multiary.h 24.6 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
/* Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

    http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */

#pragma once

17
#include "paddle/phi/common/int_array.h"
18 19 20
#include "paddle/phi/common/scalar.h"
#include "paddle/phi/core/meta_tensor.h"
namespace phi {
21

22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38
// Common InferMeta Functions for multiary operators, The format like:
//
//   1. The number of input MetaTensor is more than 3:
//      void [FunctionDesc|OpName]InferMeta(const MetaTensor& x,
//                                          const MetaTensor& y,
//                                          const MetaTensor& z,
//                                          const MetaTensor& w,
//                                          ...,
//                                          MetaTensor* out) {}
//
//   2. There are `const vector<MetaTensor*>&` in params:
//      void [FunctionDesc|OpName]InferMeta(const vector<MetaTensor*>& x,
//                                          ...,
//                                          MetaTensor* out) {}
//
// NOTE: The InferMeta Functions in this file are arranged in alphabetic order.

39 40
std::vector<DDim> GetMetaTensorsDim(
    const std::vector<const MetaTensor*>& tensors);
41

F
From00 已提交
42 43 44 45 46 47 48 49 50 51
void AdadeltaInferMeta(const MetaTensor& param,
                       const MetaTensor& grad,
                       const MetaTensor& avg_squared_grad,
                       const MetaTensor& avg_squared_update,
                       float rho,
                       float epsilon,
                       MetaTensor* param_out,
                       MetaTensor* avg_squared_grad_out,
                       MetaTensor* avg_squared_update_out);

H
hong 已提交
52 53 54 55
void AdagradInferMeta(const MetaTensor& param,
                      const MetaTensor& grad,
                      const MetaTensor& moment,
                      const MetaTensor& learning_rate,
56
                      const MetaTensor& master_param,
H
hong 已提交
57
                      float epsilon,
58
                      bool multi_precision,
H
hong 已提交
59
                      MetaTensor* param_out,
60 61
                      MetaTensor* moment_out,
                      MetaTensor* master_param_out);
H
hong 已提交
62

F
From00 已提交
63 64 65 66 67 68 69 70 71 72 73 74 75
void AdamaxInferMeta(const MetaTensor& param,
                     const MetaTensor& grad,
                     const MetaTensor& learning_rate,
                     const MetaTensor& moment,
                     const MetaTensor& inf_norm,
                     const MetaTensor& beta1_pow,
                     float beta1,
                     float beta2,
                     float epsilon,
                     MetaTensor* param_out,
                     MetaTensor* moment_out,
                     MetaTensor* inf_norm_out);

76 77 78 79 80 81 82
void AdamInferMeta(const MetaTensor& param,
                   const MetaTensor& grad,
                   const MetaTensor& learning_rate,
                   const MetaTensor& moment1,
                   const MetaTensor& moment2,
                   const MetaTensor& beta1_pow,
                   const MetaTensor& beta2_pow,
83 84
                   const MetaTensor& master_param,
                   const MetaTensor& skip_update,
85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105
                   const Scalar& beta1,
                   const Scalar& beta2,
                   const Scalar& epsilon,
                   bool lazy_mode,
                   int64_t min_row_size_to_use_multithread,
                   bool multi_precision,
                   bool use_global_beta_pow,
                   MetaTensor* param_out,
                   MetaTensor* moment1_out,
                   MetaTensor* moment2_out,
                   MetaTensor* beta1_pow_out,
                   MetaTensor* beta2_pow_out,
                   MetaTensor* master_param_outs);

void AdamwInferMeta(const MetaTensor& param,
                    const MetaTensor& grad,
                    const MetaTensor& learning_rate,
                    const MetaTensor& moment1,
                    const MetaTensor& moment2,
                    const MetaTensor& beta1_pow,
                    const MetaTensor& beta2_pow,
106 107
                    const MetaTensor& master_param,
                    const MetaTensor& skip_update,
108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124
                    const Scalar& beta1,
                    const Scalar& beta2,
                    const Scalar& epsilon,
                    float lr_ratio,
                    float coeff,
                    bool with_decay,
                    bool lazy_mode,
                    int64_t min_row_size_to_use_multithread,
                    bool multi_precision,
                    bool use_global_beta_pow,
                    MetaTensor* param_out,
                    MetaTensor* moment1_out,
                    MetaTensor* moment2_out,
                    MetaTensor* beta1_pow_out,
                    MetaTensor* beta2_pow_out,
                    MetaTensor* master_param_outs);

125
void AddNInferMeta(const std::vector<const MetaTensor*>& x,
126 127 128
                   MetaTensor* out,
                   MetaConfig config = MetaConfig());

Y
YuanRisheng 已提交
129 130 131 132
void AddNTensorArrayInferMeta(const std::vector<const MetaTensor*>& x,
                              MetaTensor* out,
                              MetaConfig config);

133 134 135 136
void AucInferMeta(const MetaTensor& input,
                  const MetaTensor& label,
                  const MetaTensor& stat_pos,
                  const MetaTensor& stat_neg,
137
                  const MetaTensor& ins_tag_weight,
138 139 140 141 142 143 144 145
                  const std::string& curve,
                  int num_thresholds,
                  int slide_steps,
                  MetaTensor* auc,
                  MetaTensor* stat_pos_out,
                  MetaTensor* stat_neg_out,
                  MetaConfig config = MetaConfig());

146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162
void AverageAccumulatesInferMeta(const MetaTensor& param,
                                 const MetaTensor& in_sum_1,
                                 const MetaTensor& in_sum_2,
                                 const MetaTensor& in_sum_3,
                                 const MetaTensor& in_num_accumulates,
                                 const MetaTensor& in_old_num_accumulates,
                                 const MetaTensor& in_num_updates,
                                 float average_window,
                                 int64_t max_average_window,
                                 int64_t min_average_window,
                                 MetaTensor* out_sum_1,
                                 MetaTensor* out_sum_2,
                                 MetaTensor* out_sum_3,
                                 MetaTensor* out_num_accumulates,
                                 MetaTensor* out_old_num_accumulates,
                                 MetaTensor* out_num_updates);

H
hong 已提交
163 164 165
void BatchNormInferMeta(const MetaTensor& x,
                        const MetaTensor& mean,
                        const MetaTensor& variance,
166 167 168
                        const MetaTensor& scale,
                        const MetaTensor& bias,
                        bool is_test,
H
hong 已提交
169 170 171 172 173 174 175 176 177 178 179 180 181
                        float momentum,
                        float epsilon,
                        const std::string& data_layout,
                        bool use_global_stats,
                        bool trainable_statistics,
                        MetaTensor* y,
                        MetaTensor* mean_out,
                        MetaTensor* variance_out,
                        MetaTensor* saved_mean,
                        MetaTensor* saved_variance,
                        MetaTensor* reserve_space,
                        MetaConfig config = MetaConfig());

182 183 184
void BatchNormInferInferMeta(const MetaTensor& x,
                             const MetaTensor& mean,
                             const MetaTensor& variance,
185 186
                             const MetaTensor& scale,
                             const MetaTensor& bias,
187 188 189 190 191 192 193 194
                             float momentum,
                             float epsilon,
                             const std::string& data_layout,
                             MetaTensor* y,
                             MetaTensor* mean_out,
                             MetaTensor* variance_out,
                             MetaConfig config = MetaConfig());

195 196 197
void BilinearTensorProductInferMeta(const MetaTensor& x,
                                    const MetaTensor& y,
                                    const MetaTensor& weight,
198
                                    const MetaTensor& bias,
199 200 201
                                    MetaTensor* out,
                                    MetaConfig config = MetaConfig());

202
void BroadcastTensorsInferMeta(const std::vector<const MetaTensor*>& x,
203 204
                               std::vector<MetaTensor*> out);

205 206 207 208 209
void CheckFiniteAndUnscaleInferMeta(const std::vector<const MetaTensor*>& xs,
                                    const MetaTensor& scale,
                                    std::vector<MetaTensor*> outs,
                                    MetaTensor* found_infinite);

210 211 212 213 214 215 216 217 218 219 220 221 222 223 224
void CoalesceTensorInferMeta(const std::vector<const MetaTensor*>& input,
                             DataType dtype,
                             bool copy_data,
                             bool set_constant,
                             bool persist_output,
                             float constant,
                             bool use_align,
                             int align_size,
                             int size_of_dtype,
                             const std::vector<int64_t>& concated_shapes,
                             const std::vector<int64_t>& concated_ranks,
                             std::vector<MetaTensor*> output,
                             MetaTensor* fused_output,
                             MetaConfig config = MetaConfig());

225 226 227 228 229
void CheckMemoryContinueInferMeta(const std::vector<const MetaTensor*>& input,
                                  MetaTensor* output,
                                  std::vector<MetaTensor*> xout,
                                  MetaConfig config = MetaConfig());

230
void ConcatInferMeta(const std::vector<const MetaTensor*>& x,
231 232 233
                     const Scalar& axis_scalar,
                     MetaTensor* out,
                     MetaConfig config = MetaConfig());
234

235 236 237
void DeformableConvInferMeta(const MetaTensor& x,
                             const MetaTensor& offset,
                             const MetaTensor& filter,
238
                             const MetaTensor& mask,
239 240 241 242 243 244 245 246 247
                             const std::vector<int>& strides,
                             const std::vector<int>& paddings,
                             const std::vector<int>& dilations,
                             int deformable_groups,
                             int groups,
                             int im2col_step,
                             MetaTensor* out,
                             MetaConfig config = MetaConfig());

Z
zhiboniu 已提交
248 249 250 251 252 253 254 255
void EditDistanceInferMeta(const MetaTensor& hyps,
                           const MetaTensor& refs,
                           const MetaTensor& hypslength,
                           const MetaTensor& refslength,
                           bool normalized,
                           MetaTensor* sequencenum,
                           MetaTensor* out);

Z
zhiboniu 已提交
256 257 258 259 260 261 262 263 264 265 266 267 268 269 270
void GenerateProposalsV2InferMeta(const MetaTensor& scores,
                                  const MetaTensor& bbox_deltas,
                                  const MetaTensor& im_shape,
                                  const MetaTensor& anchors,
                                  const MetaTensor& variances,
                                  int pre_nms_top_n,
                                  int post_nms_top_n,
                                  float nms_thresh,
                                  float min_size,
                                  float eta,
                                  bool pixel_offset,
                                  MetaTensor* rpn_rois,
                                  MetaTensor* rpn_roi_probs,
                                  MetaTensor* rpn_rois_num);

271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292
void GraphReindexInferMeta(const MetaTensor& x,
                           const MetaTensor& neighbors,
                           const MetaTensor& count,
                           const MetaTensor& hashtable_value,
                           const MetaTensor& hashtable_index,
                           bool flag_buffer_hashtable,
                           MetaTensor* reindex_src,
                           MetaTensor* reindex_dst,
                           MetaTensor* out_nodes);

void GraphSampleNeighborsInferMeta(const MetaTensor& row,
                                   const MetaTensor& col_ptr,
                                   const MetaTensor& x,
                                   const MetaTensor& eids,
                                   const MetaTensor& perm_buffer,
                                   int sample_size,
                                   bool return_eids,
                                   bool flag_perm_buffer,
                                   MetaTensor* out,
                                   MetaTensor* out_count,
                                   MetaTensor* out_eids);

293 294
void HSigmoidLossInferMeta(const MetaTensor& x,
                           const MetaTensor& label,
295 296
                           const MetaTensor& w,
                           const MetaTensor& bias,
297 298 299 300 301 302 303 304
                           const MetaTensor& path,
                           const MetaTensor& code,
                           int num_classes,
                           bool remote_prefetch,
                           bool is_sparse,
                           MetaTensor* out,
                           MetaTensor* pre_out,
                           MetaTensor* w_out);
305

306 307
void InterpolateInferMeta(
    const MetaTensor& x,
308 309 310
    const MetaTensor& out_size,
    const paddle::optional<std::vector<const MetaTensor*>>& size_tensor,
    const MetaTensor& scale_tensor,
311 312 313 314 315 316 317 318 319 320 321
    const std::string& data_layout,
    int out_d,
    int out_h,
    int out_w,
    const std::vector<float>& scale,
    const std::string& interp_method,
    bool align_corners,
    int align_mode,
    MetaTensor* output,
    MetaConfig config = MetaConfig());

T
Thomas Young 已提交
322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342
void LambInferMeta(const MetaTensor& param,
                   const MetaTensor& grad,
                   const MetaTensor& learning_rate,
                   const MetaTensor& moment1,
                   const MetaTensor& moment2,
                   const MetaTensor& beta1_pow,
                   const MetaTensor& beta2_pow,
                   const MetaTensor& master_param,
                   const MetaTensor& skip_update,
                   float weight_decay,
                   float beta1,
                   float beta2,
                   float epsilon,
                   bool multi_precision,
                   MetaTensor* param_out,
                   MetaTensor* moment1_out,
                   MetaTensor* moment2_out,
                   MetaTensor* beta1_pow_out,
                   MetaTensor* beta2_pow_out,
                   MetaTensor* master_param_outs);

343 344 345 346
void LogspaceInferMeta(const MetaTensor& start,
                       const MetaTensor& stop,
                       const MetaTensor& number,
                       const MetaTensor& base,
C
Chen Weihang 已提交
347
                       DataType dtype,
348 349
                       MetaTensor* out);

350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370
void MergedAdamInferMeta(
    const std::vector<const MetaTensor*>& param,
    const std::vector<const MetaTensor*>& grad,
    const std::vector<const MetaTensor*>& learning_rate,
    const std::vector<const MetaTensor*>& moment1,
    const std::vector<const MetaTensor*>& moment2,
    const std::vector<const MetaTensor*>& beta1_pow,
    const std::vector<const MetaTensor*>& beta2_pow,
    const paddle::optional<std::vector<const MetaTensor*>>& master_param,
    const Scalar& beta1,
    const Scalar& beta2,
    const Scalar& epsilon,
    bool multi_precision,
    bool use_global_beta_pow,
    std::vector<MetaTensor*> param_out,
    std::vector<MetaTensor*> moment1_out,
    std::vector<MetaTensor*> moment2_out,
    std::vector<MetaTensor*> beta1_pow_out,
    std::vector<MetaTensor*> beta2_pow_out,
    std::vector<MetaTensor*> master_param_out);

371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386
void MergedMomentumInferMeta(
    const std::vector<const MetaTensor*>& param,
    const std::vector<const MetaTensor*>& grad,
    const std::vector<const MetaTensor*>& velocity,
    const std::vector<const MetaTensor*>& learning_rate,
    const paddle::optional<std::vector<const MetaTensor*>>& master_param,
    float mu,
    bool use_nesterov,
    const std::vector<std::string>& regularization_method,
    const std::vector<float>& regularization_coeff,
    bool multi_precision,
    float rescale_grad,
    std::vector<MetaTensor*> param_out,
    std::vector<MetaTensor*> velocity_out,
    std::vector<MetaTensor*> master_param_out);

387
void MeshgridInferMeta(const std::vector<const MetaTensor*>& inputs,
H
hong 已提交
388 389
                       std::vector<MetaTensor*> outputs);

390 391 392 393
void MomentumInferMeta(const MetaTensor& param,
                       const MetaTensor& grad,
                       const MetaTensor& velocity,
                       const MetaTensor& learning_rate,
394
                       const MetaTensor& master_param,
395 396 397 398 399 400 401 402 403 404
                       float mu,
                       bool use_nesterov,
                       const std::string& regularization_method,
                       float regularization_coeff,
                       bool multi_precision,
                       float rescale_grad,
                       MetaTensor* param_out,
                       MetaTensor* velocity_out,
                       MetaTensor* master_param_out);

405 406
void MultiDotInferMeta(const std::vector<const MetaTensor*>& x,
                       MetaTensor* out);
407

408
void MultiplexInferMeta(const std::vector<const MetaTensor*>& ins,
409 410 411
                        const MetaTensor& ids,
                        MetaTensor* out);

F
From00 已提交
412 413
void PsroiPoolInferMeta(const MetaTensor& x,
                        const MetaTensor& rois,
414
                        const MetaTensor& rois_num,
F
From00 已提交
415 416 417 418 419 420
                        int pooled_height,
                        int pooled_width,
                        int output_channels,
                        float spatial_scale,
                        MetaTensor* out);

H
hong 已提交
421 422 423 424 425
void RmspropInferMeta(const MetaTensor& param,
                      const MetaTensor& mean_square,
                      const MetaTensor& grad,
                      const MetaTensor& moment,
                      const MetaTensor& learning_rate,
426
                      const MetaTensor& mean_grad,
427
                      const MetaTensor& master_param,
H
hong 已提交
428 429 430 431
                      float epsilon,
                      float decay,
                      float momentum,
                      bool centered,
432
                      bool multi_precision,
H
hong 已提交
433 434 435
                      MetaTensor* param_out,
                      MetaTensor* moment_out,
                      MetaTensor* mean_square_out,
436 437
                      MetaTensor* mean_grad_out,
                      MetaTensor* master_param_outs);
H
hong 已提交
438

439
void RnnInferMeta(const MetaTensor& x,
440 441
                  const std::vector<const MetaTensor*>& pre_state,
                  const std::vector<const MetaTensor*>& weight_list,
442
                  const MetaTensor& sequence_length,
443 444 445 446 447 448 449 450 451 452 453 454 455
                  float dropout_prob,
                  bool is_bidirec,
                  int input_size,
                  int hidden_size,
                  int num_layers,
                  const std::string& mode,
                  int seed,
                  bool is_test,
                  MetaTensor* out,
                  MetaTensor* dropout_state,
                  std::vector<MetaTensor*> state,
                  MetaTensor* reserve);

456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472
void SendUERecvInferMeta(const MetaTensor& x,
                         const MetaTensor& y,
                         const MetaTensor& src_index,
                         const MetaTensor& dst_index,
                         const std::string& message_op,
                         const std::string& reduce_op,
                         const IntArray& out_size,
                         MetaTensor* out,
                         MetaTensor* dst_count);

void SendUVInferMeta(const MetaTensor& x,
                     const MetaTensor& y,
                     const MetaTensor& src_index,
                     const MetaTensor& dst_index,
                     const std::string& message_op,
                     MetaTensor* out);

Z
zyfncg 已提交
473
void SgdInferMeta(const MetaTensor& param,
H
hong 已提交
474 475
                  const MetaTensor& learning_rate,
                  const MetaTensor& grad,
476
                  const MetaTensor& master_param,
H
hong 已提交
477 478 479 480
                  bool multi_precision,
                  MetaTensor* param_out,
                  MetaTensor* master_param_out);

481
void StackInferMeta(const std::vector<const MetaTensor*>& x,
C
csy0225 已提交
482
                    int axis,
483 484
                    MetaTensor* out,
                    MetaConfig config = MetaConfig());
C
csy0225 已提交
485

486
void UnchangedMultiInferMeta(const std::vector<const MetaTensor*>& x,
487 488
                             std::vector<MetaTensor*> out);

489 490 491 492 493
void ShareBufferInferMeta(const std::vector<const MetaTensor*>& x,
                          const std::vector<bool>& share_dims_and_dtype,
                          std::vector<MetaTensor*> out,
                          std::vector<MetaTensor*> xout);

494 495 496 497 498 499 500 501 502 503
void UpdateLossScalingInferMeta(const std::vector<const MetaTensor*>& xs,
                                const MetaTensor& found_infinite,
                                const MetaTensor& prev_loss_scaling,
                                const MetaTensor& in_good_steps,
                                const MetaTensor& in_bad_steps,
                                std::vector<MetaTensor*> outs,
                                MetaTensor* loss_scaling,
                                MetaTensor* out_good_steps,
                                MetaTensor* out_bad_steps);

0
0x45f 已提交
504 505
void WarpctcInferMeta(const MetaTensor& logits,
                      const MetaTensor& label,
506 507
                      const MetaTensor& logits_length,
                      const MetaTensor& labels_length,
0
0x45f 已提交
508 509
                      int blank,
                      bool norm_by_times,
510 511
                      MetaTensor* loss,
                      MetaTensor* warpctcgrad);
0
0x45f 已提交
512

H
Hui Zhang 已提交
513 514 515 516 517 518 519 520 521
void WarprnntInferMeta(const MetaTensor& input,
                       const MetaTensor& label,
                       const MetaTensor& input_lengths,
                       const MetaTensor& label_lengths,
                       int blank,
                       float fastemit_lambda,
                       MetaTensor* loss,
                       MetaTensor* warpctcgrad);

522 523 524 525
void WhereInferMeta(const MetaTensor& condition,
                    const MetaTensor& x,
                    const MetaTensor& y,
                    MetaTensor* out);
526

527 528 529 530 531 532 533 534 535 536 537 538 539 540
void YoloLossInferMeta(const MetaTensor& x,
                       const MetaTensor& gt_box,
                       const MetaTensor& gt_label,
                       const MetaTensor& gt_score,
                       const std::vector<int>& anchors,
                       const std::vector<int>& anchor_mask,
                       int class_num,
                       float ignore_thresh,
                       int downsample_ratio,
                       bool use_label_smooth,
                       float scale_x_y,
                       MetaTensor* loss,
                       MetaTensor* objectness_mask,
                       MetaTensor* gt_match_mask);
541

542
void FusedAdamInferMeta(
543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566
    const std::vector<const MetaTensor*>& params,
    const std::vector<const MetaTensor*>& grads,
    const MetaTensor& learning_rate,
    const std::vector<const MetaTensor*>& moments1,
    const std::vector<const MetaTensor*>& moments2,
    const std::vector<const MetaTensor*>& beta1_pows,
    const std::vector<const MetaTensor*>& beta2_pows,
    const paddle::optional<std::vector<const MetaTensor*>>& master_params,
    const MetaTensor& skip_update,
    const Scalar& beta1,
    const Scalar& beta2,
    const Scalar& epsilon,
    int chunk_size,
    float weight_decay,
    bool use_adamw,
    bool multi_precision,
    bool use_global_beta_pow,
    std::vector<MetaTensor*> params_out,
    std::vector<MetaTensor*> moments1_out,
    std::vector<MetaTensor*> moments2_out,
    std::vector<MetaTensor*> beta1_pows_out,
    std::vector<MetaTensor*> beta2_pows_out,
    std::vector<MetaTensor*> master_params_out);

567 568 569 570 571 572 573 574 575
void MoeInferMeta(const MetaTensor& x,
                  const MetaTensor& gate,
                  const MetaTensor& bmm0,
                  const MetaTensor& bias0,
                  const MetaTensor& bmm1,
                  const MetaTensor& bias1,
                  const std::string& act_type,
                  MetaTensor* out);

576
}  // namespace phi