Skip to content
体验新版
项目
组织
正在加载...
登录
切换导航
打开侧边栏
PaddlePaddle
Paddle
提交
fb93bd5c
P
Paddle
项目概览
PaddlePaddle
/
Paddle
1 年多 前同步成功
通知
2302
Star
20931
Fork
5422
代码
文件
提交
分支
Tags
贡献者
分支图
Diff
Issue
1423
列表
看板
标记
里程碑
合并请求
543
Wiki
0
Wiki
分析
仓库
DevOps
项目成员
Pages
P
Paddle
项目概览
项目概览
详情
发布
仓库
仓库
文件
提交
分支
标签
贡献者
分支图
比较
Issue
1,423
Issue
1,423
列表
看板
标记
里程碑
合并请求
543
合并请求
543
Pages
分析
分析
仓库分析
DevOps
Wiki
0
Wiki
成员
成员
收起侧边栏
关闭侧边栏
动态
分支图
创建新Issue
提交
Issue看板
未验证
提交
fb93bd5c
编写于
3月 31, 2022
作者:
W
wuyefeilin
提交者:
GitHub
3月 31, 2022
浏览文件
操作
浏览文件
下载
电子邮件补丁
差异文件
[phi] move yolov3_loss to phi (#40944)
* mv yolov3_loss op to phi * fix as review * update operator.h
上级
47383dca
变更
11
隐藏空白更改
内联
并排
Showing
11 changed file
with
986 addition
and
639 deletion
+986
-639
paddle/fluid/framework/operator.h
paddle/fluid/framework/operator.h
+11
-6
paddle/fluid/operators/detection/yolov3_loss_op.cc
paddle/fluid/operators/detection/yolov3_loss_op.cc
+7
-127
paddle/fluid/operators/detection/yolov3_loss_op.h
paddle/fluid/operators/detection/yolov3_loss_op.h
+0
-506
paddle/phi/infermeta/multiary.cc
paddle/phi/infermeta/multiary.cc
+147
-0
paddle/phi/infermeta/multiary.h
paddle/phi/infermeta/multiary.h
+15
-0
paddle/phi/kernels/cpu/yolov3_loss_functor.h
paddle/phi/kernels/cpu/yolov3_loss_functor.h
+49
-0
paddle/phi/kernels/cpu/yolov3_loss_grad_kernel.cc
paddle/phi/kernels/cpu/yolov3_loss_grad_kernel.cc
+245
-0
paddle/phi/kernels/cpu/yolov3_loss_kernel.cc
paddle/phi/kernels/cpu/yolov3_loss_kernel.cc
+374
-0
paddle/phi/kernels/yolov3_loss_grad_kernel.h
paddle/phi/kernels/yolov3_loss_grad_kernel.h
+42
-0
paddle/phi/kernels/yolov3_loss_kernel.h
paddle/phi/kernels/yolov3_loss_kernel.h
+38
-0
paddle/phi/ops/compat/yolov3_loss_sig.cc
paddle/phi/ops/compat/yolov3_loss_sig.cc
+58
-0
未找到文件。
paddle/fluid/framework/operator.h
浏览文件 @
fb93bd5c
...
...
@@ -571,12 +571,17 @@ class OperatorWithKernel : public OperatorBase {
if
(
has_phi_kernel
)
{
return
true
;
}
else
{
auto
&
op_kernels
=
OperatorWithKernel
::
AllOpKernels
().
at
(
type_
);
return
std
::
any_of
(
op_kernels
.
begin
(),
op_kernels
.
end
(),
[](
OpKernelMap
::
const_reference
kern_pair
)
{
return
platform
::
is_gpu_place
(
kern_pair
.
first
.
place_
);
});
auto
kernel_iter
=
OperatorWithKernel
::
AllOpKernels
().
find
(
type_
);
if
(
kernel_iter
==
OperatorWithKernel
::
AllOpKernels
().
end
())
{
return
false
;
}
else
{
auto
&
op_kernels
=
kernel_iter
->
second
;
return
std
::
any_of
(
op_kernels
.
begin
(),
op_kernels
.
end
(),
[](
OpKernelMap
::
const_reference
kern_pair
)
{
return
platform
::
is_gpu_place
(
kern_pair
.
first
.
place_
);
});
}
}
}
...
...
paddle/fluid/operators/detection/yolov3_loss_op.cc
浏览文件 @
fb93bd5c
...
...
@@ -9,10 +9,12 @@
See the License for the specific language governing permissions and
limitations under the License. */
#include "paddle/fluid/operators/detection/yolov3_loss_op.h"
#include <memory>
#include "paddle/fluid/framework/infershape_utils.h"
#include "paddle/fluid/framework/op_registry.h"
#include "paddle/fluid/imperative/type_defs.h"
#include "paddle/phi/core/infermeta_utils.h"
#include "paddle/phi/infermeta/multiary.h"
namespace
paddle
{
namespace
operators
{
...
...
@@ -22,127 +24,6 @@ using framework::Tensor;
class
Yolov3LossOp
:
public
framework
::
OperatorWithKernel
{
public:
using
framework
::
OperatorWithKernel
::
OperatorWithKernel
;
void
InferShape
(
framework
::
InferShapeContext
*
ctx
)
const
override
{
OP_INOUT_CHECK
(
ctx
->
HasInput
(
"X"
),
"Input"
,
"X"
,
"Yolov3LossOp"
);
OP_INOUT_CHECK
(
ctx
->
HasInput
(
"GTBox"
),
"Input"
,
"GTBox"
,
"Yolov3LossOp"
);
OP_INOUT_CHECK
(
ctx
->
HasInput
(
"GTLabel"
),
"Input"
,
"GTLabel"
,
"Yolov3LossOp"
);
OP_INOUT_CHECK
(
ctx
->
HasOutput
(
"Loss"
),
"Output"
,
"Loss"
,
"Yolov3LossOp"
);
OP_INOUT_CHECK
(
ctx
->
HasOutput
(
"ObjectnessMask"
),
"Output"
,
"ObjectnessMask"
,
"Yolov3LossOp"
);
OP_INOUT_CHECK
(
ctx
->
HasOutput
(
"GTMatchMask"
),
"Output"
,
"GTMatchMask"
,
"Yolov3LossOp"
);
auto
dim_x
=
ctx
->
GetInputDim
(
"X"
);
auto
dim_gtbox
=
ctx
->
GetInputDim
(
"GTBox"
);
auto
dim_gtlabel
=
ctx
->
GetInputDim
(
"GTLabel"
);
auto
anchors
=
ctx
->
Attrs
().
Get
<
std
::
vector
<
int
>>
(
"anchors"
);
int
anchor_num
=
anchors
.
size
()
/
2
;
auto
anchor_mask
=
ctx
->
Attrs
().
Get
<
std
::
vector
<
int
>>
(
"anchor_mask"
);
int
mask_num
=
anchor_mask
.
size
();
auto
class_num
=
ctx
->
Attrs
().
Get
<
int
>
(
"class_num"
);
PADDLE_ENFORCE_EQ
(
dim_x
.
size
(),
4
,
platform
::
errors
::
InvalidArgument
(
"Input(X) should be a 4-D tensor. But received "
"X dimension size(%s)"
,
dim_x
.
size
()));
PADDLE_ENFORCE_EQ
(
dim_x
[
2
],
dim_x
[
3
],
platform
::
errors
::
InvalidArgument
(
"Input(X) dim[3] and dim[4] should be euqal."
"But received dim[3](%s) != dim[4](%s)"
,
dim_x
[
2
],
dim_x
[
3
]));
PADDLE_ENFORCE_EQ
(
dim_x
[
1
],
mask_num
*
(
5
+
class_num
),
platform
::
errors
::
InvalidArgument
(
"Input(X) dim[1] should be equal to (anchor_mask_number * (5 "
"+ class_num))."
"But received dim[1](%s) != (anchor_mask_number * "
"(5+class_num)(%s)."
,
dim_x
[
1
],
mask_num
*
(
5
+
class_num
)));
PADDLE_ENFORCE_EQ
(
dim_gtbox
.
size
(),
3
,
platform
::
errors
::
InvalidArgument
(
"Input(GTBox) should be a 3-D tensor, but "
"received gtbox dimension size(%s)"
,
dim_gtbox
.
size
()));
PADDLE_ENFORCE_EQ
(
dim_gtbox
[
2
],
4
,
platform
::
errors
::
InvalidArgument
(
"Input(GTBox) dim[2] should be 4"
,
"But receive dim[2](%s) != 5. "
,
dim_gtbox
[
2
]));
PADDLE_ENFORCE_EQ
(
dim_gtlabel
.
size
(),
2
,
platform
::
errors
::
InvalidArgument
(
"Input(GTLabel) should be a 2-D tensor,"
"But received Input(GTLabel) dimension size(%s) != 2."
,
dim_gtlabel
.
size
()));
PADDLE_ENFORCE_EQ
(
dim_gtlabel
[
0
],
dim_gtbox
[
0
],
platform
::
errors
::
InvalidArgument
(
"Input(GTBox) dim[0] and Input(GTLabel) dim[0] should be same,"
"But received Input(GTLabel) dim[0](%s) != "
"Input(GTBox) dim[0](%s)"
,
dim_gtlabel
[
0
],
dim_gtbox
[
0
]));
PADDLE_ENFORCE_EQ
(
dim_gtlabel
[
1
],
dim_gtbox
[
1
],
platform
::
errors
::
InvalidArgument
(
"Input(GTBox) and Input(GTLabel) dim[1] should be same,"
"But received Input(GTBox) dim[1](%s) != Input(GTLabel) "
"dim[1](%s)"
,
dim_gtbox
[
1
],
dim_gtlabel
[
1
]));
PADDLE_ENFORCE_GT
(
anchors
.
size
(),
0
,
platform
::
errors
::
InvalidArgument
(
"Attr(anchors) length should be greater then 0."
"But received anchors length(%s)"
,
anchors
.
size
()));
PADDLE_ENFORCE_EQ
(
anchors
.
size
()
%
2
,
0
,
platform
::
errors
::
InvalidArgument
(
"Attr(anchors) length should be even integer."
"But received anchors length(%s)"
,
anchors
.
size
()));
for
(
size_t
i
=
0
;
i
<
anchor_mask
.
size
();
i
++
)
{
PADDLE_ENFORCE_LT
(
anchor_mask
[
i
],
anchor_num
,
platform
::
errors
::
InvalidArgument
(
"Attr(anchor_mask) should not crossover Attr(anchors)."
"But received anchor_mask[i](%s) > anchor_num(%s)"
,
anchor_mask
[
i
],
anchor_num
));
}
PADDLE_ENFORCE_GT
(
class_num
,
0
,
platform
::
errors
::
InvalidArgument
(
"Attr(class_num) should be an integer greater then 0."
"But received class_num(%s) < 0"
,
class_num
));
if
(
ctx
->
HasInput
(
"GTScore"
))
{
auto
dim_gtscore
=
ctx
->
GetInputDim
(
"GTScore"
);
PADDLE_ENFORCE_EQ
(
dim_gtscore
.
size
(),
2
,
platform
::
errors
::
InvalidArgument
(
"Input(GTScore) should be a 2-D tensor"
"But received GTScore dimension(%s)"
,
dim_gtbox
.
size
()));
PADDLE_ENFORCE_EQ
(
dim_gtscore
[
0
],
dim_gtbox
[
0
],
platform
::
errors
::
InvalidArgument
(
"Input(GTBox) and Input(GTScore) dim[0] should be same"
"But received GTBox dim[0](%s) != GTScore dim[0](%s)"
,
dim_gtbox
[
0
],
dim_gtscore
[
0
]));
PADDLE_ENFORCE_EQ
(
dim_gtscore
[
1
],
dim_gtbox
[
1
],
platform
::
errors
::
InvalidArgument
(
"Input(GTBox) and Input(GTScore) dim[1] should be same"
"But received GTBox dim[1](%s) != GTScore dim[1](%s)"
,
dim_gtscore
[
1
],
dim_gtbox
[
1
]));
}
std
::
vector
<
int64_t
>
dim_out
({
dim_x
[
0
]});
ctx
->
SetOutputDim
(
"Loss"
,
phi
::
make_ddim
(
dim_out
));
std
::
vector
<
int64_t
>
dim_obj_mask
({
dim_x
[
0
],
mask_num
,
dim_x
[
2
],
dim_x
[
3
]});
ctx
->
SetOutputDim
(
"ObjectnessMask"
,
phi
::
make_ddim
(
dim_obj_mask
));
std
::
vector
<
int64_t
>
dim_gt_match_mask
({
dim_gtbox
[
0
],
dim_gtbox
[
1
]});
ctx
->
SetOutputDim
(
"GTMatchMask"
,
phi
::
make_ddim
(
dim_gt_match_mask
));
}
protected:
framework
::
OpKernelType
GetExpectedKernelType
(
...
...
@@ -347,11 +228,10 @@ class Yolov3LossGradMaker : public framework::SingleGradOpMaker<T> {
}
// namespace paddle
namespace
ops
=
paddle
::
operators
;
DECLARE_INFER_SHAPE_FUNCTOR
(
yolov3_loss
,
Yolov3LossInferShapeFunctor
,
PD_INFER_META
(
phi
::
Yolov3LossInferMeta
));
REGISTER_OPERATOR
(
yolov3_loss
,
ops
::
Yolov3LossOp
,
ops
::
Yolov3LossOpMaker
,
ops
::
Yolov3LossGradMaker
<
paddle
::
framework
::
OpDesc
>
,
ops
::
Yolov3LossGradMaker
<
paddle
::
imperative
::
OpBase
>
);
ops
::
Yolov3LossGradMaker
<
paddle
::
imperative
::
OpBase
>
,
Yolov3LossInferShapeFunctor
);
REGISTER_OPERATOR
(
yolov3_loss_grad
,
ops
::
Yolov3LossOpGrad
);
REGISTER_OP_CPU_KERNEL
(
yolov3_loss
,
ops
::
Yolov3LossKernel
<
float
>
,
ops
::
Yolov3LossKernel
<
double
>
);
REGISTER_OP_CPU_KERNEL
(
yolov3_loss_grad
,
ops
::
Yolov3LossGradKernel
<
float
>
,
ops
::
Yolov3LossGradKernel
<
double
>
);
paddle/fluid/operators/detection/yolov3_loss_op.h
已删除
100644 → 0
浏览文件 @
47383dca
/* Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserve.
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
#pragma once
#include <algorithm>
#include <vector>
#include "paddle/fluid/framework/op_registry.h"
#include "paddle/phi/kernels/funcs/math_function.h"
namespace
paddle
{
namespace
operators
{
using
Tensor
=
framework
::
Tensor
;
template
<
typename
T
,
size_t
D
,
int
MajorType
=
Eigen
::
RowMajor
,
typename
IndexType
=
Eigen
::
DenseIndex
>
using
EigenTensor
=
framework
::
EigenTensor
<
T
,
D
,
MajorType
,
IndexType
>
;
template
<
typename
T
,
int
MajorType
=
Eigen
::
RowMajor
,
typename
IndexType
=
Eigen
::
DenseIndex
>
using
EigenVector
=
framework
::
EigenVector
<
T
,
MajorType
,
IndexType
>
;
template
<
typename
T
>
static
inline
bool
LessEqualZero
(
T
x
)
{
return
x
<
1e-6
;
}
template
<
typename
T
>
static
T
SigmoidCrossEntropy
(
T
x
,
T
label
)
{
return
(
x
>
0
?
x
:
0.0
)
-
x
*
label
+
std
::
log
(
1.0
+
std
::
exp
(
-
std
::
abs
(
x
)));
}
template
<
typename
T
>
static
T
L1Loss
(
T
x
,
T
y
)
{
return
std
::
abs
(
y
-
x
);
}
template
<
typename
T
>
static
T
SigmoidCrossEntropyGrad
(
T
x
,
T
label
)
{
return
1.0
/
(
1.0
+
std
::
exp
(
-
x
))
-
label
;
}
template
<
typename
T
>
static
T
L1LossGrad
(
T
x
,
T
y
)
{
return
x
>
y
?
1.0
:
-
1.0
;
}
static
int
GetMaskIndex
(
std
::
vector
<
int
>
mask
,
int
val
)
{
for
(
size_t
i
=
0
;
i
<
mask
.
size
();
i
++
)
{
if
(
mask
[
i
]
==
val
)
{
return
i
;
}
}
return
-
1
;
}
template
<
typename
T
>
struct
Box
{
T
x
,
y
,
w
,
h
;
};
template
<
typename
T
>
static
inline
T
sigmoid
(
T
x
)
{
return
1.0
/
(
1.0
+
std
::
exp
(
-
x
));
}
template
<
typename
T
>
static
inline
Box
<
T
>
GetYoloBox
(
const
T
*
x
,
std
::
vector
<
int
>
anchors
,
int
i
,
int
j
,
int
an_idx
,
int
grid_size
,
int
input_size
,
int
index
,
int
stride
,
float
scale
,
float
bias
)
{
Box
<
T
>
b
;
b
.
x
=
(
i
+
sigmoid
<
T
>
(
x
[
index
])
*
scale
+
bias
)
/
grid_size
;
b
.
y
=
(
j
+
sigmoid
<
T
>
(
x
[
index
+
stride
])
*
scale
+
bias
)
/
grid_size
;
b
.
w
=
std
::
exp
(
x
[
index
+
2
*
stride
])
*
anchors
[
2
*
an_idx
]
/
input_size
;
b
.
h
=
std
::
exp
(
x
[
index
+
3
*
stride
])
*
anchors
[
2
*
an_idx
+
1
]
/
input_size
;
return
b
;
}
template
<
typename
T
>
static
inline
Box
<
T
>
GetGtBox
(
const
T
*
gt
,
int
batch
,
int
max_boxes
,
int
idx
)
{
Box
<
T
>
b
;
b
.
x
=
gt
[(
batch
*
max_boxes
+
idx
)
*
4
];
b
.
y
=
gt
[(
batch
*
max_boxes
+
idx
)
*
4
+
1
];
b
.
w
=
gt
[(
batch
*
max_boxes
+
idx
)
*
4
+
2
];
b
.
h
=
gt
[(
batch
*
max_boxes
+
idx
)
*
4
+
3
];
return
b
;
}
template
<
typename
T
>
static
inline
T
BoxOverlap
(
T
c1
,
T
w1
,
T
c2
,
T
w2
)
{
T
l1
=
c1
-
w1
/
2.0
;
T
l2
=
c2
-
w2
/
2.0
;
T
left
=
l1
>
l2
?
l1
:
l2
;
T
r1
=
c1
+
w1
/
2.0
;
T
r2
=
c2
+
w2
/
2.0
;
T
right
=
r1
<
r2
?
r1
:
r2
;
return
right
-
left
;
}
template
<
typename
T
>
static
inline
T
CalcBoxIoU
(
Box
<
T
>
b1
,
Box
<
T
>
b2
)
{
T
w
=
BoxOverlap
(
b1
.
x
,
b1
.
w
,
b2
.
x
,
b2
.
w
);
T
h
=
BoxOverlap
(
b1
.
y
,
b1
.
h
,
b2
.
y
,
b2
.
h
);
T
inter_area
=
(
w
<
0
||
h
<
0
)
?
0.0
:
w
*
h
;
T
union_area
=
b1
.
w
*
b1
.
h
+
b2
.
w
*
b2
.
h
-
inter_area
;
return
inter_area
/
union_area
;
}
static
inline
int
GetEntryIndex
(
int
batch
,
int
an_idx
,
int
hw_idx
,
int
an_num
,
int
an_stride
,
int
stride
,
int
entry
)
{
return
(
batch
*
an_num
+
an_idx
)
*
an_stride
+
entry
*
stride
+
hw_idx
;
}
template
<
typename
T
>
static
void
CalcBoxLocationLoss
(
T
*
loss
,
const
T
*
input
,
Box
<
T
>
gt
,
std
::
vector
<
int
>
anchors
,
int
an_idx
,
int
box_idx
,
int
gi
,
int
gj
,
int
grid_size
,
int
input_size
,
int
stride
,
T
score
)
{
T
tx
=
gt
.
x
*
grid_size
-
gi
;
T
ty
=
gt
.
y
*
grid_size
-
gj
;
T
tw
=
std
::
log
(
gt
.
w
*
input_size
/
anchors
[
2
*
an_idx
]);
T
th
=
std
::
log
(
gt
.
h
*
input_size
/
anchors
[
2
*
an_idx
+
1
]);
T
scale
=
(
2.0
-
gt
.
w
*
gt
.
h
)
*
score
;
loss
[
0
]
+=
SigmoidCrossEntropy
<
T
>
(
input
[
box_idx
],
tx
)
*
scale
;
loss
[
0
]
+=
SigmoidCrossEntropy
<
T
>
(
input
[
box_idx
+
stride
],
ty
)
*
scale
;
loss
[
0
]
+=
L1Loss
<
T
>
(
input
[
box_idx
+
2
*
stride
],
tw
)
*
scale
;
loss
[
0
]
+=
L1Loss
<
T
>
(
input
[
box_idx
+
3
*
stride
],
th
)
*
scale
;
}
template
<
typename
T
>
static
void
CalcBoxLocationLossGrad
(
T
*
input_grad
,
const
T
loss
,
const
T
*
input
,
Box
<
T
>
gt
,
std
::
vector
<
int
>
anchors
,
int
an_idx
,
int
box_idx
,
int
gi
,
int
gj
,
int
grid_size
,
int
input_size
,
int
stride
,
T
score
)
{
T
tx
=
gt
.
x
*
grid_size
-
gi
;
T
ty
=
gt
.
y
*
grid_size
-
gj
;
T
tw
=
std
::
log
(
gt
.
w
*
input_size
/
anchors
[
2
*
an_idx
]);
T
th
=
std
::
log
(
gt
.
h
*
input_size
/
anchors
[
2
*
an_idx
+
1
]);
T
scale
=
(
2.0
-
gt
.
w
*
gt
.
h
)
*
score
;
input_grad
[
box_idx
]
=
SigmoidCrossEntropyGrad
<
T
>
(
input
[
box_idx
],
tx
)
*
scale
*
loss
;
input_grad
[
box_idx
+
stride
]
=
SigmoidCrossEntropyGrad
<
T
>
(
input
[
box_idx
+
stride
],
ty
)
*
scale
*
loss
;
input_grad
[
box_idx
+
2
*
stride
]
=
L1LossGrad
<
T
>
(
input
[
box_idx
+
2
*
stride
],
tw
)
*
scale
*
loss
;
input_grad
[
box_idx
+
3
*
stride
]
=
L1LossGrad
<
T
>
(
input
[
box_idx
+
3
*
stride
],
th
)
*
scale
*
loss
;
}
template
<
typename
T
>
static
inline
void
CalcLabelLoss
(
T
*
loss
,
const
T
*
input
,
const
int
index
,
const
int
label
,
const
int
class_num
,
const
int
stride
,
const
T
pos
,
const
T
neg
,
T
score
)
{
for
(
int
i
=
0
;
i
<
class_num
;
i
++
)
{
T
pred
=
input
[
index
+
i
*
stride
];
loss
[
0
]
+=
SigmoidCrossEntropy
<
T
>
(
pred
,
(
i
==
label
)
?
pos
:
neg
)
*
score
;
}
}
template
<
typename
T
>
static
inline
void
CalcLabelLossGrad
(
T
*
input_grad
,
const
T
loss
,
const
T
*
input
,
const
int
index
,
const
int
label
,
const
int
class_num
,
const
int
stride
,
const
T
pos
,
const
T
neg
,
T
score
)
{
for
(
int
i
=
0
;
i
<
class_num
;
i
++
)
{
T
pred
=
input
[
index
+
i
*
stride
];
input_grad
[
index
+
i
*
stride
]
=
SigmoidCrossEntropyGrad
<
T
>
(
pred
,
(
i
==
label
)
?
pos
:
neg
)
*
score
*
loss
;
}
}
template
<
typename
T
>
static
inline
void
CalcObjnessLoss
(
T
*
loss
,
const
T
*
input
,
const
T
*
objness
,
const
int
n
,
const
int
an_num
,
const
int
h
,
const
int
w
,
const
int
stride
,
const
int
an_stride
)
{
for
(
int
i
=
0
;
i
<
n
;
i
++
)
{
for
(
int
j
=
0
;
j
<
an_num
;
j
++
)
{
for
(
int
k
=
0
;
k
<
h
;
k
++
)
{
for
(
int
l
=
0
;
l
<
w
;
l
++
)
{
T
obj
=
objness
[
k
*
w
+
l
];
if
(
obj
>
1e-5
)
{
// positive sample: obj = mixup score
loss
[
i
]
+=
SigmoidCrossEntropy
<
T
>
(
input
[
k
*
w
+
l
],
1.0
)
*
obj
;
}
else
if
(
obj
>
-
0.5
)
{
// negetive sample: obj = 0
loss
[
i
]
+=
SigmoidCrossEntropy
<
T
>
(
input
[
k
*
w
+
l
],
0.0
);
}
}
}
objness
+=
stride
;
input
+=
an_stride
;
}
}
}
template
<
typename
T
>
static
inline
void
CalcObjnessLossGrad
(
T
*
input_grad
,
const
T
*
loss
,
const
T
*
input
,
const
T
*
objness
,
const
int
n
,
const
int
an_num
,
const
int
h
,
const
int
w
,
const
int
stride
,
const
int
an_stride
)
{
for
(
int
i
=
0
;
i
<
n
;
i
++
)
{
for
(
int
j
=
0
;
j
<
an_num
;
j
++
)
{
for
(
int
k
=
0
;
k
<
h
;
k
++
)
{
for
(
int
l
=
0
;
l
<
w
;
l
++
)
{
T
obj
=
objness
[
k
*
w
+
l
];
if
(
obj
>
1e-5
)
{
input_grad
[
k
*
w
+
l
]
=
SigmoidCrossEntropyGrad
<
T
>
(
input
[
k
*
w
+
l
],
1.0
)
*
obj
*
loss
[
i
];
}
else
if
(
obj
>
-
0.5
)
{
input_grad
[
k
*
w
+
l
]
=
SigmoidCrossEntropyGrad
<
T
>
(
input
[
k
*
w
+
l
],
0.0
)
*
loss
[
i
];
}
}
}
objness
+=
stride
;
input
+=
an_stride
;
input_grad
+=
an_stride
;
}
}
}
template
<
typename
T
>
static
void
inline
GtValid
(
bool
*
valid
,
const
T
*
gtbox
,
const
int
n
,
const
int
b
)
{
for
(
int
i
=
0
;
i
<
n
;
i
++
)
{
for
(
int
j
=
0
;
j
<
b
;
j
++
)
{
if
(
LessEqualZero
(
gtbox
[
j
*
4
+
2
])
||
LessEqualZero
(
gtbox
[
j
*
4
+
3
]))
{
valid
[
j
]
=
false
;
}
else
{
valid
[
j
]
=
true
;
}
}
valid
+=
b
;
gtbox
+=
b
*
4
;
}
}
template
<
typename
T
>
class
Yolov3LossKernel
:
public
framework
::
OpKernel
<
T
>
{
public:
void
Compute
(
const
framework
::
ExecutionContext
&
ctx
)
const
override
{
auto
*
input
=
ctx
.
Input
<
Tensor
>
(
"X"
);
auto
*
gt_box
=
ctx
.
Input
<
Tensor
>
(
"GTBox"
);
auto
*
gt_label
=
ctx
.
Input
<
Tensor
>
(
"GTLabel"
);
auto
*
gt_score
=
ctx
.
Input
<
Tensor
>
(
"GTScore"
);
auto
*
loss
=
ctx
.
Output
<
Tensor
>
(
"Loss"
);
auto
*
objness_mask
=
ctx
.
Output
<
Tensor
>
(
"ObjectnessMask"
);
auto
*
gt_match_mask
=
ctx
.
Output
<
Tensor
>
(
"GTMatchMask"
);
auto
anchors
=
ctx
.
Attr
<
std
::
vector
<
int
>>
(
"anchors"
);
auto
anchor_mask
=
ctx
.
Attr
<
std
::
vector
<
int
>>
(
"anchor_mask"
);
int
class_num
=
ctx
.
Attr
<
int
>
(
"class_num"
);
float
ignore_thresh
=
ctx
.
Attr
<
float
>
(
"ignore_thresh"
);
int
downsample_ratio
=
ctx
.
Attr
<
int
>
(
"downsample_ratio"
);
bool
use_label_smooth
=
ctx
.
Attr
<
bool
>
(
"use_label_smooth"
);
float
scale
=
ctx
.
Attr
<
float
>
(
"scale_x_y"
);
float
bias
=
-
0.5
*
(
scale
-
1.
);
const
int
n
=
input
->
dims
()[
0
];
const
int
h
=
input
->
dims
()[
2
];
const
int
w
=
input
->
dims
()[
3
];
const
int
an_num
=
anchors
.
size
()
/
2
;
const
int
mask_num
=
anchor_mask
.
size
();
const
int
b
=
gt_box
->
dims
()[
1
];
int
input_size
=
downsample_ratio
*
h
;
const
int
stride
=
h
*
w
;
const
int
an_stride
=
(
class_num
+
5
)
*
stride
;
T
label_pos
=
1.0
;
T
label_neg
=
0.0
;
if
(
use_label_smooth
)
{
T
smooth_weight
=
std
::
min
(
1.0
/
static_cast
<
T
>
(
class_num
),
1.0
/
40
);
label_pos
=
1.0
-
smooth_weight
;
label_neg
=
smooth_weight
;
}
const
T
*
input_data
=
input
->
data
<
T
>
();
const
T
*
gt_box_data
=
gt_box
->
data
<
T
>
();
const
int
*
gt_label_data
=
gt_label
->
data
<
int
>
();
T
*
loss_data
=
loss
->
mutable_data
<
T
>
({
n
},
ctx
.
GetPlace
());
memset
(
loss_data
,
0
,
loss
->
numel
()
*
sizeof
(
T
));
T
*
obj_mask_data
=
objness_mask
->
mutable_data
<
T
>
({
n
,
mask_num
,
h
,
w
},
ctx
.
GetPlace
());
memset
(
obj_mask_data
,
0
,
objness_mask
->
numel
()
*
sizeof
(
T
));
int
*
gt_match_mask_data
=
gt_match_mask
->
mutable_data
<
int
>
({
n
,
b
},
ctx
.
GetPlace
());
const
T
*
gt_score_data
;
Tensor
gtscore
;
if
(
!
gt_score
)
{
gtscore
.
mutable_data
<
T
>
({
n
,
b
},
ctx
.
GetPlace
());
phi
::
funcs
::
SetConstant
<
platform
::
CPUDeviceContext
,
T
>
()(
ctx
.
template
device_context
<
platform
::
CPUDeviceContext
>(),
&
gtscore
,
static_cast
<
T
>
(
1.0
));
gt_score
=
&
gtscore
;
gt_score_data
=
gtscore
.
data
<
T
>
();
}
else
{
gt_score_data
=
gt_score
->
data
<
T
>
();
}
// calc valid gt box mask, avoid calc duplicately in following code
Tensor
gt_valid_mask
;
bool
*
gt_valid_mask_data
=
gt_valid_mask
.
mutable_data
<
bool
>
({
n
,
b
},
ctx
.
GetPlace
());
GtValid
<
T
>
(
gt_valid_mask_data
,
gt_box_data
,
n
,
b
);
for
(
int
i
=
0
;
i
<
n
;
i
++
)
{
for
(
int
j
=
0
;
j
<
mask_num
;
j
++
)
{
for
(
int
k
=
0
;
k
<
h
;
k
++
)
{
for
(
int
l
=
0
;
l
<
w
;
l
++
)
{
// each predict box find a best match gt box, if overlap is bigger
// then ignore_thresh, ignore the objectness loss.
int
box_idx
=
GetEntryIndex
(
i
,
j
,
k
*
w
+
l
,
mask_num
,
an_stride
,
stride
,
0
);
Box
<
T
>
pred
=
GetYoloBox
(
input_data
,
anchors
,
l
,
k
,
anchor_mask
[
j
],
h
,
input_size
,
box_idx
,
stride
,
scale
,
bias
);
T
best_iou
=
0
;
for
(
int
t
=
0
;
t
<
b
;
t
++
)
{
if
(
!
gt_valid_mask_data
[
i
*
b
+
t
])
{
continue
;
}
Box
<
T
>
gt
=
GetGtBox
(
gt_box_data
,
i
,
b
,
t
);
T
iou
=
CalcBoxIoU
(
pred
,
gt
);
if
(
iou
>
best_iou
)
{
best_iou
=
iou
;
}
}
// If best IoU is bigger then ignore_thresh,
// ignore the objectness loss.
if
(
best_iou
>
ignore_thresh
)
{
int
obj_idx
=
(
i
*
mask_num
+
j
)
*
stride
+
k
*
w
+
l
;
obj_mask_data
[
obj_idx
]
=
static_cast
<
T
>
(
-
1
);
}
// all losses should be calculated if best IoU
// is bigger then truth thresh, but currently,
// truth thresh is an unreachable value as 1.0.
}
}
}
for
(
int
t
=
0
;
t
<
b
;
t
++
)
{
if
(
!
gt_valid_mask_data
[
i
*
b
+
t
])
{
gt_match_mask_data
[
i
*
b
+
t
]
=
-
1
;
continue
;
}
Box
<
T
>
gt
=
GetGtBox
(
gt_box_data
,
i
,
b
,
t
);
int
gi
=
static_cast
<
int
>
(
gt
.
x
*
w
);
int
gj
=
static_cast
<
int
>
(
gt
.
y
*
h
);
Box
<
T
>
gt_shift
=
gt
;
gt_shift
.
x
=
0.0
;
gt_shift
.
y
=
0.0
;
T
best_iou
=
0.0
;
int
best_n
=
0
;
// each gt box find a best match anchor box as positive sample,
// for positive sample, all losses should be calculated, and for
// other samples, only objectness loss is required.
for
(
int
an_idx
=
0
;
an_idx
<
an_num
;
an_idx
++
)
{
Box
<
T
>
an_box
;
an_box
.
x
=
0.0
;
an_box
.
y
=
0.0
;
an_box
.
w
=
anchors
[
2
*
an_idx
]
/
static_cast
<
T
>
(
input_size
);
an_box
.
h
=
anchors
[
2
*
an_idx
+
1
]
/
static_cast
<
T
>
(
input_size
);
float
iou
=
CalcBoxIoU
<
T
>
(
an_box
,
gt_shift
);
if
(
iou
>
best_iou
)
{
best_iou
=
iou
;
best_n
=
an_idx
;
}
}
int
mask_idx
=
GetMaskIndex
(
anchor_mask
,
best_n
);
gt_match_mask_data
[
i
*
b
+
t
]
=
mask_idx
;
if
(
mask_idx
>=
0
)
{
T
score
=
gt_score_data
[
i
*
b
+
t
];
int
box_idx
=
GetEntryIndex
(
i
,
mask_idx
,
gj
*
w
+
gi
,
mask_num
,
an_stride
,
stride
,
0
);
CalcBoxLocationLoss
<
T
>
(
loss_data
+
i
,
input_data
,
gt
,
anchors
,
best_n
,
box_idx
,
gi
,
gj
,
h
,
input_size
,
stride
,
score
);
int
obj_idx
=
(
i
*
mask_num
+
mask_idx
)
*
stride
+
gj
*
w
+
gi
;
obj_mask_data
[
obj_idx
]
=
score
;
int
label
=
gt_label_data
[
i
*
b
+
t
];
int
label_idx
=
GetEntryIndex
(
i
,
mask_idx
,
gj
*
w
+
gi
,
mask_num
,
an_stride
,
stride
,
5
);
CalcLabelLoss
<
T
>
(
loss_data
+
i
,
input_data
,
label_idx
,
label
,
class_num
,
stride
,
label_pos
,
label_neg
,
score
);
}
}
}
CalcObjnessLoss
<
T
>
(
loss_data
,
input_data
+
4
*
stride
,
obj_mask_data
,
n
,
mask_num
,
h
,
w
,
stride
,
an_stride
);
}
};
template
<
typename
T
>
class
Yolov3LossGradKernel
:
public
framework
::
OpKernel
<
T
>
{
public:
void
Compute
(
const
framework
::
ExecutionContext
&
ctx
)
const
override
{
auto
*
input
=
ctx
.
Input
<
Tensor
>
(
"X"
);
auto
*
gt_box
=
ctx
.
Input
<
Tensor
>
(
"GTBox"
);
auto
*
gt_label
=
ctx
.
Input
<
Tensor
>
(
"GTLabel"
);
auto
*
gt_score
=
ctx
.
Input
<
Tensor
>
(
"GTScore"
);
auto
*
input_grad
=
ctx
.
Output
<
Tensor
>
(
framework
::
GradVarName
(
"X"
));
auto
*
loss_grad
=
ctx
.
Input
<
Tensor
>
(
framework
::
GradVarName
(
"Loss"
));
auto
*
objness_mask
=
ctx
.
Input
<
Tensor
>
(
"ObjectnessMask"
);
auto
*
gt_match_mask
=
ctx
.
Input
<
Tensor
>
(
"GTMatchMask"
);
auto
anchors
=
ctx
.
Attr
<
std
::
vector
<
int
>>
(
"anchors"
);
auto
anchor_mask
=
ctx
.
Attr
<
std
::
vector
<
int
>>
(
"anchor_mask"
);
int
class_num
=
ctx
.
Attr
<
int
>
(
"class_num"
);
int
downsample_ratio
=
ctx
.
Attr
<
int
>
(
"downsample_ratio"
);
bool
use_label_smooth
=
ctx
.
Attr
<
bool
>
(
"use_label_smooth"
);
const
int
n
=
input_grad
->
dims
()[
0
];
const
int
c
=
input_grad
->
dims
()[
1
];
const
int
h
=
input_grad
->
dims
()[
2
];
const
int
w
=
input_grad
->
dims
()[
3
];
const
int
mask_num
=
anchor_mask
.
size
();
const
int
b
=
gt_match_mask
->
dims
()[
1
];
int
input_size
=
downsample_ratio
*
h
;
const
int
stride
=
h
*
w
;
const
int
an_stride
=
(
class_num
+
5
)
*
stride
;
T
label_pos
=
1.0
;
T
label_neg
=
0.0
;
if
(
use_label_smooth
)
{
T
smooth_weight
=
std
::
min
(
1.0
/
static_cast
<
T
>
(
class_num
),
1.0
/
40
);
label_pos
=
1.0
-
smooth_weight
;
label_neg
=
smooth_weight
;
}
const
T
*
input_data
=
input
->
data
<
T
>
();
const
T
*
gt_box_data
=
gt_box
->
data
<
T
>
();
const
int
*
gt_label_data
=
gt_label
->
data
<
int
>
();
const
T
*
loss_grad_data
=
loss_grad
->
data
<
T
>
();
const
T
*
obj_mask_data
=
objness_mask
->
data
<
T
>
();
const
int
*
gt_match_mask_data
=
gt_match_mask
->
data
<
int
>
();
T
*
input_grad_data
=
input_grad
->
mutable_data
<
T
>
({
n
,
c
,
h
,
w
},
ctx
.
GetPlace
());
memset
(
input_grad_data
,
0
,
input_grad
->
numel
()
*
sizeof
(
T
));
const
T
*
gt_score_data
;
Tensor
gtscore
;
if
(
!
gt_score
)
{
gtscore
.
mutable_data
<
T
>
({
n
,
b
},
ctx
.
GetPlace
());
phi
::
funcs
::
SetConstant
<
platform
::
CPUDeviceContext
,
T
>
()(
ctx
.
template
device_context
<
platform
::
CPUDeviceContext
>(),
&
gtscore
,
static_cast
<
T
>
(
1.0
));
gt_score
=
&
gtscore
;
gt_score_data
=
gtscore
.
data
<
T
>
();
}
else
{
gt_score_data
=
gt_score
->
data
<
T
>
();
}
for
(
int
i
=
0
;
i
<
n
;
i
++
)
{
for
(
int
t
=
0
;
t
<
b
;
t
++
)
{
int
mask_idx
=
gt_match_mask_data
[
i
*
b
+
t
];
if
(
mask_idx
>=
0
)
{
T
score
=
gt_score_data
[
i
*
b
+
t
];
Box
<
T
>
gt
=
GetGtBox
(
gt_box_data
,
i
,
b
,
t
);
int
gi
=
static_cast
<
int
>
(
gt
.
x
*
w
);
int
gj
=
static_cast
<
int
>
(
gt
.
y
*
h
);
int
box_idx
=
GetEntryIndex
(
i
,
mask_idx
,
gj
*
w
+
gi
,
mask_num
,
an_stride
,
stride
,
0
);
CalcBoxLocationLossGrad
<
T
>
(
input_grad_data
,
loss_grad_data
[
i
],
input_data
,
gt
,
anchors
,
anchor_mask
[
mask_idx
],
box_idx
,
gi
,
gj
,
h
,
input_size
,
stride
,
score
);
int
label
=
gt_label_data
[
i
*
b
+
t
];
int
label_idx
=
GetEntryIndex
(
i
,
mask_idx
,
gj
*
w
+
gi
,
mask_num
,
an_stride
,
stride
,
5
);
CalcLabelLossGrad
<
T
>
(
input_grad_data
,
loss_grad_data
[
i
],
input_data
,
label_idx
,
label
,
class_num
,
stride
,
label_pos
,
label_neg
,
score
);
}
}
}
CalcObjnessLossGrad
<
T
>
(
input_grad_data
+
4
*
stride
,
loss_grad_data
,
input_data
+
4
*
stride
,
obj_mask_data
,
n
,
mask_num
,
h
,
w
,
stride
,
an_stride
);
}
};
}
// namespace operators
}
// namespace paddle
paddle/phi/infermeta/multiary.cc
浏览文件 @
fb93bd5c
...
...
@@ -1229,6 +1229,153 @@ void WhereInferMeta(const MetaTensor& condition,
out
->
share_meta
(
x
);
}
void
Yolov3LossInferMeta
(
const
MetaTensor
&
x
,
const
MetaTensor
&
gt_box
,
const
MetaTensor
&
gt_label
,
const
paddle
::
optional
<
const
MetaTensor
&>
gt_score
,
const
std
::
vector
<
int
>&
anchors
,
const
std
::
vector
<
int
>&
anchor_mask
,
int
class_num
,
float
ignore_thresh
,
int
downsample_ratio
,
bool
use_label_smooth
,
float
scale_x_y
,
MetaTensor
*
loss
,
MetaTensor
*
objectness_mask
,
MetaTensor
*
gt_match_mask
)
{
auto
dim_x
=
x
.
dims
();
auto
dim_gtbox
=
gt_box
.
dims
();
auto
dim_gtlabel
=
gt_label
.
dims
();
int
anchor_num
=
anchors
.
size
()
/
2
;
int
mask_num
=
anchor_mask
.
size
();
PADDLE_ENFORCE_EQ
(
dim_x
.
size
(),
4
,
phi
::
errors
::
InvalidArgument
(
"Input(X) should be a 4-D tensor. But received "
"X dimension size(%s)"
,
dim_x
.
size
()));
PADDLE_ENFORCE_EQ
(
dim_x
[
2
],
dim_x
[
3
],
phi
::
errors
::
InvalidArgument
(
"Input(X) dim[3] and dim[4] should be euqal."
"But received dim[3](%s) != dim[4](%s)"
,
dim_x
[
2
],
dim_x
[
3
]));
PADDLE_ENFORCE_EQ
(
dim_x
[
1
],
mask_num
*
(
5
+
class_num
),
phi
::
errors
::
InvalidArgument
(
"Input(X) dim[1] should be equal to (anchor_mask_number * (5 "
"+ class_num))."
"But received dim[1](%s) != (anchor_mask_number * "
"(5+class_num)(%s)."
,
dim_x
[
1
],
mask_num
*
(
5
+
class_num
)));
PADDLE_ENFORCE_EQ
(
dim_gtbox
.
size
(),
3
,
phi
::
errors
::
InvalidArgument
(
"Input(GTBox) should be a 3-D tensor, but "
"received gtbox dimension size(%s)"
,
dim_gtbox
.
size
()));
PADDLE_ENFORCE_EQ
(
dim_gtbox
[
2
],
4
,
phi
::
errors
::
InvalidArgument
(
"Input(GTBox) dim[2] should be 4"
,
"But receive dim[2](%s) != 5. "
,
dim_gtbox
[
2
]));
PADDLE_ENFORCE_EQ
(
dim_gtlabel
.
size
(),
2
,
phi
::
errors
::
InvalidArgument
(
"Input(GTLabel) should be a 2-D tensor,"
"But received Input(GTLabel) dimension size(%s) != 2."
,
dim_gtlabel
.
size
()));
PADDLE_ENFORCE_EQ
(
dim_gtlabel
[
0
],
dim_gtbox
[
0
],
phi
::
errors
::
InvalidArgument
(
"Input(GTBox) dim[0] and Input(GTLabel) dim[0] should be same,"
"But received Input(GTLabel) dim[0](%s) != "
"Input(GTBox) dim[0](%s)"
,
dim_gtlabel
[
0
],
dim_gtbox
[
0
]));
PADDLE_ENFORCE_EQ
(
dim_gtlabel
[
1
],
dim_gtbox
[
1
],
phi
::
errors
::
InvalidArgument
(
"Input(GTBox) and Input(GTLabel) dim[1] should be same,"
"But received Input(GTBox) dim[1](%s) != Input(GTLabel) "
"dim[1](%s)"
,
dim_gtbox
[
1
],
dim_gtlabel
[
1
]));
PADDLE_ENFORCE_GT
(
anchors
.
size
(),
0
,
phi
::
errors
::
InvalidArgument
(
"Attr(anchors) length should be greater then 0."
"But received anchors length(%s)"
,
anchors
.
size
()));
PADDLE_ENFORCE_EQ
(
anchors
.
size
()
%
2
,
0
,
phi
::
errors
::
InvalidArgument
(
"Attr(anchors) length should be even integer."
"But received anchors length(%s)"
,
anchors
.
size
()));
for
(
size_t
i
=
0
;
i
<
anchor_mask
.
size
();
i
++
)
{
PADDLE_ENFORCE_LT
(
anchor_mask
[
i
],
anchor_num
,
phi
::
errors
::
InvalidArgument
(
"Attr(anchor_mask) should not crossover Attr(anchors)."
"But received anchor_mask[i](%s) > anchor_num(%s)"
,
anchor_mask
[
i
],
anchor_num
));
}
PADDLE_ENFORCE_GT
(
class_num
,
0
,
phi
::
errors
::
InvalidArgument
(
"Attr(class_num) should be an integer greater then 0."
"But received class_num(%s) < 0"
,
class_num
));
if
(
gt_score
.
get_ptr
())
{
auto
dim_gtscore
=
gt_score
->
dims
();
PADDLE_ENFORCE_EQ
(
dim_gtscore
.
size
(),
2
,
phi
::
errors
::
InvalidArgument
(
"Input(GTScore) should be a 2-D tensor"
"But received GTScore dimension(%s)"
,
dim_gtbox
.
size
()));
PADDLE_ENFORCE_EQ
(
dim_gtscore
[
0
],
dim_gtbox
[
0
],
phi
::
errors
::
InvalidArgument
(
"Input(GTBox) and Input(GTScore) dim[0] should be same"
"But received GTBox dim[0](%s) != GTScore dim[0](%s)"
,
dim_gtbox
[
0
],
dim_gtscore
[
0
]));
PADDLE_ENFORCE_EQ
(
dim_gtscore
[
1
],
dim_gtbox
[
1
],
phi
::
errors
::
InvalidArgument
(
"Input(GTBox) and Input(GTScore) dim[1] should be same"
"But received GTBox dim[1](%s) != GTScore dim[1](%s)"
,
dim_gtscore
[
1
],
dim_gtbox
[
1
]));
}
std
::
vector
<
int64_t
>
dim_out
({
dim_x
[
0
]});
loss
->
set_dims
(
phi
::
make_ddim
(
dim_out
));
loss
->
set_dtype
(
x
.
dtype
());
std
::
vector
<
int64_t
>
dim_obj_mask
({
dim_x
[
0
],
mask_num
,
dim_x
[
2
],
dim_x
[
3
]});
objectness_mask
->
set_dims
(
phi
::
make_ddim
(
dim_obj_mask
));
objectness_mask
->
set_dtype
(
x
.
dtype
());
std
::
vector
<
int64_t
>
dim_gt_match_mask
({
dim_gtbox
[
0
],
dim_gtbox
[
1
]});
gt_match_mask
->
set_dims
(
phi
::
make_ddim
(
dim_gt_match_mask
));
gt_match_mask
->
set_dtype
(
x
.
dtype
());
}
}
// namespace phi
PD_REGISTER_INFER_META_FN
(
batch_norm
,
phi
::
BatchNormInferMeta
);
...
...
paddle/phi/infermeta/multiary.h
浏览文件 @
fb93bd5c
...
...
@@ -245,4 +245,19 @@ void WhereInferMeta(const MetaTensor& condition,
const
MetaTensor
&
y
,
MetaTensor
*
out
);
void
Yolov3LossInferMeta
(
const
MetaTensor
&
x
,
const
MetaTensor
&
gt_box
,
const
MetaTensor
&
gt_label
,
const
paddle
::
optional
<
const
MetaTensor
&>
gt_score
,
const
std
::
vector
<
int
>&
anchors
,
const
std
::
vector
<
int
>&
anchor_mask
,
int
class_num
,
float
ignore_thresh
,
int
downsample_ratio
,
bool
use_label_smooth
,
float
scale_x_y
,
MetaTensor
*
loss
,
MetaTensor
*
objectness_mask
,
MetaTensor
*
gt_match_mask
);
}
// namespace phi
paddle/phi/kernels/cpu/yolov3_loss_functor.h
0 → 100644
浏览文件 @
fb93bd5c
// Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
#pragma once
namespace
phi
{
template
<
typename
T
>
struct
Box
{
T
x
,
y
,
w
,
h
;
};
template
<
typename
T
>
static
inline
T
sigmoid
(
T
x
)
{
return
1.0
/
(
1.0
+
std
::
exp
(
-
x
));
}
template
<
typename
T
>
static
inline
Box
<
T
>
GetGtBox
(
const
T
*
gt
,
int
batch
,
int
max_boxes
,
int
idx
)
{
Box
<
T
>
b
;
b
.
x
=
gt
[(
batch
*
max_boxes
+
idx
)
*
4
];
b
.
y
=
gt
[(
batch
*
max_boxes
+
idx
)
*
4
+
1
];
b
.
w
=
gt
[(
batch
*
max_boxes
+
idx
)
*
4
+
2
];
b
.
h
=
gt
[(
batch
*
max_boxes
+
idx
)
*
4
+
3
];
return
b
;
}
static
inline
int
GetEntryIndex
(
int
batch
,
int
an_idx
,
int
hw_idx
,
int
an_num
,
int
an_stride
,
int
stride
,
int
entry
)
{
return
(
batch
*
an_num
+
an_idx
)
*
an_stride
+
entry
*
stride
+
hw_idx
;
}
}
// namespace phi
paddle/phi/kernels/cpu/yolov3_loss_grad_kernel.cc
0 → 100644
浏览文件 @
fb93bd5c
// Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
#include <algorithm>
#include <vector>
#include "paddle/phi/kernels/yolov3_loss_grad_kernel.h"
#include "paddle/phi/backends/cpu/cpu_context.h"
#include "paddle/phi/core/kernel_registry.h"
#include "paddle/phi/kernels/cpu/yolov3_loss_functor.h"
#include "paddle/phi/kernels/funcs/math_function.h"
namespace
phi
{
template
<
typename
T
>
static
T
SigmoidCrossEntropyGrad
(
T
x
,
T
label
)
{
return
1.0
/
(
1.0
+
std
::
exp
(
-
x
))
-
label
;
}
template
<
typename
T
>
static
T
L1LossGrad
(
T
x
,
T
y
)
{
return
x
>
y
?
1.0
:
-
1.0
;
}
template
<
typename
T
>
static
void
CalcBoxLocationLossGrad
(
T
*
input_grad
,
const
T
loss
,
const
T
*
input
,
Box
<
T
>
gt
,
std
::
vector
<
int
>
anchors
,
int
an_idx
,
int
box_idx
,
int
gi
,
int
gj
,
int
grid_size
,
int
input_size
,
int
stride
,
T
score
)
{
T
tx
=
gt
.
x
*
grid_size
-
gi
;
T
ty
=
gt
.
y
*
grid_size
-
gj
;
T
tw
=
std
::
log
(
gt
.
w
*
input_size
/
anchors
[
2
*
an_idx
]);
T
th
=
std
::
log
(
gt
.
h
*
input_size
/
anchors
[
2
*
an_idx
+
1
]);
T
scale
=
(
2.0
-
gt
.
w
*
gt
.
h
)
*
score
;
input_grad
[
box_idx
]
=
SigmoidCrossEntropyGrad
<
T
>
(
input
[
box_idx
],
tx
)
*
scale
*
loss
;
input_grad
[
box_idx
+
stride
]
=
SigmoidCrossEntropyGrad
<
T
>
(
input
[
box_idx
+
stride
],
ty
)
*
scale
*
loss
;
input_grad
[
box_idx
+
2
*
stride
]
=
L1LossGrad
<
T
>
(
input
[
box_idx
+
2
*
stride
],
tw
)
*
scale
*
loss
;
input_grad
[
box_idx
+
3
*
stride
]
=
L1LossGrad
<
T
>
(
input
[
box_idx
+
3
*
stride
],
th
)
*
scale
*
loss
;
}
template
<
typename
T
>
static
inline
void
CalcLabelLossGrad
(
T
*
input_grad
,
const
T
loss
,
const
T
*
input
,
const
int
index
,
const
int
label
,
const
int
class_num
,
const
int
stride
,
const
T
pos
,
const
T
neg
,
T
score
)
{
for
(
int
i
=
0
;
i
<
class_num
;
i
++
)
{
T
pred
=
input
[
index
+
i
*
stride
];
input_grad
[
index
+
i
*
stride
]
=
SigmoidCrossEntropyGrad
<
T
>
(
pred
,
(
i
==
label
)
?
pos
:
neg
)
*
score
*
loss
;
}
}
template
<
typename
T
>
static
inline
void
CalcObjnessLossGrad
(
T
*
input_grad
,
const
T
*
loss
,
const
T
*
input
,
const
T
*
objness
,
const
int
n
,
const
int
an_num
,
const
int
h
,
const
int
w
,
const
int
stride
,
const
int
an_stride
)
{
for
(
int
i
=
0
;
i
<
n
;
i
++
)
{
for
(
int
j
=
0
;
j
<
an_num
;
j
++
)
{
for
(
int
k
=
0
;
k
<
h
;
k
++
)
{
for
(
int
l
=
0
;
l
<
w
;
l
++
)
{
T
obj
=
objness
[
k
*
w
+
l
];
if
(
obj
>
1e-5
)
{
input_grad
[
k
*
w
+
l
]
=
SigmoidCrossEntropyGrad
<
T
>
(
input
[
k
*
w
+
l
],
1.0
)
*
obj
*
loss
[
i
];
}
else
if
(
obj
>
-
0.5
)
{
input_grad
[
k
*
w
+
l
]
=
SigmoidCrossEntropyGrad
<
T
>
(
input
[
k
*
w
+
l
],
0.0
)
*
loss
[
i
];
}
}
}
objness
+=
stride
;
input
+=
an_stride
;
input_grad
+=
an_stride
;
}
}
}
template
<
typename
T
,
typename
Context
>
void
Yolov3LossGradKernel
(
const
Context
&
dev_ctx
,
const
DenseTensor
&
x
,
const
DenseTensor
&
gt_box
,
const
DenseTensor
&
gt_label
,
paddle
::
optional
<
const
DenseTensor
&>
gt_score
,
const
DenseTensor
&
loss_grad
,
const
DenseTensor
&
objectness_mask
,
const
DenseTensor
&
gt_match_mask
,
const
std
::
vector
<
int
>&
anchors
,
const
std
::
vector
<
int
>&
anchor_mask
,
int
class_num
,
float
ignore_thresh
,
int
downsample_ratio
,
bool
use_label_smooth
,
float
scale_x_y
,
DenseTensor
*
x_grad
,
DenseTensor
*
gt_box_grad
,
DenseTensor
*
gt_label_grad
,
DenseTensor
*
gt_score_grad
)
{
auto
*
input
=
&
x
;
auto
input_grad
=
x_grad
;
auto
*
objness_mask
=
&
objectness_mask
;
const
int
n
=
input_grad
->
dims
()[
0
];
const
int
c
=
input_grad
->
dims
()[
1
];
const
int
h
=
input_grad
->
dims
()[
2
];
const
int
w
=
input_grad
->
dims
()[
3
];
const
int
mask_num
=
anchor_mask
.
size
();
const
int
b
=
gt_match_mask
.
dims
()[
1
];
int
input_size
=
downsample_ratio
*
h
;
const
int
stride
=
h
*
w
;
const
int
an_stride
=
(
class_num
+
5
)
*
stride
;
T
label_pos
=
1.0
;
T
label_neg
=
0.0
;
if
(
use_label_smooth
)
{
T
smooth_weight
=
std
::
min
(
1.0
/
static_cast
<
T
>
(
class_num
),
1.0
/
40
);
label_pos
=
1.0
-
smooth_weight
;
label_neg
=
smooth_weight
;
}
const
T
*
input_data
=
input
->
data
<
T
>
();
const
T
*
gt_box_data
=
gt_box
.
data
<
T
>
();
const
int
*
gt_label_data
=
gt_label
.
data
<
int
>
();
const
T
*
loss_grad_data
=
loss_grad
.
data
<
T
>
();
const
T
*
obj_mask_data
=
objness_mask
->
data
<
T
>
();
const
int
*
gt_match_mask_data
=
gt_match_mask
.
data
<
int
>
();
input_grad
->
Resize
({
n
,
c
,
h
,
w
});
T
*
input_grad_data
=
dev_ctx
.
template
Alloc
<
T
>(
input_grad
);
memset
(
input_grad_data
,
0
,
input_grad
->
numel
()
*
sizeof
(
T
));
const
T
*
gt_score_data
;
DenseTensor
gtscore
;
if
(
!
(
gt_score
.
is_initialized
()))
{
gtscore
.
Resize
({
n
,
b
});
dev_ctx
.
template
Alloc
<
T
>(
&
gtscore
);
phi
::
funcs
::
SetConstant
<
Context
,
T
>
()(
dev_ctx
,
&
gtscore
,
static_cast
<
T
>
(
1.0
));
gt_score_data
=
gtscore
.
data
<
T
>
();
}
else
{
gt_score_data
=
gt_score
.
get_ptr
()
->
data
<
T
>
();
}
for
(
int
i
=
0
;
i
<
n
;
i
++
)
{
for
(
int
t
=
0
;
t
<
b
;
t
++
)
{
int
mask_idx
=
gt_match_mask_data
[
i
*
b
+
t
];
if
(
mask_idx
>=
0
)
{
T
score
=
gt_score_data
[
i
*
b
+
t
];
Box
<
T
>
gt
=
GetGtBox
(
gt_box_data
,
i
,
b
,
t
);
int
gi
=
static_cast
<
int
>
(
gt
.
x
*
w
);
int
gj
=
static_cast
<
int
>
(
gt
.
y
*
h
);
int
box_idx
=
GetEntryIndex
(
i
,
mask_idx
,
gj
*
w
+
gi
,
mask_num
,
an_stride
,
stride
,
0
);
CalcBoxLocationLossGrad
<
T
>
(
input_grad_data
,
loss_grad_data
[
i
],
input_data
,
gt
,
anchors
,
anchor_mask
[
mask_idx
],
box_idx
,
gi
,
gj
,
h
,
input_size
,
stride
,
score
);
int
label
=
gt_label_data
[
i
*
b
+
t
];
int
label_idx
=
GetEntryIndex
(
i
,
mask_idx
,
gj
*
w
+
gi
,
mask_num
,
an_stride
,
stride
,
5
);
CalcLabelLossGrad
<
T
>
(
input_grad_data
,
loss_grad_data
[
i
],
input_data
,
label_idx
,
label
,
class_num
,
stride
,
label_pos
,
label_neg
,
score
);
}
}
}
CalcObjnessLossGrad
<
T
>
(
input_grad_data
+
4
*
stride
,
loss_grad_data
,
input_data
+
4
*
stride
,
obj_mask_data
,
n
,
mask_num
,
h
,
w
,
stride
,
an_stride
);
}
}
// namespace phi
PD_REGISTER_KERNEL
(
yolov3_loss_grad
,
CPU
,
ALL_LAYOUT
,
phi
::
Yolov3LossGradKernel
,
float
,
double
)
{}
paddle/phi/kernels/cpu/yolov3_loss_kernel.cc
0 → 100644
浏览文件 @
fb93bd5c
// Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
#include <algorithm>
#include <vector>
#include "paddle/phi/kernels/yolov3_loss_kernel.h"
#include "paddle/phi/backends/cpu/cpu_context.h"
#include "paddle/phi/core/kernel_registry.h"
#include "paddle/phi/kernels/cpu/yolov3_loss_functor.h"
#include "paddle/phi/kernels/funcs/math_function.h"
namespace
phi
{
template
<
typename
T
>
static
inline
bool
LessEqualZero
(
T
x
)
{
return
x
<
1e-6
;
}
template
<
typename
T
>
static
T
SigmoidCrossEntropy
(
T
x
,
T
label
)
{
return
(
x
>
0
?
x
:
0.0
)
-
x
*
label
+
std
::
log
(
1.0
+
std
::
exp
(
-
std
::
abs
(
x
)));
}
template
<
typename
T
>
static
T
L1Loss
(
T
x
,
T
y
)
{
return
std
::
abs
(
y
-
x
);
}
static
int
GetMaskIndex
(
std
::
vector
<
int
>
mask
,
int
val
)
{
for
(
size_t
i
=
0
;
i
<
mask
.
size
();
i
++
)
{
if
(
mask
[
i
]
==
val
)
{
return
i
;
}
}
return
-
1
;
}
template
<
typename
T
>
static
inline
Box
<
T
>
GetYoloBox
(
const
T
*
x
,
std
::
vector
<
int
>
anchors
,
int
i
,
int
j
,
int
an_idx
,
int
grid_size
,
int
input_size
,
int
index
,
int
stride
,
float
scale
,
float
bias
)
{
Box
<
T
>
b
;
b
.
x
=
(
i
+
sigmoid
<
T
>
(
x
[
index
])
*
scale
+
bias
)
/
grid_size
;
b
.
y
=
(
j
+
sigmoid
<
T
>
(
x
[
index
+
stride
])
*
scale
+
bias
)
/
grid_size
;
b
.
w
=
std
::
exp
(
x
[
index
+
2
*
stride
])
*
anchors
[
2
*
an_idx
]
/
input_size
;
b
.
h
=
std
::
exp
(
x
[
index
+
3
*
stride
])
*
anchors
[
2
*
an_idx
+
1
]
/
input_size
;
return
b
;
}
template
<
typename
T
>
static
inline
T
BoxOverlap
(
T
c1
,
T
w1
,
T
c2
,
T
w2
)
{
T
l1
=
c1
-
w1
/
2.0
;
T
l2
=
c2
-
w2
/
2.0
;
T
left
=
l1
>
l2
?
l1
:
l2
;
T
r1
=
c1
+
w1
/
2.0
;
T
r2
=
c2
+
w2
/
2.0
;
T
right
=
r1
<
r2
?
r1
:
r2
;
return
right
-
left
;
}
template
<
typename
T
>
static
inline
T
CalcBoxIoU
(
Box
<
T
>
b1
,
Box
<
T
>
b2
)
{
T
w
=
BoxOverlap
(
b1
.
x
,
b1
.
w
,
b2
.
x
,
b2
.
w
);
T
h
=
BoxOverlap
(
b1
.
y
,
b1
.
h
,
b2
.
y
,
b2
.
h
);
T
inter_area
=
(
w
<
0
||
h
<
0
)
?
0.0
:
w
*
h
;
T
union_area
=
b1
.
w
*
b1
.
h
+
b2
.
w
*
b2
.
h
-
inter_area
;
return
inter_area
/
union_area
;
}
template
<
typename
T
>
static
void
CalcBoxLocationLoss
(
T
*
loss
,
const
T
*
input
,
Box
<
T
>
gt
,
std
::
vector
<
int
>
anchors
,
int
an_idx
,
int
box_idx
,
int
gi
,
int
gj
,
int
grid_size
,
int
input_size
,
int
stride
,
T
score
)
{
T
tx
=
gt
.
x
*
grid_size
-
gi
;
T
ty
=
gt
.
y
*
grid_size
-
gj
;
T
tw
=
std
::
log
(
gt
.
w
*
input_size
/
anchors
[
2
*
an_idx
]);
T
th
=
std
::
log
(
gt
.
h
*
input_size
/
anchors
[
2
*
an_idx
+
1
]);
T
scale
=
(
2.0
-
gt
.
w
*
gt
.
h
)
*
score
;
loss
[
0
]
+=
SigmoidCrossEntropy
<
T
>
(
input
[
box_idx
],
tx
)
*
scale
;
loss
[
0
]
+=
SigmoidCrossEntropy
<
T
>
(
input
[
box_idx
+
stride
],
ty
)
*
scale
;
loss
[
0
]
+=
L1Loss
<
T
>
(
input
[
box_idx
+
2
*
stride
],
tw
)
*
scale
;
loss
[
0
]
+=
L1Loss
<
T
>
(
input
[
box_idx
+
3
*
stride
],
th
)
*
scale
;
}
template
<
typename
T
>
static
inline
void
CalcLabelLoss
(
T
*
loss
,
const
T
*
input
,
const
int
index
,
const
int
label
,
const
int
class_num
,
const
int
stride
,
const
T
pos
,
const
T
neg
,
T
score
)
{
for
(
int
i
=
0
;
i
<
class_num
;
i
++
)
{
T
pred
=
input
[
index
+
i
*
stride
];
loss
[
0
]
+=
SigmoidCrossEntropy
<
T
>
(
pred
,
(
i
==
label
)
?
pos
:
neg
)
*
score
;
}
}
template
<
typename
T
>
static
inline
void
CalcObjnessLoss
(
T
*
loss
,
const
T
*
input
,
const
T
*
objness
,
const
int
n
,
const
int
an_num
,
const
int
h
,
const
int
w
,
const
int
stride
,
const
int
an_stride
)
{
for
(
int
i
=
0
;
i
<
n
;
i
++
)
{
for
(
int
j
=
0
;
j
<
an_num
;
j
++
)
{
for
(
int
k
=
0
;
k
<
h
;
k
++
)
{
for
(
int
l
=
0
;
l
<
w
;
l
++
)
{
T
obj
=
objness
[
k
*
w
+
l
];
if
(
obj
>
1e-5
)
{
// positive sample: obj = mixup score
loss
[
i
]
+=
SigmoidCrossEntropy
<
T
>
(
input
[
k
*
w
+
l
],
1.0
)
*
obj
;
}
else
if
(
obj
>
-
0.5
)
{
// negetive sample: obj = 0
loss
[
i
]
+=
SigmoidCrossEntropy
<
T
>
(
input
[
k
*
w
+
l
],
0.0
);
}
}
}
objness
+=
stride
;
input
+=
an_stride
;
}
}
}
template
<
typename
T
>
static
void
inline
GtValid
(
bool
*
valid
,
const
T
*
gtbox
,
const
int
n
,
const
int
b
)
{
for
(
int
i
=
0
;
i
<
n
;
i
++
)
{
for
(
int
j
=
0
;
j
<
b
;
j
++
)
{
if
(
LessEqualZero
(
gtbox
[
j
*
4
+
2
])
||
LessEqualZero
(
gtbox
[
j
*
4
+
3
]))
{
valid
[
j
]
=
false
;
}
else
{
valid
[
j
]
=
true
;
}
}
valid
+=
b
;
gtbox
+=
b
*
4
;
}
}
template
<
typename
T
,
typename
Context
>
void
Yolov3LossKernel
(
const
Context
&
dev_ctx
,
const
DenseTensor
&
x
,
const
DenseTensor
&
gt_box
,
const
DenseTensor
&
gt_label
,
paddle
::
optional
<
const
DenseTensor
&>
gt_score
,
const
std
::
vector
<
int
>&
anchors
,
const
std
::
vector
<
int
>&
anchor_mask
,
int
class_num
,
float
ignore_thresh
,
int
downsample_ratio
,
bool
use_label_smooth
,
float
scale_x_y
,
DenseTensor
*
loss
,
DenseTensor
*
objectness_mask
,
DenseTensor
*
gt_match_mask
)
{
auto
*
input
=
&
x
;
auto
objness_mask
=
objectness_mask
;
float
scale
=
scale_x_y
;
float
bias
=
-
0.5
*
(
scale
-
1.
);
const
int
n
=
input
->
dims
()[
0
];
const
int
h
=
input
->
dims
()[
2
];
const
int
w
=
input
->
dims
()[
3
];
const
int
an_num
=
anchors
.
size
()
/
2
;
const
int
mask_num
=
anchor_mask
.
size
();
const
int
b
=
gt_box
.
dims
()[
1
];
int
input_size
=
downsample_ratio
*
h
;
const
int
stride
=
h
*
w
;
const
int
an_stride
=
(
class_num
+
5
)
*
stride
;
T
label_pos
=
1.0
;
T
label_neg
=
0.0
;
if
(
use_label_smooth
)
{
T
smooth_weight
=
std
::
min
(
1.0
/
static_cast
<
T
>
(
class_num
),
1.0
/
40
);
label_pos
=
1.0
-
smooth_weight
;
label_neg
=
smooth_weight
;
}
const
T
*
input_data
=
input
->
data
<
T
>
();
const
T
*
gt_box_data
=
gt_box
.
data
<
T
>
();
const
int
*
gt_label_data
=
gt_label
.
data
<
int
>
();
loss
->
Resize
({
n
});
T
*
loss_data
=
dev_ctx
.
template
Alloc
<
T
>(
loss
);
memset
(
loss_data
,
0
,
loss
->
numel
()
*
sizeof
(
T
));
objness_mask
->
Resize
({
n
,
mask_num
,
h
,
w
});
T
*
obj_mask_data
=
dev_ctx
.
template
Alloc
<
T
>(
objness_mask
);
memset
(
obj_mask_data
,
0
,
objness_mask
->
numel
()
*
sizeof
(
T
));
gt_match_mask
->
Resize
({
n
,
b
});
int
*
gt_match_mask_data
=
dev_ctx
.
template
Alloc
<
int
>(
gt_match_mask
);
const
T
*
gt_score_data
;
DenseTensor
gtscore
;
if
(
!
(
gt_score
.
is_initialized
()))
{
gtscore
.
Resize
({
n
,
b
});
dev_ctx
.
template
Alloc
<
T
>(
&
gtscore
);
phi
::
funcs
::
SetConstant
<
Context
,
T
>
()(
dev_ctx
,
&
gtscore
,
static_cast
<
T
>
(
1.0
));
gt_score_data
=
gtscore
.
data
<
T
>
();
}
else
{
gt_score_data
=
gt_score
.
get_ptr
()
->
data
<
T
>
();
}
// calc valid gt box mask, avoid calc duplicately in following code
DenseTensor
gt_valid_mask
;
gt_valid_mask
.
Resize
({
n
,
b
});
bool
*
gt_valid_mask_data
=
dev_ctx
.
template
Alloc
<
bool
>(
&
gt_valid_mask
);
GtValid
<
T
>
(
gt_valid_mask_data
,
gt_box_data
,
n
,
b
);
for
(
int
i
=
0
;
i
<
n
;
i
++
)
{
for
(
int
j
=
0
;
j
<
mask_num
;
j
++
)
{
for
(
int
k
=
0
;
k
<
h
;
k
++
)
{
for
(
int
l
=
0
;
l
<
w
;
l
++
)
{
// each predict box find a best match gt box, if overlap is bigger
// then ignore_thresh, ignore the objectness loss.
int
box_idx
=
GetEntryIndex
(
i
,
j
,
k
*
w
+
l
,
mask_num
,
an_stride
,
stride
,
0
);
Box
<
T
>
pred
=
GetYoloBox
(
input_data
,
anchors
,
l
,
k
,
anchor_mask
[
j
],
h
,
input_size
,
box_idx
,
stride
,
scale
,
bias
);
T
best_iou
=
0
;
for
(
int
t
=
0
;
t
<
b
;
t
++
)
{
if
(
!
gt_valid_mask_data
[
i
*
b
+
t
])
{
continue
;
}
Box
<
T
>
gt
=
GetGtBox
(
gt_box_data
,
i
,
b
,
t
);
T
iou
=
CalcBoxIoU
(
pred
,
gt
);
if
(
iou
>
best_iou
)
{
best_iou
=
iou
;
}
}
// If best IoU is bigger then ignore_thresh,
// ignore the objectness loss.
if
(
best_iou
>
ignore_thresh
)
{
int
obj_idx
=
(
i
*
mask_num
+
j
)
*
stride
+
k
*
w
+
l
;
obj_mask_data
[
obj_idx
]
=
static_cast
<
T
>
(
-
1
);
}
// all losses should be calculated if best IoU
// is bigger then truth thresh, but currently,
// truth thresh is an unreachable value as 1.0.
}
}
}
for
(
int
t
=
0
;
t
<
b
;
t
++
)
{
if
(
!
gt_valid_mask_data
[
i
*
b
+
t
])
{
gt_match_mask_data
[
i
*
b
+
t
]
=
-
1
;
continue
;
}
Box
<
T
>
gt
=
GetGtBox
(
gt_box_data
,
i
,
b
,
t
);
int
gi
=
static_cast
<
int
>
(
gt
.
x
*
w
);
int
gj
=
static_cast
<
int
>
(
gt
.
y
*
h
);
Box
<
T
>
gt_shift
=
gt
;
gt_shift
.
x
=
0.0
;
gt_shift
.
y
=
0.0
;
T
best_iou
=
0.0
;
int
best_n
=
0
;
// each gt box find a best match anchor box as positive sample,
// for positive sample, all losses should be calculated, and for
// other samples, only objectness loss is required.
for
(
int
an_idx
=
0
;
an_idx
<
an_num
;
an_idx
++
)
{
Box
<
T
>
an_box
;
an_box
.
x
=
0.0
;
an_box
.
y
=
0.0
;
an_box
.
w
=
anchors
[
2
*
an_idx
]
/
static_cast
<
T
>
(
input_size
);
an_box
.
h
=
anchors
[
2
*
an_idx
+
1
]
/
static_cast
<
T
>
(
input_size
);
float
iou
=
CalcBoxIoU
<
T
>
(
an_box
,
gt_shift
);
if
(
iou
>
best_iou
)
{
best_iou
=
iou
;
best_n
=
an_idx
;
}
}
int
mask_idx
=
GetMaskIndex
(
anchor_mask
,
best_n
);
gt_match_mask_data
[
i
*
b
+
t
]
=
mask_idx
;
if
(
mask_idx
>=
0
)
{
T
score
=
gt_score_data
[
i
*
b
+
t
];
int
box_idx
=
GetEntryIndex
(
i
,
mask_idx
,
gj
*
w
+
gi
,
mask_num
,
an_stride
,
stride
,
0
);
CalcBoxLocationLoss
<
T
>
(
loss_data
+
i
,
input_data
,
gt
,
anchors
,
best_n
,
box_idx
,
gi
,
gj
,
h
,
input_size
,
stride
,
score
);
int
obj_idx
=
(
i
*
mask_num
+
mask_idx
)
*
stride
+
gj
*
w
+
gi
;
obj_mask_data
[
obj_idx
]
=
score
;
int
label
=
gt_label_data
[
i
*
b
+
t
];
int
label_idx
=
GetEntryIndex
(
i
,
mask_idx
,
gj
*
w
+
gi
,
mask_num
,
an_stride
,
stride
,
5
);
CalcLabelLoss
<
T
>
(
loss_data
+
i
,
input_data
,
label_idx
,
label
,
class_num
,
stride
,
label_pos
,
label_neg
,
score
);
}
}
}
CalcObjnessLoss
<
T
>
(
loss_data
,
input_data
+
4
*
stride
,
obj_mask_data
,
n
,
mask_num
,
h
,
w
,
stride
,
an_stride
);
}
}
// namespace phi
PD_REGISTER_KERNEL
(
yolov3_loss
,
CPU
,
ALL_LAYOUT
,
phi
::
Yolov3LossKernel
,
float
,
double
)
{}
paddle/phi/kernels/yolov3_loss_grad_kernel.h
0 → 100644
浏览文件 @
fb93bd5c
// Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
#pragma once
#include "paddle/phi/core/dense_tensor.h"
namespace
phi
{
template
<
typename
T
,
typename
Context
>
void
Yolov3LossGradKernel
(
const
Context
&
dev_ctx
,
const
DenseTensor
&
x
,
const
DenseTensor
&
gt_box
,
const
DenseTensor
&
gt_label
,
paddle
::
optional
<
const
DenseTensor
&>
gt_score
,
const
DenseTensor
&
loss_grad
,
const
DenseTensor
&
objectness_mask
,
const
DenseTensor
&
gt_match_mask
,
const
std
::
vector
<
int
>&
anchors
,
const
std
::
vector
<
int
>&
anchor_mask
,
int
class_num
,
float
ignore_thresh
,
int
downsample_ratio
,
bool
use_label_smooth
,
float
scale_x_Y
,
DenseTensor
*
x_grad
,
DenseTensor
*
gt_box_grad
,
DenseTensor
*
gt_label_grad
,
DenseTensor
*
gt_score_grad
);
}
// namespace phi
paddle/phi/kernels/yolov3_loss_kernel.h
0 → 100644
浏览文件 @
fb93bd5c
// Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
#pragma once
#include "paddle/phi/core/dense_tensor.h"
namespace
phi
{
template
<
typename
T
,
typename
Context
>
void
Yolov3LossKernel
(
const
Context
&
dev_ctx
,
const
DenseTensor
&
x
,
const
DenseTensor
&
gt_box
,
const
DenseTensor
&
gt_label
,
paddle
::
optional
<
const
DenseTensor
&>
gt_score
,
const
std
::
vector
<
int
>&
anchors
,
const
std
::
vector
<
int
>&
anchor_mask
,
int
class_num
,
float
ignore_thresh
,
int
downsample_ratio
,
bool
use_label_smooth
,
float
scale_x_Y
,
DenseTensor
*
loss
,
DenseTensor
*
objectness_mask
,
DenseTensor
*
gt_match_mask
);
}
// namespace phi
paddle/phi/ops/compat/yolov3_loss_sig.cc
0 → 100644
浏览文件 @
fb93bd5c
// Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
#include "paddle/phi/core/compat/op_utils.h"
namespace
phi
{
KernelSignature
Yolov3LossOpArgumentMapping
(
const
ArgumentMappingContext
&
ctx
)
{
return
KernelSignature
(
"yolov3_loss"
,
{
"X"
,
"GTBox"
,
"GTLabel"
,
"GTScore"
},
{
"anchors"
,
"anchor_mask"
,
"class_num"
,
"ignore_thresh"
,
"downsample_ratio"
,
"use_label_smooth"
,
"scale_x_y"
},
{
"Loss"
,
"ObjectnessMask"
,
"GTMatchMask"
});
}
KernelSignature
Yolov3LossGradOpArgumentMapping
(
const
ArgumentMappingContext
&
ctx
)
{
return
KernelSignature
(
"yolov3_loss_grad"
,
{
"X"
,
"GTBox"
,
"GTLabel"
,
"GTScore"
,
GradVarName
(
"Loss"
),
"ObjectnessMask"
,
"GTMatchMask"
},
{
"anchors"
,
"anchor_mask"
,
"class_num"
,
"ignore_thresh"
,
"downsample_ratio"
,
"use_label_smooth"
,
"scale_x_y"
},
{
GradVarName
(
"X"
),
GradVarName
(
"GTBox"
),
GradVarName
(
"GTLabel"
),
GradVarName
(
"GTScore"
)});
}
}
// namespace phi
PD_REGISTER_ARG_MAPPING_FN
(
yolov3_loss
,
phi
::
Yolov3LossOpArgumentMapping
);
PD_REGISTER_ARG_MAPPING_FN
(
yolov3_loss_grad
,
phi
::
Yolov3LossGradOpArgumentMapping
);
编辑
预览
Markdown
is supported
0%
请重试
或
添加新附件
.
添加附件
取消
You are about to add
0
people
to the discussion. Proceed with caution.
先完成此消息的编辑!
取消
想要评论请
注册
或
登录