multiary.h 36.3 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
/* Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

    http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */

#pragma once

17
#include "paddle/phi/common/int_array.h"
18 19 20
#include "paddle/phi/common/scalar.h"
#include "paddle/phi/core/meta_tensor.h"
namespace phi {
21

22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38
// Common InferMeta Functions for multiary operators, The format like:
//
//   1. The number of input MetaTensor is more than 3:
//      void [FunctionDesc|OpName]InferMeta(const MetaTensor& x,
//                                          const MetaTensor& y,
//                                          const MetaTensor& z,
//                                          const MetaTensor& w,
//                                          ...,
//                                          MetaTensor* out) {}
//
//   2. There are `const vector<MetaTensor*>&` in params:
//      void [FunctionDesc|OpName]InferMeta(const vector<MetaTensor*>& x,
//                                          ...,
//                                          MetaTensor* out) {}
//
// NOTE: The InferMeta Functions in this file are arranged in alphabetic order.

39 40
std::vector<DDim> GetMetaTensorsDim(
    const std::vector<const MetaTensor*>& tensors);
41

F
From00 已提交
42 43 44 45
void AdadeltaInferMeta(const MetaTensor& param,
                       const MetaTensor& grad,
                       const MetaTensor& avg_squared_grad,
                       const MetaTensor& avg_squared_update,
46
                       const MetaTensor& learning_rate,
47
                       const MetaTensor& master_param,
F
From00 已提交
48 49
                       float rho,
                       float epsilon,
50
                       bool multi_precision,
F
From00 已提交
51 52
                       MetaTensor* param_out,
                       MetaTensor* avg_squared_grad_out,
53 54
                       MetaTensor* avg_squared_update_out,
                       MetaTensor* master_param_outs);
F
From00 已提交
55

H
hong 已提交
56 57 58 59
void AdagradInferMeta(const MetaTensor& param,
                      const MetaTensor& grad,
                      const MetaTensor& moment,
                      const MetaTensor& learning_rate,
60
                      const MetaTensor& master_param,
H
hong 已提交
61
                      float epsilon,
62
                      bool multi_precision,
H
hong 已提交
63
                      MetaTensor* param_out,
64 65
                      MetaTensor* moment_out,
                      MetaTensor* master_param_out);
H
hong 已提交
66

F
From00 已提交
67 68 69 70 71 72
void AdamaxInferMeta(const MetaTensor& param,
                     const MetaTensor& grad,
                     const MetaTensor& learning_rate,
                     const MetaTensor& moment,
                     const MetaTensor& inf_norm,
                     const MetaTensor& beta1_pow,
73
                     const MetaTensor& master_param,
F
From00 已提交
74 75 76
                     float beta1,
                     float beta2,
                     float epsilon,
77
                     bool multi_precision,
F
From00 已提交
78 79
                     MetaTensor* param_out,
                     MetaTensor* moment_out,
80 81
                     MetaTensor* inf_norm_out,
                     MetaTensor* master_param_outs);
F
From00 已提交
82

83 84 85 86 87 88 89
void AdamInferMeta(const MetaTensor& param,
                   const MetaTensor& grad,
                   const MetaTensor& learning_rate,
                   const MetaTensor& moment1,
                   const MetaTensor& moment2,
                   const MetaTensor& beta1_pow,
                   const MetaTensor& beta2_pow,
90 91
                   const MetaTensor& master_param,
                   const MetaTensor& skip_update,
92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112
                   const Scalar& beta1,
                   const Scalar& beta2,
                   const Scalar& epsilon,
                   bool lazy_mode,
                   int64_t min_row_size_to_use_multithread,
                   bool multi_precision,
                   bool use_global_beta_pow,
                   MetaTensor* param_out,
                   MetaTensor* moment1_out,
                   MetaTensor* moment2_out,
                   MetaTensor* beta1_pow_out,
                   MetaTensor* beta2_pow_out,
                   MetaTensor* master_param_outs);

void AdamwInferMeta(const MetaTensor& param,
                    const MetaTensor& grad,
                    const MetaTensor& learning_rate,
                    const MetaTensor& moment1,
                    const MetaTensor& moment2,
                    const MetaTensor& beta1_pow,
                    const MetaTensor& beta2_pow,
113 114
                    const MetaTensor& master_param,
                    const MetaTensor& skip_update,
115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131
                    const Scalar& beta1,
                    const Scalar& beta2,
                    const Scalar& epsilon,
                    float lr_ratio,
                    float coeff,
                    bool with_decay,
                    bool lazy_mode,
                    int64_t min_row_size_to_use_multithread,
                    bool multi_precision,
                    bool use_global_beta_pow,
                    MetaTensor* param_out,
                    MetaTensor* moment1_out,
                    MetaTensor* moment2_out,
                    MetaTensor* beta1_pow_out,
                    MetaTensor* beta2_pow_out,
                    MetaTensor* master_param_outs);

132
void AddNInferMeta(const std::vector<const MetaTensor*>& x,
133 134 135
                   MetaTensor* out,
                   MetaConfig config = MetaConfig());

Y
YuanRisheng 已提交
136 137 138 139
void AddNTensorArrayInferMeta(const std::vector<const MetaTensor*>& x,
                              MetaTensor* out,
                              MetaConfig config);

140 141 142 143
void AucInferMeta(const MetaTensor& input,
                  const MetaTensor& label,
                  const MetaTensor& stat_pos,
                  const MetaTensor& stat_neg,
144
                  const MetaTensor& ins_tag_weight,
145 146 147 148 149 150 151 152
                  const std::string& curve,
                  int num_thresholds,
                  int slide_steps,
                  MetaTensor* auc,
                  MetaTensor* stat_pos_out,
                  MetaTensor* stat_neg_out,
                  MetaConfig config = MetaConfig());

153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169
void AverageAccumulatesInferMeta(const MetaTensor& param,
                                 const MetaTensor& in_sum_1,
                                 const MetaTensor& in_sum_2,
                                 const MetaTensor& in_sum_3,
                                 const MetaTensor& in_num_accumulates,
                                 const MetaTensor& in_old_num_accumulates,
                                 const MetaTensor& in_num_updates,
                                 float average_window,
                                 int64_t max_average_window,
                                 int64_t min_average_window,
                                 MetaTensor* out_sum_1,
                                 MetaTensor* out_sum_2,
                                 MetaTensor* out_sum_3,
                                 MetaTensor* out_num_accumulates,
                                 MetaTensor* out_old_num_accumulates,
                                 MetaTensor* out_num_updates);

H
hong 已提交
170 171 172
void BatchNormInferMeta(const MetaTensor& x,
                        const MetaTensor& mean,
                        const MetaTensor& variance,
173 174 175
                        const MetaTensor& scale,
                        const MetaTensor& bias,
                        bool is_test,
H
hong 已提交
176 177 178 179 180 181 182 183 184 185 186 187 188
                        float momentum,
                        float epsilon,
                        const std::string& data_layout,
                        bool use_global_stats,
                        bool trainable_statistics,
                        MetaTensor* y,
                        MetaTensor* mean_out,
                        MetaTensor* variance_out,
                        MetaTensor* saved_mean,
                        MetaTensor* saved_variance,
                        MetaTensor* reserve_space,
                        MetaConfig config = MetaConfig());

189 190 191
void BatchNormInferInferMeta(const MetaTensor& x,
                             const MetaTensor& mean,
                             const MetaTensor& variance,
192 193
                             const MetaTensor& scale,
                             const MetaTensor& bias,
194 195 196 197 198 199 200 201
                             float momentum,
                             float epsilon,
                             const std::string& data_layout,
                             MetaTensor* y,
                             MetaTensor* mean_out,
                             MetaTensor* variance_out,
                             MetaConfig config = MetaConfig());

202 203 204 205 206 207
void BilinearInferMeta(const MetaTensor& x,
                       const MetaTensor& y,
                       const MetaTensor& weight,
                       const MetaTensor& bias,
                       MetaTensor* out,
                       MetaConfig config = MetaConfig());
208

209
void BroadcastTensorsInferMeta(const std::vector<const MetaTensor*>& x,
210 211
                               std::vector<MetaTensor*> out);

212 213 214 215 216
void CheckFiniteAndUnscaleInferMeta(const std::vector<const MetaTensor*>& xs,
                                    const MetaTensor& scale,
                                    std::vector<MetaTensor*> outs,
                                    MetaTensor* found_infinite);

217 218 219 220 221 222 223 224 225 226 227 228 229 230 231
void CoalesceTensorInferMeta(const std::vector<const MetaTensor*>& input,
                             DataType dtype,
                             bool copy_data,
                             bool set_constant,
                             bool persist_output,
                             float constant,
                             bool use_align,
                             int align_size,
                             int size_of_dtype,
                             const std::vector<int64_t>& concated_shapes,
                             const std::vector<int64_t>& concated_ranks,
                             std::vector<MetaTensor*> output,
                             MetaTensor* fused_output,
                             MetaConfig config = MetaConfig());

232 233 234 235 236
void CheckMemoryContinueInferMeta(const std::vector<const MetaTensor*>& input,
                                  MetaTensor* output,
                                  std::vector<MetaTensor*> xout,
                                  MetaConfig config = MetaConfig());

237
void ConcatInferMeta(const std::vector<const MetaTensor*>& x,
238 239 240
                     const Scalar& axis_scalar,
                     MetaTensor* out,
                     MetaConfig config = MetaConfig());
241

242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260
void CudnnLSTMInferMeta(
    const MetaTensor& x,
    const MetaTensor& init_h,
    const MetaTensor& init_c,
    const MetaTensor& w,
    const paddle::optional<std::vector<const MetaTensor*>>& weight_list,
    const MetaTensor& sequence_length,
    float dropout_prob,
    bool is_bidirec,
    int hidden_size,
    int num_layers,
    bool is_test,
    int seed,
    MetaTensor* out,
    MetaTensor* last_h,
    MetaTensor* last_c,
    MetaTensor* reserve,
    MetaTensor* state_out);

261 262 263 264 265 266 267 268 269
void DecayedAdagradInferMeta(const MetaTensor& param,
                             const MetaTensor& grad,
                             const MetaTensor& moment,
                             const MetaTensor& learning_rate,
                             float decay,
                             float epsilon,
                             MetaTensor* param_out,
                             MetaTensor* moment_out);

270 271 272
void DeformableConvInferMeta(const MetaTensor& x,
                             const MetaTensor& offset,
                             const MetaTensor& filter,
273
                             const MetaTensor& mask,
274 275 276 277 278 279 280 281 282
                             const std::vector<int>& strides,
                             const std::vector<int>& paddings,
                             const std::vector<int>& dilations,
                             int deformable_groups,
                             int groups,
                             int im2col_step,
                             MetaTensor* out,
                             MetaConfig config = MetaConfig());

283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301
void DGCMomentumInferMeta(const MetaTensor& param,
                          const MetaTensor& grad,
                          const MetaTensor& velocity,
                          const MetaTensor& learning_rate,
                          const MetaTensor& master_param,
                          const MetaTensor& current_step_tensor,
                          const MetaTensor& nranks_tensor,
                          float mu,
                          bool use_nesterov,
                          const std::string& regularization_method,
                          float regularization_coeff,
                          bool multi_precision,
                          float rescale_grad,
                          float rampup_begin_step,
                          MetaTensor* param_out,
                          MetaTensor* velocity_out,
                          MetaTensor* master_param_out,
                          MetaTensor* grad_out);

Z
zhiboniu 已提交
302 303 304 305 306 307 308 309
void EditDistanceInferMeta(const MetaTensor& hyps,
                           const MetaTensor& refs,
                           const MetaTensor& hypslength,
                           const MetaTensor& refslength,
                           bool normalized,
                           MetaTensor* sequencenum,
                           MetaTensor* out);

310 311 312 313 314 315 316 317 318 319 320
void FusedBiasActInferMeta(const MetaTensor& x,
                           const MetaTensor& bias,
                           const MetaTensor& dequant_scales,
                           const MetaTensor& shift,
                           const MetaTensor& smooth,
                           const std::string& act_method,
                           const std::string& compute_dtype,
                           float quant_scale,
                           int quant_round_type,
                           float quant_max_bound,
                           float quant_min_bound,
321 322
                           MetaTensor* out,
                           MetaConfig config = MetaConfig());
323

324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340
void FusedLayerNormInferMeta(const MetaTensor& x,
                             const MetaTensor& bias,
                             const MetaTensor& residual,
                             const MetaTensor& norm_weight,
                             const MetaTensor& norm_bias,
                             const float epsilon,
                             const float residual_alpha,
                             const int begin_norm_axis,
                             const float quant_scale,
                             const int quant_round_type,
                             const float quant_max_bound,
                             const float quant_min_bound,
                             MetaTensor* out,
                             MetaTensor* residual_out,
                             MetaTensor* mean,
                             MetaTensor* variance);

341 342 343 344 345
void FusedLinearParamGradAddInferMeta(const MetaTensor& x,
                                      const MetaTensor& dout,
                                      const MetaTensor& dweight,
                                      const MetaTensor& dbias,
                                      bool multi_precision,
Y
Yuang Liu 已提交
346
                                      bool has_bias,
347 348 349
                                      MetaTensor* dweight_out,
                                      MetaTensor* dbias_out);

350 351 352 353 354 355 356
void FusionGroupInferMeta(const std::vector<const MetaTensor*>& ins,
                          const std::vector<int>& outs_dtype,
                          const std::vector<int>& inputs_dtype,
                          const std::string& func_name,
                          int type,
                          std::vector<MetaTensor*> outs);

Z
zhiboniu 已提交
357 358 359 360 361 362 363 364 365 366 367 368 369 370 371
void GenerateProposalsV2InferMeta(const MetaTensor& scores,
                                  const MetaTensor& bbox_deltas,
                                  const MetaTensor& im_shape,
                                  const MetaTensor& anchors,
                                  const MetaTensor& variances,
                                  int pre_nms_top_n,
                                  int post_nms_top_n,
                                  float nms_thresh,
                                  float min_size,
                                  float eta,
                                  bool pixel_offset,
                                  MetaTensor* rpn_rois,
                                  MetaTensor* rpn_roi_probs,
                                  MetaTensor* rpn_rois_num);

372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392
void GraphReindexInferMeta(const MetaTensor& x,
                           const MetaTensor& neighbors,
                           const MetaTensor& count,
                           const MetaTensor& hashtable_value,
                           const MetaTensor& hashtable_index,
                           MetaTensor* reindex_src,
                           MetaTensor* reindex_dst,
                           MetaTensor* out_nodes);

void GraphSampleNeighborsInferMeta(const MetaTensor& row,
                                   const MetaTensor& col_ptr,
                                   const MetaTensor& x,
                                   const MetaTensor& eids,
                                   const MetaTensor& perm_buffer,
                                   int sample_size,
                                   bool return_eids,
                                   bool flag_perm_buffer,
                                   MetaTensor* out,
                                   MetaTensor* out_count,
                                   MetaTensor* out_eids);

393 394
void HSigmoidLossInferMeta(const MetaTensor& x,
                           const MetaTensor& label,
395 396
                           const MetaTensor& w,
                           const MetaTensor& bias,
397 398 399 400 401 402 403
                           const MetaTensor& path,
                           const MetaTensor& code,
                           int num_classes,
                           bool is_sparse,
                           MetaTensor* out,
                           MetaTensor* pre_out,
                           MetaTensor* w_out);
404

405 406
void InterpolateInferMeta(
    const MetaTensor& x,
407 408 409
    const MetaTensor& out_size,
    const paddle::optional<std::vector<const MetaTensor*>>& size_tensor,
    const MetaTensor& scale_tensor,
410 411 412 413 414 415 416 417 418 419 420
    const std::string& data_layout,
    int out_d,
    int out_h,
    int out_w,
    const std::vector<float>& scale,
    const std::string& interp_method,
    bool align_corners,
    int align_mode,
    MetaTensor* output,
    MetaConfig config = MetaConfig());

傅剑寒 已提交
421 422 423 424 425 426
void IndexPutInferMeta(const MetaTensor& x,
                       const std::vector<const MetaTensor*>& indices,
                       const MetaTensor& value,
                       bool accumulate,
                       MetaTensor* out);

T
Thomas Young 已提交
427 428 429 430 431 432 433 434 435 436 437 438 439
void LambInferMeta(const MetaTensor& param,
                   const MetaTensor& grad,
                   const MetaTensor& learning_rate,
                   const MetaTensor& moment1,
                   const MetaTensor& moment2,
                   const MetaTensor& beta1_pow,
                   const MetaTensor& beta2_pow,
                   const MetaTensor& master_param,
                   const MetaTensor& skip_update,
                   float weight_decay,
                   float beta1,
                   float beta2,
                   float epsilon,
440
                   bool always_adapt,
T
Thomas Young 已提交
441 442 443 444 445 446 447 448
                   bool multi_precision,
                   MetaTensor* param_out,
                   MetaTensor* moment1_out,
                   MetaTensor* moment2_out,
                   MetaTensor* beta1_pow_out,
                   MetaTensor* beta2_pow_out,
                   MetaTensor* master_param_outs);

449 450 451 452 453 454 455
void LLMInt8LinearInferMeta(const MetaTensor& x,
                            const MetaTensor& weight,
                            const MetaTensor& bias,
                            const MetaTensor& weight_scale,
                            const float threshold,
                            MetaTensor* out);

456 457 458 459
void LogspaceInferMeta(const MetaTensor& start,
                       const MetaTensor& stop,
                       const MetaTensor& number,
                       const MetaTensor& base,
C
Chen Weihang 已提交
460
                       DataType dtype,
461 462
                       MetaTensor* out);

463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483
void MergedAdamInferMeta(
    const std::vector<const MetaTensor*>& param,
    const std::vector<const MetaTensor*>& grad,
    const std::vector<const MetaTensor*>& learning_rate,
    const std::vector<const MetaTensor*>& moment1,
    const std::vector<const MetaTensor*>& moment2,
    const std::vector<const MetaTensor*>& beta1_pow,
    const std::vector<const MetaTensor*>& beta2_pow,
    const paddle::optional<std::vector<const MetaTensor*>>& master_param,
    const Scalar& beta1,
    const Scalar& beta2,
    const Scalar& epsilon,
    bool multi_precision,
    bool use_global_beta_pow,
    std::vector<MetaTensor*> param_out,
    std::vector<MetaTensor*> moment1_out,
    std::vector<MetaTensor*> moment2_out,
    std::vector<MetaTensor*> beta1_pow_out,
    std::vector<MetaTensor*> beta2_pow_out,
    std::vector<MetaTensor*> master_param_out);

484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499
void MergedMomentumInferMeta(
    const std::vector<const MetaTensor*>& param,
    const std::vector<const MetaTensor*>& grad,
    const std::vector<const MetaTensor*>& velocity,
    const std::vector<const MetaTensor*>& learning_rate,
    const paddle::optional<std::vector<const MetaTensor*>>& master_param,
    float mu,
    bool use_nesterov,
    const std::vector<std::string>& regularization_method,
    const std::vector<float>& regularization_coeff,
    bool multi_precision,
    float rescale_grad,
    std::vector<MetaTensor*> param_out,
    std::vector<MetaTensor*> velocity_out,
    std::vector<MetaTensor*> master_param_out);

Z
ZhangDY-6483 已提交
500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517
void MemoryEfficientAttentionInferMeta(const MetaTensor& query,
                                       const MetaTensor& key,
                                       const MetaTensor& value,
                                       const MetaTensor& bias,
                                       const MetaTensor& cu_seqlens_q,
                                       const MetaTensor& cu_seqlens_k,
                                       const MetaTensor& causal_diagonal,
                                       const MetaTensor& seqlen_k,
                                       const Scalar& max_seqlen_q,
                                       const Scalar& max_seqlen_k,
                                       const bool causal,
                                       const double dropout_p,
                                       const float scale,
                                       const bool is_test,
                                       MetaTensor* output,
                                       MetaTensor* logsumexp,
                                       MetaTensor* seed_and_offset);

518 519 520 521 522 523 524 525 526 527 528
void VariableLengthMemoryEfficientAttentionInferMeta(
    const MetaTensor& query,
    const MetaTensor& key,
    const MetaTensor& value,
    const MetaTensor& seq_lens,
    const MetaTensor& kv_seq_lens,
    const MetaTensor& mask,
    float scale,
    bool causal,
    MetaTensor* out);

529
void MeshgridInferMeta(const std::vector<const MetaTensor*>& inputs,
H
hong 已提交
530 531
                       std::vector<MetaTensor*> outputs);

532 533 534 535
void MomentumInferMeta(const MetaTensor& param,
                       const MetaTensor& grad,
                       const MetaTensor& velocity,
                       const MetaTensor& learning_rate,
536
                       const MetaTensor& master_param,
537 538 539 540 541 542 543 544 545 546
                       float mu,
                       bool use_nesterov,
                       const std::string& regularization_method,
                       float regularization_coeff,
                       bool multi_precision,
                       float rescale_grad,
                       MetaTensor* param_out,
                       MetaTensor* velocity_out,
                       MetaTensor* master_param_out);

547 548
void MultiDotInferMeta(const std::vector<const MetaTensor*>& x,
                       MetaTensor* out);
549

550
void MultiplexInferMeta(const std::vector<const MetaTensor*>& ins,
551 552 553
                        const MetaTensor& ids,
                        MetaTensor* out);

F
From00 已提交
554 555
void PsroiPoolInferMeta(const MetaTensor& x,
                        const MetaTensor& rois,
556
                        const MetaTensor& rois_num,
F
From00 已提交
557 558 559 560 561 562
                        int pooled_height,
                        int pooled_width,
                        int output_channels,
                        float spatial_scale,
                        MetaTensor* out);

563 564 565 566 567 568 569 570 571 572 573 574 575 576
void RmsNormInferMeta(const MetaTensor& x,
                      const MetaTensor& bias,
                      const MetaTensor& residual,
                      const MetaTensor& norm_weight,
                      const MetaTensor& norm_bias,
                      const float epsilon,
                      const int begin_norm_axis,
                      const float quant_scale,
                      const int quant_round_type,
                      const float quant_max_bound,
                      const float quant_min_bound,
                      MetaTensor* out,
                      MetaTensor* residual_out);

H
hong 已提交
577 578 579 580 581
void RmspropInferMeta(const MetaTensor& param,
                      const MetaTensor& mean_square,
                      const MetaTensor& grad,
                      const MetaTensor& moment,
                      const MetaTensor& learning_rate,
582
                      const MetaTensor& mean_grad,
583
                      const MetaTensor& master_param,
H
hong 已提交
584 585 586 587
                      float epsilon,
                      float decay,
                      float momentum,
                      bool centered,
588
                      bool multi_precision,
H
hong 已提交
589 590 591
                      MetaTensor* param_out,
                      MetaTensor* moment_out,
                      MetaTensor* mean_square_out,
592 593
                      MetaTensor* mean_grad_out,
                      MetaTensor* master_param_outs);
H
hong 已提交
594

595
void RnnInferMeta(const MetaTensor& x,
596 597
                  const std::vector<const MetaTensor*>& pre_state,
                  const std::vector<const MetaTensor*>& weight_list,
598
                  const MetaTensor& sequence_length,
599 600 601 602 603 604 605 606 607 608 609 610 611
                  float dropout_prob,
                  bool is_bidirec,
                  int input_size,
                  int hidden_size,
                  int num_layers,
                  const std::string& mode,
                  int seed,
                  bool is_test,
                  MetaTensor* out,
                  MetaTensor* dropout_state,
                  std::vector<MetaTensor*> state,
                  MetaTensor* reserve);

612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628
void SendUERecvInferMeta(const MetaTensor& x,
                         const MetaTensor& y,
                         const MetaTensor& src_index,
                         const MetaTensor& dst_index,
                         const std::string& message_op,
                         const std::string& reduce_op,
                         const IntArray& out_size,
                         MetaTensor* out,
                         MetaTensor* dst_count);

void SendUVInferMeta(const MetaTensor& x,
                     const MetaTensor& y,
                     const MetaTensor& src_index,
                     const MetaTensor& dst_index,
                     const std::string& message_op,
                     MetaTensor* out);

Z
zyfncg 已提交
629
void SgdInferMeta(const MetaTensor& param,
H
hong 已提交
630 631
                  const MetaTensor& learning_rate,
                  const MetaTensor& grad,
632
                  const MetaTensor& master_param,
H
hong 已提交
633 634 635 636
                  bool multi_precision,
                  MetaTensor* param_out,
                  MetaTensor* master_param_out);

637 638 639 640 641 642 643 644
void SigmoidCrossEntropyWithLogitsInferMeta(const MetaTensor& x,
                                            const MetaTensor& label,
                                            const MetaTensor& pos_weight,
                                            bool normalize,
                                            int ignore_index,
                                            MetaTensor* out,
                                            MetaConfig config = MetaConfig());

645
void StackInferMeta(const std::vector<const MetaTensor*>& x,
C
csy0225 已提交
646
                    int axis,
647 648
                    MetaTensor* out,
                    MetaConfig config = MetaConfig());
C
csy0225 已提交
649

650
void UnchangedMultiInferMeta(const std::vector<const MetaTensor*>& x,
651 652
                             std::vector<MetaTensor*> out);

653 654 655 656 657
void ShareBufferInferMeta(const std::vector<const MetaTensor*>& x,
                          const std::vector<bool>& share_dims_and_dtype,
                          std::vector<MetaTensor*> out,
                          std::vector<MetaTensor*> xout);

658 659 660 661 662 663 664 665 666 667
void UpdateLossScalingInferMeta(const std::vector<const MetaTensor*>& xs,
                                const MetaTensor& found_infinite,
                                const MetaTensor& prev_loss_scaling,
                                const MetaTensor& in_good_steps,
                                const MetaTensor& in_bad_steps,
                                std::vector<MetaTensor*> outs,
                                MetaTensor* loss_scaling,
                                MetaTensor* out_good_steps,
                                MetaTensor* out_bad_steps);

0
0x45f 已提交
668 669
void WarpctcInferMeta(const MetaTensor& logits,
                      const MetaTensor& label,
670 671
                      const MetaTensor& logits_length,
                      const MetaTensor& labels_length,
0
0x45f 已提交
672 673
                      int blank,
                      bool norm_by_times,
674 675
                      MetaTensor* loss,
                      MetaTensor* warpctcgrad);
0
0x45f 已提交
676

H
Hui Zhang 已提交
677 678 679 680 681 682 683 684 685
void WarprnntInferMeta(const MetaTensor& input,
                       const MetaTensor& label,
                       const MetaTensor& input_lengths,
                       const MetaTensor& label_lengths,
                       int blank,
                       float fastemit_lambda,
                       MetaTensor* loss,
                       MetaTensor* warpctcgrad);

686 687 688 689 690 691 692
void WeightOnlyLinearInferMeta(const MetaTensor& x,
                               const MetaTensor& weight,
                               const MetaTensor& bias,
                               const MetaTensor& weight_scale,
                               const std::string& weight_dtype,
                               MetaTensor* out);

S
Siming Dai 已提交
693 694 695 696 697 698 699 700 701 702 703
void WeightedSampleNeighborsInferMeta(const MetaTensor& row,
                                      const MetaTensor& col_ptr,
                                      const MetaTensor& edge_weight,
                                      const MetaTensor& x,
                                      const MetaTensor& eids,
                                      int sample_size,
                                      bool return_eids,
                                      MetaTensor* out,
                                      MetaTensor* out_count,
                                      MetaTensor* out_eids);

704 705 706 707
void WhereInferMeta(const MetaTensor& condition,
                    const MetaTensor& x,
                    const MetaTensor& y,
                    MetaTensor* out);
708

709 710 711 712 713 714 715 716 717 718 719 720 721 722
void YoloLossInferMeta(const MetaTensor& x,
                       const MetaTensor& gt_box,
                       const MetaTensor& gt_label,
                       const MetaTensor& gt_score,
                       const std::vector<int>& anchors,
                       const std::vector<int>& anchor_mask,
                       int class_num,
                       float ignore_thresh,
                       int downsample_ratio,
                       bool use_label_smooth,
                       float scale_x_y,
                       MetaTensor* loss,
                       MetaTensor* objectness_mask,
                       MetaTensor* gt_match_mask);
723

724
void FusedAdamInferMeta(
725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748
    const std::vector<const MetaTensor*>& params,
    const std::vector<const MetaTensor*>& grads,
    const MetaTensor& learning_rate,
    const std::vector<const MetaTensor*>& moments1,
    const std::vector<const MetaTensor*>& moments2,
    const std::vector<const MetaTensor*>& beta1_pows,
    const std::vector<const MetaTensor*>& beta2_pows,
    const paddle::optional<std::vector<const MetaTensor*>>& master_params,
    const MetaTensor& skip_update,
    const Scalar& beta1,
    const Scalar& beta2,
    const Scalar& epsilon,
    int chunk_size,
    float weight_decay,
    bool use_adamw,
    bool multi_precision,
    bool use_global_beta_pow,
    std::vector<MetaTensor*> params_out,
    std::vector<MetaTensor*> moments1_out,
    std::vector<MetaTensor*> moments2_out,
    std::vector<MetaTensor*> beta1_pows_out,
    std::vector<MetaTensor*> beta2_pows_out,
    std::vector<MetaTensor*> master_params_out);

749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765
void FusedConvInferMeta(const MetaTensor& input,
                        const MetaTensor& filter,
                        const MetaTensor& bias,
                        const MetaTensor& residual_param,
                        const std::vector<int>& strides,
                        const std::vector<int>& paddings,
                        const std::string& padding_algorithm,
                        const std::vector<int>& dilations,
                        int groups,
                        const std::string& data_format,
                        const std::string& mkldnn_data_type,
                        const std::string& fuse_activation,
                        bool fuse_residual_conn,
                        bool force_fp32_output,
                        MetaTensor* out,
                        MetaConfig config);

766 767 768 769 770 771 772 773 774
void MoeInferMeta(const MetaTensor& x,
                  const MetaTensor& gate,
                  const MetaTensor& bmm0,
                  const MetaTensor& bias0,
                  const MetaTensor& bmm1,
                  const MetaTensor& bias1,
                  const std::string& act_type,
                  MetaTensor* out);

FormlessUnit's avatar
FormlessUnit 已提交
775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791
void FusedMultiHeadAttentionInferMeta(const MetaTensor& query,
                                      const MetaTensor& key,
                                      const MetaTensor& value,
                                      const MetaTensor& mask,
                                      float scale,
                                      bool causal,
                                      MetaTensor* out);

void FusedMultiHeadAttentionVariableInferMeta(const MetaTensor& query,
                                              const MetaTensor& key,
                                              const MetaTensor& value,
                                              const MetaTensor& seq_lens,
                                              const MetaTensor& mask,
                                              float scale,
                                              bool causal,
                                              MetaTensor* out);

792 793 794
void FusedRopeInferMeta(const MetaTensor& q,
                        const MetaTensor& k,
                        const MetaTensor& v,
795 796
                        const MetaTensor& sin,
                        const MetaTensor& cos,
797 798 799 800
                        MetaTensor* out_q,
                        MetaTensor* out_k,
                        MetaTensor* out_v);

801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821
void MaskedMultiheadAttentionInferMeta(const MetaTensor& x,
                                       const MetaTensor& cache_kv,
                                       const MetaTensor& src_mask,
                                       const MetaTensor& cum_offsets,
                                       const MetaTensor& sequence_lengths,
                                       const MetaTensor& rotary_tensor,
                                       const MetaTensor& beam_cache_offset,
                                       const MetaTensor& qkv_out_scale,
                                       const MetaTensor& out_shift,
                                       const MetaTensor& out_smooth,
                                       int seq_len,
                                       int rotary_emb_dims,
                                       const bool use_neox_rotary_style,
                                       const float out_scale,
                                       const int quant_round_type,
                                       const float quant_max_bound,
                                       const float quant_min_bound,
                                       MetaTensor* out,
                                       MetaTensor* cache_kv_out,
                                       MetaTensor* beam_cache_offset_out);

822
}  // namespace phi