_reduce == False, "gloo not support _use_reduce"
        #assert self._use_reader_alloc == False, "gloo not support _use_reduce"
        if self._save_model:
            tr_cmd += " --save_model"
1340 1341
        if self._diff_batch:
            tr_cmd += " --diff_batch"
X
xiongkun 已提交
1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357
        self.__use_cuda = False
        self.__use_xpu = False
        assert self.__use_cuda == False, "gloo not support use cuda"
        assert self.__use_xpu == False, "gloo not support use xpu"
        tr_cmd += " --use_cpu"
        env.update({
            "PADDLE_TRAINERS_NUM": "{}".format(trainer_num),
            "PADDLE_TRAINER_ID": "{}".format(trainer_id),
            "PADDLE_TRAINER_ENDPOINTS": self._ps_endpoints,
            "PADDLE_CURRENT_ENDPOINT": ep,
            "PADDLE_CURRENT_ENDPOINT": ep,
            "PADDLE_DISTRI_BACKEND": "gloo",
            "GLOG_v": "2",
        })

        assert self._use_dgc == False, "gloo not support use dgc"
1358 1359 1360 1361 1362

        if self._eager_mode:
            tr_cmd += " --eager_mode"
            tr_cmd += " --dist_port {}".format(self._dist_port)

X
xiongkun 已提交
1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380
        if self._accumulate_gradient:
            tr_cmd += " --accumulate_gradient"

        if self._find_unused_parameters:
            tr_cmd += " --find_unused_parameters"

        assert self._pipeline_mode == False, "gloo not support use pipeline"

        if self._enable_backward_deps:  # build strategy, save it
            tr_cmd += " --enable_backward_deps"

        if self._fuse_all_reduce is not None:
            tr_cmd += " --fuse_all_reduce {}".format(self._fuse_all_reduce)

        assert self._use_fleet_api == False, "gloo not support use fleet api"
        assert self._use_fleet_api_20 == False, "gloo not support use fleet api"
        return tr_cmd, env

1381 1382 1383
    def _get_nccl2_trainer_cmd(self, model, ep, update_method, trainer_id,
                               trainer_num):
        env = {}
1384 1385 1386 1387 1388 1389 1390
        tr_cmd = "%s -u"

        if os.getenv('WITH_COVERAGE', 'OFF') == 'ON':
            tr_cmd += " -m coverage run --branch -p"

        tr_cmd += " %s --role trainer --endpoints %s --trainer_id %d --current_endpoint %s --update_method %s --lr %f"

1391
        tr_cmd = tr_cmd % \
T
tangwei12 已提交
1392 1393
                 (self._python_interp, model, self._ps_endpoints,
                  trainer_id, ep, update_method, self._lr)
W
Wu Yi 已提交
1394 1395

        if self._use_reduce:
1396
            tr_cmd += " --use_reduce"
W
Wu Yi 已提交
1397
        if self._use_reader_alloc:
1398
            tr_cmd += " --use_reader_alloc"
1399 1400
        if self._save_model:
            tr_cmd += " --save_model"
W
Wu Yi 已提交
1401
        if self.__use_cuda:
1402 1403
            tr_cmd += " --use_cuda"
            env.update({
1404
                "FLAGS_selected_gpus": "{}".format(0),
W
WangXi 已提交
1405
                "CUDA_VISIBLE_DEVICES": "{}".format(trainer_id),
1406
                "PADDLE_TRAINERS_NUM": "{}".format(trainer_num),
1407 1408 1409
                "PADDLE_TRAINER_ID": "{}".format(trainer_id),
                "PADDLE_TRAINER_ENDPOINTS": self._ps_endpoints,
                "PADDLE_CURRENT_ENDPOINT": ep,
1410
            })
1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423
        # TODO(liuyuhui):XPU_VISIBLE_DEVICES is not working right now,
        # will update it after Badiu Kunlun partners' support.
        elif self.__use_xpu:
            tr_cmd += " --use_xpu"
            env.update({
                "FLAGS_selected_xpus": "{}".format(trainer_id),
                #"XPU_VISIBLE_DEVICES": "{}".format(trainer_id + 1),
                "PADDLE_TRAINERS_NUM": "{}".format(trainer_num),
                "PADDLE_TRAINER_ID": "{}".format(trainer_id),
                "PADDLE_TRAINER_ENDPOINTS": self._ps_endpoints,
                "PADDLE_CURRENT_ENDPOINT": ep,
                "GLOG_v": "2",
            })
1424 1425 1426 1427 1428 1429 1430 1431 1432 1433
        elif self.__use_npu:
            tr_cmd += " --use_npu"
            env.update({
                "FLAGS_selected_npus": "{}".format(trainer_id),
                "PADDLE_TRAINERS_NUM": "{}".format(trainer_num),
                "PADDLE_TRAINER_ID": "{}".format(trainer_id),
                "PADDLE_TRAINER_ENDPOINTS": self._ps_endpoints,
                "PADDLE_CURRENT_ENDPOINT": ep,
                "GLOG_v": "2",
            })
W
Wu Yi 已提交
1434
        else:
1435
            env.update({'CPU_NUM': '1'})
W
Wu Yi 已提交
1436

1437
        if self._use_dgc:
1438 1439
            tr_cmd += " --use_dgc"

1440 1441 1442 1443
        if self._eager_mode:
            tr_cmd += " --eager_mode"
            tr_cmd += " --dist_port {}".format(self._dist_port)

1444 1445 1446
        if self._accumulate_gradient:
            tr_cmd += " --accumulate_gradient"

1447 1448 1449
        if self._find_unused_parameters:
            tr_cmd += " --find_unused_parameters"

1450 1451
        if self._pipeline_mode:
            tr_cmd += " --use_pipeline"
1452
        if self._mp_mode:
W
WangXi 已提交
1453
            env = {"FLAGS_selected_gpus": "{}".format(trainer_id)}
1454 1455

        if self._nccl_comm_num > 1:
1456
            tr_cmd += " --nccl_comm_num {}".format(self._nccl_comm_num)
1457

1458 1459
        if self._use_hallreduce:
            tr_cmd += " --use_hallreduce --hallreduce_inter_nranks 2"
1460

1461
        if self._enable_backward_deps:
1462
            tr_cmd += " --enable_backward_deps"
1463

1464 1465 1466
        if self._fuse_all_reduce is not None:
            tr_cmd += " --fuse_all_reduce {}".format(self._fuse_all_reduce)

1467
        if self._use_fleet_api:
1468
            tr_cmd += " --use_fleet_api_20" if self._use_fleet_api_20 else " --use_fleet_api"
1469 1470 1471 1472
            if self._use_local_sgd:
                tr_cmd += " --use_local_sgd"
            if self._ut4grad_allreduce:
                tr_cmd += " --ut4grad_allreduce"
1473 1474
            if hasattr(self, '_sync_batch_norm') and self._sync_batch_norm:
                tr_cmd += " --sync_batch_norm"
1475

1476 1477 1478
        if os.getenv('WITH_COVERAGE', 'OFF') == 'ON':
            env['COVERAGE_FILE'] = os.getenv('COVERAGE_FILE', '')

1479
        return tr_cmd, env
W
Wu Yi 已提交
1480

X
xiongkun 已提交
1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531
    def _run_cluster_gloo(self, model, envs, update_method, check_error_log,
                          log_name):
        assert update_method == "gloo", "_run_cluster_gloo must have update_method: gloo, but get %s" % update_method
        assert not self._use_hallreduce, "_run_cluster_gloo must have _use_hallreduce = false"

        worker_endpoints = self._ps_endpoints.split(",")

        trainer_num = len(worker_endpoints)

        procs = []
        pipes = []
        for i in range(0, trainer_num):
            tr_cmd, tr_env = self._get_gloo_trainer_cmd(
                model, worker_endpoints[i], update_method, i, trainer_num)
            tr_env.update(envs)
            tr_env["GLOG_vmodule"] = 'gloo_context=4'
            tr_env["GLOG_v"] = '3'
            print("use_hallreduce:{} tr_cmd:{}, env: {}".format(
                self._use_hallreduce, tr_cmd, tr_env))

            tr_pipe = open(log_name + "_tr{}_err.log".format(i), "wb")

            print_to_err(
                type(self).__name__,
                "going to start process {} with nccl2".format(i))
            tr_proc = subprocess.Popen(
                tr_cmd.strip().split(" "),
                stdout=subprocess.PIPE,
                stderr=tr_pipe,
                env=tr_env)

            procs.append(tr_proc)
            pipes.append(tr_pipe)

        outs = []
        for i in range(0, trainer_num):
            tr_out, tr_err = procs[i].communicate()
            outs.append(tr_out)
            pipes[i].close()
            sys.stderr.write('trainer {} stderr: {}\n'.format(i, tr_err))

        if trainer_num == 1:
            if check_error_log: print("outs[0]:", outs[0])
            return pickle.loads(outs[0])

        else:
            if check_error_log:
                print("outs[0]:", outs[0])
                print("outs[1]:", outs[1])
            return pickle.loads(outs[0]), pickle.loads(outs[1])

1532 1533
    def _run_cluster_nccl2(self, model, envs, update_method, check_error_log,
                           log_name):
1534 1535
        if self._use_hallreduce:
            self._ps_endpoints = ""
1536 1537 1538

            global DIST_UT_PORT
            if DIST_UT_PORT == 0:
W
WangXi 已提交
1539
                # NOTE(wangxi). hallreduce test must use 4cards after nccl>=2.7
1540 1541 1542 1543 1544 1545 1546
                for i in range(0, 4):
                    self._ps_endpoints += "127.0.0.1:%s," % (
                        self._find_free_port())
            else:
                for i in range(0, 4):
                    self._ps_endpoints += "127.0.0.1:%s," % (DIST_UT_PORT + i)
                DIST_UT_PORT += 4
1547
            self._ps_endpoints = self._ps_endpoints[:-1]
W
Wu Yi 已提交
1548

1549 1550
        # NOTE: we reuse ps_endpoints as nccl2 worker endpoints
        worker_endpoints = self._ps_endpoints.split(",")
W
Wu Yi 已提交
1551

1552
        trainer_num = len(worker_endpoints)
W
Wu Yi 已提交
1553

1554 1555 1556 1557 1558 1559 1560 1561
        procs = []
        pipes = []
        for i in range(0, trainer_num):
            tr_cmd, tr_env = self._get_nccl2_trainer_cmd(
                model, worker_endpoints[i], update_method, i, trainer_num)
            tr_env.update(envs)
            print("use_hallreduce:{} tr_cmd:{}, env: {}".format(
                self._use_hallreduce, tr_cmd, tr_env))
W
Wu Yi 已提交
1562

1563
            tr_pipe = open(log_name + "_tr{}_err.log".format(i), "wb")
W
Wu Yi 已提交
1564

1565
            print_to_err(
1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583
                type(self).__name__,
                "going to start process {} with nccl2".format(i))
            tr_proc = subprocess.Popen(
                tr_cmd.strip().split(" "),
                stdout=subprocess.PIPE,
                stderr=tr_pipe,
                env=tr_env)

            procs.append(tr_proc)
            pipes.append(tr_pipe)

        outs = []
        for i in range(0, trainer_num):
            tr_out, tr_err = procs[i].communicate()
            outs.append(tr_out)
            pipes[i].close()
            sys.stderr.write('trainer {} stderr: {}\n'.format(i, tr_err))

1584 1585 1586
        if check_error_log:
            print("outs[0]:", outs[0])
            print("outs[1]:", outs[1])
1587

1588
        return pickle.loads(outs[0]), pickle.loads(outs[1])
1589

1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634
    def _run_pipeline(self, model, envs, check_error_log, log_name):
        # NOTE: we reuse ps_endpoints as nccl2 worker endpoints
        worker_endpoints = self._ps_endpoints.split(",")
        update_method = "nccl2"

        trainer_num = len(worker_endpoints)

        procs = []
        pipes = []
        for i in range(0, trainer_num):
            tr_cmd, tr_env = self._get_nccl2_trainer_cmd(
                model, worker_endpoints[i], update_method, i, trainer_num)
            tr_env.update(envs)
            tr_env['CUDA_VISIBLE_DEVICES'] = "0,1"
            tr_env['NCCL_SHM_DISABLE'] = '1'
            tr_env['FLAGS_selected_gpus'] = str(i)
            tr_env['FLAGS_cudnn_deterministic'] = '0'
            print("tr_cmd:{}, env: {}".format(tr_cmd, tr_env))

            tr_pipe = open("/tmp/" + "tr{}_err.log".format(i), "wb")

            print_to_err(
                type(self).__name__,
                "going to start process {} with nccl2".format(i))
            tr_proc = subprocess.Popen(
                tr_cmd.strip().split(" "),
                stdout=subprocess.PIPE,
                stderr=tr_pipe,
                env=tr_env)

            procs.append(tr_proc)
            pipes.append(tr_pipe)

        outs = []
        for i in range(0, trainer_num):
            tr_out, tr_err = procs[i].communicate()
            outs.append(tr_out)
            pipes[i].close()
            sys.stderr.write('trainer {} stderr: {}\n'.format(i, tr_err))

        if check_error_log:
            print("outs[0]:", outs[0])
            print("outs[1]:", outs[1])
        return pickle.loads(outs[0]), pickle.loads(outs[1])

1635
    def _get_required_envs(self, check_error_log=False, need_envs={}):
1636 1637 1638 1639 1640 1641
        # TODO(typhoonzero): should auto adapt GPU count on the machine.
        required_envs = {
            "PATH": os.getenv("PATH", ""),
            "PYTHONPATH": os.getenv("PYTHONPATH", ""),
            "LD_LIBRARY_PATH": os.getenv("LD_LIBRARY_PATH", ""),
            "FLAGS_fraction_of_gpu_memory_to_use": "0.15",
G
guru4elephant 已提交
1642
            "FLAGS_rpc_deadline": "30000",  # 5sec to fail fast
1643
            "FLAGS_rpc_retry_bind_port": "50",
1644
            "FLAGS_cudnn_deterministic": "1",
1645
            "FLAGS_rpc_disable_reuse_port": "1",
W
Wu Yi 已提交
1646
            "http_proxy": "",
1647 1648
            "NCCL_P2P_DISABLE": "1",
            "NCCL_SHM_DISABLE": "1"
1649 1650 1651
        }

        if check_error_log:
1652
            required_envs["GLOG_vmodule"] = \
1653 1654
                "fused_all_reduce_op_handle=10,all_reduce_op_handle=10,alloc_continuous_space_op=10,fuse_all_reduce_op_pass=10," \
                "alloc_continuous_space_for_grad_pass=10,fast_threaded_ssa_graph_executor=10,executor=10,operator=10," \
W
WangXi 已提交
1655
                "sparse_all_reduce_op_handle=10,gen_nccl_id_op=10,gen_nccl_id_op_help=10,nccl_helper=10,grpc_client=10," \
1656
                "grpc_server=10,request_handler_impl=10,section_worker=10"
1657 1658
            required_envs["GLOG_logtostderr"] = "1"

1659 1660 1661 1662 1663 1664 1665 1666 1667
        required_envs.update(need_envs)
        return required_envs

    def check_with_place(self,
                         model_file,
                         delta=1e-3,
                         check_error_log=False,
                         need_envs={},
                         log_name=""):
1668

1669 1670
        required_envs = self._get_required_envs(check_error_log, need_envs)

X
xiongkun 已提交
1671 1672 1673 1674 1675 1676
        if self._gloo_mode:
            local_losses \
                = self._run_local_gloo(model_file, required_envs,
                                  check_error_log, log_name=log_name)
        else:
            local_losses \
1677
            = self._run_local(model_file, required_envs,
1678 1679
                              check_error_log, log_name=log_name)

W
Wu Yi 已提交
1680
        if self._nccl2_mode:
W
Wu Yi 已提交
1681 1682
            if self._nccl2_reduce_layer:
                tr0_losses, tr1_losses = self._run_cluster_nccl2(
1683 1684
                    model_file,
                    required_envs,
1685 1686
                    update_method="nccl2_reduce_layer",
                    check_error_log=check_error_log,
1687
                    log_name=log_name)
W
Wu Yi 已提交
1688 1689
            else:
                tr0_losses, tr1_losses = self._run_cluster_nccl2(
1690 1691
                    model_file,
                    required_envs,
1692 1693
                    update_method='nccl2',
                    check_error_log=check_error_log,
1694
                    log_name=log_name)
1695 1696 1697 1698 1699 1700 1701
        elif self._bkcl_mode:
            tr0_losses, tr1_losses = self._run_cluster_nccl2(
                model_file,
                required_envs,
                update_method='bkcl',
                check_error_log=check_error_log,
                log_name=log_name)
X
xiongkun 已提交
1702 1703 1704 1705 1706 1707 1708 1709
        elif self._gloo_mode:
            # gloo mode, cpu only parallel train @xiongkun03
            tr0_losses, tr1_losses = self._run_cluster_gloo(
                model_file,
                required_envs,
                update_method='gloo',
                check_error_log=check_error_log,
                log_name=log_name)
1710 1711 1712 1713 1714 1715 1716
        elif self._hccl_mode:
            tr0_losses, tr1_losses = self._run_cluster_nccl2(
                model_file,
                required_envs,
                update_method='hccl',
                check_error_log=check_error_log,
                log_name=log_name)
1717

1718 1719 1720
        elif self._pipeline_mode:
            tr0_losses, tr1_losses = self._run_pipeline(
                model_file, required_envs, check_error_log, log_name=log_name)
W
Wu Yi 已提交
1721 1722
        else:
            tr0_losses, tr1_losses = self._run_cluster(
1723
                model_file, required_envs, check_error_log, log_name=log_name)
1724 1725

        for step_id in range(RUN_STEP):
W
Wu Yi 已提交
1726 1727 1728
            local_loss = local_losses[step_id]
            tr0_loss = tr0_losses[step_id]
            tr1_loss = tr1_losses[step_id]
1729 1730 1731 1732
            if self._pipeline_mode:
                dist_loss = np.array([tr1_loss])
            else:
                dist_loss = (np.array([tr0_loss]) + np.array([tr1_loss])) / 2
W
Wu Yi 已提交
1733 1734
            print("=======", local_loss, ":", dist_loss[0], "=======")
            self.assertAlmostEqual(local_loss, dist_loss[0], delta=delta)
1735 1736 1737 1738 1739 1740 1741

    def check_with_place_multi_cards(self,
                                     model_file,
                                     delta=1e-3,
                                     check_error_log=False,
                                     need_envs={},
                                     log_name=""):
1742

1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753
        # need open p2p or shm otherwise multi cards mode will hang
        need_envs.update({"NCCL_P2P_DISABLE": "0", "NCCL_SHM_DISABLE": "0"})

        required_envs = self._get_required_envs(check_error_log, need_envs)

        if self._use_dgc:
            multi_cards_losses = self._run_local(
                model_file,
                required_envs,
                check_error_log,
                log_name=log_name + "_dgc_2cards",
1754
                devices="0,1")
1755 1756 1757 1758 1759 1760 1761

            self._use_dgc = False
            base_losses = self._run_local(
                model_file,
                required_envs,
                check_error_log,
                log_name=log_name + "_base_2cards",
1762
                devices="0,1")
1763 1764 1765 1766 1767 1768 1769 1770

            self._use_dgc = True

            for step_id in range(RUN_STEP):
                base_loss = base_losses[step_id]
                multi_cards_loss = multi_cards_losses[step_id]
                print("=======", base_loss, ":", multi_cards_loss, "=======")
                self.assertAlmostEqual(base_loss, multi_cards_loss, delta=delta)