multiary.h 24.8 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
/* Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

    http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */

#pragma once

17
#include "paddle/phi/common/int_array.h"
18 19 20
#include "paddle/phi/common/scalar.h"
#include "paddle/phi/core/meta_tensor.h"
namespace phi {
21

22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38
// Common InferMeta Functions for multiary operators, The format like:
//
//   1. The number of input MetaTensor is more than 3:
//      void [FunctionDesc|OpName]InferMeta(const MetaTensor& x,
//                                          const MetaTensor& y,
//                                          const MetaTensor& z,
//                                          const MetaTensor& w,
//                                          ...,
//                                          MetaTensor* out) {}
//
//   2. There are `const vector<MetaTensor*>&` in params:
//      void [FunctionDesc|OpName]InferMeta(const vector<MetaTensor*>& x,
//                                          ...,
//                                          MetaTensor* out) {}
//
// NOTE: The InferMeta Functions in this file are arranged in alphabetic order.

39 40
std::vector<DDim> GetMetaTensorsDim(
    const std::vector<const MetaTensor*>& tensors);
41

F
From00 已提交
42 43 44 45
void AdadeltaInferMeta(const MetaTensor& param,
                       const MetaTensor& grad,
                       const MetaTensor& avg_squared_grad,
                       const MetaTensor& avg_squared_update,
46
                       const MetaTensor& master_param,
F
From00 已提交
47 48
                       float rho,
                       float epsilon,
49
                       bool multi_precision,
F
From00 已提交
50 51
                       MetaTensor* param_out,
                       MetaTensor* avg_squared_grad_out,
52 53
                       MetaTensor* avg_squared_update_out,
                       MetaTensor* master_param_outs);
F
From00 已提交
54

H
hong 已提交
55 56 57 58
void AdagradInferMeta(const MetaTensor& param,
                      const MetaTensor& grad,
                      const MetaTensor& moment,
                      const MetaTensor& learning_rate,
59
                      const MetaTensor& master_param,
H
hong 已提交
60
                      float epsilon,
61
                      bool multi_precision,
H
hong 已提交
62
                      MetaTensor* param_out,
63 64
                      MetaTensor* moment_out,
                      MetaTensor* master_param_out);
H
hong 已提交
65

F
From00 已提交
66 67 68 69 70 71 72 73 74 75 76 77 78
void AdamaxInferMeta(const MetaTensor& param,
                     const MetaTensor& grad,
                     const MetaTensor& learning_rate,
                     const MetaTensor& moment,
                     const MetaTensor& inf_norm,
                     const MetaTensor& beta1_pow,
                     float beta1,
                     float beta2,
                     float epsilon,
                     MetaTensor* param_out,
                     MetaTensor* moment_out,
                     MetaTensor* inf_norm_out);

79 80 81 82 83 84 85
void AdamInferMeta(const MetaTensor& param,
                   const MetaTensor& grad,
                   const MetaTensor& learning_rate,
                   const MetaTensor& moment1,
                   const MetaTensor& moment2,
                   const MetaTensor& beta1_pow,
                   const MetaTensor& beta2_pow,
86 87
                   const MetaTensor& master_param,
                   const MetaTensor& skip_update,
88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108
                   const Scalar& beta1,
                   const Scalar& beta2,
                   const Scalar& epsilon,
                   bool lazy_mode,
                   int64_t min_row_size_to_use_multithread,
                   bool multi_precision,
                   bool use_global_beta_pow,
                   MetaTensor* param_out,
                   MetaTensor* moment1_out,
                   MetaTensor* moment2_out,
                   MetaTensor* beta1_pow_out,
                   MetaTensor* beta2_pow_out,
                   MetaTensor* master_param_outs);

void AdamwInferMeta(const MetaTensor& param,
                    const MetaTensor& grad,
                    const MetaTensor& learning_rate,
                    const MetaTensor& moment1,
                    const MetaTensor& moment2,
                    const MetaTensor& beta1_pow,
                    const MetaTensor& beta2_pow,
109 110
                    const MetaTensor& master_param,
                    const MetaTensor& skip_update,
111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127
                    const Scalar& beta1,
                    const Scalar& beta2,
                    const Scalar& epsilon,
                    float lr_ratio,
                    float coeff,
                    bool with_decay,
                    bool lazy_mode,
                    int64_t min_row_size_to_use_multithread,
                    bool multi_precision,
                    bool use_global_beta_pow,
                    MetaTensor* param_out,
                    MetaTensor* moment1_out,
                    MetaTensor* moment2_out,
                    MetaTensor* beta1_pow_out,
                    MetaTensor* beta2_pow_out,
                    MetaTensor* master_param_outs);

128
void AddNInferMeta(const std::vector<const MetaTensor*>& x,
129 130 131
                   MetaTensor* out,
                   MetaConfig config = MetaConfig());

Y
YuanRisheng 已提交
132 133 134 135
void AddNTensorArrayInferMeta(const std::vector<const MetaTensor*>& x,
                              MetaTensor* out,
                              MetaConfig config);

136 137 138 139
void AucInferMeta(const MetaTensor& input,
                  const MetaTensor& label,
                  const MetaTensor& stat_pos,
                  const MetaTensor& stat_neg,
140
                  const MetaTensor& ins_tag_weight,
141 142 143 144 145 146 147 148
                  const std::string& curve,
                  int num_thresholds,
                  int slide_steps,
                  MetaTensor* auc,
                  MetaTensor* stat_pos_out,
                  MetaTensor* stat_neg_out,
                  MetaConfig config = MetaConfig());

149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165
void AverageAccumulatesInferMeta(const MetaTensor& param,
                                 const MetaTensor& in_sum_1,
                                 const MetaTensor& in_sum_2,
                                 const MetaTensor& in_sum_3,
                                 const MetaTensor& in_num_accumulates,
                                 const MetaTensor& in_old_num_accumulates,
                                 const MetaTensor& in_num_updates,
                                 float average_window,
                                 int64_t max_average_window,
                                 int64_t min_average_window,
                                 MetaTensor* out_sum_1,
                                 MetaTensor* out_sum_2,
                                 MetaTensor* out_sum_3,
                                 MetaTensor* out_num_accumulates,
                                 MetaTensor* out_old_num_accumulates,
                                 MetaTensor* out_num_updates);

H
hong 已提交
166 167 168
void BatchNormInferMeta(const MetaTensor& x,
                        const MetaTensor& mean,
                        const MetaTensor& variance,
169 170 171
                        const MetaTensor& scale,
                        const MetaTensor& bias,
                        bool is_test,
H
hong 已提交
172 173 174 175 176 177 178 179 180 181 182 183 184
                        float momentum,
                        float epsilon,
                        const std::string& data_layout,
                        bool use_global_stats,
                        bool trainable_statistics,
                        MetaTensor* y,
                        MetaTensor* mean_out,
                        MetaTensor* variance_out,
                        MetaTensor* saved_mean,
                        MetaTensor* saved_variance,
                        MetaTensor* reserve_space,
                        MetaConfig config = MetaConfig());

185 186 187
void BatchNormInferInferMeta(const MetaTensor& x,
                             const MetaTensor& mean,
                             const MetaTensor& variance,
188 189
                             const MetaTensor& scale,
                             const MetaTensor& bias,
190 191 192 193 194 195 196 197
                             float momentum,
                             float epsilon,
                             const std::string& data_layout,
                             MetaTensor* y,
                             MetaTensor* mean_out,
                             MetaTensor* variance_out,
                             MetaConfig config = MetaConfig());

198 199 200
void BilinearTensorProductInferMeta(const MetaTensor& x,
                                    const MetaTensor& y,
                                    const MetaTensor& weight,
201
                                    const MetaTensor& bias,
202 203 204
                                    MetaTensor* out,
                                    MetaConfig config = MetaConfig());

205
void BroadcastTensorsInferMeta(const std::vector<const MetaTensor*>& x,
206 207
                               std::vector<MetaTensor*> out);

208 209 210 211 212
void CheckFiniteAndUnscaleInferMeta(const std::vector<const MetaTensor*>& xs,
                                    const MetaTensor& scale,
                                    std::vector<MetaTensor*> outs,
                                    MetaTensor* found_infinite);

213 214 215 216 217 218 219 220 221 222 223 224 225 226 227
void CoalesceTensorInferMeta(const std::vector<const MetaTensor*>& input,
                             DataType dtype,
                             bool copy_data,
                             bool set_constant,
                             bool persist_output,
                             float constant,
                             bool use_align,
                             int align_size,
                             int size_of_dtype,
                             const std::vector<int64_t>& concated_shapes,
                             const std::vector<int64_t>& concated_ranks,
                             std::vector<MetaTensor*> output,
                             MetaTensor* fused_output,
                             MetaConfig config = MetaConfig());

228 229 230 231 232
void CheckMemoryContinueInferMeta(const std::vector<const MetaTensor*>& input,
                                  MetaTensor* output,
                                  std::vector<MetaTensor*> xout,
                                  MetaConfig config = MetaConfig());

233
void ConcatInferMeta(const std::vector<const MetaTensor*>& x,
234 235 236
                     const Scalar& axis_scalar,
                     MetaTensor* out,
                     MetaConfig config = MetaConfig());
237

238 239 240
void DeformableConvInferMeta(const MetaTensor& x,
                             const MetaTensor& offset,
                             const MetaTensor& filter,
241
                             const MetaTensor& mask,
242 243 244 245 246 247 248 249 250
                             const std::vector<int>& strides,
                             const std::vector<int>& paddings,
                             const std::vector<int>& dilations,
                             int deformable_groups,
                             int groups,
                             int im2col_step,
                             MetaTensor* out,
                             MetaConfig config = MetaConfig());

Z
zhiboniu 已提交
251 252 253 254 255 256 257 258
void EditDistanceInferMeta(const MetaTensor& hyps,
                           const MetaTensor& refs,
                           const MetaTensor& hypslength,
                           const MetaTensor& refslength,
                           bool normalized,
                           MetaTensor* sequencenum,
                           MetaTensor* out);

Z
zhiboniu 已提交
259 260 261 262 263 264 265 266 267 268 269 270 271 272 273
void GenerateProposalsV2InferMeta(const MetaTensor& scores,
                                  const MetaTensor& bbox_deltas,
                                  const MetaTensor& im_shape,
                                  const MetaTensor& anchors,
                                  const MetaTensor& variances,
                                  int pre_nms_top_n,
                                  int post_nms_top_n,
                                  float nms_thresh,
                                  float min_size,
                                  float eta,
                                  bool pixel_offset,
                                  MetaTensor* rpn_rois,
                                  MetaTensor* rpn_roi_probs,
                                  MetaTensor* rpn_rois_num);

274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295
void GraphReindexInferMeta(const MetaTensor& x,
                           const MetaTensor& neighbors,
                           const MetaTensor& count,
                           const MetaTensor& hashtable_value,
                           const MetaTensor& hashtable_index,
                           bool flag_buffer_hashtable,
                           MetaTensor* reindex_src,
                           MetaTensor* reindex_dst,
                           MetaTensor* out_nodes);

void GraphSampleNeighborsInferMeta(const MetaTensor& row,
                                   const MetaTensor& col_ptr,
                                   const MetaTensor& x,
                                   const MetaTensor& eids,
                                   const MetaTensor& perm_buffer,
                                   int sample_size,
                                   bool return_eids,
                                   bool flag_perm_buffer,
                                   MetaTensor* out,
                                   MetaTensor* out_count,
                                   MetaTensor* out_eids);

296 297
void HSigmoidLossInferMeta(const MetaTensor& x,
                           const MetaTensor& label,
298 299
                           const MetaTensor& w,
                           const MetaTensor& bias,
300 301 302 303 304 305 306 307
                           const MetaTensor& path,
                           const MetaTensor& code,
                           int num_classes,
                           bool remote_prefetch,
                           bool is_sparse,
                           MetaTensor* out,
                           MetaTensor* pre_out,
                           MetaTensor* w_out);
308

309 310
void InterpolateInferMeta(
    const MetaTensor& x,
311 312 313
    const MetaTensor& out_size,
    const paddle::optional<std::vector<const MetaTensor*>>& size_tensor,
    const MetaTensor& scale_tensor,
314 315 316 317 318 319 320 321 322 323 324
    const std::string& data_layout,
    int out_d,
    int out_h,
    int out_w,
    const std::vector<float>& scale,
    const std::string& interp_method,
    bool align_corners,
    int align_mode,
    MetaTensor* output,
    MetaConfig config = MetaConfig());

T
Thomas Young 已提交
325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345
void LambInferMeta(const MetaTensor& param,
                   const MetaTensor& grad,
                   const MetaTensor& learning_rate,
                   const MetaTensor& moment1,
                   const MetaTensor& moment2,
                   const MetaTensor& beta1_pow,
                   const MetaTensor& beta2_pow,
                   const MetaTensor& master_param,
                   const MetaTensor& skip_update,
                   float weight_decay,
                   float beta1,
                   float beta2,
                   float epsilon,
                   bool multi_precision,
                   MetaTensor* param_out,
                   MetaTensor* moment1_out,
                   MetaTensor* moment2_out,
                   MetaTensor* beta1_pow_out,
                   MetaTensor* beta2_pow_out,
                   MetaTensor* master_param_outs);

346 347 348 349
void LogspaceInferMeta(const MetaTensor& start,
                       const MetaTensor& stop,
                       const MetaTensor& number,
                       const MetaTensor& base,
C
Chen Weihang 已提交
350
                       DataType dtype,
351 352
                       MetaTensor* out);

353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373
void MergedAdamInferMeta(
    const std::vector<const MetaTensor*>& param,
    const std::vector<const MetaTensor*>& grad,
    const std::vector<const MetaTensor*>& learning_rate,
    const std::vector<const MetaTensor*>& moment1,
    const std::vector<const MetaTensor*>& moment2,
    const std::vector<const MetaTensor*>& beta1_pow,
    const std::vector<const MetaTensor*>& beta2_pow,
    const paddle::optional<std::vector<const MetaTensor*>>& master_param,
    const Scalar& beta1,
    const Scalar& beta2,
    const Scalar& epsilon,
    bool multi_precision,
    bool use_global_beta_pow,
    std::vector<MetaTensor*> param_out,
    std::vector<MetaTensor*> moment1_out,
    std::vector<MetaTensor*> moment2_out,
    std::vector<MetaTensor*> beta1_pow_out,
    std::vector<MetaTensor*> beta2_pow_out,
    std::vector<MetaTensor*> master_param_out);

374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389
void MergedMomentumInferMeta(
    const std::vector<const MetaTensor*>& param,
    const std::vector<const MetaTensor*>& grad,
    const std::vector<const MetaTensor*>& velocity,
    const std::vector<const MetaTensor*>& learning_rate,
    const paddle::optional<std::vector<const MetaTensor*>>& master_param,
    float mu,
    bool use_nesterov,
    const std::vector<std::string>& regularization_method,
    const std::vector<float>& regularization_coeff,
    bool multi_precision,
    float rescale_grad,
    std::vector<MetaTensor*> param_out,
    std::vector<MetaTensor*> velocity_out,
    std::vector<MetaTensor*> master_param_out);

390
void MeshgridInferMeta(const std::vector<const MetaTensor*>& inputs,
H
hong 已提交
391 392
                       std::vector<MetaTensor*> outputs);

393 394 395 396
void MomentumInferMeta(const MetaTensor& param,
                       const MetaTensor& grad,
                       const MetaTensor& velocity,
                       const MetaTensor& learning_rate,
397
                       const MetaTensor& master_param,
398 399 400 401 402 403 404 405 406 407
                       float mu,
                       bool use_nesterov,
                       const std::string& regularization_method,
                       float regularization_coeff,
                       bool multi_precision,
                       float rescale_grad,
                       MetaTensor* param_out,
                       MetaTensor* velocity_out,
                       MetaTensor* master_param_out);

408 409
void MultiDotInferMeta(const std::vector<const MetaTensor*>& x,
                       MetaTensor* out);
410

411
void MultiplexInferMeta(const std::vector<const MetaTensor*>& ins,
412 413 414
                        const MetaTensor& ids,
                        MetaTensor* out);

F
From00 已提交
415 416
void PsroiPoolInferMeta(const MetaTensor& x,
                        const MetaTensor& rois,
417
                        const MetaTensor& rois_num,
F
From00 已提交
418 419 420 421 422 423
                        int pooled_height,
                        int pooled_width,
                        int output_channels,
                        float spatial_scale,
                        MetaTensor* out);

H
hong 已提交
424 425 426 427 428
void RmspropInferMeta(const MetaTensor& param,
                      const MetaTensor& mean_square,
                      const MetaTensor& grad,
                      const MetaTensor& moment,
                      const MetaTensor& learning_rate,
429
                      const MetaTensor& mean_grad,
430
                      const MetaTensor& master_param,
H
hong 已提交
431 432 433 434
                      float epsilon,
                      float decay,
                      float momentum,
                      bool centered,
435
                      bool multi_precision,
H
hong 已提交
436 437 438
                      MetaTensor* param_out,
                      MetaTensor* moment_out,
                      MetaTensor* mean_square_out,
439 440
                      MetaTensor* mean_grad_out,
                      MetaTensor* master_param_outs);
H
hong 已提交
441

442
void RnnInferMeta(const MetaTensor& x,
443 444
                  const std::vector<const MetaTensor*>& pre_state,
                  const std::vector<const MetaTensor*>& weight_list,
445
                  const MetaTensor& sequence_length,
446 447 448 449 450 451 452 453 454 455 456 457 458
                  float dropout_prob,
                  bool is_bidirec,
                  int input_size,
                  int hidden_size,
                  int num_layers,
                  const std::string& mode,
                  int seed,
                  bool is_test,
                  MetaTensor* out,
                  MetaTensor* dropout_state,
                  std::vector<MetaTensor*> state,
                  MetaTensor* reserve);

459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475
void SendUERecvInferMeta(const MetaTensor& x,
                         const MetaTensor& y,
                         const MetaTensor& src_index,
                         const MetaTensor& dst_index,
                         const std::string& message_op,
                         const std::string& reduce_op,
                         const IntArray& out_size,
                         MetaTensor* out,
                         MetaTensor* dst_count);

void SendUVInferMeta(const MetaTensor& x,
                     const MetaTensor& y,
                     const MetaTensor& src_index,
                     const MetaTensor& dst_index,
                     const std::string& message_op,
                     MetaTensor* out);

Z
zyfncg 已提交
476
void SgdInferMeta(const MetaTensor& param,
H
hong 已提交
477 478
                  const MetaTensor& learning_rate,
                  const MetaTensor& grad,
479
                  const MetaTensor& master_param,
H
hong 已提交
480 481 482 483
                  bool multi_precision,
                  MetaTensor* param_out,
                  MetaTensor* master_param_out);

484
void StackInferMeta(const std::vector<const MetaTensor*>& x,
C
csy0225 已提交
485
                    int axis,
486 487
                    MetaTensor* out,
                    MetaConfig config = MetaConfig());
C
csy0225 已提交
488

489
void UnchangedMultiInferMeta(const std::vector<const MetaTensor*>& x,
490 491
                             std::vector<MetaTensor*> out);

492 493 494 495 496
void ShareBufferInferMeta(const std::vector<const MetaTensor*>& x,
                          const std::vector<bool>& share_dims_and_dtype,
                          std::vector<MetaTensor*> out,
                          std::vector<MetaTensor*> xout);

497 498 499 500 501 502 503 504 505 506
void UpdateLossScalingInferMeta(const std::vector<const MetaTensor*>& xs,
                                const MetaTensor& found_infinite,
                                const MetaTensor& prev_loss_scaling,
                                const MetaTensor& in_good_steps,
                                const MetaTensor& in_bad_steps,
                                std::vector<MetaTensor*> outs,
                                MetaTensor* loss_scaling,
                                MetaTensor* out_good_steps,
                                MetaTensor* out_bad_steps);

0
0x45f 已提交
507 508
void WarpctcInferMeta(const MetaTensor& logits,
                      const MetaTensor& label,
509 510
                      const MetaTensor& logits_length,
                      const MetaTensor& labels_length,
0
0x45f 已提交
511 512
                      int blank,
                      bool norm_by_times,
513 514
                      MetaTensor* loss,
                      MetaTensor* warpctcgrad);
0
0x45f 已提交
515

H
Hui Zhang 已提交
516 517 518 519 520 521 522 523 524
void WarprnntInferMeta(const MetaTensor& input,
                       const MetaTensor& label,
                       const MetaTensor& input_lengths,
                       const MetaTensor& label_lengths,
                       int blank,
                       float fastemit_lambda,
                       MetaTensor* loss,
                       MetaTensor* warpctcgrad);

525 526 527 528
void WhereInferMeta(const MetaTensor& condition,
                    const MetaTensor& x,
                    const MetaTensor& y,
                    MetaTensor* out);
529

530 531 532 533 534 535 536 537 538 539 540 541 542 543
void YoloLossInferMeta(const MetaTensor& x,
                       const MetaTensor& gt_box,
                       const MetaTensor& gt_label,
                       const MetaTensor& gt_score,
                       const std::vector<int>& anchors,
                       const std::vector<int>& anchor_mask,
                       int class_num,
                       float ignore_thresh,
                       int downsample_ratio,
                       bool use_label_smooth,
                       float scale_x_y,
                       MetaTensor* loss,
                       MetaTensor* objectness_mask,
                       MetaTensor* gt_match_mask);
544

545
void FusedAdamInferMeta(
546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569
    const std::vector<const MetaTensor*>& params,
    const std::vector<const MetaTensor*>& grads,
    const MetaTensor& learning_rate,
    const std::vector<const MetaTensor*>& moments1,
    const std::vector<const MetaTensor*>& moments2,
    const std::vector<const MetaTensor*>& beta1_pows,
    const std::vector<const MetaTensor*>& beta2_pows,
    const paddle::optional<std::vector<const MetaTensor*>>& master_params,
    const MetaTensor& skip_update,
    const Scalar& beta1,
    const Scalar& beta2,
    const Scalar& epsilon,
    int chunk_size,
    float weight_decay,
    bool use_adamw,
    bool multi_precision,
    bool use_global_beta_pow,
    std::vector<MetaTensor*> params_out,
    std::vector<MetaTensor*> moments1_out,
    std::vector<MetaTensor*> moments2_out,
    std::vector<MetaTensor*> beta1_pows_out,
    std::vector<MetaTensor*> beta2_pows_out,
    std::vector<MetaTensor*> master_params_out);

570 571 572 573 574 575 576 577 578
void MoeInferMeta(const MetaTensor& x,
                  const MetaTensor& gate,
                  const MetaTensor& bmm0,
                  const MetaTensor& bias0,
                  const MetaTensor& bmm1,
                  const MetaTensor& bias1,
                  const std::string& act_type,
                  MetaTensor* out);

579
}  // namespace phi