multiary.h 14.6 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
/* Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

    http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */

#pragma once

17 18 19
#include "paddle/phi/common/scalar.h"
#include "paddle/phi/core/meta_tensor.h"
namespace phi {
20

21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37
// Common InferMeta Functions for multiary operators, The format like:
//
//   1. The number of input MetaTensor is more than 3:
//      void [FunctionDesc|OpName]InferMeta(const MetaTensor& x,
//                                          const MetaTensor& y,
//                                          const MetaTensor& z,
//                                          const MetaTensor& w,
//                                          ...,
//                                          MetaTensor* out) {}
//
//   2. There are `const vector<MetaTensor*>&` in params:
//      void [FunctionDesc|OpName]InferMeta(const vector<MetaTensor*>& x,
//                                          ...,
//                                          MetaTensor* out) {}
//
// NOTE: The InferMeta Functions in this file are arranged in alphabetic order.

38 39
std::vector<DDim> GetMetaTensorsDim(const std::vector<MetaTensor*>& tensors);

F
From00 已提交
40 41 42 43 44 45 46 47 48 49
void AdadeltaInferMeta(const MetaTensor& param,
                       const MetaTensor& grad,
                       const MetaTensor& avg_squared_grad,
                       const MetaTensor& avg_squared_update,
                       float rho,
                       float epsilon,
                       MetaTensor* param_out,
                       MetaTensor* avg_squared_grad_out,
                       MetaTensor* avg_squared_update_out);

H
hong 已提交
50 51 52 53 54 55 56 57
void AdagradInferMeta(const MetaTensor& param,
                      const MetaTensor& grad,
                      const MetaTensor& moment,
                      const MetaTensor& learning_rate,
                      float epsilon,
                      MetaTensor* param_out,
                      MetaTensor* moment_out);

F
From00 已提交
58 59 60 61 62 63 64 65 66 67 68 69 70
void AdamaxInferMeta(const MetaTensor& param,
                     const MetaTensor& grad,
                     const MetaTensor& learning_rate,
                     const MetaTensor& moment,
                     const MetaTensor& inf_norm,
                     const MetaTensor& beta1_pow,
                     float beta1,
                     float beta2,
                     float epsilon,
                     MetaTensor* param_out,
                     MetaTensor* moment_out,
                     MetaTensor* inf_norm_out);

71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119
void AdamInferMeta(const MetaTensor& param,
                   const MetaTensor& grad,
                   const MetaTensor& learning_rate,
                   const MetaTensor& moment1,
                   const MetaTensor& moment2,
                   const MetaTensor& beta1_pow,
                   const MetaTensor& beta2_pow,
                   paddle::optional<const MetaTensor&> master_param,
                   paddle::optional<const MetaTensor&> skip_update,
                   const Scalar& beta1,
                   const Scalar& beta2,
                   const Scalar& epsilon,
                   bool lazy_mode,
                   int64_t min_row_size_to_use_multithread,
                   bool multi_precision,
                   bool use_global_beta_pow,
                   MetaTensor* param_out,
                   MetaTensor* moment1_out,
                   MetaTensor* moment2_out,
                   MetaTensor* beta1_pow_out,
                   MetaTensor* beta2_pow_out,
                   MetaTensor* master_param_outs);

void AdamwInferMeta(const MetaTensor& param,
                    const MetaTensor& grad,
                    const MetaTensor& learning_rate,
                    const MetaTensor& moment1,
                    const MetaTensor& moment2,
                    const MetaTensor& beta1_pow,
                    const MetaTensor& beta2_pow,
                    paddle::optional<const MetaTensor&> master_param,
                    paddle::optional<const MetaTensor&> skip_update,
                    const Scalar& beta1,
                    const Scalar& beta2,
                    const Scalar& epsilon,
                    float lr_ratio,
                    float coeff,
                    bool with_decay,
                    bool lazy_mode,
                    int64_t min_row_size_to_use_multithread,
                    bool multi_precision,
                    bool use_global_beta_pow,
                    MetaTensor* param_out,
                    MetaTensor* moment1_out,
                    MetaTensor* moment2_out,
                    MetaTensor* beta1_pow_out,
                    MetaTensor* beta2_pow_out,
                    MetaTensor* master_param_outs);

120 121 122 123
void AddNInferMeta(const std::vector<MetaTensor*>& x,
                   MetaTensor* out,
                   MetaConfig config = MetaConfig());

124 125 126 127 128 129 130 131 132 133 134 135
void AucInferMeta(const MetaTensor& input,
                  const MetaTensor& label,
                  const MetaTensor& stat_pos,
                  const MetaTensor& stat_neg,
                  const std::string& curve,
                  int num_thresholds,
                  int slide_steps,
                  MetaTensor* auc,
                  MetaTensor* stat_pos_out,
                  MetaTensor* stat_neg_out,
                  MetaConfig config = MetaConfig());

H
hong 已提交
136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155
void BatchNormInferMeta(const MetaTensor& x,
                        const MetaTensor& scale,
                        const MetaTensor& bias,
                        const MetaTensor& mean,
                        const MetaTensor& variance,
                        float momentum,
                        float epsilon,
                        const std::string& data_layout,
                        bool is_test,
                        bool use_global_stats,
                        bool trainable_statistics,
                        bool fuse_with_relu,
                        MetaTensor* y,
                        MetaTensor* mean_out,
                        MetaTensor* variance_out,
                        MetaTensor* saved_mean,
                        MetaTensor* saved_variance,
                        MetaTensor* reserve_space,
                        MetaConfig config = MetaConfig());

156 157 158 159 160 161 162 163 164 165 166 167 168
void BatchNormInferInferMeta(const MetaTensor& x,
                             const MetaTensor& scale,
                             const MetaTensor& bias,
                             const MetaTensor& mean,
                             const MetaTensor& variance,
                             float momentum,
                             float epsilon,
                             const std::string& data_layout,
                             MetaTensor* y,
                             MetaTensor* mean_out,
                             MetaTensor* variance_out,
                             MetaConfig config = MetaConfig());

169 170 171 172 173 174 175
void BilinearTensorProductInferMeta(const MetaTensor& x,
                                    const MetaTensor& y,
                                    const MetaTensor& weight,
                                    paddle::optional<const MetaTensor&> bias,
                                    MetaTensor* out,
                                    MetaConfig config = MetaConfig());

176 177 178
void BroadcastTensorsInferMeta(const std::vector<MetaTensor*>& x,
                               std::vector<MetaTensor*> out);

179
void ConcatInferMeta(const std::vector<MetaTensor*>& x,
180 181 182
                     const Scalar& axis_scalar,
                     MetaTensor* out,
                     MetaConfig config = MetaConfig());
183

184 185 186 187 188 189 190 191 192 193 194 195 196
void DeformableConvInferMeta(const MetaTensor& x,
                             const MetaTensor& offset,
                             const MetaTensor& filter,
                             paddle::optional<const MetaTensor&> mask,
                             const std::vector<int>& strides,
                             const std::vector<int>& paddings,
                             const std::vector<int>& dilations,
                             int deformable_groups,
                             int groups,
                             int im2col_step,
                             MetaTensor* out,
                             MetaConfig config = MetaConfig());

197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213
void HierarchicalSigmoidInferMeta(const MetaTensor& x,
                                  const MetaTensor& w,
                                  const MetaTensor& label,
                                  paddle::optional<const MetaTensor&> path,
                                  paddle::optional<const MetaTensor&> code,
                                  paddle::optional<const MetaTensor&> bias,
                                  int num_classes,
                                  bool remote_prefetch,
                                  int trainer_id,
                                  const std::vector<int64_t>& height_sections,
                                  const std::vector<std::string>& epmap,
                                  const std::vector<std::string>& table_names,
                                  bool is_sparse,
                                  MetaTensor* out,
                                  MetaTensor* pre_out,
                                  MetaTensor* w_out);

214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229
void InterpolateInferMeta(
    const MetaTensor& x,
    paddle::optional<const MetaTensor&> out_size,
    paddle::optional<const std::vector<const MetaTensor*>> size_tensor,
    paddle::optional<const MetaTensor&> scale_tensor,
    const std::string& data_layout,
    int out_d,
    int out_h,
    int out_w,
    const std::vector<float>& scale,
    const std::string& interp_method,
    bool align_corners,
    int align_mode,
    MetaTensor* output,
    MetaConfig config = MetaConfig());

H
hong 已提交
230 231 232
void MeshgridInferMeta(const std::vector<MetaTensor*>& inputs,
                       std::vector<MetaTensor*> outputs);

233 234
void MultiDotInferMeta(const std::vector<MetaTensor*>& x, MetaTensor* out);

235 236 237 238
void MultiplexInferMeta(const std::vector<MetaTensor*>& ins,
                        const MetaTensor& ids,
                        MetaTensor* out);

F
From00 已提交
239 240 241 242 243 244 245 246 247
void PsroiPoolInferMeta(const MetaTensor& x,
                        const MetaTensor& rois,
                        paddle::optional<const MetaTensor&> rois_num,
                        int pooled_height,
                        int pooled_width,
                        int output_channels,
                        float spatial_scale,
                        MetaTensor* out);

H
hong 已提交
248 249 250 251 252 253 254 255 256 257 258 259 260 261 262
void RmspropInferMeta(const MetaTensor& param,
                      const MetaTensor& mean_square,
                      const MetaTensor& grad,
                      const MetaTensor& moment,
                      const MetaTensor& learning_rate,
                      paddle::optional<const MetaTensor&> mean_grad,
                      float epsilon,
                      float decay,
                      float momentum,
                      bool centered,
                      MetaTensor* param_out,
                      MetaTensor* moment_out,
                      MetaTensor* mean_square_out,
                      MetaTensor* mean_grad_out);

263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279
void RnnInferMeta(const MetaTensor& x,
                  const std::vector<MetaTensor*>& pre_state,
                  const std::vector<MetaTensor*>& weight_list,
                  paddle::optional<const MetaTensor&> sequence_length,
                  float dropout_prob,
                  bool is_bidirec,
                  int input_size,
                  int hidden_size,
                  int num_layers,
                  const std::string& mode,
                  int seed,
                  bool is_test,
                  MetaTensor* out,
                  MetaTensor* dropout_state,
                  std::vector<MetaTensor*> state,
                  MetaTensor* reserve);

H
hong 已提交
280 281 282 283 284 285 286 287
void SGDInferMeta(const MetaTensor& param,
                  const MetaTensor& learning_rate,
                  const MetaTensor& grad,
                  paddle::optional<const MetaTensor&> master_param,
                  bool multi_precision,
                  MetaTensor* param_out,
                  MetaTensor* master_param_out);

C
csy0225 已提交
288 289 290 291
void StackInferMeta(const std::vector<MetaTensor*>& x,
                    int axis,
                    MetaTensor* out);

0
0x45f 已提交
292 293 294 295 296 297 298 299 300
void WarpctcInferMeta(const MetaTensor& logits,
                      const MetaTensor& label,
                      const paddle::optional<const MetaTensor&> logits_length,
                      const paddle::optional<const MetaTensor&> labels_length,
                      int blank,
                      bool norm_by_times,
                      MetaTensor* warpctc_grad,
                      MetaTensor* loss);

301 302 303 304
void WhereInferMeta(const MetaTensor& condition,
                    const MetaTensor& x,
                    const MetaTensor& y,
                    MetaTensor* out);
305

S
Siming Dai 已提交
306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328
void GraphReindexInferMeta(const MetaTensor& x,
                           const MetaTensor& neighbors,
                           const MetaTensor& count,
                           paddle::optional<const MetaTensor&> hashtable_value,
                           paddle::optional<const MetaTensor&> hashtable_index,
                           bool flag_buffer_hashtable,
                           MetaTensor* reindex_src,
                           MetaTensor* reindex_dst,
                           MetaTensor* out_nodes);

void GraphSampleNeighborsInferMeta(
    const MetaTensor& row,
    const MetaTensor& col_ptr,
    const MetaTensor& x,
    paddle::optional<const MetaTensor&> eids,
    paddle::optional<const MetaTensor&> perm_buffer,
    int sample_size,
    bool return_eids,
    bool flag_perm_buffer,
    MetaTensor* out,
    MetaTensor* out_count,
    MetaTensor* out_eids);

329 330 331 332 333 334 335 336 337 338 339 340 341 342 343
void Yolov3LossInferMeta(const MetaTensor& x,
                         const MetaTensor& gt_box,
                         const MetaTensor& gt_label,
                         const paddle::optional<const MetaTensor&> gt_score,
                         const std::vector<int>& anchors,
                         const std::vector<int>& anchor_mask,
                         int class_num,
                         float ignore_thresh,
                         int downsample_ratio,
                         bool use_label_smooth,
                         float scale_x_y,
                         MetaTensor* loss,
                         MetaTensor* objectness_mask,
                         MetaTensor* gt_match_mask);

344
}  // namespace phi