multiary.h 37.2 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
/* Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

    http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */

#pragma once

17
#include "paddle/phi/common/int_array.h"
18 19
#include "paddle/phi/common/scalar.h"
#include "paddle/phi/core/meta_tensor.h"
W
wanghuancoder 已提交
20

21
namespace phi {
22

23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39
// Common InferMeta Functions for multiary operators, The format like:
//
//   1. The number of input MetaTensor is more than 3:
//      void [FunctionDesc|OpName]InferMeta(const MetaTensor& x,
//                                          const MetaTensor& y,
//                                          const MetaTensor& z,
//                                          const MetaTensor& w,
//                                          ...,
//                                          MetaTensor* out) {}
//
//   2. There are `const vector<MetaTensor*>&` in params:
//      void [FunctionDesc|OpName]InferMeta(const vector<MetaTensor*>& x,
//                                          ...,
//                                          MetaTensor* out) {}
//
// NOTE: The InferMeta Functions in this file are arranged in alphabetic order.

40 41
std::vector<DDim> GetMetaTensorsDim(
    const std::vector<const MetaTensor*>& tensors);
42

F
From00 已提交
43 44 45 46
void AdadeltaInferMeta(const MetaTensor& param,
                       const MetaTensor& grad,
                       const MetaTensor& avg_squared_grad,
                       const MetaTensor& avg_squared_update,
47
                       const MetaTensor& learning_rate,
48
                       const MetaTensor& master_param,
F
From00 已提交
49 50
                       float rho,
                       float epsilon,
51
                       bool multi_precision,
F
From00 已提交
52 53
                       MetaTensor* param_out,
                       MetaTensor* avg_squared_grad_out,
54 55
                       MetaTensor* avg_squared_update_out,
                       MetaTensor* master_param_outs);
F
From00 已提交
56

H
hong 已提交
57 58 59 60
void AdagradInferMeta(const MetaTensor& param,
                      const MetaTensor& grad,
                      const MetaTensor& moment,
                      const MetaTensor& learning_rate,
61
                      const MetaTensor& master_param,
H
hong 已提交
62
                      float epsilon,
63
                      bool multi_precision,
H
hong 已提交
64
                      MetaTensor* param_out,
65 66
                      MetaTensor* moment_out,
                      MetaTensor* master_param_out);
H
hong 已提交
67

F
From00 已提交
68 69 70 71 72 73
void AdamaxInferMeta(const MetaTensor& param,
                     const MetaTensor& grad,
                     const MetaTensor& learning_rate,
                     const MetaTensor& moment,
                     const MetaTensor& inf_norm,
                     const MetaTensor& beta1_pow,
74
                     const MetaTensor& master_param,
F
From00 已提交
75 76 77
                     float beta1,
                     float beta2,
                     float epsilon,
78
                     bool multi_precision,
F
From00 已提交
79 80
                     MetaTensor* param_out,
                     MetaTensor* moment_out,
81 82
                     MetaTensor* inf_norm_out,
                     MetaTensor* master_param_outs);
F
From00 已提交
83

84 85 86 87 88 89 90
void AdamInferMeta(const MetaTensor& param,
                   const MetaTensor& grad,
                   const MetaTensor& learning_rate,
                   const MetaTensor& moment1,
                   const MetaTensor& moment2,
                   const MetaTensor& beta1_pow,
                   const MetaTensor& beta2_pow,
91 92
                   const MetaTensor& master_param,
                   const MetaTensor& skip_update,
93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113
                   const Scalar& beta1,
                   const Scalar& beta2,
                   const Scalar& epsilon,
                   bool lazy_mode,
                   int64_t min_row_size_to_use_multithread,
                   bool multi_precision,
                   bool use_global_beta_pow,
                   MetaTensor* param_out,
                   MetaTensor* moment1_out,
                   MetaTensor* moment2_out,
                   MetaTensor* beta1_pow_out,
                   MetaTensor* beta2_pow_out,
                   MetaTensor* master_param_outs);

void AdamwInferMeta(const MetaTensor& param,
                    const MetaTensor& grad,
                    const MetaTensor& learning_rate,
                    const MetaTensor& moment1,
                    const MetaTensor& moment2,
                    const MetaTensor& beta1_pow,
                    const MetaTensor& beta2_pow,
114 115
                    const MetaTensor& master_param,
                    const MetaTensor& skip_update,
116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132
                    const Scalar& beta1,
                    const Scalar& beta2,
                    const Scalar& epsilon,
                    float lr_ratio,
                    float coeff,
                    bool with_decay,
                    bool lazy_mode,
                    int64_t min_row_size_to_use_multithread,
                    bool multi_precision,
                    bool use_global_beta_pow,
                    MetaTensor* param_out,
                    MetaTensor* moment1_out,
                    MetaTensor* moment2_out,
                    MetaTensor* beta1_pow_out,
                    MetaTensor* beta2_pow_out,
                    MetaTensor* master_param_outs);

133
void AddNInferMeta(const std::vector<const MetaTensor*>& x,
134 135 136
                   MetaTensor* out,
                   MetaConfig config = MetaConfig());

Y
YuanRisheng 已提交
137 138 139 140
void AddNTensorArrayInferMeta(const std::vector<const MetaTensor*>& x,
                              MetaTensor* out,
                              MetaConfig config);

141 142 143 144
void AucInferMeta(const MetaTensor& input,
                  const MetaTensor& label,
                  const MetaTensor& stat_pos,
                  const MetaTensor& stat_neg,
145
                  const MetaTensor& ins_tag_weight,
146 147 148 149 150 151 152 153
                  const std::string& curve,
                  int num_thresholds,
                  int slide_steps,
                  MetaTensor* auc,
                  MetaTensor* stat_pos_out,
                  MetaTensor* stat_neg_out,
                  MetaConfig config = MetaConfig());

154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170
void AverageAccumulatesInferMeta(const MetaTensor& param,
                                 const MetaTensor& in_sum_1,
                                 const MetaTensor& in_sum_2,
                                 const MetaTensor& in_sum_3,
                                 const MetaTensor& in_num_accumulates,
                                 const MetaTensor& in_old_num_accumulates,
                                 const MetaTensor& in_num_updates,
                                 float average_window,
                                 int64_t max_average_window,
                                 int64_t min_average_window,
                                 MetaTensor* out_sum_1,
                                 MetaTensor* out_sum_2,
                                 MetaTensor* out_sum_3,
                                 MetaTensor* out_num_accumulates,
                                 MetaTensor* out_old_num_accumulates,
                                 MetaTensor* out_num_updates);

H
hong 已提交
171 172 173
void BatchNormInferMeta(const MetaTensor& x,
                        const MetaTensor& mean,
                        const MetaTensor& variance,
174 175 176
                        const MetaTensor& scale,
                        const MetaTensor& bias,
                        bool is_test,
H
hong 已提交
177 178 179 180 181 182 183 184 185 186 187 188 189
                        float momentum,
                        float epsilon,
                        const std::string& data_layout,
                        bool use_global_stats,
                        bool trainable_statistics,
                        MetaTensor* y,
                        MetaTensor* mean_out,
                        MetaTensor* variance_out,
                        MetaTensor* saved_mean,
                        MetaTensor* saved_variance,
                        MetaTensor* reserve_space,
                        MetaConfig config = MetaConfig());

190 191 192
void BatchNormInferInferMeta(const MetaTensor& x,
                             const MetaTensor& mean,
                             const MetaTensor& variance,
193 194
                             const MetaTensor& scale,
                             const MetaTensor& bias,
195 196 197 198 199 200 201 202
                             float momentum,
                             float epsilon,
                             const std::string& data_layout,
                             MetaTensor* y,
                             MetaTensor* mean_out,
                             MetaTensor* variance_out,
                             MetaConfig config = MetaConfig());

203 204 205 206 207 208
void BilinearInferMeta(const MetaTensor& x,
                       const MetaTensor& y,
                       const MetaTensor& weight,
                       const MetaTensor& bias,
                       MetaTensor* out,
                       MetaConfig config = MetaConfig());
209

210
void BroadcastTensorsInferMeta(const std::vector<const MetaTensor*>& x,
211 212
                               std::vector<MetaTensor*> out);

213 214 215 216 217
void CheckFiniteAndUnscaleInferMeta(const std::vector<const MetaTensor*>& xs,
                                    const MetaTensor& scale,
                                    std::vector<MetaTensor*> outs,
                                    MetaTensor* found_infinite);

218 219 220 221 222 223 224 225 226 227 228 229 230 231 232
void CoalesceTensorInferMeta(const std::vector<const MetaTensor*>& input,
                             DataType dtype,
                             bool copy_data,
                             bool set_constant,
                             bool persist_output,
                             float constant,
                             bool use_align,
                             int align_size,
                             int size_of_dtype,
                             const std::vector<int64_t>& concated_shapes,
                             const std::vector<int64_t>& concated_ranks,
                             std::vector<MetaTensor*> output,
                             MetaTensor* fused_output,
                             MetaConfig config = MetaConfig());

233 234 235 236 237
void CheckMemoryContinueInferMeta(const std::vector<const MetaTensor*>& input,
                                  MetaTensor* output,
                                  std::vector<MetaTensor*> xout,
                                  MetaConfig config = MetaConfig());

238
void ConcatInferMeta(const std::vector<const MetaTensor*>& x,
239 240 241
                     const Scalar& axis_scalar,
                     MetaTensor* out,
                     MetaConfig config = MetaConfig());
242

243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261
void CudnnLSTMInferMeta(
    const MetaTensor& x,
    const MetaTensor& init_h,
    const MetaTensor& init_c,
    const MetaTensor& w,
    const paddle::optional<std::vector<const MetaTensor*>>& weight_list,
    const MetaTensor& sequence_length,
    float dropout_prob,
    bool is_bidirec,
    int hidden_size,
    int num_layers,
    bool is_test,
    int seed,
    MetaTensor* out,
    MetaTensor* last_h,
    MetaTensor* last_c,
    MetaTensor* reserve,
    MetaTensor* state_out);

262 263 264 265 266 267 268 269 270
void DecayedAdagradInferMeta(const MetaTensor& param,
                             const MetaTensor& grad,
                             const MetaTensor& moment,
                             const MetaTensor& learning_rate,
                             float decay,
                             float epsilon,
                             MetaTensor* param_out,
                             MetaTensor* moment_out);

271 272 273
void DeformableConvInferMeta(const MetaTensor& x,
                             const MetaTensor& offset,
                             const MetaTensor& filter,
274
                             const MetaTensor& mask,
275 276 277 278 279 280 281 282 283
                             const std::vector<int>& strides,
                             const std::vector<int>& paddings,
                             const std::vector<int>& dilations,
                             int deformable_groups,
                             int groups,
                             int im2col_step,
                             MetaTensor* out,
                             MetaConfig config = MetaConfig());

284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302
void DGCMomentumInferMeta(const MetaTensor& param,
                          const MetaTensor& grad,
                          const MetaTensor& velocity,
                          const MetaTensor& learning_rate,
                          const MetaTensor& master_param,
                          const MetaTensor& current_step_tensor,
                          const MetaTensor& nranks_tensor,
                          float mu,
                          bool use_nesterov,
                          const std::string& regularization_method,
                          float regularization_coeff,
                          bool multi_precision,
                          float rescale_grad,
                          float rampup_begin_step,
                          MetaTensor* param_out,
                          MetaTensor* velocity_out,
                          MetaTensor* master_param_out,
                          MetaTensor* grad_out);

Z
zhiboniu 已提交
303 304 305 306 307 308 309 310
void EditDistanceInferMeta(const MetaTensor& hyps,
                           const MetaTensor& refs,
                           const MetaTensor& hypslength,
                           const MetaTensor& refslength,
                           bool normalized,
                           MetaTensor* sequencenum,
                           MetaTensor* out);

H
hong 已提交
311 312 313 314 315 316 317 318 319 320 321 322
void FusedBatchNormActInferMeta(const MetaTensor& x,
                                const MetaTensor& scale,
                                const MetaTensor& bias,
                                const MetaTensor& mean,
                                const MetaTensor& variance,
                                MetaTensor* y,
                                MetaTensor* mean_out,
                                MetaTensor* variance_out,
                                MetaTensor* saved_mean,
                                MetaTensor* saved_variance,
                                MetaTensor* reserve_space);

323 324 325 326 327 328 329 330 331 332 333
void FusedBiasActInferMeta(const MetaTensor& x,
                           const MetaTensor& bias,
                           const MetaTensor& dequant_scales,
                           const MetaTensor& shift,
                           const MetaTensor& smooth,
                           const std::string& act_method,
                           const std::string& compute_dtype,
                           float quant_scale,
                           int quant_round_type,
                           float quant_max_bound,
                           float quant_min_bound,
334 335
                           MetaTensor* out,
                           MetaConfig config = MetaConfig());
336

337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353
void FusedLayerNormInferMeta(const MetaTensor& x,
                             const MetaTensor& bias,
                             const MetaTensor& residual,
                             const MetaTensor& norm_weight,
                             const MetaTensor& norm_bias,
                             const float epsilon,
                             const float residual_alpha,
                             const int begin_norm_axis,
                             const float quant_scale,
                             const int quant_round_type,
                             const float quant_max_bound,
                             const float quant_min_bound,
                             MetaTensor* out,
                             MetaTensor* residual_out,
                             MetaTensor* mean,
                             MetaTensor* variance);

354 355 356 357 358
void FusedLinearParamGradAddInferMeta(const MetaTensor& x,
                                      const MetaTensor& dout,
                                      const MetaTensor& dweight,
                                      const MetaTensor& dbias,
                                      bool multi_precision,
Y
Yuang Liu 已提交
359
                                      bool has_bias,
360 361 362
                                      MetaTensor* dweight_out,
                                      MetaTensor* dbias_out);

363 364 365 366 367 368 369
void FusionGroupInferMeta(const std::vector<const MetaTensor*>& ins,
                          const std::vector<int>& outs_dtype,
                          const std::vector<int>& inputs_dtype,
                          const std::string& func_name,
                          int type,
                          std::vector<MetaTensor*> outs);

Z
zhiboniu 已提交
370 371 372 373 374 375 376 377 378 379 380 381 382 383 384
void GenerateProposalsV2InferMeta(const MetaTensor& scores,
                                  const MetaTensor& bbox_deltas,
                                  const MetaTensor& im_shape,
                                  const MetaTensor& anchors,
                                  const MetaTensor& variances,
                                  int pre_nms_top_n,
                                  int post_nms_top_n,
                                  float nms_thresh,
                                  float min_size,
                                  float eta,
                                  bool pixel_offset,
                                  MetaTensor* rpn_rois,
                                  MetaTensor* rpn_roi_probs,
                                  MetaTensor* rpn_rois_num);

385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405
void GraphReindexInferMeta(const MetaTensor& x,
                           const MetaTensor& neighbors,
                           const MetaTensor& count,
                           const MetaTensor& hashtable_value,
                           const MetaTensor& hashtable_index,
                           MetaTensor* reindex_src,
                           MetaTensor* reindex_dst,
                           MetaTensor* out_nodes);

void GraphSampleNeighborsInferMeta(const MetaTensor& row,
                                   const MetaTensor& col_ptr,
                                   const MetaTensor& x,
                                   const MetaTensor& eids,
                                   const MetaTensor& perm_buffer,
                                   int sample_size,
                                   bool return_eids,
                                   bool flag_perm_buffer,
                                   MetaTensor* out,
                                   MetaTensor* out_count,
                                   MetaTensor* out_eids);

406 407
void HSigmoidLossInferMeta(const MetaTensor& x,
                           const MetaTensor& label,
408 409
                           const MetaTensor& w,
                           const MetaTensor& bias,
410 411 412 413 414 415 416
                           const MetaTensor& path,
                           const MetaTensor& code,
                           int num_classes,
                           bool is_sparse,
                           MetaTensor* out,
                           MetaTensor* pre_out,
                           MetaTensor* w_out);
417

418 419
void InterpolateInferMeta(
    const MetaTensor& x,
420 421 422
    const MetaTensor& out_size,
    const paddle::optional<std::vector<const MetaTensor*>>& size_tensor,
    const MetaTensor& scale_tensor,
423 424 425 426 427 428 429 430 431 432 433
    const std::string& data_layout,
    int out_d,
    int out_h,
    int out_w,
    const std::vector<float>& scale,
    const std::string& interp_method,
    bool align_corners,
    int align_mode,
    MetaTensor* output,
    MetaConfig config = MetaConfig());

傅剑寒 已提交
434 435 436 437 438 439
void IndexPutInferMeta(const MetaTensor& x,
                       const std::vector<const MetaTensor*>& indices,
                       const MetaTensor& value,
                       bool accumulate,
                       MetaTensor* out);

T
Thomas Young 已提交
440 441 442 443 444 445 446 447 448 449 450 451 452
void LambInferMeta(const MetaTensor& param,
                   const MetaTensor& grad,
                   const MetaTensor& learning_rate,
                   const MetaTensor& moment1,
                   const MetaTensor& moment2,
                   const MetaTensor& beta1_pow,
                   const MetaTensor& beta2_pow,
                   const MetaTensor& master_param,
                   const MetaTensor& skip_update,
                   float weight_decay,
                   float beta1,
                   float beta2,
                   float epsilon,
453
                   bool always_adapt,
T
Thomas Young 已提交
454 455 456 457 458 459 460 461
                   bool multi_precision,
                   MetaTensor* param_out,
                   MetaTensor* moment1_out,
                   MetaTensor* moment2_out,
                   MetaTensor* beta1_pow_out,
                   MetaTensor* beta2_pow_out,
                   MetaTensor* master_param_outs);

462 463 464 465 466 467 468
void LLMInt8LinearInferMeta(const MetaTensor& x,
                            const MetaTensor& weight,
                            const MetaTensor& bias,
                            const MetaTensor& weight_scale,
                            const float threshold,
                            MetaTensor* out);

469 470 471 472
void LogspaceInferMeta(const MetaTensor& start,
                       const MetaTensor& stop,
                       const MetaTensor& number,
                       const MetaTensor& base,
C
Chen Weihang 已提交
473
                       DataType dtype,
474 475
                       MetaTensor* out);

476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496
void MergedAdamInferMeta(
    const std::vector<const MetaTensor*>& param,
    const std::vector<const MetaTensor*>& grad,
    const std::vector<const MetaTensor*>& learning_rate,
    const std::vector<const MetaTensor*>& moment1,
    const std::vector<const MetaTensor*>& moment2,
    const std::vector<const MetaTensor*>& beta1_pow,
    const std::vector<const MetaTensor*>& beta2_pow,
    const paddle::optional<std::vector<const MetaTensor*>>& master_param,
    const Scalar& beta1,
    const Scalar& beta2,
    const Scalar& epsilon,
    bool multi_precision,
    bool use_global_beta_pow,
    std::vector<MetaTensor*> param_out,
    std::vector<MetaTensor*> moment1_out,
    std::vector<MetaTensor*> moment2_out,
    std::vector<MetaTensor*> beta1_pow_out,
    std::vector<MetaTensor*> beta2_pow_out,
    std::vector<MetaTensor*> master_param_out);

497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512
void MergedMomentumInferMeta(
    const std::vector<const MetaTensor*>& param,
    const std::vector<const MetaTensor*>& grad,
    const std::vector<const MetaTensor*>& velocity,
    const std::vector<const MetaTensor*>& learning_rate,
    const paddle::optional<std::vector<const MetaTensor*>>& master_param,
    float mu,
    bool use_nesterov,
    const std::vector<std::string>& regularization_method,
    const std::vector<float>& regularization_coeff,
    bool multi_precision,
    float rescale_grad,
    std::vector<MetaTensor*> param_out,
    std::vector<MetaTensor*> velocity_out,
    std::vector<MetaTensor*> master_param_out);

Z
ZhangDY-6483 已提交
513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530
void MemoryEfficientAttentionInferMeta(const MetaTensor& query,
                                       const MetaTensor& key,
                                       const MetaTensor& value,
                                       const MetaTensor& bias,
                                       const MetaTensor& cu_seqlens_q,
                                       const MetaTensor& cu_seqlens_k,
                                       const MetaTensor& causal_diagonal,
                                       const MetaTensor& seqlen_k,
                                       const Scalar& max_seqlen_q,
                                       const Scalar& max_seqlen_k,
                                       const bool causal,
                                       const double dropout_p,
                                       const float scale,
                                       const bool is_test,
                                       MetaTensor* output,
                                       MetaTensor* logsumexp,
                                       MetaTensor* seed_and_offset);

531 532 533 534 535 536 537 538 539 540 541
void VariableLengthMemoryEfficientAttentionInferMeta(
    const MetaTensor& query,
    const MetaTensor& key,
    const MetaTensor& value,
    const MetaTensor& seq_lens,
    const MetaTensor& kv_seq_lens,
    const MetaTensor& mask,
    float scale,
    bool causal,
    MetaTensor* out);

542
void MeshgridInferMeta(const std::vector<const MetaTensor*>& inputs,
H
hong 已提交
543 544
                       std::vector<MetaTensor*> outputs);

545 546 547 548
void MomentumInferMeta(const MetaTensor& param,
                       const MetaTensor& grad,
                       const MetaTensor& velocity,
                       const MetaTensor& learning_rate,
549
                       const MetaTensor& master_param,
550 551 552 553 554 555 556 557 558 559
                       float mu,
                       bool use_nesterov,
                       const std::string& regularization_method,
                       float regularization_coeff,
                       bool multi_precision,
                       float rescale_grad,
                       MetaTensor* param_out,
                       MetaTensor* velocity_out,
                       MetaTensor* master_param_out);

560 561
void MultiDotInferMeta(const std::vector<const MetaTensor*>& x,
                       MetaTensor* out);
562

563
void MultiplexInferMeta(const std::vector<const MetaTensor*>& ins,
564 565 566
                        const MetaTensor& ids,
                        MetaTensor* out);

F
From00 已提交
567 568
void PsroiPoolInferMeta(const MetaTensor& x,
                        const MetaTensor& rois,
569
                        const MetaTensor& rois_num,
F
From00 已提交
570 571 572 573 574 575
                        int pooled_height,
                        int pooled_width,
                        int output_channels,
                        float spatial_scale,
                        MetaTensor* out);

576 577 578 579 580 581 582 583 584 585 586 587 588 589
void RmsNormInferMeta(const MetaTensor& x,
                      const MetaTensor& bias,
                      const MetaTensor& residual,
                      const MetaTensor& norm_weight,
                      const MetaTensor& norm_bias,
                      const float epsilon,
                      const int begin_norm_axis,
                      const float quant_scale,
                      const int quant_round_type,
                      const float quant_max_bound,
                      const float quant_min_bound,
                      MetaTensor* out,
                      MetaTensor* residual_out);

H
hong 已提交
590 591 592 593 594
void RmspropInferMeta(const MetaTensor& param,
                      const MetaTensor& mean_square,
                      const MetaTensor& grad,
                      const MetaTensor& moment,
                      const MetaTensor& learning_rate,
595
                      const MetaTensor& mean_grad,
596
                      const MetaTensor& master_param,
H
hong 已提交
597 598 599 600
                      float epsilon,
                      float decay,
                      float momentum,
                      bool centered,
601
                      bool multi_precision,
H
hong 已提交
602 603 604
                      MetaTensor* param_out,
                      MetaTensor* moment_out,
                      MetaTensor* mean_square_out,
605 606
                      MetaTensor* mean_grad_out,
                      MetaTensor* master_param_outs);
H
hong 已提交
607

608
void RnnInferMeta(const MetaTensor& x,
609 610
                  const std::vector<const MetaTensor*>& pre_state,
                  const std::vector<const MetaTensor*>& weight_list,
611
                  const MetaTensor& sequence_length,
612 613 614 615 616 617 618 619 620 621 622 623 624
                  float dropout_prob,
                  bool is_bidirec,
                  int input_size,
                  int hidden_size,
                  int num_layers,
                  const std::string& mode,
                  int seed,
                  bool is_test,
                  MetaTensor* out,
                  MetaTensor* dropout_state,
                  std::vector<MetaTensor*> state,
                  MetaTensor* reserve);

625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641
void SendUERecvInferMeta(const MetaTensor& x,
                         const MetaTensor& y,
                         const MetaTensor& src_index,
                         const MetaTensor& dst_index,
                         const std::string& message_op,
                         const std::string& reduce_op,
                         const IntArray& out_size,
                         MetaTensor* out,
                         MetaTensor* dst_count);

void SendUVInferMeta(const MetaTensor& x,
                     const MetaTensor& y,
                     const MetaTensor& src_index,
                     const MetaTensor& dst_index,
                     const std::string& message_op,
                     MetaTensor* out);

Z
zyfncg 已提交
642
void SgdInferMeta(const MetaTensor& param,
H
hong 已提交
643 644
                  const MetaTensor& learning_rate,
                  const MetaTensor& grad,
645
                  const MetaTensor& master_param,
H
hong 已提交
646 647 648 649
                  bool multi_precision,
                  MetaTensor* param_out,
                  MetaTensor* master_param_out);

650 651 652 653 654 655 656 657
void SigmoidCrossEntropyWithLogitsInferMeta(const MetaTensor& x,
                                            const MetaTensor& label,
                                            const MetaTensor& pos_weight,
                                            bool normalize,
                                            int ignore_index,
                                            MetaTensor* out,
                                            MetaConfig config = MetaConfig());

658
void StackInferMeta(const std::vector<const MetaTensor*>& x,
C
csy0225 已提交
659
                    int axis,
660 661
                    MetaTensor* out,
                    MetaConfig config = MetaConfig());
C
csy0225 已提交
662

663
void UnchangedMultiInferMeta(const std::vector<const MetaTensor*>& x,
664 665
                             std::vector<MetaTensor*> out);

666 667 668 669 670
void ShareBufferInferMeta(const std::vector<const MetaTensor*>& x,
                          const std::vector<bool>& share_dims_and_dtype,
                          std::vector<MetaTensor*> out,
                          std::vector<MetaTensor*> xout);

671 672 673 674 675 676 677 678 679 680
void UpdateLossScalingInferMeta(const std::vector<const MetaTensor*>& xs,
                                const MetaTensor& found_infinite,
                                const MetaTensor& prev_loss_scaling,
                                const MetaTensor& in_good_steps,
                                const MetaTensor& in_bad_steps,
                                std::vector<MetaTensor*> outs,
                                MetaTensor* loss_scaling,
                                MetaTensor* out_good_steps,
                                MetaTensor* out_bad_steps);

0
0x45f 已提交
681 682
void WarpctcInferMeta(const MetaTensor& logits,
                      const MetaTensor& label,
683 684
                      const MetaTensor& logits_length,
                      const MetaTensor& labels_length,
0
0x45f 已提交
685 686
                      int blank,
                      bool norm_by_times,
687 688
                      MetaTensor* loss,
                      MetaTensor* warpctcgrad);
0
0x45f 已提交
689

H
Hui Zhang 已提交
690 691 692 693 694 695 696 697 698
void WarprnntInferMeta(const MetaTensor& input,
                       const MetaTensor& label,
                       const MetaTensor& input_lengths,
                       const MetaTensor& label_lengths,
                       int blank,
                       float fastemit_lambda,
                       MetaTensor* loss,
                       MetaTensor* warpctcgrad);

699 700 701 702 703 704 705
void WeightOnlyLinearInferMeta(const MetaTensor& x,
                               const MetaTensor& weight,
                               const MetaTensor& bias,
                               const MetaTensor& weight_scale,
                               const std::string& weight_dtype,
                               MetaTensor* out);

S
Siming Dai 已提交
706 707 708 709 710 711 712 713 714 715 716
void WeightedSampleNeighborsInferMeta(const MetaTensor& row,
                                      const MetaTensor& col_ptr,
                                      const MetaTensor& edge_weight,
                                      const MetaTensor& x,
                                      const MetaTensor& eids,
                                      int sample_size,
                                      bool return_eids,
                                      MetaTensor* out,
                                      MetaTensor* out_count,
                                      MetaTensor* out_eids);

717 718 719 720
void WhereInferMeta(const MetaTensor& condition,
                    const MetaTensor& x,
                    const MetaTensor& y,
                    MetaTensor* out);
721

722 723 724 725 726 727 728 729 730 731 732 733 734 735
void YoloLossInferMeta(const MetaTensor& x,
                       const MetaTensor& gt_box,
                       const MetaTensor& gt_label,
                       const MetaTensor& gt_score,
                       const std::vector<int>& anchors,
                       const std::vector<int>& anchor_mask,
                       int class_num,
                       float ignore_thresh,
                       int downsample_ratio,
                       bool use_label_smooth,
                       float scale_x_y,
                       MetaTensor* loss,
                       MetaTensor* objectness_mask,
                       MetaTensor* gt_match_mask);
736

737
void FusedAdamInferMeta(
738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761
    const std::vector<const MetaTensor*>& params,
    const std::vector<const MetaTensor*>& grads,
    const MetaTensor& learning_rate,
    const std::vector<const MetaTensor*>& moments1,
    const std::vector<const MetaTensor*>& moments2,
    const std::vector<const MetaTensor*>& beta1_pows,
    const std::vector<const MetaTensor*>& beta2_pows,
    const paddle::optional<std::vector<const MetaTensor*>>& master_params,
    const MetaTensor& skip_update,
    const Scalar& beta1,
    const Scalar& beta2,
    const Scalar& epsilon,
    int chunk_size,
    float weight_decay,
    bool use_adamw,
    bool multi_precision,
    bool use_global_beta_pow,
    std::vector<MetaTensor*> params_out,
    std::vector<MetaTensor*> moments1_out,
    std::vector<MetaTensor*> moments2_out,
    std::vector<MetaTensor*> beta1_pows_out,
    std::vector<MetaTensor*> beta2_pows_out,
    std::vector<MetaTensor*> master_params_out);

762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778
void FusedConvInferMeta(const MetaTensor& input,
                        const MetaTensor& filter,
                        const MetaTensor& bias,
                        const MetaTensor& residual_param,
                        const std::vector<int>& strides,
                        const std::vector<int>& paddings,
                        const std::string& padding_algorithm,
                        const std::vector<int>& dilations,
                        int groups,
                        const std::string& data_format,
                        const std::string& mkldnn_data_type,
                        const std::string& fuse_activation,
                        bool fuse_residual_conn,
                        bool force_fp32_output,
                        MetaTensor* out,
                        MetaConfig config);

779 780 781 782 783 784 785 786 787
void MoeInferMeta(const MetaTensor& x,
                  const MetaTensor& gate,
                  const MetaTensor& bmm0,
                  const MetaTensor& bias0,
                  const MetaTensor& bmm1,
                  const MetaTensor& bias1,
                  const std::string& act_type,
                  MetaTensor* out);

FormlessUnit's avatar
FormlessUnit 已提交
788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804
void FusedMultiHeadAttentionInferMeta(const MetaTensor& query,
                                      const MetaTensor& key,
                                      const MetaTensor& value,
                                      const MetaTensor& mask,
                                      float scale,
                                      bool causal,
                                      MetaTensor* out);

void FusedMultiHeadAttentionVariableInferMeta(const MetaTensor& query,
                                              const MetaTensor& key,
                                              const MetaTensor& value,
                                              const MetaTensor& seq_lens,
                                              const MetaTensor& mask,
                                              float scale,
                                              bool causal,
                                              MetaTensor* out);

805 806 807
void FusedRopeInferMeta(const MetaTensor& q,
                        const MetaTensor& k,
                        const MetaTensor& v,
808 809
                        const MetaTensor& sin,
                        const MetaTensor& cos,
810 811 812 813
                        MetaTensor* out_q,
                        MetaTensor* out_k,
                        MetaTensor* out_v);

814 815
void MaskedMultiheadAttentionInferMeta(const MetaTensor& x,
                                       const MetaTensor& cache_kv,
816
                                       const MetaTensor& bias,
817 818 819 820 821 822 823 824 825 826 827
                                       const MetaTensor& src_mask,
                                       const MetaTensor& cum_offsets,
                                       const MetaTensor& sequence_lengths,
                                       const MetaTensor& rotary_tensor,
                                       const MetaTensor& beam_cache_offset,
                                       const MetaTensor& qkv_out_scale,
                                       const MetaTensor& out_shift,
                                       const MetaTensor& out_smooth,
                                       int seq_len,
                                       int rotary_emb_dims,
                                       const bool use_neox_rotary_style,
828
                                       const std::string& compute_dtype,
829 830 831 832 833 834 835 836
                                       const float out_scale,
                                       const int quant_round_type,
                                       const float quant_max_bound,
                                       const float quant_min_bound,
                                       MetaTensor* out,
                                       MetaTensor* cache_kv_out,
                                       MetaTensor* beam_cache_offset_out);

W
wanghuancoder 已提交
837 838 839 840
void FullWithTensorInferMeta(const MetaTensor& shape,
                             DataType dtype,
                             MetaTensor* out);

841
}  // namespace phi