test_dist_base.py 49.1 KB
Newer Older
X
Xin Pan 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13
#   Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
14 15

from __future__ import print_function
X
Xin Pan 已提交
16 17
import time

18
import ast
X
Xin Pan 已提交
19 20 21 22 23
import unittest
import os
import sys
import signal
import subprocess
24
import six
W
Wu Yi 已提交
25
import argparse
W
Wu Yi 已提交
26
import pickle
27
import random
W
Wu Yi 已提交
28
import numpy as np
29
import time
30 31

import paddle
32
import paddle.fluid as fluid
33
from paddle.fluid import compiler
34 35 36
import paddle.fluid.dygraph as dygraph
from paddle.fluid.dygraph.base import to_variable
from paddle.fluid.dygraph.parallel import DataParallel
37

38 39 40
from paddle.fluid.incubate.fleet.collective import fleet, DistributedStrategy
import paddle.fluid.incubate.fleet.base.role_maker as role_maker

Y
Yan Xu 已提交
41
RUN_STEP = 5
42
DEFAULT_BATCH_SIZE = 2
43
DIST_UT_PORT = 0
44

T
typhoonzero 已提交
45

46 47 48 49 50 51 52 53
def print_to_out(out_losses):
    if six.PY2:
        print(pickle.dumps(out_losses))
    else:
        sys.stdout.buffer.write(pickle.dumps(out_losses))


def print_to_err(class_name, log_str):
54 55
    localtime = time.asctime(time.localtime(time.time()))
    print_str = localtime + "\t" + class_name + "\t" + log_str
G
guru4elephant 已提交
56
    if six.PY2:
57
        sys.stderr.write(pickle.dumps(print_str))
G
guru4elephant 已提交
58
    else:
59
        sys.stderr.buffer.write(pickle.dumps(print_str))
G
guru4elephant 已提交
60 61


62 63 64 65
def eprint(*args, **kwargs):
    print(*args, file=sys.stderr, **kwargs)


T
typhoonzero 已提交
66
class TestDistRunnerBase(object):
W
Wu Yi 已提交
67 68 69
    def get_model(self,
                  batch_size=DEFAULT_BATCH_SIZE,
                  lr=0.1,
70 71
                  single_device=False,
                  use_dgc=False):
T
typhoonzero 已提交
72 73 74
        raise NotImplementedError(
            "get_model should be implemented by child classes.")

75
    @staticmethod
W
Wu Yi 已提交
76 77 78 79 80
    def get_transpiler(trainer_id,
                       main_program,
                       pserver_endpoints,
                       trainers,
                       sync_mode,
81
                       dc_asgd=False,
82
                       current_endpoint=None,
T
tangwei12 已提交
83 84
                       nccl_comm_num=1,
                       hogwild_mode=False):
T
typhoonzero 已提交
85
        # NOTE: import fluid until runtime, or else forking processes will cause error.
86
        config = fluid.DistributeTranspilerConfig()
W
Wu Yi 已提交
87
        config.enable_dc_asgd = dc_asgd
88
        config.sync_mode = sync_mode
T
tangwei12 已提交
89 90
        config.runtime_split_send_recv = hogwild_mode

91 92
        if nccl_comm_num > 1:
            config.nccl_comm_num = nccl_comm_num
93
        # config.runtime_split_send_recv = True
94
        t = fluid.DistributeTranspiler(config=config)
T
typhoonzero 已提交
95 96 97 98
        t.transpile(
            trainer_id=trainer_id,
            program=main_program,
            pservers=pserver_endpoints,
W
Wu Yi 已提交
99
            trainers=trainers,
T
tangwei12 已提交
100
            sync_mode=sync_mode,
101
            current_endpoint=current_endpoint)
T
typhoonzero 已提交
102 103
        return t

W
Wu Yi 已提交
104
    def run_pserver(self, args):
W
Wu Yi 已提交
105
        self.lr = args.lr
106
        self.get_model(batch_size=args.batch_size)
107
        # NOTE: pserver should not call memory optimize
T
tangwei12 已提交
108 109 110 111 112 113 114 115 116

        t = self.get_transpiler(
            trainer_id=args.trainer_id,
            main_program=fluid.default_main_program(),
            pserver_endpoints=args.endpoints,
            trainers=args.trainers,
            sync_mode=args.sync_mode,
            dc_asgd=args.dc_asgd,
            hogwild_mode=args.hogwild)
W
Wu Yi 已提交
117 118 119
        pserver_prog = t.get_pserver_program(args.current_endpoint)
        startup_prog = t.get_startup_program(args.current_endpoint,
                                             pserver_prog)
Y
Yancey1989 已提交
120

T
typhoonzero 已提交
121 122 123
        place = fluid.CPUPlace()
        exe = fluid.Executor(place)
        exe.run(startup_prog)
124
        print_to_err(type(self).__name__, "run pserver startup program done.")
T
typhoonzero 已提交
125
        exe.run(pserver_prog)
126
        print_to_err(type(self).__name__, "run pserver main program done.")
T
typhoonzero 已提交
127

128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188
    def run_pipeline_trainer(self, args):
        self.lr = args.lr

        dist_strategy = DistributedStrategy()
        test_program, avg_cost, train_reader, test_reader, batch_acc, predict, data_loader = \
            self.get_model(batch_size=args.batch_size, dist_strategy=dist_strategy)

        device_id = int(os.getenv("FLAGS_selected_gpus", "0"))
        eprint(type(self).__name__, "device_id: %d." % device_id)
        place = fluid.CUDAPlace(device_id)

        exe = fluid.Executor(place)
        exe.run(fluid.default_startup_program())
        eprint(type(self).__name__, "run worker startup program done.")

        data_loader.set_sample_list_generator(train_reader, place)
        data_loader.start()
        print_to_err(type(self).__name__, "begin to train on trainer")
        out_losses = []
        for i in six.moves.xrange(RUN_STEP):
            loss = exe.run(fluid.default_main_program(), fetch_list=[avg_cost])
            loss = loss[0] if loss else None
            out_losses.append(loss)
            print_to_err(type(self).__name__, "run step %d finished" % i)
        print_to_err(type(self).__name__, "trainer run finished")

        if six.PY2:
            print(pickle.dumps(out_losses))
        else:
            sys.stdout.buffer.write(pickle.dumps(out_losses))

        if args.save_model:
            model_save_dir = "/tmp"
            if fleet.worker_index() == 0:
                model_save_dir_fluid = os.path.join(model_save_dir,
                                                    "fluid_persistables")
                model_save_dir_fleet = os.path.join(model_save_dir,
                                                    "fleet_persistables")
                infer_save_dir_fluid = os.path.join(model_save_dir,
                                                    "fluid_infer")
                infer_save_dir_fleet = os.path.join(model_save_dir,
                                                    "fleet_infer")
            else:
                model_save_dir_fluid = os.path.join(model_save_dir,
                                                    "fluid_persistables_2")
                model_save_dir_fleet = os.path.join(model_save_dir,
                                                    "fleet_persistables_2")
                infer_save_dir_fluid = os.path.join(model_save_dir,
                                                    "fluid_infer_2")
                infer_save_dir_fleet = os.path.join(model_save_dir,
                                                    "fleet_infer_2")
            fluid.io.save_persistables(exe, model_save_dir_fluid,
                                       fleet._origin_program)
            fleet.save_persistables(executor=exe, dirname=model_save_dir_fleet)
            feeded_var_names = [var.name for var in feed_var_list]
            fluid.io.save_inference_model(infer_save_dir_fluid,
                                          feeded_var_names, [avg_cost], exe,
                                          fleet._origin_program)
            fleet.save_inference_model(exe, infer_save_dir_fleet,
                                       feeded_var_names, [avg_cost])

189 190
    def run_use_fleet_api_trainer(self, args):
        assert args.update_method == "nccl2" or "bkcl"
191 192 193 194 195 196 197 198

        self.lr = args.lr

        exec_strategy = fluid.ExecutionStrategy()
        exec_strategy.num_threads = 1

        dist_strategy = DistributedStrategy()
        dist_strategy.exec_strategy = exec_strategy
T
tangwei12 已提交
199
        dist_strategy.fuse_memory_size = 1  # MB
200
        dist_strategy.fuse_laryer_size = 1
201 202 203 204
        if args.use_local_sgd:
            dist_strategy.use_local_sgd = True
        if args.ut4grad_allreduce:
            dist_strategy._ut4grad_allreduce = True
205 206
        if args.sync_batch_norm:
            dist_strategy.sync_batch_norm = True
207 208 209

        role = role_maker.PaddleCloudRoleMaker(is_collective=True)
        fleet.init(role)
210
        print_to_err("use_fleet", "fleet.node_num:")
T
tangwei12 已提交
211 212
        # "fleet.node_id:", fleet.node_id(),
        # "fleet.trainer_num:", fleet.worker_num())
213 214

        test_program, avg_cost, train_reader, test_reader, batch_acc, predict = \
T
tangwei12 已提交
215
            self.get_model(batch_size=args.batch_size, dist_strategy=dist_strategy)
216 217 218 219

        trainer_prog = fleet._origin_program
        dist_prog = fleet.main_program

220 221 222 223 224 225 226 227 228 229
        if fluid.core.is_compiled_with_cuda():
            device_id = int(os.getenv("FLAGS_selected_gpus", "0"))
            place = fluid.CUDAPlace(device_id)
        elif fluid.core.is_compiled_with_xpu():
            device_id = int(os.getenv("FLAGS_selected_xpus", "0"))
            place = fluid.XPUPlace(device_id)
        else:
            raise ValueError(
                "fleet dygraph api must in paddlepaddle-xpu or paddlepaddle-gpu."
            )
230 231 232 233 234 235 236 237 238 239

        exe = fluid.Executor(place)
        exe.run(fluid.default_startup_program())
        eprint(type(self).__name__, "run worker startup program done.")

        feed_var_list = [
            var for var in trainer_prog.global_block().vars.values()
            if var.is_data
        ]

240 241 242 243 244 245 246
        eprint("feed_var_list:", feed_var_list)

        # tmp add this code to pass python35 gcc8 CI
        # Fixme(gongweibao, wangxi), need fix fleet api program order
        if feed_var_list[0].name == 'label':
            feed_var_list = feed_var_list[::-1]

247 248 249 250 251 252 253 254 255 256 257 258 259 260
        feeder = fluid.DataFeeder(feed_var_list, place)
        reader_generator = train_reader()

        def get_data():
            origin_batch = next(reader_generator)
            if args.update_method != "local" and args.use_reader_alloc:
                new_batch = []
                for offset, item in enumerate(origin_batch):
                    if offset % 2 == args.trainer_id:
                        new_batch.append(item)
                return new_batch
            else:
                return origin_batch

261
        print_to_err(type(self).__name__, "begin to train on trainer")
262 263 264 265 266 267
        out_losses = []
        for i in six.moves.xrange(RUN_STEP):
            loss, = exe.run(dist_prog,
                            fetch_list=[avg_cost.name],
                            feed=feeder.feed(get_data()))
            out_losses.append(loss[0])
268 269
            print_to_err(type(self).__name__, "run step %d finished" % i)
        print_to_err(type(self).__name__, "trainer run finished")
270 271 272 273 274 275

        if six.PY2:
            print(pickle.dumps(out_losses))
        else:
            sys.stdout.buffer.write(pickle.dumps(out_losses))

276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305
        if args.save_model:
            model_save_dir = "/tmp"
            if fleet.worker_index() == 0:
                model_save_dir_fluid = os.path.join(model_save_dir,
                                                    "fluid_persistables")
                model_save_dir_fleet = os.path.join(model_save_dir,
                                                    "fleet_persistables")
                infer_save_dir_fluid = os.path.join(model_save_dir,
                                                    "fluid_infer")
                infer_save_dir_fleet = os.path.join(model_save_dir,
                                                    "fleet_infer")
            else:
                model_save_dir_fluid = os.path.join(model_save_dir,
                                                    "fluid_persistables_2")
                model_save_dir_fleet = os.path.join(model_save_dir,
                                                    "fleet_persistables_2")
                infer_save_dir_fluid = os.path.join(model_save_dir,
                                                    "fluid_infer_2")
                infer_save_dir_fleet = os.path.join(model_save_dir,
                                                    "fleet_infer_2")
            fluid.io.save_persistables(exe, model_save_dir_fluid,
                                       fleet._origin_program)
            fleet.save_persistables(executor=exe, dirname=model_save_dir_fleet)
            feeded_var_names = [var.name for var in feed_var_list]
            fluid.io.save_inference_model(infer_save_dir_fluid,
                                          feeded_var_names, [avg_cost], exe,
                                          fleet._origin_program)
            fleet.save_inference_model(exe, infer_save_dir_fleet,
                                       feeded_var_names, [avg_cost])

306
    def run_trainer(self, args):
W
Wu Yi 已提交
307
        self.lr = args.lr
W
Wu Yi 已提交
308 309 310
        if args.nccl2_reduce_layer_local_run:
            test_program, avg_cost, train_reader, test_reader, batch_acc, predict = \
                self.get_model(batch_size=args.batch_size, single_device=True)
311 312 313
        elif args.use_dgc:
            test_program, avg_cost, train_reader, test_reader, batch_acc, predict = \
                self.get_model(batch_size=args.batch_size, use_dgc=args.use_dgc)
W
Wu Yi 已提交
314 315 316
        else:
            test_program, avg_cost, train_reader, test_reader, batch_acc, predict = \
                self.get_model(batch_size=args.batch_size)
317

W
Wu Yi 已提交
318
        if args.update_method == "pserver":
319
            print_to_err(
320 321
                type(self).__name__,
                "begin to run transpile on trainer with pserver mode")
T
tangwei12 已提交
322 323 324 325 326 327 328 329 330
            t = self.get_transpiler(
                trainer_id=args.trainer_id,
                main_program=fluid.default_main_program(),
                pserver_endpoints=args.endpoints,
                trainers=args.trainers,
                sync_mode=args.sync_mode,
                dc_asgd=args.dc_asgd,
                hogwild_mode=args.hogwild)

T
typhoonzero 已提交
331
            trainer_prog = t.get_trainer_program()
332
            print_to_err(
333 334
                type(self).__name__,
                "get trainer program done with pserver mode.")
W
Wu Yi 已提交
335
        elif args.update_method == "nccl2" or args.update_method == "nccl2_reduce_layer":
W
Wu Yi 已提交
336 337 338
            # transpile for nccl2
            config = fluid.DistributeTranspilerConfig()
            config.mode = "nccl2"
339
            config.nccl_comm_num = args.nccl_comm_num
340 341 342
            if args.use_hallreduce:
                config.use_hierarchical_allreduce = True
                config.hierarchical_allreduce_inter_nranks = args.hallreduce_inter_nranks
343
            print_to_err(
344 345
                type(self).__name__,
                "begin to run transpile on trainer with nccl2 mode")
W
Wu Yi 已提交
346 347 348 349 350 351 352
            nccl2_t = fluid.DistributeTranspiler(config=config)
            nccl2_t.transpile(
                args.trainer_id,
                program=fluid.default_main_program(),
                startup_program=fluid.default_startup_program(),
                trainers=args.endpoints,
                current_endpoint=args.current_endpoint)
353
            print_to_err(
354 355
                type(self).__name__,
                "get trainer program done. with nccl2 mode")
W
Wu Yi 已提交
356
            trainer_prog = fluid.default_main_program()
T
typhoonzero 已提交
357
        else:
358
            print_to_err(
359 360
                type(self).__name__,
                "do nothing about main program, just use it")
T
typhoonzero 已提交
361
            trainer_prog = fluid.default_main_program()
362
            print_to_err(type(self).__name__, "use main program done.")
T
typhoonzero 已提交
363

364 365 366
        # FIXME(gongwb):wait pserver initialization.
        time.sleep(1)

367
        if args.use_cuda:
368 369
            device_id = int(os.getenv("FLAGS_selected_gpus", "0"))
            place = fluid.CUDAPlace(device_id)
370 371 372
        else:
            place = fluid.CPUPlace()

373 374
        exe = fluid.Executor(place)
        exe.run(fluid.default_startup_program())
375
        print_to_err(type(self).__name__, "run worker startup program done.")
T
typhoonzero 已提交
376

W
Wu Yi 已提交
377 378
        exec_strategy = fluid.ExecutionStrategy()
        exec_strategy.num_threads = 1
379

W
Wu Yi 已提交
380
        build_stra = fluid.BuildStrategy()
381 382 383
        # FIXME force disable enable_inplace and memory_optimize
        build_stra.enable_inplace = False
        build_stra.memory_optimize = False
W
Wu Yi 已提交
384

385 386 387 388
        if args.fuse_all_reduce is not None:
            sys.stderr.write('fuse_all_reduce={}'.format(args.fuse_all_reduce))
            build_stra.fuse_all_reduce_ops = args.fuse_all_reduce

T
tangwei12 已提交
389 390 391
        if args.hogwild:
            build_stra.async_mode = True

392 393 394
        if args.enable_backward_deps:
            build_stra.enable_backward_optimizer_op_deps = True

W
Wu Yi 已提交
395 396 397 398 399
        if args.use_reduce:
            build_stra.reduce_strategy = fluid.BuildStrategy.ReduceStrategy.Reduce
        else:
            build_stra.reduce_strategy = fluid.BuildStrategy.ReduceStrategy.AllReduce

W
Wu Yi 已提交
400
        pass_builder = None
X
Xin Pan 已提交
401
        if args.batch_merge_repeat > 1:
X
fix  
Xin Pan 已提交
402
            pass_builder = build_stra._finalize_strategy_and_create_passes()
403
            mypass = pass_builder.insert_pass(0, "multi_batch_merge_pass")
404
            mypass.set("num_repeats", args.batch_merge_repeat)
X
Xin Pan 已提交
405

W
Wu Yi 已提交
406
        if args.update_method == "nccl2" or args.update_method == "nccl2_reduce_layer":
407 408
            build_stra.num_trainers = len(args.endpoints.split(","))
            build_stra.trainer_id = args.trainer_id
W
Wu Yi 已提交
409
        else:
W
Wu Yi 已提交
410
            # case args.update_method == "nccl2_reduce_layer":
411 412
            build_stra.num_trainers = 1
            build_stra.trainer_id = 0
W
Wu Yi 已提交
413

414
        print_to_err(type(self).__name__, "begin to compile with data parallel")
X
Xin Pan 已提交
415
        binary = compiler.CompiledProgram(trainer_prog).with_data_parallel(
W
Wu Yi 已提交
416
            loss_name=avg_cost.name,
W
Wu Yi 已提交
417
            build_strategy=build_stra,
W
Wu Yi 已提交
418
            exec_strategy=exec_strategy)
419
        print_to_err(type(self).__name__, "program compiled with data parallel")
T
typhoonzero 已提交
420 421 422 423 424 425 426

        feed_var_list = [
            var for var in trainer_prog.global_block().vars.values()
            if var.is_data
        ]

        feeder = fluid.DataFeeder(feed_var_list, place)
427
        reader_generator = train_reader()
T
typhoonzero 已提交
428

429 430
        def get_data():
            origin_batch = next(reader_generator)
W
Wu Yi 已提交
431
            if args.update_method != "local" and args.use_reader_alloc:
432 433 434 435 436 437 438
                new_batch = []
                for offset, item in enumerate(origin_batch):
                    if offset % 2 == args.trainer_id:
                        new_batch.append(item)
                return new_batch
            else:
                return origin_batch
T
typhoonzero 已提交
439

440
        print_to_err(type(self).__name__, "begin to train on trainer")
W
Wu Yi 已提交
441
        out_losses = []
442
        for i in six.moves.xrange(RUN_STEP):
443 444
            loss, = exe.run(binary,
                            fetch_list=[avg_cost.name],
445
                            feed=feeder.feed(get_data()))
W
Wu Yi 已提交
446
            out_losses.append(loss[0])
447 448
            print_to_err(type(self).__name__, "run step %d finished" % i)
        print_to_err(type(self).__name__, "trainer run finished")
449

450
        print_to_out(out_losses)
T
typhoonzero 已提交
451 452


453 454 455 456 457 458 459 460 461
class TestParallelDyGraphRunnerBase(object):
    def get_model(self):
        raise NotImplementedError(
            "get_model should be implemented by child classes.")

    def run_one_loop(self, model, opt, data):
        raise NotImplementedError(
            "train_one_loop should be implemented by the child classes.")

462 463 464 465 466 467 468 469 470 471
    def _get_data(self, batch, args):
        if args.update_method != "local":
            new_batch = []
            for offset, item in enumerate(batch):
                if offset % 2 == args.trainer_id:
                    new_batch.append(item)
            return new_batch
        else:
            return batch

472
    def run_trainer(self, args):
Y
Yan Xu 已提交
473

474
        seed = 90
475 476 477 478 479 480 481 482
        if fluid.core.is_compiled_with_cuda():
            device_id = int(os.getenv("FLAGS_selected_gpus", "0"))
            place = fluid.CUDAPlace(device_id)
        elif fluid.core.is_compiled_with_xpu():
            device_id = int(os.getenv("FLAGS_selected_xpus", "0"))
            place = fluid.XPUPlace(device_id)
        else:
            assert ("Only support CUDAPlace or XPUPlace for now.")
483 484 485 486

        with fluid.dygraph.guard(place):
            fluid.default_startup_program().random_seed = seed
            fluid.default_main_program().random_seed = seed
Y
Yan Xu 已提交
487 488
            np.random.seed(seed)
            import random
489
            random.seed(seed)
490 491
            model, train_reader, opt = self.get_model()
            nranks = len(args.endpoints.split(",")) if args.endpoints else 1
Y
Yan Xu 已提交
492

493 494
            #if args.update_method == "nccl2":
            if args.update_method == "nccl2" or args.update_method == "bkcl":
495 496 497 498 499
                strategy = dygraph.parallel.ParallelStrategy()
                strategy.nranks = nranks
                strategy.local_rank = args.trainer_id
                strategy.trainer_endpoints = args.endpoints.split(",")
                strategy.current_endpoint = args.current_endpoint
500
                print_to_err(
501 502
                    type(self).__name__,
                    "begin to prepare context in dygraph with nccl2")
503
                dygraph.parallel.prepare_context(strategy)
504 505 506 507 508 509
                if not args.find_unused_parameters:
                    model = dygraph.parallel.DataParallel(
                        model, strategy, find_unused_parameters=False)
                else:
                    model = dygraph.parallel.DataParallel(
                        model, strategy, find_unused_parameters=True)
510
                print_to_err(type(self).__name__, "model built in dygraph")
511
            out_losses = []
512
            print_to_err(type(self).__name__, "begin to run dygraph training")
513
            for step_id, data in enumerate(train_reader()):
514
                data = self._get_data(data, args)
515 516 517
                if step_id == RUN_STEP:
                    break
                loss = self.run_one_loop(model, opt, data)
G
guru4elephant 已提交
518
                if step_id % 10 == 0:
519
                    print_to_err(
520
                        type(self).__name__,
521
                        "loss at step %d: %f" % (step_id, loss.numpy()))
Y
Yan Xu 已提交
522
                out_losses.append(loss.numpy())
523 524 525 526

                loss.backward()

                opt.minimize(loss)
527 528
                if not args.accumulate_gradient:
                    model.clear_gradients()
529
        print_to_out(out_losses)
530

531 532 533 534 535 536 537 538 539
    def run_trainer_with_spawn(self, args):
        # 1. enable dygraph
        paddle.disable_static()

        # 2. init seed
        seed = 90
        paddle.static.default_startup_program().random_seed = seed
        paddle.static.default_main_program().random_seed = seed
        np.random.seed(seed)
540
        random.seed(seed)
541 542 543 544 545 546 547 548 549 550
        # get trainer id
        args.trainer_id = paddle.distributed.get_rank()

        # 3. init parallel env
        if args.update_method == "nccl2":
            paddle.distributed.init_parallel_env()

        # 4. train model
        model, train_reader, opt = self.get_model()
        if args.update_method == "nccl2":
551 552 553 554
            if args.find_unused_parameters:
                model = paddle.DataParallel(model, find_unused_parameters=True)
            else:
                model = paddle.DataParallel(model, find_unused_parameters=False)
555 556 557 558 559 560 561 562 563 564 565 566 567 568 569

        out_losses = []
        for step_id, data in enumerate(train_reader()):
            data = self._get_data(data, args)
            if step_id == RUN_STEP:
                break
            loss = self.run_one_loop(model, opt, data)
            out_losses.append(loss.numpy())

            loss.backward()

            opt.minimize(loss)
            model.clear_gradients()
        return out_losses

570
    def run_use_fleet_api_trainer(self, args):
571 572 573 574 575 576 577 578 579 580
        import paddle.distributed.fleet as fleet
        import paddle.distributed.fleet.base.role_maker as role_maker
        # 1. enable dygraph
        paddle.disable_static()

        # 2. init seed
        seed = 90
        paddle.static.default_startup_program().random_seed = seed
        paddle.static.default_main_program().random_seed = seed
        np.random.seed(seed)
581
        random.seed(seed)
582 583 584
        # get trainer id
        args.trainer_id = paddle.distributed.get_rank()

585 586
        # set strategy
        strategy = fleet.DistributedStrategy()
587 588
        if args.find_unused_parameters:
            strategy.find_unused_parameters = True
589

590
        # 3. init parallel env
591
        if args.update_method == "nccl2" or "bkcl":
592
            fleet.init(is_collective=True, strategy=strategy)
593 594 595

        # 4. train model
        model, train_reader, opt = self.get_model()
596
        if args.update_method == "nccl2" or "bkcl":
597 598 599 600 601 602 603 604 605 606 607 608 609 610
            opt = fleet.distributed_optimizer(opt)
            model = fleet.distributed_model(model)

        out_losses = []
        for step_id, data in enumerate(train_reader()):
            data = self._get_data(data, args)
            if step_id == RUN_STEP:
                break
            loss = self.run_one_loop(model, opt, data)
            out_losses.append(loss.numpy())

            loss.backward()

            opt.step()
611 612
            if not args.accumulate_gradient:
                opt.clear_grad()
613 614
        print_to_out(out_losses)

615

T
typhoonzero 已提交
616
def runtime_main(test_class):
W
Wu Yi 已提交
617 618 619 620
    parser = argparse.ArgumentParser(description='Run dist test.')
    parser.add_argument(
        '--role', type=str, required=True, choices=['pserver', 'trainer'])
    parser.add_argument('--endpoints', type=str, required=False, default="")
W
Wu Yi 已提交
621 622 623 624
    parser.add_argument(
        '--update_method',
        type=str,
        default="local",
625
        choices=["pserver", "nccl2", "bkcl", "local", "nccl2_reduce_layer"])
W
Wu Yi 已提交
626 627
    parser.add_argument('--trainer_id', type=int, required=False, default=0)
    parser.add_argument('--trainers', type=int, required=False, default=1)
628
    parser.add_argument('--nccl_comm_num', type=int, required=False, default=1)
629 630
    parser.add_argument('--enable_backward_deps', action='store_true')
    parser.add_argument('--use_hallreduce', action='store_true')
631
    parser.add_argument('--use_pipeline', action='store_true')
632
    parser.add_argument('--use_fleet_api', action='store_true')
633 634
    parser.add_argument('--use_local_sgd', action='store_true')
    parser.add_argument('--ut4grad_allreduce', action='store_true')
635
    parser.add_argument(
636
        '--hallreduce_inter_nranks', type=int, required=False, default=2)
W
Wu Yi 已提交
637 638 639
    parser.add_argument(
        '--current_endpoint', type=str, required=False, default="")
    parser.add_argument('--sync_mode', action='store_true')
640
    parser.add_argument('--use_cuda', action='store_true')
641
    parser.add_argument('--use_xpu', action='store_true')
642
    parser.add_argument('--use_dgc', action='store_true')
643
    parser.add_argument('--accumulate_gradient', action='store_true')
644
    parser.add_argument('--find_unused_parameters', action='store_true')
W
Wu Yi 已提交
645
    parser.add_argument('--use_reduce', action='store_true')
W
Wu Yi 已提交
646
    parser.add_argument('--dc_asgd', action='store_true')
T
tangwei12 已提交
647
    parser.add_argument('--hogwild', action='store_true')
648
    parser.add_argument('--save_model', action='store_true')
649
    parser.add_argument(
W
Wu Yi 已提交
650
        '--use_reader_alloc', action='store_true', required=False)
651
    parser.add_argument('--batch_size', required=False, type=int, default=2)
W
Wu Yi 已提交
652
    parser.add_argument('--lr', required=False, type=float, default=0.001)
653 654
    parser.add_argument(
        '--batch_merge_repeat', required=False, type=int, default=1)
W
Wu Yi 已提交
655 656 657 658 659
    parser.add_argument(
        '--nccl2_reduce_layer_local_run',
        required=False,
        type=bool,
        default=False)
660
    parser.add_argument('--sync_batch_norm', action='store_true')
661 662 663 664 665
    parser.add_argument(
        '--fuse_all_reduce',
        required=False,
        type=ast.literal_eval,
        default=None)
W
Wu Yi 已提交
666 667

    args = parser.parse_args()
T
typhoonzero 已提交
668 669

    model = test_class()
W
Wu Yi 已提交
670
    if args.role == "pserver" and args.update_method == "pserver":
W
Wu Yi 已提交
671
        model.run_pserver(args)
672 673
    elif args.use_fleet_api:
        model.run_use_fleet_api_trainer(args)
674 675
    elif args.use_pipeline:
        model.run_pipeline_trainer(args)
T
typhoonzero 已提交
676
    else:
677
        model.run_trainer(args)
X
Xin Pan 已提交
678

M
minqiyang 已提交
679

M
minqiyang 已提交
680
import paddle.compat as cpt
Y
Yancey1989 已提交
681 682
import socket
from contextlib import closing
M
minqiyang 已提交
683

X
Xin Pan 已提交
684 685

class TestDistBase(unittest.TestCase):
W
Wu Yi 已提交
686 687 688
    def _setup_config(self):
        raise NotImplementedError("tests should have _setup_config implemented")

689 690 691
    def _after_setup_config(self):
        if self._enforce_place == "CPU":
            self.__use_cuda = False
692
            self.__use_xpu = False
693
            self._use_dgc = False
694 695
        elif self._enforce_place == "GPU":
            self.__use_cuda = True
696 697 698 699 700
            self.__use_xpu = False
        elif self._enforce_place == "XPU":
            self.__use_cuda = False
            self.__use_xpu = True
            self._use_dgc = False
701 702 703 704 705
        else:
            if fluid.core.is_compiled_with_cuda():
                self.__use_cuda = True
            else:
                self.__use_cuda = False
706 707 708 709
                self._use_dgc = False

        if self._use_reduce:
            assert not self._use_dgc
710

X
Xin Pan 已提交
711 712 713
    def setUp(self):
        self._trainers = 2
        self._pservers = 2
Y
Yancey1989 已提交
714
        self._port_set = set()
M
minqiyang 已提交
715
        self._python_interp = sys.executable
W
Wu Yi 已提交
716
        self._sync_mode = True
T
tangwei12 已提交
717
        self._hogwild_mode = False
718
        self._enforce_place = None
W
Wu Yi 已提交
719
        self._use_reduce = False
W
Wu Yi 已提交
720
        self._dc_asgd = False  # must use with async mode
721
        self._use_reader_alloc = True
W
Wu Yi 已提交
722
        self._nccl2_mode = False
723
        self._bkcl_mode = False
724
        self._pipeline_mode = False
725
        self._mp_mode = False
W
Wu Yi 已提交
726 727 728 729 730
        # FIXME(typhoonzero): I added this stupid argument to enable
        # testing allreduce layers, which users can call layers.allreduce
        # to accumulate tensors at anywhere. Find a better way to do this
        # test, reduce check this argument everywhere.
        self._nccl2_reduce_layer = False
W
Wu Yi 已提交
731
        self._lr = 0.001
732
        self._use_dgc = False
733
        self._dygraph = False
734
        self._nccl_comm_num = 1
735
        self._enable_backward_deps = False
736
        self._use_fleet_api = False
737 738
        self._use_local_sgd = False
        self._ut4grad_allreduce = False
739
        self._use_hallreduce = False
740
        self._save_model = False
741
        self._fuse_all_reduce = None
742
        self._accumulate_gradient = False
743
        self._find_unused_parameters = False
W
Wu Yi 已提交
744
        self._setup_config()
745 746 747 748 749 750 751 752 753 754 755 756 757 758

        global DIST_UT_PORT
        if DIST_UT_PORT == 0 and os.getenv("PADDLE_DIST_UT_PORT"):
            DIST_UT_PORT = int(os.getenv("PADDLE_DIST_UT_PORT"))

        if DIST_UT_PORT == 0:
            self._ps_endpoints = "127.0.0.1:%s,127.0.0.1:%s" % (
                self._find_free_port(), self._find_free_port())
        else:
            print("set begin_port:", DIST_UT_PORT)
            self._ps_endpoints = "127.0.0.1:%s,127.0.0.1:%s" % (
                DIST_UT_PORT, DIST_UT_PORT + 1)
            DIST_UT_PORT += 2

759
        self._after_setup_config()
X
Xin Pan 已提交
760

Y
Yancey1989 已提交
761
    def _find_free_port(self):
Y
Yancey1989 已提交
762 763 764 765
        def __free_port():
            with closing(socket.socket(socket.AF_INET,
                                       socket.SOCK_STREAM)) as s:
                s.bind(('', 0))
766
                print_to_err(
767
                    type(self).__name__, "socket name: %s" % s.getsockname()[1])
Y
Yancey1989 已提交
768 769 770 771 772 773 774
                return s.getsockname()[1]

        while True:
            port = __free_port()
            if port not in self._port_set:
                self._port_set.add(port)
                return port
Y
Yancey1989 已提交
775

776 777 778 779 780
    def start_pserver(self,
                      model_file,
                      check_error_log,
                      required_envs,
                      log_name=""):
X
Xin Pan 已提交
781
        ps0_ep, ps1_ep = self._ps_endpoints.split(",")
782 783 784 785 786 787 788 789
        ps_cmd = "%s"

        if os.getenv('WITH_COVERAGE', 'OFF') == 'ON':
            required_envs['COVERAGE_FILE'] = os.getenv('COVERAGE_FILE', '')
            ps_cmd += " -m coverage run --branch -p"

        ps_cmd += " %s --role pserver --endpoints %s --trainer_id 0 --current_endpoint %s --trainers %d --update_method pserver"

W
Wu Yi 已提交
790
        ps0_cmd = ps_cmd % \
791 792
                  (self._python_interp, model_file, self._ps_endpoints, ps0_ep,
                   self._trainers)
W
Wu Yi 已提交
793
        ps1_cmd = ps_cmd % \
794 795
                  (self._python_interp, model_file, self._ps_endpoints, ps1_ep,
                   self._trainers)
W
Wu Yi 已提交
796 797 798 799

        if self._sync_mode:
            ps0_cmd += " --sync_mode"
            ps1_cmd += " --sync_mode"
X
Xin Pan 已提交
800

801 802
        print(ps0_cmd)
        print(ps1_cmd)
803 804
        ps0_pipe = open(log_name + "_ps0_err.log", "wb")
        ps1_pipe = open(log_name + "_ps1_err.log", "wb")
G
gongweibao 已提交
805

806
        print_to_err(type(self).__name__, "going to start pserver process 0")
X
Xin Pan 已提交
807
        ps0_proc = subprocess.Popen(
808 809 810 811
            ps0_cmd.strip().split(" "),
            stdout=subprocess.PIPE,
            stderr=ps0_pipe,
            env=required_envs)
812
        print_to_err(type(self).__name__, "going to start pserver process 1")
X
Xin Pan 已提交
813
        ps1_proc = subprocess.Popen(
814 815 816 817
            ps1_cmd.strip().split(" "),
            stdout=subprocess.PIPE,
            stderr=ps1_pipe,
            env=required_envs)
G
gongweibao 已提交
818

819
        return ps0_proc, ps1_proc, ps0_pipe, ps1_pipe
X
Xin Pan 已提交
820

821 822 823 824 825
    def _run_local(self,
                   model,
                   envs,
                   check_error_log=False,
                   batch_size=DEFAULT_BATCH_SIZE,
826
                   batch_merge_repeat=1,
827
                   log_name="",
828
                   devices="0"):
G
gongweibao 已提交
829

830 831 832 833 834 835
        cmd = self._python_interp

        if os.getenv('WITH_COVERAGE', 'OFF') == 'ON':
            envs['COVERAGE_FILE'] = os.getenv('COVERAGE_FILE', '')
            cmd += " -m coverage run --branch -p"

836 837
        cmd += " %s --role trainer --update_method local --lr %f" % (model,
                                                                     self._lr)
838

839 840 841 842
        if batch_size != DEFAULT_BATCH_SIZE:
            cmd += " --batch_size %d" % batch_size
        if batch_merge_repeat > 1:
            cmd += " --batch_merge_repeat %d" % batch_merge_repeat
W
Wu Yi 已提交
843 844
        if self._nccl2_reduce_layer:
            cmd += " --nccl2_reduce_layer_local_run 1"
845

846
        if self.__use_cuda:
847
            cmd += " --use_cuda"
W
Wu Yi 已提交
848
            env_local = {
849 850 851 852 853 854 855 856
                "CUDA_VISIBLE_DEVICES": devices,
                "PADDLE_TRAINERS_NUM": "1",
                "PADDLE_TRAINER_ID": "0"
            }
        elif self.__use_xpu:
            cmd += " --use_xpu"
            env_local = {
                "FLAGS_selected_xpus": devices,
W
Wu Yi 已提交
857 858 859
                "PADDLE_TRAINERS_NUM": "1",
                "PADDLE_TRAINER_ID": "0"
            }
860 861 862
        else:
            env_local = {'CPU_NUM': '1'}

863
        # not use dgc in single card
864
        if len(devices) > 1 and self._use_dgc:
865 866
            cmd += " --use_dgc"

867 868 869
        if self._accumulate_gradient:
            cmd += " --accumulate_gradient"

870 871 872
        if self._find_unused_parameters:
            cmd += " --find_unused_parameters"

W
Wu Yi 已提交
873 874
        env_local.update(envs)
        print("local_cmd: {}, env: {}".format(cmd, env_local))
G
gongweibao 已提交
875

876
        if check_error_log:
877
            err_log = open(log_name + "_local.log", "wb")
G
gongweibao 已提交
878
            local_proc = subprocess.Popen(
879
                cmd.split(" "),
G
gongweibao 已提交
880
                stdout=subprocess.PIPE,
881
                stderr=err_log,
W
Wu Yi 已提交
882
                env=env_local)
G
gongweibao 已提交
883 884
        else:
            local_proc = subprocess.Popen(
885
                cmd.split(" "),
G
gongweibao 已提交
886
                stdout=subprocess.PIPE,
887
                stderr=subprocess.PIPE,
W
Wu Yi 已提交
888
                env=env_local)
G
gongweibao 已提交
889

890 891 892 893 894 895
        local_out, local_err = local_proc.communicate()

        if check_error_log:
            err_log.close()

        sys.stderr.write('local_stderr: %s\n' % local_err)
W
Wu Yi 已提交
896
        sys.stderr.write('local_stdout: %s\n' % pickle.loads(local_out))
X
Xin Pan 已提交
897

W
Wu Yi 已提交
898
        return pickle.loads(local_out)
899

900
    def _run_cluster(self, model, envs, check_error_log, log_name):
X
Xin Pan 已提交
901
        # Run dist train to compare with local results
902 903
        ps0, ps1, ps0_pipe, ps1_pipe = self.start_pserver(
            model, check_error_log, envs, log_name=log_name)
W
Wu Yi 已提交
904

X
Xin Pan 已提交
905
        ps0_ep, ps1_ep = self._ps_endpoints.split(",")
906

907 908 909 910 911 912 913 914
        tr_cmd = "%s"

        if os.getenv('WITH_COVERAGE', 'OFF') == 'ON':
            envs['COVERAGE_FILE'] = os.getenv('COVERAGE_FILE', '')
            tr_cmd += " -m coverage run --branch -p"

        tr_cmd += " %s --role trainer --endpoints %s --trainer_id %d --current_endpoint %s --trainers %d --update_method pserver --lr %f"

W
Wu Yi 已提交
915
        tr0_cmd = tr_cmd % \
916
                  (self._python_interp, model, self._ps_endpoints,
W
Wu Yi 已提交
917
                   0, ps0_ep, self._trainers, self._lr)
W
Wu Yi 已提交
918
        tr1_cmd = tr_cmd % \
919
                  (self._python_interp, model, self._ps_endpoints,
W
Wu Yi 已提交
920
                   1, ps1_ep, self._trainers, self._lr)
W
Wu Yi 已提交
921 922 923 924

        if self._sync_mode:
            tr0_cmd += " --sync_mode"
            tr1_cmd += " --sync_mode"
T
tangwei12 已提交
925 926 927
        if self._hogwild_mode:
            tr0_cmd += " --hogwild"
            tr1_cmd += " --hogwild"
W
Wu Yi 已提交
928 929 930
        if self._use_reduce:
            tr0_cmd += " --use_reduce"
            tr1_cmd += " --use_reduce"
931 932 933
        if self._use_reader_alloc:
            tr0_cmd += " --use_reader_alloc"
            tr1_cmd += " --use_reader_alloc"
934
        if self.__use_cuda:
935 936 937 938 939 940 941 942 943 944
            tr0_cmd += " --use_cuda"
            tr1_cmd += " --use_cuda"
            env0 = {"CUDA_VISIBLE_DEVICES": "0"}
            env1 = {"CUDA_VISIBLE_DEVICES": "1"}
        else:
            env0 = {'CPU_NUM': '1'}
            env1 = {'CPU_NUM': '1'}

        env0.update(envs)
        env1.update(envs)
X
Xin Pan 已提交
945

W
Wu Yi 已提交
946 947
        print("tr0_cmd: {}, env: {}".format(tr0_cmd, env0))
        print("tr1_cmd: {}, env: {}".format(tr1_cmd, env1))
948 949
        tr0_pipe = open(log_name + "_tr0_err.log", "wb")
        tr1_pipe = open(log_name + "_tr1_err.log", "wb")
G
gongweibao 已提交
950

951
        print_to_err(type(self).__name__, "going to start trainer process 0")
X
Xin Pan 已提交
952
        tr0_proc = subprocess.Popen(
W
Wu Yi 已提交
953
            tr0_cmd.strip().split(" "),
X
Xin Pan 已提交
954
            stdout=subprocess.PIPE,
G
gongweibao 已提交
955
            stderr=tr0_pipe,
X
Xin Pan 已提交
956
            env=env0)
957
        print_to_err(type(self).__name__, "going to start trainer process 1")
X
Xin Pan 已提交
958
        tr1_proc = subprocess.Popen(
W
Wu Yi 已提交
959
            tr1_cmd.strip().split(" "),
X
Xin Pan 已提交
960
            stdout=subprocess.PIPE,
G
gongweibao 已提交
961
            stderr=tr1_pipe,
X
Xin Pan 已提交
962 963
            env=env1)

964 965 966 967 968 969 970 971 972 973 974 975
        # Wait until trainer process terminate
        while True:
            stat0 = tr0_proc.poll()
            time.sleep(0.1)
            if stat0 is not None:
                break
        while True:
            stat1 = tr1_proc.poll()
            time.sleep(0.1)
            if stat1 is not None:
                break

976 977
        tr0_out, tr0_err = tr0_proc.communicate()
        tr1_out, tr1_err = tr1_proc.communicate()
X
Xin Pan 已提交
978

G
gongweibao 已提交
979
        # close trainer file
980 981 982 983
        tr0_pipe.close()
        tr1_pipe.close()
        ps0_pipe.close()
        ps1_pipe.close()
W
Wu Yi 已提交
984

W
Wu Yi 已提交
985 986
        ps0.terminate()
        ps1.terminate()
T
typhoonzero 已提交
987

W
Wu Yi 已提交
988 989
        return pickle.loads(tr0_out), pickle.loads(tr1_out)

990 991 992
    def _get_nccl2_trainer_cmd(self, model, ep, update_method, trainer_id,
                               trainer_num):
        env = {}
993 994 995 996 997 998 999
        tr_cmd = "%s -u"

        if os.getenv('WITH_COVERAGE', 'OFF') == 'ON':
            tr_cmd += " -m coverage run --branch -p"

        tr_cmd += " %s --role trainer --endpoints %s --trainer_id %d --current_endpoint %s --update_method %s --lr %f"

1000
        tr_cmd = tr_cmd % \
T
tangwei12 已提交
1001 1002
                 (self._python_interp, model, self._ps_endpoints,
                  trainer_id, ep, update_method, self._lr)
W
Wu Yi 已提交
1003 1004

        if self._use_reduce:
1005
            tr_cmd += " --use_reduce"
W
Wu Yi 已提交
1006
        if self._use_reader_alloc:
1007
            tr_cmd += " --use_reader_alloc"
1008 1009
        if self._save_model:
            tr_cmd += " --save_model"
W
Wu Yi 已提交
1010
        if self.__use_cuda:
1011 1012
            tr_cmd += " --use_cuda"
            env.update({
1013
                "FLAGS_selected_gpus": "{}".format(0),
W
WangXi 已提交
1014
                "CUDA_VISIBLE_DEVICES": "{}".format(trainer_id),
1015
                "PADDLE_TRAINERS_NUM": "{}".format(trainer_num),
1016 1017 1018
                "PADDLE_TRAINER_ID": "{}".format(trainer_id),
                "PADDLE_TRAINER_ENDPOINTS": self._ps_endpoints,
                "PADDLE_CURRENT_ENDPOINT": ep,
1019
            })
1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032
        # TODO(liuyuhui):XPU_VISIBLE_DEVICES is not working right now,
        # will update it after Badiu Kunlun partners' support.
        elif self.__use_xpu:
            tr_cmd += " --use_xpu"
            env.update({
                "FLAGS_selected_xpus": "{}".format(trainer_id),
                #"XPU_VISIBLE_DEVICES": "{}".format(trainer_id + 1),
                "PADDLE_TRAINERS_NUM": "{}".format(trainer_num),
                "PADDLE_TRAINER_ID": "{}".format(trainer_id),
                "PADDLE_TRAINER_ENDPOINTS": self._ps_endpoints,
                "PADDLE_CURRENT_ENDPOINT": ep,
                "GLOG_v": "2",
            })
W
Wu Yi 已提交
1033
        else:
1034
            env.update({'CPU_NUM': '1'})
W
Wu Yi 已提交
1035

1036
        if self._use_dgc:
1037 1038
            tr_cmd += " --use_dgc"

1039 1040 1041
        if self._accumulate_gradient:
            tr_cmd += " --accumulate_gradient"

1042 1043 1044
        if self._find_unused_parameters:
            tr_cmd += " --find_unused_parameters"

1045 1046
        if self._pipeline_mode:
            tr_cmd += " --use_pipeline"
1047
        if self._mp_mode:
W
WangXi 已提交
1048
            env = {"FLAGS_selected_gpus": "{}".format(trainer_id)}
1049 1050

        if self._nccl_comm_num > 1:
1051
            tr_cmd += " --nccl_comm_num {}".format(self._nccl_comm_num)
1052

1053 1054
        if self._use_hallreduce:
            tr_cmd += " --use_hallreduce --hallreduce_inter_nranks 2"
1055

1056
        if self._enable_backward_deps:
1057
            tr_cmd += " --enable_backward_deps"
1058

1059 1060 1061
        if self._fuse_all_reduce is not None:
            tr_cmd += " --fuse_all_reduce {}".format(self._fuse_all_reduce)

1062 1063
        if self._use_fleet_api:
            tr_cmd += " --use_fleet_api"
1064 1065 1066 1067
            if self._use_local_sgd:
                tr_cmd += " --use_local_sgd"
            if self._ut4grad_allreduce:
                tr_cmd += " --ut4grad_allreduce"
1068 1069
            if hasattr(self, '_sync_batch_norm') and self._sync_batch_norm:
                tr_cmd += " --sync_batch_norm"
1070

1071 1072 1073
        if os.getenv('WITH_COVERAGE', 'OFF') == 'ON':
            env['COVERAGE_FILE'] = os.getenv('COVERAGE_FILE', '')

1074
        return tr_cmd, env
W
Wu Yi 已提交
1075

1076 1077
    def _run_cluster_nccl2(self, model, envs, update_method, check_error_log,
                           log_name):
1078 1079
        if self._use_hallreduce:
            self._ps_endpoints = ""
1080 1081 1082

            global DIST_UT_PORT
            if DIST_UT_PORT == 0:
W
WangXi 已提交
1083
                # NOTE(wangxi). hallreduce test must use 4cards after nccl>=2.7
1084 1085 1086 1087 1088 1089 1090
                for i in range(0, 4):
                    self._ps_endpoints += "127.0.0.1:%s," % (
                        self._find_free_port())
            else:
                for i in range(0, 4):
                    self._ps_endpoints += "127.0.0.1:%s," % (DIST_UT_PORT + i)
                DIST_UT_PORT += 4
1091
            self._ps_endpoints = self._ps_endpoints[:-1]
W
Wu Yi 已提交
1092

1093 1094
        # NOTE: we reuse ps_endpoints as nccl2 worker endpoints
        worker_endpoints = self._ps_endpoints.split(",")
W
Wu Yi 已提交
1095

1096
        trainer_num = len(worker_endpoints)
W
Wu Yi 已提交
1097

1098 1099 1100 1101 1102 1103 1104 1105
        procs = []
        pipes = []
        for i in range(0, trainer_num):
            tr_cmd, tr_env = self._get_nccl2_trainer_cmd(
                model, worker_endpoints[i], update_method, i, trainer_num)
            tr_env.update(envs)
            print("use_hallreduce:{} tr_cmd:{}, env: {}".format(
                self._use_hallreduce, tr_cmd, tr_env))
W
Wu Yi 已提交
1106

1107
            tr_pipe = open(log_name + "_tr{}_err.log".format(i), "wb")
W
Wu Yi 已提交
1108

1109
            print_to_err(
1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127
                type(self).__name__,
                "going to start process {} with nccl2".format(i))
            tr_proc = subprocess.Popen(
                tr_cmd.strip().split(" "),
                stdout=subprocess.PIPE,
                stderr=tr_pipe,
                env=tr_env)

            procs.append(tr_proc)
            pipes.append(tr_pipe)

        outs = []
        for i in range(0, trainer_num):
            tr_out, tr_err = procs[i].communicate()
            outs.append(tr_out)
            pipes[i].close()
            sys.stderr.write('trainer {} stderr: {}\n'.format(i, tr_err))

1128 1129 1130
        if check_error_log:
            print("outs[0]:", outs[0])
            print("outs[1]:", outs[1])
1131

1132
        return pickle.loads(outs[0]), pickle.loads(outs[1])
1133

1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178
    def _run_pipeline(self, model, envs, check_error_log, log_name):
        # NOTE: we reuse ps_endpoints as nccl2 worker endpoints
        worker_endpoints = self._ps_endpoints.split(",")
        update_method = "nccl2"

        trainer_num = len(worker_endpoints)

        procs = []
        pipes = []
        for i in range(0, trainer_num):
            tr_cmd, tr_env = self._get_nccl2_trainer_cmd(
                model, worker_endpoints[i], update_method, i, trainer_num)
            tr_env.update(envs)
            tr_env['CUDA_VISIBLE_DEVICES'] = "0,1"
            tr_env['NCCL_SHM_DISABLE'] = '1'
            tr_env['FLAGS_selected_gpus'] = str(i)
            tr_env['FLAGS_cudnn_deterministic'] = '0'
            print("tr_cmd:{}, env: {}".format(tr_cmd, tr_env))

            tr_pipe = open("/tmp/" + "tr{}_err.log".format(i), "wb")

            print_to_err(
                type(self).__name__,
                "going to start process {} with nccl2".format(i))
            tr_proc = subprocess.Popen(
                tr_cmd.strip().split(" "),
                stdout=subprocess.PIPE,
                stderr=tr_pipe,
                env=tr_env)

            procs.append(tr_proc)
            pipes.append(tr_pipe)

        outs = []
        for i in range(0, trainer_num):
            tr_out, tr_err = procs[i].communicate()
            outs.append(tr_out)
            pipes[i].close()
            sys.stderr.write('trainer {} stderr: {}\n'.format(i, tr_err))

        if check_error_log:
            print("outs[0]:", outs[0])
            print("outs[1]:", outs[1])
        return pickle.loads(outs[0]), pickle.loads(outs[1])

1179
    def _get_required_envs(self, check_error_log=False, need_envs={}):
1180 1181 1182 1183 1184 1185
        # TODO(typhoonzero): should auto adapt GPU count on the machine.
        required_envs = {
            "PATH": os.getenv("PATH", ""),
            "PYTHONPATH": os.getenv("PYTHONPATH", ""),
            "LD_LIBRARY_PATH": os.getenv("LD_LIBRARY_PATH", ""),
            "FLAGS_fraction_of_gpu_memory_to_use": "0.15",
G
guru4elephant 已提交
1186
            "FLAGS_rpc_deadline": "30000",  # 5sec to fail fast
1187
            "FLAGS_rpc_retry_bind_port": "50",
1188
            "FLAGS_cudnn_deterministic": "1",
1189
            "FLAGS_rpc_disable_reuse_port": "1",
W
Wu Yi 已提交
1190
            "http_proxy": "",
1191 1192
            "NCCL_P2P_DISABLE": "1",
            "NCCL_SHM_DISABLE": "1"
1193 1194 1195
        }

        if check_error_log:
1196
            required_envs["GLOG_vmodule"] = \
1197 1198
                "fused_all_reduce_op_handle=10,all_reduce_op_handle=10,alloc_continuous_space_op=10,fuse_all_reduce_op_pass=10," \
                "alloc_continuous_space_for_grad_pass=10,fast_threaded_ssa_graph_executor=10,executor=10,operator=10," \
W
WangXi 已提交
1199 1200
                "sparse_all_reduce_op_handle=10,gen_nccl_id_op=10,gen_nccl_id_op_help=10,nccl_helper=10,grpc_client=10," \
                "grpc_server=10,request_handler_impl=10"
1201 1202
            required_envs["GLOG_logtostderr"] = "1"

1203 1204 1205 1206 1207 1208 1209 1210 1211
        required_envs.update(need_envs)
        return required_envs

    def check_with_place(self,
                         model_file,
                         delta=1e-3,
                         check_error_log=False,
                         need_envs={},
                         log_name=""):
1212

1213 1214
        required_envs = self._get_required_envs(check_error_log, need_envs)

T
tangwei12 已提交
1215
        local_losses \
1216
            = self._run_local(model_file, required_envs,
1217 1218
                              check_error_log, log_name=log_name)

W
Wu Yi 已提交
1219
        if self._nccl2_mode:
W
Wu Yi 已提交
1220 1221
            if self._nccl2_reduce_layer:
                tr0_losses, tr1_losses = self._run_cluster_nccl2(
1222 1223
                    model_file,
                    required_envs,
1224 1225
                    update_method="nccl2_reduce_layer",
                    check_error_log=check_error_log,
1226
                    log_name=log_name)
W
Wu Yi 已提交
1227 1228
            else:
                tr0_losses, tr1_losses = self._run_cluster_nccl2(
1229 1230
                    model_file,
                    required_envs,
1231 1232
                    update_method='nccl2',
                    check_error_log=check_error_log,
1233
                    log_name=log_name)
1234 1235 1236 1237 1238 1239 1240 1241
        elif self._bkcl_mode:
            tr0_losses, tr1_losses = self._run_cluster_nccl2(
                model_file,
                required_envs,
                update_method='bkcl',
                check_error_log=check_error_log,
                log_name=log_name)

1242 1243 1244
        elif self._pipeline_mode:
            tr0_losses, tr1_losses = self._run_pipeline(
                model_file, required_envs, check_error_log, log_name=log_name)
W
Wu Yi 已提交
1245 1246
        else:
            tr0_losses, tr1_losses = self._run_cluster(
1247
                model_file, required_envs, check_error_log, log_name=log_name)
1248 1249

        for step_id in range(RUN_STEP):
W
Wu Yi 已提交
1250 1251 1252
            local_loss = local_losses[step_id]
            tr0_loss = tr0_losses[step_id]
            tr1_loss = tr1_losses[step_id]
1253 1254 1255 1256
            if self._pipeline_mode:
                dist_loss = np.array([tr1_loss])
            else:
                dist_loss = (np.array([tr0_loss]) + np.array([tr1_loss])) / 2
W
Wu Yi 已提交
1257 1258
            print("=======", local_loss, ":", dist_loss[0], "=======")
            self.assertAlmostEqual(local_loss, dist_loss[0], delta=delta)
1259 1260 1261 1262 1263 1264 1265

    def check_with_place_multi_cards(self,
                                     model_file,
                                     delta=1e-3,
                                     check_error_log=False,
                                     need_envs={},
                                     log_name=""):
1266

1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277
        # need open p2p or shm otherwise multi cards mode will hang
        need_envs.update({"NCCL_P2P_DISABLE": "0", "NCCL_SHM_DISABLE": "0"})

        required_envs = self._get_required_envs(check_error_log, need_envs)

        if self._use_dgc:
            multi_cards_losses = self._run_local(
                model_file,
                required_envs,
                check_error_log,
                log_name=log_name + "_dgc_2cards",
1278
                devices="0,1")
1279 1280 1281 1282 1283 1284 1285

            self._use_dgc = False
            base_losses = self._run_local(
                model_file,
                required_envs,
                check_error_log,
                log_name=log_name + "_base_2cards",
1286
                devices="0,1")
1287 1288 1289 1290 1291 1292 1293 1294

            self._use_dgc = True

            for step_id in range(RUN_STEP):
                base_loss = base_losses[step_id]
                multi_cards_loss = multi_cards_losses[step_id]
                print("=======", base_loss, ":", multi_cards_loss, "=======")
                self.assertAlmostEqual(base_loss, multi_cards_loss, delta=delta)