multiary.h 24.5 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
/* Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

    http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */

#pragma once

17
#include "paddle/phi/common/int_array.h"
18 19 20
#include "paddle/phi/common/scalar.h"
#include "paddle/phi/core/meta_tensor.h"
namespace phi {
21

22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38
// Common InferMeta Functions for multiary operators, The format like:
//
//   1. The number of input MetaTensor is more than 3:
//      void [FunctionDesc|OpName]InferMeta(const MetaTensor& x,
//                                          const MetaTensor& y,
//                                          const MetaTensor& z,
//                                          const MetaTensor& w,
//                                          ...,
//                                          MetaTensor* out) {}
//
//   2. There are `const vector<MetaTensor*>&` in params:
//      void [FunctionDesc|OpName]InferMeta(const vector<MetaTensor*>& x,
//                                          ...,
//                                          MetaTensor* out) {}
//
// NOTE: The InferMeta Functions in this file are arranged in alphabetic order.

39 40
std::vector<DDim> GetMetaTensorsDim(
    const std::vector<const MetaTensor*>& tensors);
41

F
From00 已提交
42 43 44 45 46 47 48 49 50 51
void AdadeltaInferMeta(const MetaTensor& param,
                       const MetaTensor& grad,
                       const MetaTensor& avg_squared_grad,
                       const MetaTensor& avg_squared_update,
                       float rho,
                       float epsilon,
                       MetaTensor* param_out,
                       MetaTensor* avg_squared_grad_out,
                       MetaTensor* avg_squared_update_out);

H
hong 已提交
52 53 54 55 56 57 58 59
void AdagradInferMeta(const MetaTensor& param,
                      const MetaTensor& grad,
                      const MetaTensor& moment,
                      const MetaTensor& learning_rate,
                      float epsilon,
                      MetaTensor* param_out,
                      MetaTensor* moment_out);

F
From00 已提交
60 61 62 63 64 65 66 67 68 69 70 71 72
void AdamaxInferMeta(const MetaTensor& param,
                     const MetaTensor& grad,
                     const MetaTensor& learning_rate,
                     const MetaTensor& moment,
                     const MetaTensor& inf_norm,
                     const MetaTensor& beta1_pow,
                     float beta1,
                     float beta2,
                     float epsilon,
                     MetaTensor* param_out,
                     MetaTensor* moment_out,
                     MetaTensor* inf_norm_out);

73 74 75 76 77 78 79
void AdamInferMeta(const MetaTensor& param,
                   const MetaTensor& grad,
                   const MetaTensor& learning_rate,
                   const MetaTensor& moment1,
                   const MetaTensor& moment2,
                   const MetaTensor& beta1_pow,
                   const MetaTensor& beta2_pow,
80 81
                   const MetaTensor& master_param,
                   const MetaTensor& skip_update,
82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102
                   const Scalar& beta1,
                   const Scalar& beta2,
                   const Scalar& epsilon,
                   bool lazy_mode,
                   int64_t min_row_size_to_use_multithread,
                   bool multi_precision,
                   bool use_global_beta_pow,
                   MetaTensor* param_out,
                   MetaTensor* moment1_out,
                   MetaTensor* moment2_out,
                   MetaTensor* beta1_pow_out,
                   MetaTensor* beta2_pow_out,
                   MetaTensor* master_param_outs);

void AdamwInferMeta(const MetaTensor& param,
                    const MetaTensor& grad,
                    const MetaTensor& learning_rate,
                    const MetaTensor& moment1,
                    const MetaTensor& moment2,
                    const MetaTensor& beta1_pow,
                    const MetaTensor& beta2_pow,
103 104
                    const MetaTensor& master_param,
                    const MetaTensor& skip_update,
105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121
                    const Scalar& beta1,
                    const Scalar& beta2,
                    const Scalar& epsilon,
                    float lr_ratio,
                    float coeff,
                    bool with_decay,
                    bool lazy_mode,
                    int64_t min_row_size_to_use_multithread,
                    bool multi_precision,
                    bool use_global_beta_pow,
                    MetaTensor* param_out,
                    MetaTensor* moment1_out,
                    MetaTensor* moment2_out,
                    MetaTensor* beta1_pow_out,
                    MetaTensor* beta2_pow_out,
                    MetaTensor* master_param_outs);

122
void AddNInferMeta(const std::vector<const MetaTensor*>& x,
123 124 125
                   MetaTensor* out,
                   MetaConfig config = MetaConfig());

Y
YuanRisheng 已提交
126 127 128 129
void AddNTensorArrayInferMeta(const std::vector<const MetaTensor*>& x,
                              MetaTensor* out,
                              MetaConfig config);

130 131 132 133
void AucInferMeta(const MetaTensor& input,
                  const MetaTensor& label,
                  const MetaTensor& stat_pos,
                  const MetaTensor& stat_neg,
134
                  const MetaTensor& ins_tag_weight,
135 136 137 138 139 140 141 142
                  const std::string& curve,
                  int num_thresholds,
                  int slide_steps,
                  MetaTensor* auc,
                  MetaTensor* stat_pos_out,
                  MetaTensor* stat_neg_out,
                  MetaConfig config = MetaConfig());

143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159
void AverageAccumulatesInferMeta(const MetaTensor& param,
                                 const MetaTensor& in_sum_1,
                                 const MetaTensor& in_sum_2,
                                 const MetaTensor& in_sum_3,
                                 const MetaTensor& in_num_accumulates,
                                 const MetaTensor& in_old_num_accumulates,
                                 const MetaTensor& in_num_updates,
                                 float average_window,
                                 int64_t max_average_window,
                                 int64_t min_average_window,
                                 MetaTensor* out_sum_1,
                                 MetaTensor* out_sum_2,
                                 MetaTensor* out_sum_3,
                                 MetaTensor* out_num_accumulates,
                                 MetaTensor* out_old_num_accumulates,
                                 MetaTensor* out_num_updates);

H
hong 已提交
160 161 162
void BatchNormInferMeta(const MetaTensor& x,
                        const MetaTensor& mean,
                        const MetaTensor& variance,
163 164 165
                        const MetaTensor& scale,
                        const MetaTensor& bias,
                        bool is_test,
H
hong 已提交
166 167 168 169 170 171 172 173 174 175 176 177 178
                        float momentum,
                        float epsilon,
                        const std::string& data_layout,
                        bool use_global_stats,
                        bool trainable_statistics,
                        MetaTensor* y,
                        MetaTensor* mean_out,
                        MetaTensor* variance_out,
                        MetaTensor* saved_mean,
                        MetaTensor* saved_variance,
                        MetaTensor* reserve_space,
                        MetaConfig config = MetaConfig());

179 180 181
void BatchNormInferInferMeta(const MetaTensor& x,
                             const MetaTensor& mean,
                             const MetaTensor& variance,
182 183
                             const MetaTensor& scale,
                             const MetaTensor& bias,
184 185 186 187 188 189 190 191
                             float momentum,
                             float epsilon,
                             const std::string& data_layout,
                             MetaTensor* y,
                             MetaTensor* mean_out,
                             MetaTensor* variance_out,
                             MetaConfig config = MetaConfig());

192 193 194
void BilinearTensorProductInferMeta(const MetaTensor& x,
                                    const MetaTensor& y,
                                    const MetaTensor& weight,
195
                                    const MetaTensor& bias,
196 197 198
                                    MetaTensor* out,
                                    MetaConfig config = MetaConfig());

199
void BroadcastTensorsInferMeta(const std::vector<const MetaTensor*>& x,
200 201
                               std::vector<MetaTensor*> out);

202 203 204 205 206
void CheckFiniteAndUnscaleInferMeta(const std::vector<const MetaTensor*>& xs,
                                    const MetaTensor& scale,
                                    std::vector<MetaTensor*> outs,
                                    MetaTensor* found_infinite);

207 208 209 210 211 212 213 214 215 216 217 218 219 220 221
void CoalesceTensorInferMeta(const std::vector<const MetaTensor*>& input,
                             DataType dtype,
                             bool copy_data,
                             bool set_constant,
                             bool persist_output,
                             float constant,
                             bool use_align,
                             int align_size,
                             int size_of_dtype,
                             const std::vector<int64_t>& concated_shapes,
                             const std::vector<int64_t>& concated_ranks,
                             std::vector<MetaTensor*> output,
                             MetaTensor* fused_output,
                             MetaConfig config = MetaConfig());

222 223 224 225 226
void CheckMemoryContinueInferMeta(const std::vector<const MetaTensor*>& input,
                                  MetaTensor* output,
                                  std::vector<MetaTensor*> xout,
                                  MetaConfig config = MetaConfig());

227
void ConcatInferMeta(const std::vector<const MetaTensor*>& x,
228 229 230
                     const Scalar& axis_scalar,
                     MetaTensor* out,
                     MetaConfig config = MetaConfig());
231

232 233 234
void DeformableConvInferMeta(const MetaTensor& x,
                             const MetaTensor& offset,
                             const MetaTensor& filter,
235
                             const MetaTensor& mask,
236 237 238 239 240 241 242 243 244
                             const std::vector<int>& strides,
                             const std::vector<int>& paddings,
                             const std::vector<int>& dilations,
                             int deformable_groups,
                             int groups,
                             int im2col_step,
                             MetaTensor* out,
                             MetaConfig config = MetaConfig());

Z
zhiboniu 已提交
245 246 247 248 249 250 251 252
void EditDistanceInferMeta(const MetaTensor& hyps,
                           const MetaTensor& refs,
                           const MetaTensor& hypslength,
                           const MetaTensor& refslength,
                           bool normalized,
                           MetaTensor* sequencenum,
                           MetaTensor* out);

Z
zhiboniu 已提交
253 254 255 256 257 258 259 260 261 262 263 264 265 266 267
void GenerateProposalsV2InferMeta(const MetaTensor& scores,
                                  const MetaTensor& bbox_deltas,
                                  const MetaTensor& im_shape,
                                  const MetaTensor& anchors,
                                  const MetaTensor& variances,
                                  int pre_nms_top_n,
                                  int post_nms_top_n,
                                  float nms_thresh,
                                  float min_size,
                                  float eta,
                                  bool pixel_offset,
                                  MetaTensor* rpn_rois,
                                  MetaTensor* rpn_roi_probs,
                                  MetaTensor* rpn_rois_num);

268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289
void GraphReindexInferMeta(const MetaTensor& x,
                           const MetaTensor& neighbors,
                           const MetaTensor& count,
                           const MetaTensor& hashtable_value,
                           const MetaTensor& hashtable_index,
                           bool flag_buffer_hashtable,
                           MetaTensor* reindex_src,
                           MetaTensor* reindex_dst,
                           MetaTensor* out_nodes);

void GraphSampleNeighborsInferMeta(const MetaTensor& row,
                                   const MetaTensor& col_ptr,
                                   const MetaTensor& x,
                                   const MetaTensor& eids,
                                   const MetaTensor& perm_buffer,
                                   int sample_size,
                                   bool return_eids,
                                   bool flag_perm_buffer,
                                   MetaTensor* out,
                                   MetaTensor* out_count,
                                   MetaTensor* out_eids);

290 291
void HSigmoidLossInferMeta(const MetaTensor& x,
                           const MetaTensor& label,
292 293
                           const MetaTensor& w,
                           const MetaTensor& bias,
294 295 296 297 298 299 300 301
                           const MetaTensor& path,
                           const MetaTensor& code,
                           int num_classes,
                           bool remote_prefetch,
                           bool is_sparse,
                           MetaTensor* out,
                           MetaTensor* pre_out,
                           MetaTensor* w_out);
302

303 304
void InterpolateInferMeta(
    const MetaTensor& x,
305 306 307
    const MetaTensor& out_size,
    const paddle::optional<std::vector<const MetaTensor*>>& size_tensor,
    const MetaTensor& scale_tensor,
308 309 310 311 312 313 314 315 316 317 318
    const std::string& data_layout,
    int out_d,
    int out_h,
    int out_w,
    const std::vector<float>& scale,
    const std::string& interp_method,
    bool align_corners,
    int align_mode,
    MetaTensor* output,
    MetaConfig config = MetaConfig());

T
Thomas Young 已提交
319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339
void LambInferMeta(const MetaTensor& param,
                   const MetaTensor& grad,
                   const MetaTensor& learning_rate,
                   const MetaTensor& moment1,
                   const MetaTensor& moment2,
                   const MetaTensor& beta1_pow,
                   const MetaTensor& beta2_pow,
                   const MetaTensor& master_param,
                   const MetaTensor& skip_update,
                   float weight_decay,
                   float beta1,
                   float beta2,
                   float epsilon,
                   bool multi_precision,
                   MetaTensor* param_out,
                   MetaTensor* moment1_out,
                   MetaTensor* moment2_out,
                   MetaTensor* beta1_pow_out,
                   MetaTensor* beta2_pow_out,
                   MetaTensor* master_param_outs);

340 341 342 343
void LogspaceInferMeta(const MetaTensor& start,
                       const MetaTensor& stop,
                       const MetaTensor& number,
                       const MetaTensor& base,
C
Chen Weihang 已提交
344
                       DataType dtype,
345 346
                       MetaTensor* out);

347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367
void MergedAdamInferMeta(
    const std::vector<const MetaTensor*>& param,
    const std::vector<const MetaTensor*>& grad,
    const std::vector<const MetaTensor*>& learning_rate,
    const std::vector<const MetaTensor*>& moment1,
    const std::vector<const MetaTensor*>& moment2,
    const std::vector<const MetaTensor*>& beta1_pow,
    const std::vector<const MetaTensor*>& beta2_pow,
    const paddle::optional<std::vector<const MetaTensor*>>& master_param,
    const Scalar& beta1,
    const Scalar& beta2,
    const Scalar& epsilon,
    bool multi_precision,
    bool use_global_beta_pow,
    std::vector<MetaTensor*> param_out,
    std::vector<MetaTensor*> moment1_out,
    std::vector<MetaTensor*> moment2_out,
    std::vector<MetaTensor*> beta1_pow_out,
    std::vector<MetaTensor*> beta2_pow_out,
    std::vector<MetaTensor*> master_param_out);

368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383
void MergedMomentumInferMeta(
    const std::vector<const MetaTensor*>& param,
    const std::vector<const MetaTensor*>& grad,
    const std::vector<const MetaTensor*>& velocity,
    const std::vector<const MetaTensor*>& learning_rate,
    const paddle::optional<std::vector<const MetaTensor*>>& master_param,
    float mu,
    bool use_nesterov,
    const std::vector<std::string>& regularization_method,
    const std::vector<float>& regularization_coeff,
    bool multi_precision,
    float rescale_grad,
    std::vector<MetaTensor*> param_out,
    std::vector<MetaTensor*> velocity_out,
    std::vector<MetaTensor*> master_param_out);

384
void MeshgridInferMeta(const std::vector<const MetaTensor*>& inputs,
H
hong 已提交
385 386
                       std::vector<MetaTensor*> outputs);

387 388 389 390
void MomentumInferMeta(const MetaTensor& param,
                       const MetaTensor& grad,
                       const MetaTensor& velocity,
                       const MetaTensor& learning_rate,
391
                       const MetaTensor& master_param,
392 393 394 395 396 397 398 399 400 401
                       float mu,
                       bool use_nesterov,
                       const std::string& regularization_method,
                       float regularization_coeff,
                       bool multi_precision,
                       float rescale_grad,
                       MetaTensor* param_out,
                       MetaTensor* velocity_out,
                       MetaTensor* master_param_out);

402 403
void MultiDotInferMeta(const std::vector<const MetaTensor*>& x,
                       MetaTensor* out);
404

405
void MultiplexInferMeta(const std::vector<const MetaTensor*>& ins,
406 407 408
                        const MetaTensor& ids,
                        MetaTensor* out);

F
From00 已提交
409 410
void PsroiPoolInferMeta(const MetaTensor& x,
                        const MetaTensor& rois,
411
                        const MetaTensor& rois_num,
F
From00 已提交
412 413 414 415 416 417
                        int pooled_height,
                        int pooled_width,
                        int output_channels,
                        float spatial_scale,
                        MetaTensor* out);

H
hong 已提交
418 419 420 421 422
void RmspropInferMeta(const MetaTensor& param,
                      const MetaTensor& mean_square,
                      const MetaTensor& grad,
                      const MetaTensor& moment,
                      const MetaTensor& learning_rate,
423
                      const MetaTensor& mean_grad,
424
                      const MetaTensor& master_param,
H
hong 已提交
425 426 427 428
                      float epsilon,
                      float decay,
                      float momentum,
                      bool centered,
429
                      bool multi_precision,
H
hong 已提交
430 431 432
                      MetaTensor* param_out,
                      MetaTensor* moment_out,
                      MetaTensor* mean_square_out,
433 434
                      MetaTensor* mean_grad_out,
                      MetaTensor* master_param_outs);
H
hong 已提交
435

436
void RnnInferMeta(const MetaTensor& x,
437 438
                  const std::vector<const MetaTensor*>& pre_state,
                  const std::vector<const MetaTensor*>& weight_list,
439
                  const MetaTensor& sequence_length,
440 441 442 443 444 445 446 447 448 449 450 451 452
                  float dropout_prob,
                  bool is_bidirec,
                  int input_size,
                  int hidden_size,
                  int num_layers,
                  const std::string& mode,
                  int seed,
                  bool is_test,
                  MetaTensor* out,
                  MetaTensor* dropout_state,
                  std::vector<MetaTensor*> state,
                  MetaTensor* reserve);

453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469
void SendUERecvInferMeta(const MetaTensor& x,
                         const MetaTensor& y,
                         const MetaTensor& src_index,
                         const MetaTensor& dst_index,
                         const std::string& message_op,
                         const std::string& reduce_op,
                         const IntArray& out_size,
                         MetaTensor* out,
                         MetaTensor* dst_count);

void SendUVInferMeta(const MetaTensor& x,
                     const MetaTensor& y,
                     const MetaTensor& src_index,
                     const MetaTensor& dst_index,
                     const std::string& message_op,
                     MetaTensor* out);

Z
zyfncg 已提交
470
void SgdInferMeta(const MetaTensor& param,
H
hong 已提交
471 472
                  const MetaTensor& learning_rate,
                  const MetaTensor& grad,
473
                  const MetaTensor& master_param,
H
hong 已提交
474 475 476 477
                  bool multi_precision,
                  MetaTensor* param_out,
                  MetaTensor* master_param_out);

478
void StackInferMeta(const std::vector<const MetaTensor*>& x,
C
csy0225 已提交
479
                    int axis,
480 481
                    MetaTensor* out,
                    MetaConfig config = MetaConfig());
C
csy0225 已提交
482

483
void UnchangedMultiInferMeta(const std::vector<const MetaTensor*>& x,
484 485
                             std::vector<MetaTensor*> out);

486 487 488 489 490
void ShareBufferInferMeta(const std::vector<const MetaTensor*>& x,
                          const std::vector<bool>& share_dims_and_dtype,
                          std::vector<MetaTensor*> out,
                          std::vector<MetaTensor*> xout);

491 492 493 494 495 496 497 498 499 500
void UpdateLossScalingInferMeta(const std::vector<const MetaTensor*>& xs,
                                const MetaTensor& found_infinite,
                                const MetaTensor& prev_loss_scaling,
                                const MetaTensor& in_good_steps,
                                const MetaTensor& in_bad_steps,
                                std::vector<MetaTensor*> outs,
                                MetaTensor* loss_scaling,
                                MetaTensor* out_good_steps,
                                MetaTensor* out_bad_steps);

0
0x45f 已提交
501 502
void WarpctcInferMeta(const MetaTensor& logits,
                      const MetaTensor& label,
503 504
                      const MetaTensor& logits_length,
                      const MetaTensor& labels_length,
0
0x45f 已提交
505 506
                      int blank,
                      bool norm_by_times,
507 508
                      MetaTensor* loss,
                      MetaTensor* warpctcgrad);
0
0x45f 已提交
509

H
Hui Zhang 已提交
510 511 512 513 514 515 516 517 518
void WarprnntInferMeta(const MetaTensor& input,
                       const MetaTensor& label,
                       const MetaTensor& input_lengths,
                       const MetaTensor& label_lengths,
                       int blank,
                       float fastemit_lambda,
                       MetaTensor* loss,
                       MetaTensor* warpctcgrad);

519 520 521 522
void WhereInferMeta(const MetaTensor& condition,
                    const MetaTensor& x,
                    const MetaTensor& y,
                    MetaTensor* out);
523

524 525 526 527 528 529 530 531 532 533 534 535 536 537
void YoloLossInferMeta(const MetaTensor& x,
                       const MetaTensor& gt_box,
                       const MetaTensor& gt_label,
                       const MetaTensor& gt_score,
                       const std::vector<int>& anchors,
                       const std::vector<int>& anchor_mask,
                       int class_num,
                       float ignore_thresh,
                       int downsample_ratio,
                       bool use_label_smooth,
                       float scale_x_y,
                       MetaTensor* loss,
                       MetaTensor* objectness_mask,
                       MetaTensor* gt_match_mask);
538

539
void FusedAdamInferMeta(
540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563
    const std::vector<const MetaTensor*>& params,
    const std::vector<const MetaTensor*>& grads,
    const MetaTensor& learning_rate,
    const std::vector<const MetaTensor*>& moments1,
    const std::vector<const MetaTensor*>& moments2,
    const std::vector<const MetaTensor*>& beta1_pows,
    const std::vector<const MetaTensor*>& beta2_pows,
    const paddle::optional<std::vector<const MetaTensor*>>& master_params,
    const MetaTensor& skip_update,
    const Scalar& beta1,
    const Scalar& beta2,
    const Scalar& epsilon,
    int chunk_size,
    float weight_decay,
    bool use_adamw,
    bool multi_precision,
    bool use_global_beta_pow,
    std::vector<MetaTensor*> params_out,
    std::vector<MetaTensor*> moments1_out,
    std::vector<MetaTensor*> moments2_out,
    std::vector<MetaTensor*> beta1_pows_out,
    std::vector<MetaTensor*> beta2_pows_out,
    std::vector<MetaTensor*> master_params_out);

564 565 566 567 568 569 570 571 572
void MoeInferMeta(const MetaTensor& x,
                  const MetaTensor& gate,
                  const MetaTensor& bmm0,
                  const MetaTensor& bias0,
                  const MetaTensor& bmm1,
                  const MetaTensor& bias1,
                  const std::string& act_type,
                  MetaTensor* out);

573
}  // namespace phi