未验证 提交 def2a87f 编写于 作者: X xiaoxiaohehe001 提交者: GitHub

[Paddle Inference] Add moe phi kernel (#48703)

上级 efa34534
......@@ -516,6 +516,7 @@ if(WITH_GPU
if(${CMAKE_CUDA_COMPILER_VERSION} GREATER_EQUAL 11.0)
include(external/cutlass) # download, build, install cusparselt
list(APPEND third_party_deps extern_cutlass)
set(WITH_CUTLASS ON)
endif()
endif()
......
......@@ -235,6 +235,15 @@ nvinfer1::DimsExprs UnchangedInferMeta(
return inputs[0];
}
nvinfer1::DimsExprs MoeInferMeta(
int output_index,
const nvinfer1::DimsExprs* inputs,
int nb_inputs,
nvinfer1::IExprBuilder& expr_builder, // NOLINT
const framework::OpDesc& op_desc) {
return inputs[0];
}
nvinfer1::DimsExprs Pad3dInferMeta(
int output_index,
const nvinfer1::DimsExprs* inputs,
......@@ -384,6 +393,7 @@ PD_REGISTER_DYNAMIC_INFER_META_FN(instance_norm, InstanceNormInferMeta);
PD_REGISTER_DYNAMIC_INFER_META_FN(unfold, UnflodInferMeta);
PD_REGISTER_DYNAMIC_INFER_META_FN(scatter_nd_add, ScatterNdAddInferMeta);
PD_REGISTER_DYNAMIC_INFER_META_FN(inverse, UnchangedInferMeta);
PD_REGISTER_DYNAMIC_INFER_META_FN(moe, MoeInferMeta);
PD_REGISTER_DYNAMIC_INFER_META_FN(pad3d, Pad3dInferMeta);
PD_REGISTER_DYNAMIC_INFER_META_FN(grid_sampler, GridSamplerInferMeta);
} // namespace tensorrt
......
/* Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License. */
#include "paddle/fluid/framework/infershape_utils.h"
#include "paddle/fluid/framework/op_registry.h"
#include "paddle/fluid/framework/operator.h"
#include "paddle/phi/core/infermeta_utils.h"
#include "paddle/phi/infermeta/backward.h"
#include "paddle/phi/infermeta/binary.h"
namespace paddle {
namespace operators {
class MoeOp : public framework::OperatorWithKernel {
public:
using framework::OperatorWithKernel::OperatorWithKernel;
protected:
framework::OpKernelType GetExpectedKernelType(
const framework::ExecutionContext& ctx) const override {
auto data_type = OperatorWithKernel::IndicateVarDataType(ctx, "X");
return framework::OpKernelType(data_type, ctx.device_context());
}
};
class MoeOpMaker : public framework::OpProtoAndCheckerMaker {
public:
void Make() override {
AddInput("X", "(Tensor), The source input tensor of Moe op.");
AddInput("Gate", "(Tensor), The gating input tensor of Moe op.");
AddInput("Bmm0", "(Tensor), The bmm0 input tensor of Moe op.");
AddInput("Bias0", "(Tensor), The eltwise0 input tensor of Moe op.");
AddInput("Bmm1", "(Tensor), The bmm1 input tensor of Moe op.");
AddInput("Bias1", "(Tensor), The eltwise1 input tensor of Moe op.");
AddOutput("Out", "(Tensor), The output tensor of Moe op.");
AddAttr<std::string>(
"act_type",
R"DOC(activation type, currently only support `gelu`, `relu`. Default value is: `gelu`. )DOC")
.SetDefault("gelu");
AddComment(
R"DOC(FusedEcMoe kernel. For more details you can refer to `FusedEcMoE` python documents. )DOC");
}
};
} // namespace operators
} // namespace paddle
namespace ops = paddle::operators;
DECLARE_INFER_SHAPE_FUNCTOR(moe,
MoeInferShapeFunctor,
PD_INFER_META(phi::MoeInferMeta));
REGISTER_OPERATOR(moe, ops::MoeOp, ops::MoeOpMaker, MoeInferShapeFunctor);
......@@ -2931,6 +2931,20 @@ void YoloLossInferMeta(const MetaTensor& x,
gt_match_mask->set_dtype(x.dtype());
}
void MoeInferMeta(const MetaTensor& x,
const MetaTensor& gate,
const MetaTensor& bmm0,
const MetaTensor& bias0,
const MetaTensor& bmm1,
const MetaTensor& bias1,
const std::string& act_type,
MetaTensor* out) {
out->set_dims(x.dims());
out->share_lod(x);
out->set_dtype(x.dtype());
out->set_layout(x.layout());
}
} // namespace phi
PD_REGISTER_INFER_META_FN(batch_norm_infer, phi::BatchNormInferInferMeta);
......@@ -523,4 +523,13 @@ void YoloLossInferMeta(const MetaTensor& x,
MetaTensor* objectness_mask,
MetaTensor* gt_match_mask);
void MoeInferMeta(const MetaTensor& x,
const MetaTensor& gate,
const MetaTensor& bmm0,
const MetaTensor& bias0,
const MetaTensor& bmm1,
const MetaTensor& bias1,
const std::string& act_type,
MetaTensor* out);
} // namespace phi
......@@ -104,6 +104,12 @@ file(
"strings/gpu/*.cu"
"fusion/gpu/*.cu")
if(WITH_CUTLASS)
file(GLOB cutlass_cu "fusion/cutlass/default_moe_fc_traits.h"
"fusion/cutlass/linear_combination_ft_gelu.h" "fusion/cutlass/moe*")
list(APPEND kernel_cu ${cutlass_cu})
endif()
if(WITH_MKLDNN)
file(
GLOB
......
// Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
#pragma once
#include "cutlass/arch/arch.h"
#include "cutlass/arch/mma.h"
#include "cutlass/bfloat16.h"
#include "cutlass/cutlass.h"
#include "cutlass/gemm/gemm.h"
#include "cutlass/layout/matrix.h"
namespace cutlass {
namespace gemm {
namespace kernel {
template <typename TypeA, typename TypeB, typename arch>
struct MoeArchTraits {};
template <typename arch>
struct MoeArchTraits<float, float, arch> {
static constexpr int Stages = 2;
using OperatorClass = cutlass::arch::OpClassSimt;
using AccType = float;
using LayoutB = cutlass::layout::RowMajor;
static constexpr int ElementsPerAccessA = 1;
static constexpr int ElementsPerAccessB = 1;
static constexpr int ElementsPerAccessC = 1;
using ThreadBlockShape = cutlass::gemm::GemmShape<128, 128, 8>;
using WarpShape = cutlass::gemm::GemmShape<32, 64, 8>;
using InstructionShape = cutlass::gemm::GemmShape<1, 1, 1>;
using Operator = cutlass::arch::OpMultiplyAdd;
};
// ========================= Volta Traits ===========================
// Volta will always dequantize after the global memory load.
template <typename TypeB>
struct MoeArchTraits<cutlass::half_t, TypeB, cutlass::arch::Sm70> {
private:
static constexpr int ThreadblockK = 32;
public:
static constexpr int Stages = 2;
using OperatorClass = cutlass::arch::OpClassTensorOp;
using AccType = float;
using LayoutB = cutlass::layout::RowMajor;
static constexpr int ElementsPerAccessA =
128 / cutlass::sizeof_bits<cutlass::half_t>::value;
static constexpr int ElementsPerAccessB =
128 / cutlass::sizeof_bits<cutlass::half_t>::value;
static constexpr int ElementsPerAccessC =
128 / cutlass::sizeof_bits<cutlass::half_t>::value;
using ThreadBlockShape = cutlass::gemm::GemmShape<32, 128, ThreadblockK>;
using WarpShape = cutlass::gemm::GemmShape<32, 32, ThreadblockK>;
using InstructionShape = cutlass::gemm::GemmShape<8, 8, 4>;
using Operator = cutlass::arch::OpMultiplyAdd;
};
template <typename TypeB>
struct MoeArchTraits<cutlass::bfloat16_t, TypeB, cutlass::arch::Sm70> {
private:
static constexpr int ThreadblockK = 32;
public:
static constexpr int Stages = 2;
using OperatorClass = cutlass::arch::OpClassTensorOp;
using AccType = float;
using LayoutB = cutlass::layout::RowMajor;
static constexpr int ElementsPerAccessA =
128 / cutlass::sizeof_bits<cutlass::bfloat16_t>::value;
static constexpr int ElementsPerAccessB =
128 / cutlass::sizeof_bits<cutlass::bfloat16_t>::value;
static constexpr int ElementsPerAccessC =
128 / cutlass::sizeof_bits<cutlass::bfloat16_t>::value;
using ThreadBlockShape = cutlass::gemm::GemmShape<32, 128, ThreadblockK>;
using WarpShape = cutlass::gemm::GemmShape<32, 32, ThreadblockK>;
using InstructionShape = cutlass::gemm::GemmShape<8, 8, 4>;
using Operator = cutlass::arch::OpMultiplyAdd;
};
// ======================= Turing Traits ==============================
// Turing will dequantize after LDSM
// fp16 x fp16 specialization
template <>
struct MoeArchTraits<cutlass::half_t, cutlass::half_t, cutlass::arch::Sm75> {
static constexpr int Stages = 2;
using OperatorClass = cutlass::arch::OpClassTensorOp;
using AccType = float;
using LayoutB = cutlass::layout::RowMajor;
static constexpr int ElementsPerAccessA =
128 / cutlass::sizeof_bits<cutlass::half_t>::value;
static constexpr int ElementsPerAccessB =
128 / cutlass::sizeof_bits<cutlass::half_t>::value;
static constexpr int ElementsPerAccessC =
128 / cutlass::sizeof_bits<cutlass::half_t>::value;
using ThreadBlockShape = cutlass::gemm::GemmShape<32, 128, 32>;
using WarpShape = cutlass::gemm::GemmShape<32, 32, 32>;
using InstructionShape = cutlass::gemm::GemmShape<16, 8, 8>;
using Operator = cutlass::arch::OpMultiplyAdd;
};
// bf16 x bf16 specialization
template <>
struct MoeArchTraits<cutlass::bfloat16_t,
cutlass::bfloat16_t,
cutlass::arch::Sm75> {
static constexpr int Stages = 2;
using OperatorClass = cutlass::arch::OpClassTensorOp;
using AccType = float;
using LayoutB = cutlass::layout::RowMajor;
static constexpr int ElementsPerAccessA =
128 / cutlass::sizeof_bits<cutlass::bfloat16_t>::value;
static constexpr int ElementsPerAccessB =
128 / cutlass::sizeof_bits<cutlass::bfloat16_t>::value;
static constexpr int ElementsPerAccessC =
128 / cutlass::sizeof_bits<cutlass::bfloat16_t>::value;
using ThreadBlockShape = cutlass::gemm::GemmShape<32, 128, 32>;
using WarpShape = cutlass::gemm::GemmShape<32, 32, 32>;
using InstructionShape = cutlass::gemm::GemmShape<16, 8, 8>;
using Operator = cutlass::arch::OpMultiplyAdd;
};
template <>
struct MoeArchTraits<float, float, cutlass::arch::Sm80> {
static constexpr int Stages = 3;
using OperatorClass = cutlass::arch::OpClassTensorOp;
using AccType = float;
using LayoutB = cutlass::layout::RowMajor;
static constexpr int ElementsPerAccessA = 4;
static constexpr int ElementsPerAccessB = 4;
static constexpr int ElementsPerAccessC = 4;
using ThreadBlockShape = cutlass::gemm::GemmShape<128, 128, 16>;
using WarpShape = cutlass::gemm::GemmShape<64, 64, 16>;
using InstructionShape = cutlass::gemm::GemmShape<16, 8, 8>;
using Operator = cutlass::arch::OpMultiplyAdd;
};
template <>
struct MoeArchTraits<cutlass::half_t, cutlass::half_t, cutlass::arch::Sm80> {
static constexpr int Stages = 3;
using OperatorClass = cutlass::arch::OpClassTensorOp;
using AccType = float;
using LayoutB = cutlass::layout::RowMajor;
static constexpr int ElementsPerAccessA =
128 / cutlass::sizeof_bits<cutlass::half_t>::value;
static constexpr int ElementsPerAccessB =
128 / cutlass::sizeof_bits<cutlass::half_t>::value;
static constexpr int ElementsPerAccessC =
128 / cutlass::sizeof_bits<cutlass::half_t>::value;
using ThreadBlockShape = cutlass::gemm::GemmShape<32, 128, 32>;
using WarpShape = cutlass::gemm::GemmShape<32, 32, 32>;
using InstructionShape = cutlass::gemm::GemmShape<16, 8, 16>;
using Operator = cutlass::arch::OpMultiplyAdd;
};
template <>
struct MoeArchTraits<cutlass::bfloat16_t,
cutlass::bfloat16_t,
cutlass::arch::Sm80> {
static constexpr int Stages = 3;
using OperatorClass = cutlass::arch::OpClassTensorOp;
using AccType = float;
using LayoutB = cutlass::layout::RowMajor;
static constexpr int ElementsPerAccessA =
128 / cutlass::sizeof_bits<cutlass::bfloat16_t>::value;
static constexpr int ElementsPerAccessB =
128 / cutlass::sizeof_bits<cutlass::bfloat16_t>::value;
static constexpr int ElementsPerAccessC =
128 / cutlass::sizeof_bits<cutlass::bfloat16_t>::value;
using ThreadBlockShape = cutlass::gemm::GemmShape<32, 128, 32>;
using WarpShape = cutlass::gemm::GemmShape<32, 32, 32>;
using InstructionShape = cutlass::gemm::GemmShape<16, 8, 16>;
using Operator = cutlass::arch::OpMultiplyAdd;
};
} // namespace kernel
} // namespace gemm
} // namespace cutlass
此差异已折叠。
此差异已折叠。
此差异已折叠。
// Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
#pragma once
#include "paddle/phi/core/dense_tensor.h"
namespace phi {
template <typename T, typename Context>
void MoeKernel(const Context& ctx,
const DenseTensor& x,
const DenseTensor& gate,
const DenseTensor& bmm0,
const DenseTensor& bias0,
const DenseTensor& bmm1,
const DenseTensor& bias1,
const std::string& act_type,
DenseTensor* output);
} // namespace phi
......@@ -78,6 +78,7 @@ if(NOT WITH_GPU)
list(REMOVE_ITEM TEST_OPS test_fused_bias_dropout_residual_layer_norm_op_api)
endif()
list(REMOVE_ITEM TEST_OPS test_fused_ec_moe_op)
list(REMOVE_ITEM TEST_OPS test_fused_gemm_epilogue_op)
list(REMOVE_ITEM TEST_OPS test_fused_gemm_epilogue_grad_op)
list(REMOVE_ITEM TEST_OPS test_fuse_gemm_epilogue_pass)
......@@ -143,6 +144,7 @@ if(WIN32)
list(REMOVE_ITEM TEST_OPS test_trt_convert_preln_residual_bias)
list(REMOVE_ITEM TEST_OPS test_trt_convert_preln_residual_no_bias)
list(REMOVE_ITEM TEST_OPS test_fused_multi_transformer_int8_op)
list(REMOVE_ITEM TEST_OPS test_fused_ec_moe_op)
endif()
list(REMOVE_ITEM TEST_OPS test_checkpoint_saver)
......
# Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import unittest
import numpy as np
from op_test import OpTest
import paddle
import paddle.nn.functional as F
from paddle.fluid.framework import default_main_program
from paddle.incubate.nn.functional import fused_ec_moe
from paddle.nn.layer.common import Linear
default_main_program().random_seed = 42
class TestFusedEcMoEOp(OpTest):
def setUp(self):
self.config()
self.rtol = 1e-3
self.atol = 1e-3
paddle.set_default_dtype(self.x_type)
self.__class__.op_type = "fused_ec_moe"
# Since it's only used in inference.
self.__class__.no_need_check_grad = True
self.bmm_w0 = paddle.to_tensor(
np.random.randn(self.num_expert, self.d_model, self.d_feedforward)
* 0.001,
dtype=paddle.float16,
)
self.bmm_b0 = paddle.to_tensor(
np.random.randn(self.num_expert, 1, self.d_feedforward) * 0.001,
dtype=paddle.float16,
)
self.bmm_w1 = paddle.to_tensor(
np.random.randn(self.num_expert, self.d_feedforward, self.d_model)
* 0.001,
dtype=paddle.float16,
)
self.bmm_b1 = paddle.to_tensor(
np.random.randn(self.num_expert, 1, self.d_model) * 0.001,
dtype=paddle.float16,
)
self.tensor_x = paddle.to_tensor(
np.random.randn(self.batch_size, self.seq_len, self.d_model)
* 0.001,
dtype=paddle.float16,
)
self.bmm_w0.stop_gradient = True
self.bmm_b0.stop_gradient = True
self.bmm_w1.stop_gradient = True
self.bmm_b1.stop_gradient = True
self.tensor_x.stop_gradient = True
self.gate = Linear(self.d_model, self.num_expert)
paddle.set_default_dtype("float16")
self.activation = getattr(F, self.act_method)
def config(self):
self.x_type = np.float16
self.batch_size = 10
self.seq_len = 128
self.num_expert = 32
self.d_model = 768
self.d_feedforward = 3072
self.act_method = 'gelu'
def GetBaselineOut(self, tensor_x, gate_logits):
def expert_choice_gating(logits, capacity, batch_idx, expert_idx):
gates = F.softmax(logits, -1)
indices1_s = paddle.topk(
logits.transpose([0, 2, 1]), k=capacity, axis=-1
)[1].cast("int32")
seqlen_idx = indices1_s.reshape([-1])
gather_idx = paddle.stack([batch_idx, seqlen_idx, expert_idx], -1)
prob = paddle.gather_nd(gates, gather_idx)
return prob, expert_idx, gather_idx, capacity
paddle.disable_static()
capacity = self.seq_len // 16
batch_expert_idx = paddle.nonzero(
paddle.ones(shape=[self.batch_size, self.num_expert, capacity])
).cast('int32')
batch_idx = batch_expert_idx[:, 0]
expert_idx = batch_expert_idx[:, 1]
(
expert_prob_flatten,
expert_idx_flatten,
gather_idx,
cap,
) = expert_choice_gating(gate_logits, capacity, batch_idx, expert_idx)
outputs = paddle.zeros_like(tensor_x)
batch_prob = expert_prob_flatten.reshape(
[self.batch_size, self.num_expert, -1, 1]
)
batch_idx = gather_idx[:, :2]
selected_token = tensor_x.gather_nd(batch_idx)
batch_selected_token = selected_token.reshape(
[self.batch_size, self.num_expert, -1, tensor_x.shape[-1]]
)
batch_selected_token = batch_selected_token.transpose(
[1, 0, 2, 3]
).reshape([self.num_expert, -1, tensor_x.shape[-1]])
output = paddle.bmm(batch_selected_token, self.bmm_w0) + self.bmm_b0
output = self.activation(output)
output = paddle.bmm(output, self.bmm_w1) + self.bmm_b1
output = output.transpose([1, 0, 2]).reshape(
[self.batch_size, -1, self.num_expert, tensor_x.shape[-1]]
)
output = output.transpose([0, 2, 1, 3])
output = batch_prob * output
output = output.reshape([-1, tensor_x.shape[-1]])
outputs = outputs.scatter_nd_add(batch_idx, output)
return outputs + tensor_x
def GetFusedEcMoeOut(self, tensor_x, gate_logits):
paddle.disable_static()
fused_out = fused_ec_moe(
tensor_x,
gate_logits,
self.bmm_w0,
self.bmm_b0,
self.bmm_w1,
self.bmm_b1,
self.act_method,
)
return fused_out
def test_fused_ec_moe_op(self):
gate_logits = self.gate(self.tensor_x)
final_out_ref = self.GetBaselineOut(self.tensor_x, gate_logits)
final_out = self.GetFusedEcMoeOut(self.tensor_x, gate_logits)
np.testing.assert_allclose(
final_out_ref, final_out, rtol=self.rtol, atol=self.atol
)
class TestFusedEcMoEOpActGeluFp16(TestFusedEcMoEOp):
def config(self):
super().config()
self.x_type = np.float16
class TestFusedEcMoEOpActReluFp16(TestFusedEcMoEOp):
def config(self):
super().config()
self.x_type = np.float16
self.act_method = "relu"
if __name__ == "__main__":
unittest.main()
......@@ -20,6 +20,7 @@ from .layer.fused_linear import FusedLinear # noqa: F401
from .layer.fused_transformer import (
FusedBiasDropoutResidualLayerNorm,
) # noqa: F401
from .layer.fused_ec_moe import FusedEcMoe # noqa: F401
__all__ = [ # noqa
'FusedMultiHeadAttention',
......@@ -28,4 +29,5 @@ __all__ = [ # noqa
'FusedMultiTransformer',
'FusedLinear',
'FusedBiasDropoutResidualLayerNorm',
'FusedEcMoe',
]
......@@ -17,6 +17,7 @@ from .fused_transformer import fused_feedforward
from .fused_transformer import fused_multi_transformer
from .fused_matmul_bias import fused_matmul_bias, fused_linear
from .fused_transformer import fused_bias_dropout_residual_layer_norm
from .fused_ec_moe import fused_ec_moe
__all__ = [
'fused_multi_head_attention',
......@@ -25,4 +26,5 @@ __all__ = [
'fused_matmul_bias',
'fused_linear',
'fused_bias_dropout_residual_layer_norm',
'fused_ec_moe',
]
# Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from paddle.fluid.layer_helper import LayerHelper
def fused_ec_moe(
x, gate, bmm0_weight, bmm0_bias, bmm1_weight, bmm1_bias, act_type
):
"""
Applies fused ec_moe kernel.
This method requires SM_ARCH in sm75, sm80, sm86.
Args:
x (Tensor): the input Tensor. Its shape is [bsz, seq_len, d_model].
gate (Tensor): the gate Tensor to choose expert. Its shape is [bsz, seq_len, e].
bmm0_weight (Tensor): the first batch matrix matmul weight. Its shape is [e, d_model, d_feed_forward].
bmm0_bias (Tensor): the first batch matrix matmul bias. Its shape is [e, 1, d_feed_forward].
bmm1_weight (Tensor): the second batch matrix matmul weight. Its shape is [e, d_model, d_feed_forward].
bmm1_bias (Tensor): the second batch matrix matmul bias. Its shape is [e, 1, d_feed_forward].
act_type (string): the Activation Type. Currently only support `gelu`, `relu`.
Returns:
Tensor: the output Tensor.
Examples:
.. code-block:: python
# required: gpu
import paddle
from paddle.incubate.nn.functional import fused_ec_moe
batch = 10
seq_len = 128
d_model = 1024
d_feed_forward = d_model * 4
num_expert = 8
x = paddle.randn([batch, seq_len, d_model])
gate = paddle.randn([batch, seq_len, num_expert])
bmm0_weight = paddle.randn([num_expert, d_model, d_feed_forward])
bmm0_bias = paddle.randn([num_expert, d_model, d_feed_forward])
bmm1_weight = paddle.randn([num_expert, d_model, d_feed_forward])
bmm1_bias = paddle.randn([num_expert, d_model, d_feed_forward])
out = fused_ec_moe(x, gate, bmm0_weight, bmm0_bias, bmm1_weight, bmm1_bias, act_type="gelu")
print(out.shape) # [batch, seq_len, num_expert]
"""
helper = LayerHelper('fused_moe', **locals())
out = helper.create_variable_for_type_inference(dtype=x.dtype)
helper.append_op(
type='moe',
inputs={
'X': x,
'Gate': gate,
'Bmm0': bmm0_weight,
'Bias0': bmm0_bias,
'Bmm1': bmm1_weight,
'Bias1': bmm1_bias,
},
outputs={'Out': out},
attrs={'act_type': act_type},
)
return out
# Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from paddle.incubate.nn import functional as F
from paddle.nn import Layer
class FusedEcMoe(Layer):
r"""A FusedEcMoe Layer.
Parameters:
hidden_size (int): The dim size of input units.
inter_size (int): The dim size of feed forward network.
num_expert (int): The number of experts.
act_type (string): The activation type. Currently only support `gelu`, `relu`.
weight_attr (ParamAttr, optional): The attribute for the learnable
weight of this layer. The default value is None and the weight will be
initialized to zero. For detailed information, please refer to
paddle.ParamAttr.
bias_attr (ParamAttr|bool, optional): The attribute for the learnable bias
of this layer. If it is set to False, no bias will be added to the output.
If it is set to None or one kind of ParamAttr, a bias parameter will
be created according to ParamAttr. For detailed information, please refer
to paddle.ParamAttr. The default value is None and the bias will be
initialized to zero.
Attribute:
**weight** (Parameter): the learnable weight of this layer.
**bias** (Parameter): the learnable bias of this layer.
Shape:
- input: Multi-dimentional tensor with shape :math:`[batch\_size, seq\_len, d\_model]` .
- output: Multi-dimentional tensor with shape :math:`[batch\_size, seq\_len, d\_model]` .
Examples:
.. code-block:: python
# required: gpu
import paddle
from paddle.incubate.nn.layer.fused_ec_moe import FusedEcMoe
x = paddle.randn([10, 128, 1024]) # [bsz, seq_len, d_model]
gate = paddle.randn([10, 128, 8]) # [bsz, seq_len, num_experts]
moe = FusedEcMoe(1024, 4096, 8, act_type="gelu")
y = moe(x, gate)
print(y.shape) # [10, 128, 1024]
"""
def __init__(
self,
hidden_size,
inter_size,
num_experts,
act_type,
weight_attr=None,
bias_attr=None,
):
super().__init__()
weight0_shape = [num_experts, hidden_size, inter_size]
bias0_shape = [num_experts, 1, inter_size]
weight1_shape = [num_experts, inter_size, hidden_size]
bias1_shape = [num_experts, 1, hidden_size]
dtype = self._helper.get_default_dtype()
self.bmm_weight0 = self.create_parameter(
shape=weight0_shape, attr=weight_attr, dtype=dtype, is_bias=False
)
self.bmm_bias0 = self.create_parameter(
shape=bias0_shape, attr=bias_attr, dtype=dtype, is_bias=True
)
self.bmm_weight1 = self.create_parameter(
shape=weight1_shape, attr=weight_attr, dtype=dtype, is_bias=False
)
self.bmm_bias1 = self.create_parameter(
shape=bias1_shape, attr=bias_attr, dtype=dtype, is_bias=True
)
self.act_type = act_type
if self.act_type not in ["gelu", "relu"]:
raise NotImplementedError("Currently only support `gelu`, `relu`. ")
def forward(self, x, gate):
return F.fused_ec_moe(
x,
gate,
self.bmm_weight0,
self.bmm_bias0,
self.bmm_weight1,
self.bmm_bias1,
self.act_type,
)
Markdown is supported
0% .
You are about to add 0 people to the discussion. Proceed with caution.
先完成此消息的编辑!
想要评论请 注册