Skip to content
体验新版
项目
组织
正在加载...
登录
切换导航
打开侧边栏
PaddlePaddle
Paddle
提交
e7547ca7
P
Paddle
项目概览
PaddlePaddle
/
Paddle
1 年多 前同步成功
通知
2302
Star
20931
Fork
5422
代码
文件
提交
分支
Tags
贡献者
分支图
Diff
Issue
1423
列表
看板
标记
里程碑
合并请求
543
Wiki
0
Wiki
分析
仓库
DevOps
项目成员
Pages
P
Paddle
项目概览
项目概览
详情
发布
仓库
仓库
文件
提交
分支
标签
贡献者
分支图
比较
Issue
1,423
Issue
1,423
列表
看板
标记
里程碑
合并请求
543
合并请求
543
Pages
分析
分析
仓库分析
DevOps
Wiki
0
Wiki
成员
成员
收起侧边栏
关闭侧边栏
动态
分支图
创建新Issue
提交
Issue看板
未验证
提交
e7547ca7
编写于
8月 02, 2022
作者:
Y
Yuang Liu
提交者:
GitHub
8月 02, 2022
浏览文件
操作
浏览文件
下载
电子邮件补丁
差异文件
Pass NVIDIA_TF32_OVERRIDE to internal (#43646) (#44796)
Co-authored-by:
N
gongweibao
<
gongweibao@baidu.com
>
上级
6de20581
变更
2
展开全部
隐藏空白更改
内联
并排
Showing
2 changed file
with
204 addition
and
208 deletion
+204
-208
python/paddle/fluid/tests/unittests/test_collective_api_base.py
.../paddle/fluid/tests/unittests/test_collective_api_base.py
+54
-63
python/paddle/fluid/tests/unittests/test_dist_base.py
python/paddle/fluid/tests/unittests/test_dist_base.py
+150
-145
未找到文件。
python/paddle/fluid/tests/unittests/test_collective_api_base.py
浏览文件 @
e7547ca7
...
...
@@ -32,6 +32,7 @@ from paddle.fluid import core
class
TestCollectiveAPIRunnerBase
(
object
):
def
get_model
(
self
,
train_prog
,
startup_prog
,
rank
,
indata
=
None
):
raise
NotImplementedError
(
"get model should be implemented by child class."
)
...
...
@@ -91,6 +92,7 @@ from contextlib import closing
class
TestDistBase
(
unittest
.
TestCase
):
def
setUp
(
self
):
self
.
_port_set
=
set
()
self
.
_trainers
=
2
...
...
@@ -104,6 +106,7 @@ class TestDistBase(unittest.TestCase):
self
.
temp_dir
.
cleanup
()
def
_find_free_port
(
self
):
def
__free_port
():
with
closing
(
socket
.
socket
(
socket
.
AF_INET
,
socket
.
SOCK_STREAM
))
as
s
:
...
...
@@ -168,17 +171,15 @@ class TestDistBase(unittest.TestCase):
tr0_pipe
=
open
(
path0
,
"w"
)
tr1_pipe
=
open
(
path1
,
"w"
)
#print(tr0_cmd)
tr0_proc
=
subprocess
.
Popen
(
tr0_cmd
.
strip
().
split
(),
stdout
=
subprocess
.
PIPE
,
stderr
=
tr0_pipe
,
env
=
env0
)
tr1_proc
=
subprocess
.
Popen
(
tr0_cmd
.
strip
().
split
(),
stdout
=
subprocess
.
PIPE
,
stderr
=
tr1_pipe
,
env
=
env1
)
tr0_proc
=
subprocess
.
Popen
(
tr0_cmd
.
strip
().
split
(),
stdout
=
subprocess
.
PIPE
,
stderr
=
tr0_pipe
,
env
=
env0
)
tr1_proc
=
subprocess
.
Popen
(
tr0_cmd
.
strip
().
split
(),
stdout
=
subprocess
.
PIPE
,
stderr
=
tr1_pipe
,
env
=
env1
)
tr0_out
,
tr0_err
=
tr0_proc
.
communicate
()
tr1_out
,
tr1_err
=
tr1_proc
.
communicate
()
...
...
@@ -220,8 +221,14 @@ class TestDistBase(unittest.TestCase):
required_envs
[
"GLOG_v"
]
=
"3"
required_envs
[
"GLOG_logtostderr"
]
=
"1"
required_envs
[
"GLOO_LOG_LEVEL"
]
=
"TRACE"
tr0_out
,
tr1_out
,
pid0
,
pid1
=
self
.
_run_cluster
(
model_file
,
required_envs
)
if
os
.
getenv
(
'NVIDIA_TF32_OVERRIDE'
,
''
)
is
not
None
:
required_envs
[
'NVIDIA_TF32_OVERRIDE'
]
=
os
.
getenv
(
'NVIDIA_TF32_OVERRIDE'
,
''
)
tr0_out
,
tr1_out
,
pid0
,
pid1
=
self
.
_run_cluster
(
model_file
,
required_envs
)
np
.
random
.
seed
(
pid0
)
input1
=
np
.
random
.
random
((
10
,
1000
))
np
.
random
.
seed
(
pid1
)
...
...
@@ -248,11 +255,9 @@ class TestDistBase(unittest.TestCase):
elif
col_type
==
"allreduce"
:
need_result
=
input1
+
input2
self
.
assertTrue
(
np
.
allclose
(
tr0_out
,
need_result
,
rtol
=
1e-05
,
atol
=
1e-05
))
np
.
allclose
(
tr0_out
,
need_result
,
rtol
=
1e-05
,
atol
=
1e-05
))
self
.
assertTrue
(
np
.
allclose
(
tr1_out
,
need_result
,
rtol
=
1e-05
,
atol
=
1e-05
))
np
.
allclose
(
tr1_out
,
need_result
,
rtol
=
1e-05
,
atol
=
1e-05
))
elif
col_type
==
"parallel_embedding"
:
result_data
=
tr0_out
[
0
]
np
.
random
.
seed
(
2020
)
...
...
@@ -260,24 +265,23 @@ class TestDistBase(unittest.TestCase):
for
i
in
range
(
result_data
.
shape
[
0
]):
for
j
in
range
(
result_data
.
shape
[
1
]):
data
=
result_data
[
i
][
j
]
assert
np
.
allclose
(
tr0_out
[
1
][
i
][
j
],
need_result
[
data
],
atol
=
1e-08
)
assert
np
.
allclose
(
tr0_out
[
1
][
i
][
j
],
need_result
[
data
],
atol
=
1e-08
)
elif
col_type
==
"row_parallel_linear"
:
result_data
=
tr0_out
[
0
]
np
.
random
.
seed
(
2020
)
weight
=
np
.
random
.
rand
(
1000
,
16
)
need_result
=
np
.
matmul
(
input1
,
weight
)
self
.
assertTrue
(
np
.
allclose
(
result_data
,
need_result
,
rtol
=
1e-05
,
atol
=
1e-05
))
np
.
allclose
(
result_data
,
need_result
,
rtol
=
1e-05
,
atol
=
1e-05
))
elif
col_type
==
"column_parallel_linear"
:
result_data
=
tr0_out
[
0
]
np
.
random
.
seed
(
2020
)
weight
=
np
.
random
.
rand
(
1000
,
16
)
need_result
=
np
.
matmul
(
input1
,
weight
)
self
.
assertTrue
(
np
.
allclose
(
result_data
,
need_result
,
rtol
=
1e-05
,
atol
=
1e-05
))
np
.
allclose
(
result_data
,
need_result
,
rtol
=
1e-05
,
atol
=
1e-05
))
elif
col_type
==
"alltoall"
:
need_result1
=
np
.
vstack
((
input1
[
0
:
input1
.
shape
[
0
]
//
2
,
:],
input2
[
0
:
input2
.
shape
[
0
]
//
2
,
:]))
...
...
@@ -286,16 +290,13 @@ class TestDistBase(unittest.TestCase):
tr0_out
=
np
.
vstack
(
tr0_out
)
tr1_out
=
np
.
vstack
(
tr1_out
)
self
.
assertTrue
(
np
.
allclose
(
tr0_out
,
need_result1
,
rtol
=
1e-05
,
atol
=
1e-05
))
np
.
allclose
(
tr0_out
,
need_result1
,
rtol
=
1e-05
,
atol
=
1e-05
))
self
.
assertTrue
(
np
.
allclose
(
tr1_out
,
need_result2
,
rtol
=
1e-05
,
atol
=
1e-05
))
np
.
allclose
(
tr1_out
,
need_result2
,
rtol
=
1e-05
,
atol
=
1e-05
))
elif
col_type
==
"sendrecv"
:
result_data
=
tr1_out
[
0
]
self
.
assertTrue
(
np
.
allclose
(
input1
,
result_data
,
rtol
=
1e-05
,
atol
=
1e-05
))
np
.
allclose
(
input1
,
result_data
,
rtol
=
1e-05
,
atol
=
1e-05
))
elif
col_type
==
"global_gather"
:
in_feat
=
2
n_expert
=
2
...
...
@@ -372,15 +373,13 @@ class TestDistBase(unittest.TestCase):
if
result1
==
[]:
output1
=
np
.
array
([])
else
:
output1
=
np
.
concatenate
(
result1
,
axis
=
0
).
reshape
(
sum
(
local_expert_count1
),
in_feat
)
output1
=
np
.
concatenate
(
result1
,
axis
=
0
).
reshape
(
sum
(
local_expert_count1
),
in_feat
)
if
result2
==
[]:
output2
=
np
.
array
([])
else
:
output2
=
np
.
concatenate
(
result2
,
axis
=
0
).
reshape
(
sum
(
local_expert_count2
),
in_feat
)
output2
=
np
.
concatenate
(
result2
,
axis
=
0
).
reshape
(
sum
(
local_expert_count2
),
in_feat
)
if
tr0_out
[
0
]
is
None
or
tr0_out
[
0
].
shape
[
0
]
==
0
:
tr0_out
[
0
]
=
np
.
array
([])
...
...
@@ -389,24 +388,20 @@ class TestDistBase(unittest.TestCase):
tr1_out
[
0
]
=
np
.
array
([])
self
.
assertTrue
(
np
.
allclose
(
tr0_out
[
0
],
output1
,
rtol
=
1e-05
,
atol
=
1e-05
))
np
.
allclose
(
tr0_out
[
0
],
output1
,
rtol
=
1e-05
,
atol
=
1e-05
))
self
.
assertTrue
(
np
.
allclose
(
tr1_out
[
0
],
output2
,
rtol
=
1e-05
,
atol
=
1e-05
))
np
.
allclose
(
tr1_out
[
0
],
output2
,
rtol
=
1e-05
,
atol
=
1e-05
))
if
static_mode
==
0
:
self
.
assertTrue
(
np
.
allclose
(
tr0_out
[
1
],
2
*
local_input_buf1
,
rtol
=
1e-05
,
atol
=
1e-05
))
np
.
allclose
(
tr0_out
[
1
],
2
*
local_input_buf1
,
rtol
=
1e-05
,
atol
=
1e-05
))
self
.
assertTrue
(
np
.
allclose
(
tr1_out
[
1
],
2
*
local_input_buf2
,
rtol
=
1e-05
,
atol
=
1e-05
))
np
.
allclose
(
tr1_out
[
1
],
2
*
local_input_buf2
,
rtol
=
1e-05
,
atol
=
1e-05
))
elif
col_type
==
"global_scatter"
:
np
.
random
.
seed
(
pid0
)
...
...
@@ -460,23 +455,19 @@ class TestDistBase(unittest.TestCase):
tr1_out
[
0
]
=
np
.
array
([])
self
.
assertTrue
(
np
.
allclose
(
tr0_out
[
0
],
output1
,
rtol
=
1e-05
,
atol
=
1e-05
))
np
.
allclose
(
tr0_out
[
0
],
output1
,
rtol
=
1e-05
,
atol
=
1e-05
))
self
.
assertTrue
(
np
.
allclose
(
tr1_out
[
0
],
output2
,
rtol
=
1e-05
,
atol
=
1e-05
))
np
.
allclose
(
tr1_out
[
0
],
output2
,
rtol
=
1e-05
,
atol
=
1e-05
))
if
static_mode
==
0
:
self
.
assertTrue
(
np
.
allclose
(
tr0_out
[
1
],
2
*
local_input_buf1
,
rtol
=
1e-05
,
atol
=
1e-05
))
np
.
allclose
(
tr0_out
[
1
],
2
*
local_input_buf1
,
rtol
=
1e-05
,
atol
=
1e-05
))
self
.
assertTrue
(
np
.
allclose
(
tr1_out
[
1
],
2
*
local_input_buf2
,
rtol
=
1e-05
,
atol
=
1e-05
))
np
.
allclose
(
tr1_out
[
1
],
2
*
local_input_buf2
,
rtol
=
1e-05
,
atol
=
1e-05
))
else
:
pass
python/paddle/fluid/tests/unittests/test_dist_base.py
浏览文件 @
e7547ca7
此差异已折叠。
点击以展开。
编辑
预览
Markdown
is supported
0%
请重试
或
添加新附件
.
添加附件
取消
You are about to add
0
people
to the discussion. Proceed with caution.
先完成此消息的编辑!
取消
想要评论请
注册
或
登录