detection.py 157.2 KB
Newer Older
1
#  Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserve.
2 3 4 5 6
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
7
#    http://www.apache.org/licenses/LICENSE-2.0
8 9 10 11 12 13 14 15 16 17
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""
All layers just related to the detection neural network.
"""

18 19
from __future__ import print_function

20 21
from .layer_function_generator import generate_layer_fn
from .layer_function_generator import autodoc, templatedoc
22
from ..layer_helper import LayerHelper
D
dengkaipeng 已提交
23
from ..framework import Variable
24
from .loss import softmax_with_cross_entropy
25 26
from . import tensor
from . import nn
27
from . import ops
M
minqiyang 已提交
28
from ... import compat as cpt
29
from ..data_feeder import check_variable_and_dtype, check_type, check_dtype
C
chengduoZH 已提交
30
import math
M
minqiyang 已提交
31
import six
32
import numpy as np
33
from functools import reduce
34
from ..data_feeder import convert_dtype, check_variable_and_dtype, check_type, check_dtype
35

C
chengduoZH 已提交
36
__all__ = [
37 38 39 40 41 42 43 44
    'prior_box',
    'density_prior_box',
    'multi_box_head',
    'bipartite_match',
    'target_assign',
    'detection_output',
    'ssd_loss',
    'rpn_target_assign',
45
    'retinanet_target_assign',
46
    'sigmoid_focal_loss',
47 48 49 50
    'anchor_generator',
    'roi_perspective_transform',
    'generate_proposal_labels',
    'generate_proposals',
51
    'generate_mask_labels',
52 53 54 55
    'iou_similarity',
    'box_coder',
    'polygon_box_transform',
    'yolov3_loss',
D
dengkaipeng 已提交
56
    'yolo_box',
57
    'box_clip',
J
jerrywgz 已提交
58
    'multiclass_nms',
59
    'locality_aware_nms',
60
    'retinanet_detection_output',
61
    'distribute_fpn_proposals',
62
    'box_decoder_and_assign',
63
    'collect_fpn_proposals',
C
chengduoZH 已提交
64
]
65 66


67 68 69 70 71 72 73 74 75 76 77 78
def retinanet_target_assign(bbox_pred,
                            cls_logits,
                            anchor_box,
                            anchor_var,
                            gt_boxes,
                            gt_labels,
                            is_crowd,
                            im_info,
                            num_classes=1,
                            positive_overlap=0.5,
                            negative_overlap=0.4):
    """
79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102
    **Target Assign Layer for the detector RetinaNet.**

    This OP finds out positive and negative samples from all anchors
    for training the detector `RetinaNet <https://arxiv.org/abs/1708.02002>`_ ,
    and assigns target labels for classification along with target locations for
    regression to each sample, then takes out the part belonging to positive and
    negative samples from category prediction( :attr:`cls_logits`) and location
    prediction( :attr:`bbox_pred`) which belong to all anchors.

    The searching principles for positive and negative samples are as followed:

    1. Anchors are assigned to ground-truth boxes when it has the highest IoU
    overlap with a ground-truth box.

    2. Anchors are assigned to ground-truth boxes when it has an IoU overlap
    higher than :attr:`positive_overlap` with any ground-truth box.

    3. Anchors are assigned to background when its IoU overlap is lower than
    :attr:`negative_overlap` for all ground-truth boxes.

    4. Anchors which do not meet the above conditions do not participate in
    the training process.

    Retinanet predicts a :math:`C`-vector for classification and a 4-vector for box
T
tianshuo78520a 已提交
103
    regression for each anchor, hence the target label for each positive(or negative)
104 105 106 107 108 109 110 111 112 113 114 115 116 117
    sample is a :math:`C`-vector and the target locations for each positive sample
    is a 4-vector. As for a positive sample, if the category of its assigned
    ground-truth box is class :math:`i`, the corresponding entry in its length
    :math:`C` label vector is set to 1 and all other entries is set to 0, its box
    regression targets are computed as the offset between itself and its assigned
    ground-truth box. As for a negative sample, all entries in its length :math:`C`
    label vector are set to 0 and box regression targets are omitted because
    negative samples do not participate in the training process of location
    regression.

    After the assignment, the part belonging to positive and negative samples is
    taken out from category prediction( :attr:`cls_logits` ), and the part
    belonging to positive samples is taken out from location
    prediction( :attr:`bbox_pred` ).
118 119

    Args:
120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160
        bbox_pred(Variable): A 3-D Tensor with shape :math:`[N, M, 4]` represents
            the predicted locations of all anchors. :math:`N` is the batch size( the
            number of images in a mini-batch), :math:`M` is the number of all anchors
            of one image, and each anchor has 4 coordinate values. The data type of
            :attr:`bbox_pred` is float32 or float64.
        cls_logits(Variable): A 3-D Tensor with shape :math:`[N, M, C]` represents
            the predicted categories of all anchors. :math:`N` is the batch size,
            :math:`M` is the number of all anchors of one image, and :math:`C` is
            the number of categories (**Notice: excluding background**). The data type
            of :attr:`cls_logits` is float32 or float64.
        anchor_box(Variable): A 2-D Tensor with shape :math:`[M, 4]` represents
            the locations of all anchors. :math:`M` is the number of all anchors of
            one image, each anchor is represented as :math:`[xmin, ymin, xmax, ymax]`,
            :math:`[xmin, ymin]` is the left top coordinate of the anchor box,
            :math:`[xmax, ymax]` is the right bottom coordinate of the anchor box.
            The data type of :attr:`anchor_box` is float32 or float64. Please refer
            to the OP :ref:`api_fluid_layers_anchor_generator` 
            for the generation of :attr:`anchor_box`.
        anchor_var(Variable): A 2-D Tensor with shape :math:`[M,4]` represents the expanded 
            factors of anchor locations used in loss function. :math:`M` is number of
            all anchors of one image, each anchor possesses a 4-vector expanded factor.
            The data type of :attr:`anchor_var` is float32 or float64. Please refer
            to the OP :ref:`api_fluid_layers_anchor_generator`
            for the generation of :attr:`anchor_var`.
        gt_boxes(Variable): A 1-level 2-D LoDTensor with shape :math:`[G, 4]` represents
            locations of all ground-truth boxes. :math:`G` is the total number of
            all ground-truth boxes in a mini-batch, and each ground-truth box has 4
            coordinate values. The data type of :attr:`gt_boxes` is float32 or
            float64.
        gt_labels(variable): A 1-level 2-D LoDTensor with shape :math:`[G, 1]` represents
            categories of all ground-truth boxes, and the values are in the range of
            :math:`[1, C]`. :math:`G` is the total number of all ground-truth boxes
            in a mini-batch, and each ground-truth box has one category. The data type
            of :attr:`gt_labels` is int32.
        is_crowd(Variable): A 1-level 1-D LoDTensor with shape :math:`[G]` which
            indicates whether a ground-truth box is a crowd. If the value is 1, the
            corresponding box is a crowd, it is ignored during training. :math:`G` is
            the total number of all ground-truth boxes in a mini-batch. The data type
            of :attr:`is_crowd` is int32.
        im_info(Variable): A 2-D Tensor with shape [N, 3] represents the size
            information of input images. :math:`N` is the batch size, the size
T
tianshuo78520a 已提交
161
            information of each image is a 3-vector which are the height and width
162 163 164 165 166 167 168 169 170 171 172 173
            of the network input along with the factor scaling the origin image to
            the network input. The data type of :attr:`im_info` is float32.
        num_classes(int32): The number of categories for classification, the default
            value is 1.
        positive_overlap(float32): Minimum overlap required between an anchor
            and ground-truth box for the anchor to be a positive sample, the default
            value is 0.5.
        negative_overlap(float32): Maximum overlap allowed between an anchor
            and ground-truth box for the anchor to be a negative sample, the default
            value is 0.4. :attr:`negative_overlap` should be less than or equal to
            :attr:`positive_overlap`, if not, the actual value of
            :attr:`positive_overlap` is :attr:`negative_overlap`.
174 175

    Returns:
176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216
        A tuple with 6 Variables:
        
        **predict_scores** (Variable): A 2-D Tensor with shape :math:`[F+B, C]` represents
        category prediction belonging to positive and negative samples. :math:`F`
        is the number of positive samples in a mini-batch, :math:`B` is the number
        of negative samples, and :math:`C` is the number of categories
        (**Notice: excluding background**). The data type of :attr:`predict_scores`
        is float32 or float64.

        **predict_location** (Variable): A 2-D Tensor with shape :math:`[F, 4]` represents
        location prediction belonging to positive samples. :math:`F` is the number
        of positive samples. :math:`F` is the number of positive samples, and each
        sample has 4 coordinate values. The data type of :attr:`predict_location`
        is float32 or float64.

        **target_label** (Variable): A 2-D Tensor with shape :math:`[F+B, 1]` represents
        target labels for classification belonging to positive and negative
        samples. :math:`F` is the number of positive samples, :math:`B` is the
        number of negative, and each sample has one target category. The data type
        of :attr:`target_label` is int32.

        **target_bbox** (Variable): A 2-D Tensor with shape :math:`[F, 4]` represents
        target locations for box regression belonging to positive samples.
        :math:`F` is the number of positive samples, and each sample has 4
        coordinate values. The data type of :attr:`target_bbox` is float32 or
        float64.

        **bbox_inside_weight** (Variable): A 2-D Tensor with shape :math:`[F, 4]`
        represents whether a positive sample is fake positive, if a positive
        sample is false positive, the corresponding entries in
        :attr:`bbox_inside_weight` are set 0, otherwise 1. :math:`F` is the number
        of total positive samples in a mini-batch, and each sample has 4
        coordinate values. The data type of :attr:`bbox_inside_weight` is float32
        or float64.

        **fg_num** (Variable): A 2-D Tensor with shape :math:`[N, 1]` represents the number
        of positive samples. :math:`N` is the batch size. **Notice: The number
        of positive samples is used as the denominator of later loss function,
        to avoid the condition that the denominator is zero, this OP has added 1
        to the actual number of positive samples of each image.** The data type of
        :attr:`fg_num` is int32.
217 218 219 220 221

    Examples:
        .. code-block:: python

          import paddle.fluid as fluid
222 223 224 225 226 227 228 229 230 231 232 233 234 235
          bbox_pred = fluid.data(name='bbox_pred', shape=[1, 100, 4],
                            dtype='float32')
          cls_logits = fluid.data(name='cls_logits', shape=[1, 100, 10],
                            dtype='float32')
          anchor_box = fluid.data(name='anchor_box', shape=[100, 4],
                            dtype='float32')
          anchor_var = fluid.data(name='anchor_var', shape=[100, 4],
                            dtype='float32')
          gt_boxes = fluid.data(name='gt_boxes', shape=[10, 4],
                            dtype='float32')
          gt_labels = fluid.data(name='gt_labels', shape=[10, 1],
                            dtype='float32')
          is_crowd = fluid.data(name='is_crowd', shape=[1],
                            dtype='float32')
236
          im_info = fluid.data(name='im_info', shape=[1, 3],
237
                            dtype='float32')
238
          score_pred, loc_pred, score_target, loc_target, bbox_inside_weight, fg_num = \\
239 240 241 242 243
                fluid.layers.retinanet_target_assign(bbox_pred, cls_logits, anchor_box,
                anchor_var, gt_boxes, gt_labels, is_crowd, im_info, 10)

    """

244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260
    check_variable_and_dtype(bbox_pred, 'bbox_pred', ['float32', 'float64'],
                             'retinanet_target_assign')
    check_variable_and_dtype(cls_logits, 'cls_logits', ['float32', 'float64'],
                             'retinanet_target_assign')
    check_variable_and_dtype(anchor_box, 'anchor_box', ['float32', 'float64'],
                             'retinanet_target_assign')
    check_variable_and_dtype(anchor_var, 'anchor_var', ['float32', 'float64'],
                             'retinanet_target_assign')
    check_variable_and_dtype(gt_boxes, 'gt_boxes', ['float32', 'float64'],
                             'retinanet_target_assign')
    check_variable_and_dtype(gt_labels, 'gt_labels', ['int32'],
                             'retinanet_target_assign')
    check_variable_and_dtype(is_crowd, 'is_crowd', ['int32'],
                             'retinanet_target_assign')
    check_variable_and_dtype(im_info, 'im_info', ['float32', 'float64'],
                             'retinanet_target_assign')

261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307
    helper = LayerHelper('retinanet_target_assign', **locals())
    # Assign target label to anchors
    loc_index = helper.create_variable_for_type_inference(dtype='int32')
    score_index = helper.create_variable_for_type_inference(dtype='int32')
    target_label = helper.create_variable_for_type_inference(dtype='int32')
    target_bbox = helper.create_variable_for_type_inference(
        dtype=anchor_box.dtype)
    bbox_inside_weight = helper.create_variable_for_type_inference(
        dtype=anchor_box.dtype)
    fg_num = helper.create_variable_for_type_inference(dtype='int32')
    helper.append_op(
        type="retinanet_target_assign",
        inputs={
            'Anchor': anchor_box,
            'GtBoxes': gt_boxes,
            'GtLabels': gt_labels,
            'IsCrowd': is_crowd,
            'ImInfo': im_info
        },
        outputs={
            'LocationIndex': loc_index,
            'ScoreIndex': score_index,
            'TargetLabel': target_label,
            'TargetBBox': target_bbox,
            'BBoxInsideWeight': bbox_inside_weight,
            'ForegroundNumber': fg_num
        },
        attrs={
            'positive_overlap': positive_overlap,
            'negative_overlap': negative_overlap
        })

    loc_index.stop_gradient = True
    score_index.stop_gradient = True
    target_label.stop_gradient = True
    target_bbox.stop_gradient = True
    bbox_inside_weight.stop_gradient = True
    fg_num.stop_gradient = True

    cls_logits = nn.reshape(x=cls_logits, shape=(-1, num_classes))
    bbox_pred = nn.reshape(x=bbox_pred, shape=(-1, 4))
    predicted_cls_logits = nn.gather(cls_logits, score_index)
    predicted_bbox_pred = nn.gather(bbox_pred, loc_index)

    return predicted_cls_logits, predicted_bbox_pred, target_label, target_bbox, bbox_inside_weight, fg_num


308 309
def rpn_target_assign(bbox_pred,
                      cls_logits,
Y
Yuan Gao 已提交
310
                      anchor_box,
311
                      anchor_var,
312 313 314
                      gt_boxes,
                      is_crowd,
                      im_info,
Y
Yuan Gao 已提交
315
                      rpn_batch_size_per_im=256,
316 317
                      rpn_straddle_thresh=0.0,
                      rpn_fg_fraction=0.5,
Y
Yuan Gao 已提交
318
                      rpn_positive_overlap=0.7,
319 320
                      rpn_negative_overlap=0.3,
                      use_random=True):
Y
Yuan Gao 已提交
321
    """
H
haowang101779990 已提交
322
    **Target Assign Layer for region proposal network (RPN) in Faster-RCNN detection.**
Y
Yuan Gao 已提交
323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339

    This layer can be, for given the  Intersection-over-Union (IoU) overlap
    between anchors and ground truth boxes, to assign classification and
    regression targets to each each anchor, these target labels are used for
    train RPN. The classification targets is a binary class label (of being
    an object or not). Following the paper of Faster-RCNN, the positive labels
    are two kinds of anchors: (i) the anchor/anchors with the highest IoU
    overlap with a ground-truth box, or (ii) an anchor that has an IoU overlap
    higher than rpn_positive_overlap(0.7) with any ground-truth box. Note
    that a single ground-truth box may assign positive labels to multiple
    anchors. A non-positive anchor is when its IoU ratio is lower than
    rpn_negative_overlap (0.3) for all ground-truth boxes. Anchors that are
    neither positive nor negative do not contribute to the training objective.
    The regression targets are the encoded ground-truth boxes associated with
    the positive anchors.

    Args:
340
        bbox_pred(Variable): A 3-D Tensor with shape [N, M, 4] represents the
Y
Yuan Gao 已提交
341 342
            predicted locations of M bounding bboxes. N is the batch size,
            and each bounding box has four coordinate values and the layout
343
            is [xmin, ymin, xmax, ymax]. The data type can be float32 or float64.
344 345 346
        cls_logits(Variable): A 3-D Tensor with shape [N, M, 1] represents the
            predicted confidence predictions. N is the batch size, 1 is the
            frontground and background sigmoid, M is number of bounding boxes.
347
            The data type can be float32 or float64.
Y
Yuan Gao 已提交
348 349 350 351 352
        anchor_box(Variable): A 2-D Tensor with shape [M, 4] holds M boxes,
            each box is represented as [xmin, ymin, xmax, ymax],
            [xmin, ymin] is the left top coordinate of the anchor box,
            if the input is image feature map, they are close to the origin
            of the coordinate system. [xmax, ymax] is the right bottom
353
            coordinate of the anchor box. The data type can be float32 or float64.
354
        anchor_var(Variable): A 2-D Tensor with shape [M,4] holds expanded 
355
            variances of anchors. The data type can be float32 or float64.
翟飞跃 已提交
356
        gt_boxes (Variable): The ground-truth bounding boxes (bboxes) are a 2D
Y
Yuan Gao 已提交
357
            LoDTensor with shape [Ng, 4], Ng is the total number of ground-truth
358
            bboxes of mini-batch input. The data type can be float32 or float64.
359
        is_crowd (Variable): A 1-D LoDTensor which indicates groud-truth is crowd.
360
                             The data type must be int32.
361 362
        im_info (Variable): A 2-D LoDTensor with shape [N, 3]. N is the batch size,
        3 is the height, width and scale.
Y
Yuan Gao 已提交
363
        rpn_batch_size_per_im(int): Total number of RPN examples per image.
364
                                    The data type must be int32.
365
        rpn_straddle_thresh(float): Remove RPN anchors that go outside the image
366
            by straddle_thresh pixels. The data type must be float32.
367
        rpn_fg_fraction(float): Target fraction of RoI minibatch that is labeled
368
            foreground (i.e. class > 0), 0-th class is background. The data type must be float32.
Y
Yuan Gao 已提交
369 370
        rpn_positive_overlap(float): Minimum overlap required between an anchor
            and ground-truth box for the (anchor, gt box) pair to be a positive
371
            example. The data type must be float32.
Y
Yuan Gao 已提交
372 373
        rpn_negative_overlap(float): Maximum overlap allowed between an anchor
            and ground-truth box for the (anchor, gt box) pair to be a negative
374
            examples. The data type must be float32.
Y
Yuan Gao 已提交
375 376

    Returns:
M
minqiyang 已提交
377
        tuple:
378 379 380 381 382 383 384 385 386 387 388 389 390
        A tuple(predicted_scores, predicted_location, target_label,
        target_bbox, bbox_inside_weight) is returned. The predicted_scores 
        and predicted_location is the predicted result of the RPN.
        The target_label and target_bbox is the ground truth,
        respectively. The predicted_location is a 2D Tensor with shape
        [F, 4], and the shape of target_bbox is same as the shape of
        the predicted_location, F is the number of the foreground
        anchors. The predicted_scores is a 2D Tensor with shape
        [F + B, 1], and the shape of target_label is same as the shape
        of the predicted_scores, B is the number of the background
        anchors, the F and B is depends on the input of this operator.
        Bbox_inside_weight represents whether the predicted loc is fake_fg
        or not and the shape is [F, 4].
Y
Yuan Gao 已提交
391 392 393 394

    Examples:
        .. code-block:: python

B
Bai Yifan 已提交
395
            import paddle.fluid as fluid
396 397 398 399 400 401 402
            bbox_pred = fluid.data(name='bbox_pred', shape=[None, 4], dtype='float32')
            cls_logits = fluid.data(name='cls_logits', shape=[None, 1], dtype='float32')
            anchor_box = fluid.data(name='anchor_box', shape=[None, 4], dtype='float32')
            anchor_var = fluid.data(name='anchor_var', shape=[None, 4], dtype='float32')
            gt_boxes = fluid.data(name='gt_boxes', shape=[None, 4], dtype='float32')
            is_crowd = fluid.data(name='is_crowd', shape=[None], dtype='float32')
            im_info = fluid.data(name='im_infoss', shape=[None, 3], dtype='float32')
403 404
            loc, score, loc_target, score_target, inside_weight = fluid.layers.rpn_target_assign(
                bbox_pred, cls_logits, anchor_box, anchor_var, gt_boxes, is_crowd, im_info)
H
haowang101779990 已提交
405

Y
Yuan Gao 已提交
406 407 408
    """

    helper = LayerHelper('rpn_target_assign', **locals())
409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424

    check_variable_and_dtype(bbox_pred, 'bbox_pred', ['float32', 'float64'],
                             'rpn_target_assign')
    check_variable_and_dtype(cls_logits, 'cls_logits', ['float32', 'float64'],
                             'rpn_target_assign')
    check_variable_and_dtype(anchor_box, 'anchor_box', ['float32', 'float64'],
                             'rpn_target_assign')
    check_variable_and_dtype(anchor_var, 'anchor_var', ['float32', 'float64'],
                             'rpn_target_assign')
    check_variable_and_dtype(gt_boxes, 'gt_boxes', ['float32', 'float64'],
                             'rpn_target_assign')
    check_variable_and_dtype(is_crowd, 'is_crowd', ['int32'],
                             'rpn_target_assign')
    check_variable_and_dtype(im_info, 'im_info', ['float32', 'float64'],
                             'rpn_target_assign')

425
    # Assign target label to anchors
J
jerrywgz 已提交
426 427 428 429 430 431 432
    loc_index = helper.create_variable_for_type_inference(dtype='int32')
    score_index = helper.create_variable_for_type_inference(dtype='int32')
    target_label = helper.create_variable_for_type_inference(dtype='int32')
    target_bbox = helper.create_variable_for_type_inference(
        dtype=anchor_box.dtype)
    bbox_inside_weight = helper.create_variable_for_type_inference(
        dtype=anchor_box.dtype)
Y
Yuan Gao 已提交
433 434
    helper.append_op(
        type="rpn_target_assign",
435 436 437 438 439 440
        inputs={
            'Anchor': anchor_box,
            'GtBoxes': gt_boxes,
            'IsCrowd': is_crowd,
            'ImInfo': im_info
        },
Y
Yuan Gao 已提交
441 442 443
        outputs={
            'LocationIndex': loc_index,
            'ScoreIndex': score_index,
444
            'TargetLabel': target_label,
J
jerrywgz 已提交
445
            'TargetBBox': target_bbox,
J
jerrywgz 已提交
446
            'BBoxInsideWeight': bbox_inside_weight
Y
Yuan Gao 已提交
447 448 449
        },
        attrs={
            'rpn_batch_size_per_im': rpn_batch_size_per_im,
450
            'rpn_straddle_thresh': rpn_straddle_thresh,
Y
Yuan Gao 已提交
451 452
            'rpn_positive_overlap': rpn_positive_overlap,
            'rpn_negative_overlap': rpn_negative_overlap,
453 454
            'rpn_fg_fraction': rpn_fg_fraction,
            'use_random': use_random
Y
Yuan Gao 已提交
455 456
        })

457 458 459 460
    loc_index.stop_gradient = True
    score_index.stop_gradient = True
    target_label.stop_gradient = True
    target_bbox.stop_gradient = True
J
jerrywgz 已提交
461
    bbox_inside_weight.stop_gradient = True
Y
Yuan Gao 已提交
462

463 464 465 466
    cls_logits = nn.reshape(x=cls_logits, shape=(-1, 1))
    bbox_pred = nn.reshape(x=bbox_pred, shape=(-1, 4))
    predicted_cls_logits = nn.gather(cls_logits, score_index)
    predicted_bbox_pred = nn.gather(bbox_pred, loc_index)
467

J
jerrywgz 已提交
468
    return predicted_cls_logits, predicted_bbox_pred, target_label, target_bbox, bbox_inside_weight
Y
Yuan Gao 已提交
469 470


471
def sigmoid_focal_loss(x, label, fg_num, gamma=2.0, alpha=0.25):
472 473 474
    """
    **Sigmoid Focal Loss Operator.**

475 476 477 478 479
    `Focal Loss <https://arxiv.org/abs/1708.02002>`_ is used to address the foreground-background
    class imbalance existed on the training phase of many computer vision tasks. This OP computes
    the sigmoid value for each element in the input tensor :attr:`x`, after which focal loss is
    measured between the sigmoid value and target label. 

480 481 482
    The focal loss is given as followed:

    .. math::
483 484 485 486 487 488 489
  
        \\mathop{loss_{i,\\,j}}\\limits_{i\\in\\mathbb{[0,\\,N-1]},\\,j\\in\\mathbb{[0,\\,C-1]}}=\\left\\{
        \\begin{array}{rcl}
        - \\frac{1}{fg\_num} * \\alpha * {(1 - \\sigma(x_{i,\\,j}))}^{\\gamma} * \\log(\\sigma(x_{i,\\,j})) & & {(j +1) = label_{i,\\,0}} \\\\
        - \\frac{1}{fg\_num} * (1 - \\alpha) * {\sigma(x_{i,\\,j})}^{ \\gamma} * \\log(1 - \\sigma(x_{i,\\,j})) & & {(j +1)!= label_{i,\\,0}}
        \\end{array} \\right.

490 491 492 493 494 495 496

    We know that
    
    .. math::
        \\sigma(x_j) = \\frac{1}{1 + \\exp(-x_j)}


497 498 499 500 501 502 503 504 505 506 507 508 509 510 511
    Args:
        x(Variable): A 2-D tensor with shape :math:`[N, C]` represents the predicted categories of
            all samples. :math:`N` is the number of all samples responsible for optimization in
            a mini-batch, for example, samples are anchor boxes for object detection and :math:`N`
            is the total number of positive and negative samples in a mini-batch; Samples are images
            for image classification and :math:`N` is the number of images in a mini-batch. :math:`C`
            is the number of classes (**Notice: excluding background**). The data type of :attr:`x` is
            float32 or float64.
        label(Variable): A 2-D tensor with shape :math:`[N, 1]` represents the target labels for
            classification. :math:`N` is the number of all samples responsible for optimization in a
            mini-batch, each sample has one target category. The values for positive samples are in the
            range of :math:`[1, C]`, and the values for negative samples are 0. The data type of :attr:`label`
            is int32.
        fg_num(Variable): A 1-D tensor with shape [1] represents the number of positive samples in a
            mini-batch, which should be obtained before this OP. The data type of :attr:`fg_num` is int32.
512
        gamma(int|float): Hyper-parameter to balance the easy and hard examples. Default value is
513
            set to 2.0.
514
        alpha(int|float): Hyper-parameter to balance the positive and negative example. Default value
515 516 517
            is set to 0.25.

    Returns:
518 519 520
        Variable(the data type is float32 or float64): 
            A 2-D tensor with shape :math:`[N, C]`, which is the focal loss of each element in the input
            tensor :attr:`x`.
521 522 523 524 525 526

    Examples:
        .. code-block:: python

            import paddle.fluid as fluid

527 528 529
            input = fluid.data(name='data', shape=[10,80], dtype='float32')
            label = fluid.data(name='label', shape=[10,1], dtype='int32')
            fg_num = fluid.data(name='fg_num', shape=[1], dtype='int32')
530 531 532
            loss = fluid.layers.sigmoid_focal_loss(x=input,
                                                   label=label,
                                                   fg_num=fg_num,
533
                                                   gamma=2.0,
534 535 536
                                                   alpha=0.25)
    """

537 538 539 540 541
    check_variable_and_dtype(x, 'x', ['float32', 'float64'],
                             'sigmoid_focal_loss')
    check_variable_and_dtype(label, 'label', ['int32'], 'sigmoid_focal_loss')
    check_variable_and_dtype(fg_num, 'fg_num', ['int32'], 'sigmoid_focal_loss')

542 543 544 545 546 547 548 549 550 551 552 553 554 555 556
    helper = LayerHelper("sigmoid_focal_loss", **locals())

    out = helper.create_variable_for_type_inference(dtype=x.dtype)

    helper.append_op(
        type="sigmoid_focal_loss",
        inputs={"X": x,
                "Label": label,
                "FgNum": fg_num},
        attrs={"gamma": gamma,
               'alpha': alpha},
        outputs={"Out": out})
    return out


Y
Yuan Gao 已提交
557 558
def detection_output(loc,
                     scores,
559 560 561 562 563 564 565
                     prior_box,
                     prior_box_var,
                     background_label=0,
                     nms_threshold=0.3,
                     nms_top_k=400,
                     keep_top_k=200,
                     score_threshold=0.01,
566 567
                     nms_eta=1.0,
                     return_index=False):
568
    """
Q
qingqing01 已提交
569 570
    Given the regression locations, classification confidences and prior boxes,
    calculate the detection outputs by performing following steps:
571

Q
qingqing01 已提交
572 573
    1. Decode input bounding box predictions according to the prior boxes and
       regression locations.
574 575 576 577 578
    2. Get the final detection results by applying multi-class non maximum
       suppression (NMS).

    Please note, this operation doesn't clip the final output bounding boxes
    to the image window.
579 580 581

    Args:
        loc(Variable): A 3-D Tensor with shape [N, M, 4] represents the
Q
qingqing01 已提交
582 583
            predicted locations of M bounding bboxes. Data type should be
            float32 or float64. N is the batch size,
584 585
            and each bounding box has four coordinate values and the layout
            is [xmin, ymin, xmax, ymax].
Y
Yuan Gao 已提交
586
        scores(Variable): A 3-D Tensor with shape [N, M, C] represents the
Q
qingqing01 已提交
587 588 589
            predicted confidence predictions. Data type should be float32
            or float64. N is the batch size, C is the
            class number, M is number of bounding boxes.
590
        prior_box(Variable): A 2-D Tensor with shape [M, 4] holds M boxes,
Q
qingqing01 已提交
591 592
            each box is represented as [xmin, ymin, xmax, ymax]. Data type
            should be float32 or float64.
593
        prior_box_var(Variable): A 2-D Tensor with shape [M, 4] holds M group
Q
qingqing01 已提交
594 595
            of variance. Data type should be float32 or float64.
        background_label(int): The index of background label,
596
            the background label will be ignored. If set to -1, then all
Q
qingqing01 已提交
597 598
            categories will be considered. Default: 0.
        nms_threshold(float): The threshold to be used in NMS. Default: 0.3.
599
        nms_top_k(int): Maximum number of detections to be kept according
T
tianshuo78520a 已提交
600
            to the confidences after filtering detections based on
Q
qingqing01 已提交
601
            score_threshold and before NMS. Default: 400.
602
        keep_top_k(int): Number of total bboxes to be kept per image after
Q
qingqing01 已提交
603
            NMS step. -1 means keeping all bboxes after NMS step. Default: 200.
604 605
        score_threshold(float): Threshold to filter out bounding boxes with
            low confidence score. If not provided, consider all boxes.
Q
qingqing01 已提交
606 607 608
            Default: 0.01.
        nms_eta(float): The parameter for adaptive NMS. It works only when the
            value is less than 1.0. Default: 1.0.
609
        return_index(bool): Whether return selected index. Default: False
610 611

    Returns:
M
minqiyang 已提交
612

613 614 615
        A tuple with two Variables: (Out, Index) if return_index is True,
        otherwise, a tuple with one Variable(Out) is returned. 

Q
qingqing01 已提交
616 617 618 619 620 621 622 623 624 625 626 627
        Out (Variable): The detection outputs is a LoDTensor with shape [No, 6].
        Data type is the same as input (loc). Each row has six values:
        [label, confidence, xmin, ymin, xmax, ymax]. `No` is
        the total number of detections in this mini-batch. For each instance,
        the offsets in first dimension are called LoD, the offset number is
        N + 1, N is the batch size. The i-th image has `LoD[i + 1] - LoD[i]`
        detected results, if it is 0, the i-th image has no detected results.

        Index (Variable): Only return when return_index is True. A 2-D LoDTensor
        with shape [No, 1] represents the selected index which type is Integer.
        The index is the absolute value cross batches. No is the same number
        as Out. If the index is used to gather other attribute such as age,
628 629 630
        one needs to reshape the input(N, M, 1) to (N * M, 1) as first, where
        N is the batch size and M is the number of boxes.

631 632 633 634

    Examples:
        .. code-block:: python

635 636
            import paddle.fluid as fluid

Q
qingqing01 已提交
637 638 639 640
            pb = fluid.data(name='prior_box', shape=[10, 4], dtype='float32')
            pbv = fluid.data(name='prior_box_var', shape=[10, 4], dtype='float32')
            loc = fluid.data(name='target_box', shape=[2, 21, 4], dtype='float32')
            scores = fluid.data(name='scores', shape=[2, 21, 10], dtype='float32')
641
            nmsed_outs, index = fluid.layers.detection_output(scores=scores,
642 643
                                       loc=loc,
                                       prior_box=pb,
644 645
                                       prior_box_var=pbv,
                                       return_index=True)
646 647
    """
    helper = LayerHelper("detection_output", **locals())
648 649 650 651 652
    decoded_box = box_coder(
        prior_box=prior_box,
        prior_box_var=prior_box_var,
        target_box=loc,
        code_type='decode_center_size')
653
    scores = nn.softmax(input=scores)
Y
Yuan Gao 已提交
654
    scores = nn.transpose(scores, perm=[0, 2, 1])
655
    scores.stop_gradient = True
X
Xin Pan 已提交
656 657
    nmsed_outs = helper.create_variable_for_type_inference(
        dtype=decoded_box.dtype)
658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688
    if return_index:
        index = helper.create_variable_for_type_inference(dtype='int')
        helper.append_op(
            type="multiclass_nms2",
            inputs={'Scores': scores,
                    'BBoxes': decoded_box},
            outputs={'Out': nmsed_outs,
                     'Index': index},
            attrs={
                'background_label': 0,
                'nms_threshold': nms_threshold,
                'nms_top_k': nms_top_k,
                'keep_top_k': keep_top_k,
                'score_threshold': score_threshold,
                'nms_eta': 1.0,
            })
        index.stop_gradient = True
    else:
        helper.append_op(
            type="multiclass_nms",
            inputs={'Scores': scores,
                    'BBoxes': decoded_box},
            outputs={'Out': nmsed_outs},
            attrs={
                'background_label': 0,
                'nms_threshold': nms_threshold,
                'nms_top_k': nms_top_k,
                'keep_top_k': keep_top_k,
                'score_threshold': score_threshold,
                'nms_eta': 1.0,
            })
689
    nmsed_outs.stop_gradient = True
690 691
    if return_index:
        return nmsed_outs, index
692
    return nmsed_outs
C
chengduoZH 已提交
693 694


X
Xin Pan 已提交
695
@templatedoc()
696
def iou_similarity(x, y, box_normalized=True, name=None):
X
Xin Pan 已提交
697 698 699 700
    """
    ${comment}

    Args:
L
LielinJiang 已提交
701 702
        x (Variable): ${x_comment}.The data type is float32 or float64.
        y (Variable): ${y_comment}.The data type is float32 or float64.
T
tianshuo78520a 已提交
703
        box_normalized(bool): Whether treat the priorbox as a normalized box.
704
            Set true by default.
X
Xin Pan 已提交
705
    Returns:
L
LielinJiang 已提交
706
        Variable: ${out_comment}.The data type is same with x.
707 708 709 710

    Examples:
        .. code-block:: python

L
LielinJiang 已提交
711
            import numpy as np
712 713
            import paddle.fluid as fluid

L
LielinJiang 已提交
714 715 716 717 718 719
            use_gpu = False
            place = fluid.CUDAPlace(0) if use_gpu else fluid.CPUPlace()
            exe = fluid.Executor(place)

            x = fluid.data(name='x', shape=[None, 4], dtype='float32')
            y = fluid.data(name='y', shape=[None, 4], dtype='float32')
720
            iou = fluid.layers.iou_similarity(x=x, y=y)
L
LielinJiang 已提交
721 722 723 724 725 726 727 728 729 730 731

            exe.run(fluid.default_startup_program())
            test_program = fluid.default_main_program().clone(for_test=True)

            [out_iou] = exe.run(test_program,
                    fetch_list=iou,
                    feed={'x': np.array([[0.5, 0.5, 2.0, 2.0],
                                         [0., 0., 1.0, 1.0]]).astype('float32'),
                          'y': np.array([[1.0, 1.0, 2.5, 2.5]]).astype('float32')})
            # out_iou is [[0.2857143],
            #             [0.       ]] with shape: [2, 1]
X
Xin Pan 已提交
732 733
    """
    helper = LayerHelper("iou_similarity", **locals())
734
    out = helper.create_variable_for_type_inference(dtype=x.dtype)
X
Xin Pan 已提交
735 736 737 738 739

    helper.append_op(
        type="iou_similarity",
        inputs={"X": x,
                "Y": y},
740
        attrs={"box_normalized": box_normalized},
X
Xin Pan 已提交
741 742 743 744 745 746 747 748 749 750
        outputs={"Out": out})
    return out


@templatedoc()
def box_coder(prior_box,
              prior_box_var,
              target_box,
              code_type="encode_center_size",
              box_normalized=True,
751 752
              name=None,
              axis=0):
X
Xin Pan 已提交
753
    """
754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791
    **Box Coder Layer**

    Encode/Decode the target bounding box with the priorbox information.
    
    The Encoding schema described below:

    .. math::

        ox = (tx - px) / pw / pxv

        oy = (ty - py) / ph / pyv

        ow = \log(\abs(tw / pw)) / pwv 

        oh = \log(\abs(th / ph)) / phv 

    The Decoding schema described below:
    
    .. math::
  
        ox = (pw * pxv * tx * + px) - tw / 2

        oy = (ph * pyv * ty * + py) - th / 2

        ow = \exp(pwv * tw) * pw + tw / 2

        oh = \exp(phv * th) * ph + th / 2   

    where `tx`, `ty`, `tw`, `th` denote the target box's center coordinates, 
    width and height respectively. Similarly, `px`, `py`, `pw`, `ph` denote 
    the priorbox's (anchor) center coordinates, width and height. `pxv`, 
    `pyv`, `pwv`, `phv` denote the variance of the priorbox and `ox`, `oy`, 
    `ow`, `oh` denote the encoded/decoded coordinates, width and height. 

    During Box Decoding, two modes for broadcast are supported. Say target 
    box has shape [N, M, 4], and the shape of prior box can be [N, 4] or 
    [M, 4]. Then prior box will broadcast to target box along the 
    assigned axis. 
X
Xin Pan 已提交
792 793

    Args:
794
        prior_box(Variable): Box list prior_box is a 2-D Tensor with shape 
W
wangguanzhong 已提交
795 796 797 798 799 800 801 802 803 804
            [M, 4] holds M boxes and data type is float32 or float64. Each box
            is represented as [xmin, ymin, xmax, ymax], [xmin, ymin] is the 
            left top coordinate of the anchor box, if the input is image feature
            map, they are close to the origin of the coordinate system. 
            [xmax, ymax] is the right bottom coordinate of the anchor box.       
        prior_box_var(List|Variable|None): prior_box_var supports three types 
            of input. One is variable with shape [M, 4] which holds M group and 
            data type is float32 or float64. The second is list consist of 
            4 elements shared by all boxes and data type is float32 or float64. 
            Other is None and not involved in calculation. 
805
        target_box(Variable): This input can be a 2-D LoDTensor with shape 
W
wangguanzhong 已提交
806 807 808 809 810 811 812 813
            [N, 4] when code_type is 'encode_center_size'. This input also can 
            be a 3-D Tensor with shape [N, M, 4] when code_type is 
            'decode_center_size'. Each box is represented as 
            [xmin, ymin, xmax, ymax]. The data type is float32 or float64. 
            This tensor can contain LoD information to represent a batch of inputs. 
        code_type(str): The code type used with the target box. It can be
            `encode_center_size` or `decode_center_size`. `encode_center_size` 
            by default.
T
tianshuo78520a 已提交
814
        box_normalized(bool): Whether treat the priorbox as a normalized box.
W
wangguanzhong 已提交
815 816 817 818
            Set true by default.
        name(str, optional): For detailed information, please refer 
            to :ref:`api_guide_Name`. Usually name is no need to set and 
            None by default. 
819
        axis(int): Which axis in PriorBox to broadcast for box decode, 
W
wangguanzhong 已提交
820 821 822 823
            for example, if axis is 0 and TargetBox has shape [N, M, 4] and 
            PriorBox has shape [M, 4], then PriorBox will broadcast to [N, M, 4]
            for decoding. It is only valid when code type is 
            `decode_center_size`. Set 0 by default. 
X
Xin Pan 已提交
824 825

    Returns:
W
wangguanzhong 已提交
826 827
        Variable:

828
        output_box(Variable): When code_type is 'encode_center_size', the 
W
wangguanzhong 已提交
829 830 831
        output tensor of box_coder_op with shape [N, M, 4] representing the 
        result of N target boxes encoded with M Prior boxes and variances. 
        When code_type is 'decode_center_size', N represents the batch size 
T
tianshuo78520a 已提交
832
        and M represents the number of decoded boxes.
833 834 835 836 837

    Examples:
 
        .. code-block:: python
 
838
            import paddle.fluid as fluid
W
wangguanzhong 已提交
839
            # For encode
840
            prior_box_encode = fluid.data(name='prior_box_encode',
W
wangguanzhong 已提交
841
                                  shape=[512, 4],
842 843 844 845
                                  dtype='float32')
            target_box_encode = fluid.data(name='target_box_encode',
                                   shape=[81, 4],
                                   dtype='float32')
W
wangguanzhong 已提交
846 847 848 849 850
            output_encode = fluid.layers.box_coder(prior_box=prior_box_encode,
                                    prior_box_var=[0.1,0.1,0.2,0.2],
                                    target_box=target_box_encode,
                                    code_type="encode_center_size")
            # For decode
851
            prior_box_decode = fluid.data(name='prior_box_decode',
W
wangguanzhong 已提交
852
                                  shape=[512, 4],
853 854 855 856
                                  dtype='float32')
            target_box_decode = fluid.data(name='target_box_decode',
                                   shape=[512, 81, 4],
                                   dtype='float32')
W
wangguanzhong 已提交
857 858 859 860 861 862
            output_decode = fluid.layers.box_coder(prior_box=prior_box_decode,
                                    prior_box_var=[0.1,0.1,0.2,0.2],
                                    target_box=target_box_decode,
                                    code_type="decode_center_size",
                                    box_normalized=False,
                                    axis=1)
X
Xin Pan 已提交
863 864 865
    """
    helper = LayerHelper("box_coder", **locals())

866 867
    output_box = helper.create_variable_for_type_inference(
        dtype=prior_box.dtype)
X
Xin Pan 已提交
868

869 870 871 872 873 874 875 876 877 878 879 880
    inputs = {"PriorBox": prior_box, "TargetBox": target_box}
    attrs = {
        "code_type": code_type,
        "box_normalized": box_normalized,
        "axis": axis
    }
    if isinstance(prior_box_var, Variable):
        inputs['PriorBoxVar'] = prior_box_var
    elif isinstance(prior_box_var, list):
        attrs['variance'] = prior_box_var
    else:
        raise TypeError("Input variance of box_coder must be Variable or lisz")
X
Xin Pan 已提交
881 882
    helper.append_op(
        type="box_coder",
883 884
        inputs=inputs,
        attrs=attrs,
X
Xin Pan 已提交
885 886 887 888 889 890 891 892 893 894
        outputs={"OutputBox": output_box})
    return output_box


@templatedoc()
def polygon_box_transform(input, name=None):
    """
    ${comment}

    Args:
895 896 897 898
        input(Variable): The input with shape [batch_size, geometry_channels, height, width].
                         A Tensor with type float32, float64.
        name(str, Optional): For details, please refer to :ref:`api_guide_Name`.
                        Generally, no setting is required. Default: None.
X
Xin Pan 已提交
899 900

    Returns:
901
        Variable: The output with the same shape as input. A Tensor with type float32, float64.
B
Bai Yifan 已提交
902 903 904 905 906

    Examples:
        .. code-block:: python
            
            import paddle.fluid as fluid
B
Bai Yifan 已提交
907
            input = fluid.data(name='input', shape=[4, 10, 5, 5], dtype='float32')
B
Bai Yifan 已提交
908
            out = fluid.layers.polygon_box_transform(input)
X
Xin Pan 已提交
909
    """
910 911
    check_variable_and_dtype(input, "input", ['float32', 'float64'],
                             'polygon_box_transform')
X
Xin Pan 已提交
912
    helper = LayerHelper("polygon_box_transform", **locals())
913
    output = helper.create_variable_for_type_inference(dtype=input.dtype)
X
Xin Pan 已提交
914 915 916 917 918 919 920 921 922

    helper.append_op(
        type="polygon_box_transform",
        inputs={"Input": input},
        attrs={},
        outputs={"Output": output})
    return output


D
dengkaipeng 已提交
923 924
@templatedoc(op_type="yolov3_loss")
def yolov3_loss(x,
925 926
                gt_box,
                gt_label,
D
dengkaipeng 已提交
927
                anchors,
928
                anchor_mask,
D
dengkaipeng 已提交
929 930
                class_num,
                ignore_thresh,
931
                downsample_ratio,
932
                gt_score=None,
D
dengkaipeng 已提交
933
                use_label_smooth=True,
D
dengkaipeng 已提交
934 935 936 937 938
                name=None):
    """
    ${comment}

    Args:
X
xiaoting 已提交
939
        x (Variable): ${x_comment}The data type is float32 or float64. 
940
        gt_box (Variable): groud truth boxes, should be in shape of [N, B, 4],
T
tianshuo78520a 已提交
941 942
                          in the third dimension, x, y, w, h should be stored. 
                          x,y is the center coordinate of boxes, w, h are the
943 944
                          width and height, x, y, w, h should be divided by 
                          input image height to scale to [0, 1].
D
dengkaipeng 已提交
945
                          N is the batch number and B is the max box number in 
X
xiaoting 已提交
946
                          an image.The data type is float32 or float64. 
T
tianshuo78520a 已提交
947
        gt_label (Variable): class id of ground truth boxes, should be in shape
X
xiaoting 已提交
948
                            of [N, B].The data type is int32. 
D
dengkaipeng 已提交
949
        anchors (list|tuple): ${anchors_comment}
950
        anchor_mask (list|tuple): ${anchor_mask_comment}
D
dengkaipeng 已提交
951 952
        class_num (int): ${class_num_comment}
        ignore_thresh (float): ${ignore_thresh_comment}
953
        downsample_ratio (int): ${downsample_ratio_comment}
X
xiaoting 已提交
954 955 956
        name (string): The default value is None.  Normally there is no need 
                       for user to set this property.  For more information, 
                       please refer to :ref:`api_guide_Name`
T
tianshuo78520a 已提交
957
        gt_score (Variable): mixup score of ground truth boxes, should be in shape
958
                            of [N, B]. Default None.
959
        use_label_smooth (bool): ${use_label_smooth_comment}
D
dengkaipeng 已提交
960 961

    Returns:
962
        Variable: A 1-D tensor with shape [N], the value of yolov3 loss
D
dengkaipeng 已提交
963 964 965

    Raises:
        TypeError: Input x of yolov3_loss must be Variable
D
dengkaipeng 已提交
966 967
        TypeError: Input gtbox of yolov3_loss must be Variable
        TypeError: Input gtlabel of yolov3_loss must be Variable
D
dengkaipeng 已提交
968
        TypeError: Input gtscore of yolov3_loss must be None or Variable
D
dengkaipeng 已提交
969 970 971
        TypeError: Attr anchors of yolov3_loss must be list or tuple
        TypeError: Attr class_num of yolov3_loss must be an integer
        TypeError: Attr ignore_thresh of yolov3_loss must be a float number
972
        TypeError: Attr use_label_smooth of yolov3_loss must be a bool value
D
dengkaipeng 已提交
973 974

    Examples:
975 976
      .. code-block:: python

977
          import paddle.fluid as fluid
X
xiaoting 已提交
978 979 980 981
          x = fluid.data(name='x', shape=[None, 255, 13, 13], dtype='float32')
          gt_box = fluid.data(name='gt_box', shape=[None, 6, 4], dtype='float32')
          gt_label = fluid.data(name='gt_label', shape=[None, 6], dtype='int32')
          gt_score = fluid.data(name='gt_score', shape=[None, 6], dtype='float32')
982 983
          anchors = [10, 13, 16, 30, 33, 23, 30, 61, 62, 45, 59, 119, 116, 90, 156, 198, 373, 326]
          anchor_mask = [0, 1, 2]
984 985
          loss = fluid.layers.yolov3_loss(x=x, gt_box=gt_box, gt_label=gt_label,
                                          gt_score=gt_score, anchors=anchors, 
986 987
                                          anchor_mask=anchor_mask, class_num=80,
                                          ignore_thresh=0.7, downsample_ratio=32)
D
dengkaipeng 已提交
988 989 990 991 992
    """
    helper = LayerHelper('yolov3_loss', **locals())

    if not isinstance(x, Variable):
        raise TypeError("Input x of yolov3_loss must be Variable")
993
    if not isinstance(gt_box, Variable):
D
dengkaipeng 已提交
994
        raise TypeError("Input gtbox of yolov3_loss must be Variable")
995
    if not isinstance(gt_label, Variable):
D
dengkaipeng 已提交
996
        raise TypeError("Input gtlabel of yolov3_loss must be Variable")
997
    if gt_score is not None and not isinstance(gt_score, Variable):
998
        raise TypeError("Input gtscore of yolov3_loss must be Variable")
D
dengkaipeng 已提交
999 1000
    if not isinstance(anchors, list) and not isinstance(anchors, tuple):
        raise TypeError("Attr anchors of yolov3_loss must be list or tuple")
1001 1002
    if not isinstance(anchor_mask, list) and not isinstance(anchor_mask, tuple):
        raise TypeError("Attr anchor_mask of yolov3_loss must be list or tuple")
D
dengkaipeng 已提交
1003 1004 1005 1006 1007
    if not isinstance(class_num, int):
        raise TypeError("Attr class_num of yolov3_loss must be an integer")
    if not isinstance(ignore_thresh, float):
        raise TypeError(
            "Attr ignore_thresh of yolov3_loss must be a float number")
1008 1009 1010
    if not isinstance(use_label_smooth, bool):
        raise TypeError(
            "Attr use_label_smooth of yolov3_loss must be a bool value")
D
dengkaipeng 已提交
1011

1012
    loss = helper.create_variable_for_type_inference(dtype=x.dtype)
D
dengkaipeng 已提交
1013

1014 1015 1016
    objectness_mask = helper.create_variable_for_type_inference(dtype='int32')
    gt_match_mask = helper.create_variable_for_type_inference(dtype='int32')

1017 1018
    inputs = {
        "X": x,
1019 1020
        "GTBox": gt_box,
        "GTLabel": gt_label,
1021
    }
1022
    if gt_score is not None:
1023
        inputs["GTScore"] = gt_score
1024

D
dengkaipeng 已提交
1025 1026
    attrs = {
        "anchors": anchors,
1027
        "anchor_mask": anchor_mask,
D
dengkaipeng 已提交
1028 1029
        "class_num": class_num,
        "ignore_thresh": ignore_thresh,
1030
        "downsample_ratio": downsample_ratio,
1031
        "use_label_smooth": use_label_smooth,
D
dengkaipeng 已提交
1032 1033 1034 1035
    }

    helper.append_op(
        type='yolov3_loss',
1036
        inputs=inputs,
1037 1038 1039 1040 1041
        outputs={
            'Loss': loss,
            'ObjectnessMask': objectness_mask,
            'GTMatchMask': gt_match_mask
        },
D
dengkaipeng 已提交
1042 1043 1044 1045
        attrs=attrs)
    return loss


D
dengkaipeng 已提交
1046
@templatedoc(op_type="yolo_box")
1047 1048 1049 1050 1051 1052
def yolo_box(x,
             img_size,
             anchors,
             class_num,
             conf_thresh,
             downsample_ratio,
1053
             clip_bbox=True,
1054
             name=None):
D
dengkaipeng 已提交
1055 1056 1057 1058
    """
    ${comment}

    Args:
X
xiaoting 已提交
1059 1060
        x (Variable): ${x_comment} The data type is float32 or float64. 
        img_size (Variable): ${img_size_comment} The data type is int32. 
D
dengkaipeng 已提交
1061 1062 1063 1064
        anchors (list|tuple): ${anchors_comment}
        class_num (int): ${class_num_comment}
        conf_thresh (float): ${conf_thresh_comment}
        downsample_ratio (int): ${downsample_ratio_comment}
1065
        clip_bbox (bool): ${clip_bbox_comment}
X
xiaoting 已提交
1066 1067 1068
        name (string): The default value is None.  Normally there is no need 
                       for user to set this property.  For more information, 
                       please refer to :ref:`api_guide_Name`
D
dengkaipeng 已提交
1069 1070

    Returns:
D
dengkaipeng 已提交
1071
        Variable: A 3-D tensor with shape [N, M, 4], the coordinates of boxes,
D
dengkaipeng 已提交
1072 1073
        and a 3-D tensor with shape [N, M, :attr:`class_num`], the classification 
        scores of boxes.
D
dengkaipeng 已提交
1074 1075 1076 1077 1078 1079 1080 1081

    Raises:
        TypeError: Input x of yolov_box must be Variable
        TypeError: Attr anchors of yolo box must be list or tuple
        TypeError: Attr class_num of yolo box must be an integer
        TypeError: Attr conf_thresh of yolo box must be a float number

    Examples:
D
dengkaipeng 已提交
1082

D
dengkaipeng 已提交
1083 1084
    .. code-block:: python

X
xiaoting 已提交
1085
        import paddle.fluid as fluid
X
xiaoting 已提交
1086 1087
        x = fluid.data(name='x', shape=[None, 255, 13, 13], dtype='float32')
        img_size = fluid.data(name='img_size',shape=[None, 2],dtype='int64')
D
dengkaipeng 已提交
1088
        anchors = [10, 13, 16, 30, 33, 23]
X
xiaoting 已提交
1089
        boxes,scores = fluid.layers.yolo_box(x=x, img_size=img_size, class_num=80, anchors=anchors, 
D
dengkaipeng 已提交
1090 1091 1092 1093 1094
                                        conf_thresh=0.01, downsample_ratio=32)
    """
    helper = LayerHelper('yolo_box', **locals())

    if not isinstance(x, Variable):
1095 1096 1097
        raise TypeError("Input x of yolo_box must be Variable")
    if not isinstance(img_size, Variable):
        raise TypeError("Input img_size of yolo_box must be Variable")
D
dengkaipeng 已提交
1098
    if not isinstance(anchors, list) and not isinstance(anchors, tuple):
1099
        raise TypeError("Attr anchors of yolo_box must be list or tuple")
D
dengkaipeng 已提交
1100
    if not isinstance(class_num, int):
1101
        raise TypeError("Attr class_num of yolo_box must be an integer")
D
dengkaipeng 已提交
1102
    if not isinstance(conf_thresh, float):
1103
        raise TypeError("Attr ignore_thresh of yolo_box must be a float number")
D
dengkaipeng 已提交
1104 1105 1106 1107 1108 1109 1110

    boxes = helper.create_variable_for_type_inference(dtype=x.dtype)
    scores = helper.create_variable_for_type_inference(dtype=x.dtype)

    attrs = {
        "anchors": anchors,
        "class_num": class_num,
D
dengkaipeng 已提交
1111
        "conf_thresh": conf_thresh,
D
dengkaipeng 已提交
1112
        "downsample_ratio": downsample_ratio,
1113
        "clip_bbox": clip_bbox,
D
dengkaipeng 已提交
1114 1115 1116 1117
    }

    helper.append_op(
        type='yolo_box',
1118 1119 1120 1121
        inputs={
            "X": x,
            "ImgSize": img_size,
        },
D
dengkaipeng 已提交
1122 1123 1124 1125 1126 1127 1128 1129
        outputs={
            'Boxes': boxes,
            'Scores': scores,
        },
        attrs=attrs)
    return boxes, scores


X
Xin Pan 已提交
1130
@templatedoc()
1131 1132
def detection_map(detect_res,
                  label,
1133 1134
                  class_num,
                  background_label=0,
1135 1136
                  overlap_threshold=0.3,
                  evaluate_difficult=True,
1137 1138 1139 1140
                  has_state=None,
                  input_states=None,
                  out_states=None,
                  ap_version='integral'):
X
Xin Pan 已提交
1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151
    """
    ${comment}

    Args:
        detect_res: ${detect_res_comment}
        label:  ${label_comment}
        class_num: ${class_num_comment}
        background_label: ${background_label_comment}
        overlap_threshold: ${overlap_threshold_comment}
        evaluate_difficult: ${evaluate_difficult_comment}
        has_state: ${has_state_comment}
1152 1153 1154 1155 1156 1157 1158 1159
        input_states: (tuple|None) If not None, It contains 3 elements:
            (1) pos_count ${pos_count_comment}.
            (2) true_pos ${true_pos_comment}.
            (3) false_pos ${false_pos_comment}.
        out_states: (tuple|None) If not None, it contains 3 elements.
            (1) accum_pos_count ${accum_pos_count_comment}.
            (2) accum_true_pos ${accum_true_pos_comment}.
            (3) accum_false_pos ${accum_false_pos_comment}.
X
Xin Pan 已提交
1160 1161 1162 1163 1164 1165 1166 1167 1168
        ap_version: ${ap_type_comment}

    Returns:
        ${map_comment}


    Examples:
          .. code-block:: python

1169
            import paddle.fluid as fluid
1170
            from fluid.layers import detection
1171
            detect_res = fluid.data(
X
Xin Pan 已提交
1172 1173 1174
                name='detect_res',
                shape=[10, 6],
                dtype='float32')
1175
            label = fluid.data(
X
Xin Pan 已提交
1176 1177 1178 1179
                name='label',
                shape=[10, 6],
                dtype='float32')

1180
            map_out = detection.detection_map(detect_res, label, 21)
X
Xin Pan 已提交
1181
    """
1182 1183
    helper = LayerHelper("detection_map", **locals())

1184
    def __create_var(type):
X
Xin Pan 已提交
1185
        return helper.create_variable_for_type_inference(dtype=type)
1186 1187

    map_out = __create_var('float32')
Z
zhongpu 已提交
1188 1189 1190 1191 1192 1193
    accum_pos_count_out = out_states[
        0] if out_states is not None else __create_var('int32')
    accum_true_pos_out = out_states[
        1] if out_states is not None else __create_var('float32')
    accum_false_pos_out = out_states[
        2] if out_states is not None else __create_var('float32')
1194

Z
zhongpu 已提交
1195 1196 1197
    pos_count = input_states[0] if input_states is not None else None
    true_pos = input_states[1] if input_states is not None else None
    false_pos = input_states[2] if input_states is not None else None
1198

1199 1200 1201 1202 1203
    helper.append_op(
        type="detection_map",
        inputs={
            'Label': label,
            'DetectRes': detect_res,
1204
            'HasState': has_state,
1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217
            'PosCount': pos_count,
            'TruePos': true_pos,
            'FalsePos': false_pos
        },
        outputs={
            'MAP': map_out,
            'AccumPosCount': accum_pos_count_out,
            'AccumTruePos': accum_true_pos_out,
            'AccumFalsePos': accum_false_pos_out
        },
        attrs={
            'overlap_threshold': overlap_threshold,
            'evaluate_difficult': evaluate_difficult,
1218 1219
            'ap_type': ap_version,
            'class_num': class_num,
1220
        })
1221
    return map_out
1222 1223


1224 1225 1226 1227
def bipartite_match(dist_matrix,
                    match_type=None,
                    dist_threshold=None,
                    name=None):
1228
    """
Y
yuyang18 已提交
1229 1230
    This operator implements a greedy bipartite matching algorithm, which is
    used to obtain the matching with the maximum distance based on the input
1231
    distance matrix. For input 2D matrix, the bipartite matching algorithm can
Y
yuyang18 已提交
1232 1233 1234 1235
    find the matched column for each row (matched means the largest distance),
    also can find the matched row for each column. And this operator only
    calculate matched indices from column to row. For each instance,
    the number of matched indices is the column number of the input distance
W
wangguanzhong 已提交
1236
    matrix. **The OP only supports CPU**.
Y
yuyang18 已提交
1237 1238 1239

    There are two outputs, matched indices and distance.
    A simple description, this algorithm matched the best (maximum distance)
1240 1241 1242
    row entity to the column entity and the matched indices are not duplicated
    in each row of ColToRowMatchIndices. If the column entity is not matched
    any row entity, set -1 in ColToRowMatchIndices.
C
chengduoZH 已提交
1243

Y
yuyang18 已提交
1244
    NOTE: the input DistMat can be LoDTensor (with LoD) or Tensor.
1245 1246 1247
    If LoDTensor with LoD, the height of ColToRowMatchIndices is batch size.
    If Tensor, the height of ColToRowMatchIndices is 1.

Y
yuyang18 已提交
1248 1249 1250
    NOTE: This API is a very low level API. It is used by :code:`ssd_loss`
    layer. Please consider to use :code:`ssd_loss` instead.

1251 1252
    Args:
        dist_matrix(Variable): This input is a 2-D LoDTensor with shape
W
wangguanzhong 已提交
1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263
            [K, M]. The data type is float32 or float64. It is pair-wise 
            distance matrix between the entities represented by each row and 
            each column. For example, assumed one entity is A with shape [K], 
            another entity is B with shape [M]. The dist_matrix[i][j] is the 
            distance between A[i] and B[j]. The bigger the distance is, the 
            better matching the pairs are. NOTE: This tensor can contain LoD 
            information to represent a batch of inputs. One instance of this 
            batch can contain different numbers of entities.
        match_type(str, optional): The type of matching method, should be
           'bipartite' or 'per_prediction'. None ('bipartite') by default.
        dist_threshold(float32, optional): If `match_type` is 'per_prediction',
1264
            this threshold is to determine the extra matching bboxes based
Y
yuyang18 已提交
1265
            on the maximum distance, 0.5 by default.
W
wangguanzhong 已提交
1266 1267 1268 1269
        name(str, optional): For detailed information, please refer 
            to :ref:`api_guide_Name`. Usually name is no need to set and 
            None by default.
 
1270
    Returns:
W
wangguanzhong 已提交
1271
        Tuple:
Y
yuyang18 已提交
1272

W
wangguanzhong 已提交
1273 1274
        matched_indices(Variable): A 2-D Tensor with shape [N, M]. The data
        type is int32. N is the batch size. If match_indices[i][j] is -1, it
Y
yuyang18 已提交
1275 1276 1277 1278 1279
        means B[j] does not match any entity in i-th instance.
        Otherwise, it means B[j] is matched to row
        match_indices[i][j] in i-th instance. The row number of
        i-th instance is saved in match_indices[i][j].

W
wangguanzhong 已提交
1280 1281
        matched_distance(Variable): A 2-D Tensor with shape [N, M]. The data
        type is float32. N is batch size. If match_indices[i][j] is -1,
Y
yuyang18 已提交
1282 1283 1284 1285 1286 1287 1288
        match_distance[i][j] is also -1.0. Otherwise, assumed
        match_distance[i][j] = d, and the row offsets of each instance
        are called LoD. Then match_distance[i][j] =
        dist_matrix[d+LoD[i]][j].

    Examples:

1289
        >>> import paddle.fluid as fluid
1290 1291
        >>> x = fluid.data(name='x', shape=[None, 4], dtype='float32')
        >>> y = fluid.data(name='y', shape=[None, 4], dtype='float32')
Y
yuyang18 已提交
1292 1293
        >>> iou = fluid.layers.iou_similarity(x=x, y=y)
        >>> matched_indices, matched_dist = fluid.layers.bipartite_match(iou)
1294 1295
    """
    helper = LayerHelper('bipartite_match', **locals())
X
Xin Pan 已提交
1296 1297 1298
    match_indices = helper.create_variable_for_type_inference(dtype='int32')
    match_distance = helper.create_variable_for_type_inference(
        dtype=dist_matrix.dtype)
1299 1300 1301
    helper.append_op(
        type='bipartite_match',
        inputs={'DistMat': dist_matrix},
1302 1303 1304 1305
        attrs={
            'match_type': match_type,
            'dist_threshold': dist_threshold,
        },
1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322
        outputs={
            'ColToRowMatchIndices': match_indices,
            'ColToRowMatchDist': match_distance
        })
    return match_indices, match_distance


def target_assign(input,
                  matched_indices,
                  negative_indices=None,
                  mismatch_value=None,
                  name=None):
    """
    This operator can be, for given the target bounding boxes or labels,
    to assign classification and regression targets to each prediction as well as
    weights to prediction. The weights is used to specify which prediction would
    not contribute to training loss.
C
chengduoZH 已提交
1323

1324 1325 1326 1327 1328
    For each instance, the output `out` and`out_weight` are assigned based on
    `match_indices` and `negative_indices`.
    Assumed that the row offset for each instance in `input` is called lod,
    this operator assigns classification/regression targets by performing the
    following steps:
C
chengduoZH 已提交
1329

1330
    1. Assigning all outputs based on `match_indices`:
C
chengduoZH 已提交
1331

1332 1333 1334
    .. code-block:: text

        If id = match_indices[i][j] > 0,
C
chengduoZH 已提交
1335

1336 1337
            out[i][j][0 : K] = X[lod[i] + id][j % P][0 : K]
            out_weight[i][j] = 1.
C
chengduoZH 已提交
1338

1339
        Otherwise,
C
chengduoZH 已提交
1340

1341 1342
            out[j][j][0 : K] = {mismatch_value, mismatch_value, ...}
            out_weight[i][j] = 0.
C
chengduoZH 已提交
1343

Q
qingqing01 已提交
1344
    2. Assigning outputs based on `neg_indices` if `neg_indices` is provided:
C
chengduoZH 已提交
1345

Q
qingqing01 已提交
1346 1347
    Assumed that i-th instance in `neg_indices` is called `neg_indice`,
    for i-th instance:
M
minqiyang 已提交
1348

1349
    .. code-block:: text
C
chengduoZH 已提交
1350

Q
qingqing01 已提交
1351 1352 1353
        for id in neg_indice:
            out[i][id][0 : K] = {mismatch_value, mismatch_value, ...}
            out_weight[i][id] = 1.0
1354 1355

    Args:
Q
qingqing01 已提交
1356 1357 1358
       input (Variable): This input is a 3D LoDTensor with shape [M, P, K].
           Data type should be int32 or float32.
       matched_indices (Variable): The input matched indices
1359 1360 1361
           is 2D Tenosr<int32> with shape [N, P], If MatchIndices[i][j] is -1,
           the j-th entity of column is not matched to any entity of row in
           i-th instance.
Q
qingqing01 已提交
1362 1363
       negative_indices (Variable, optional): The input negative example indices
           are an optional input with shape [Neg, 1] and int32 type, where Neg is
1364
           the total number of negative example indices.
Q
qingqing01 已提交
1365 1366 1367 1368 1369
       mismatch_value (float32, optional): Fill this value to the mismatched
           location.
       name (string): The default value is None.  Normally there is no need for
           user to set this property.  For more information, please refer
           to :ref:`api_guide_Name`.
1370 1371

    Returns:
Q
qingqing01 已提交
1372 1373 1374 1375 1376 1377 1378 1379
        tuple: A tuple(out, out_weight) is returned.

        out (Variable): a 3D Tensor with shape [N, P, K] and same data type
        with `input`, N and P is the same as they are in `matched_indices`,
        K is the same as it in input of X.

        out_weight (Variable): the weight for output with the shape of [N, P, 1].
        Data type is float32.
1380 1381 1382 1383 1384

    Examples:

        .. code-block:: python

1385
            import paddle.fluid as fluid
Q
qingqing01 已提交
1386
            x = fluid.data(
1387 1388 1389
                name='x',
                shape=[4, 20, 4],
                dtype='float',
Q
qingqing01 已提交
1390 1391
                lod_level=1)
            matched_id = fluid.data(
1392 1393
                name='indices',
                shape=[8, 20],
Q
qingqing01 已提交
1394
                dtype='int32')
1395 1396 1397 1398
            trg, trg_weight = fluid.layers.target_assign(
                x,
                matched_id,
                mismatch_value=0)
1399 1400
    """
    helper = LayerHelper('target_assign', **locals())
X
Xin Pan 已提交
1401 1402
    out = helper.create_variable_for_type_inference(dtype=input.dtype)
    out_weight = helper.create_variable_for_type_inference(dtype='float32')
1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429
    helper.append_op(
        type='target_assign',
        inputs={
            'X': input,
            'MatchIndices': matched_indices,
            'NegIndices': negative_indices
        },
        outputs={'Out': out,
                 'OutWeight': out_weight},
        attrs={'mismatch_value': mismatch_value})
    return out, out_weight


def ssd_loss(location,
             confidence,
             gt_box,
             gt_label,
             prior_box,
             prior_box_var=None,
             background_label=0,
             overlap_threshold=0.5,
             neg_pos_ratio=3.0,
             neg_overlap=0.5,
             loc_loss_weight=1.0,
             conf_loss_weight=1.0,
             match_type='per_prediction',
             mining_type='max_negative',
1430
             normalize=True,
1431 1432
             sample_size=None):
    """
Y
yuyang18 已提交
1433
    **Multi-box loss layer for object detection algorithm of SSD**
1434

翟飞跃 已提交
1435 1436
    This layer is to compute detection loss for SSD given the location offset
    predictions, confidence predictions, prior boxes and ground-truth bounding
1437 1438 1439 1440
    boxes and labels, and the type of hard example mining. The returned loss
    is a weighted sum of the localization loss (or regression loss) and
    confidence loss (or classification loss) by performing the following steps:

Y
yuyang18 已提交
1441
    1. Find matched bounding box by bipartite matching algorithm.
Y
yuyang18 已提交
1442

1443
      1.1 Compute IOU similarity between ground-truth boxes and prior boxes.
Y
yuyang18 已提交
1444

T
tianshuo78520a 已提交
1445
      1.2 Compute matched bounding box by bipartite matching algorithm.
Y
yuyang18 已提交
1446

1447
    2. Compute confidence for mining hard examples
Y
yuyang18 已提交
1448

1449
      2.1. Get the target label based on matched indices.
Y
yuyang18 已提交
1450

1451
      2.2. Compute confidence loss.
Y
yuyang18 已提交
1452

1453 1454
    3. Apply hard example mining to get the negative example indices and update
       the matched indices.
Y
yuyang18 已提交
1455

1456
    4. Assign classification and regression targets
Y
yuyang18 已提交
1457

1458
      4.1. Encoded bbox according to the prior boxes.
Y
yuyang18 已提交
1459

1460
      4.2. Assign regression targets.
Y
yuyang18 已提交
1461

1462
      4.3. Assign classification targets.
Y
yuyang18 已提交
1463

1464
    5. Compute the overall objective loss.
Y
yuyang18 已提交
1465

1466
      5.1 Compute confidence loss.
Y
yuyang18 已提交
1467

1468
      5.2 Compute localization loss.
Y
yuyang18 已提交
1469

1470 1471 1472 1473 1474 1475
      5.3 Compute the overall weighted loss.

    Args:
        location (Variable): The location predictions are a 3D Tensor with
            shape [N, Np, 4], N is the batch size, Np is total number of
            predictions for each instance. 4 is the number of coordinate values,
1476 1477
            the layout is [xmin, ymin, xmax, ymax].The data type is float32 or
            float64.
1478 1479
        confidence (Variable): The confidence predictions are a 3D Tensor
            with shape [N, Np, C], N and Np are the same as they are in
1480 1481
            `location`, C is the class number.The data type is float32 or
            float64.
翟飞跃 已提交
1482
        gt_box (Variable): The ground-truth bounding boxes (bboxes) are a 2D
1483
            LoDTensor with shape [Ng, 4], Ng is the total number of ground-truth
1484
            bboxes of mini-batch input.The data type is float32 or float64.
1485
        gt_label (Variable): The ground-truth labels are a 2D LoDTensor
1486 1487 1488
            with shape [Ng, 1].Ng is the total number of ground-truth bboxes of
            mini-batch input, 1 is the number of class. The data type is float32
            or float64.
1489
        prior_box (Variable): The prior boxes are a 2D Tensor with shape [Np, 4].
1490 1491
            Np and 4 are the same as they are in `location`. The data type is
            float32 or float64.
1492
        prior_box_var (Variable): The variance of prior boxes are a 2D Tensor
1493
            with shape [Np, 4]. Np and 4 are the same as they are in `prior_box`
1494 1495
        background_label (int): The index of background label, 0 by default.
        overlap_threshold (float): If match_type is 'per_prediction', use
1496 1497
            'overlap_threshold' to determine the extra matching bboxes when finding \
            matched boxes. 0.5 by default.
1498
        neg_pos_ratio (float): The ratio of the negative boxes to the positive
翟飞跃 已提交
1499
            boxes, used only when mining_type is 'max_negative', 3.0 by default.
1500
        neg_overlap (float): The negative overlap upper bound for the unmatched
1501
            predictions. Use only when mining_type is 'max_negative',
1502 1503 1504 1505
            0.5 by default.
        loc_loss_weight (float): Weight for localization loss, 1.0 by default.
        conf_loss_weight (float): Weight for confidence loss, 1.0 by default.
        match_type (str): The type of matching method during training, should
翟飞跃 已提交
1506
            be 'bipartite' or 'per_prediction', 'per_prediction' by default.
1507 1508
        mining_type (str): The hard example mining type, should be 'hard_example'
            or 'max_negative', now only support `max_negative`.
1509
        normalize (bool): Whether to normalize the SSD loss by the total number
Y
yuyang18 已提交
1510
            of output locations, True by default.
1511 1512
        sample_size (int): The max sample size of negative box, used only when
            mining_type is 'hard_example'.
1513 1514

    Returns:
1515 1516 1517
        Variable(Tensor):  The weighted sum of the localization loss and confidence loss, \
        with shape [N * Np, 1], N and Np are the same as they are in
        `location`.The data type is float32 or float64.
1518 1519

    Raises:
Y
yuyang18 已提交
1520 1521
        ValueError: If mining_type is 'hard_example', now only support mining \
        type of `max_negative`.
Y
yuyang18 已提交
1522 1523

    Examples:
1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542

        .. code-block:: python

            import paddle.fluid as fluid
            pb = fluid.data(
                           name='prior_box',
                           shape=[10, 4],
                           dtype='float32')
            pbv = fluid.data(
                           name='prior_box_var',
                           shape=[10, 4],
                           dtype='float32')
            loc = fluid.data(name='target_box', shape=[10, 4], dtype='float32')
            scores = fluid.data(name='scores', shape=[10, 21], dtype='float32')
            gt_box = fluid.data(
                 name='gt_box', shape=[4], lod_level=1, dtype='float32')
            gt_label = fluid.data(
                 name='gt_label', shape=[1], lod_level=1, dtype='float32')
            loss = fluid.layers.ssd_loss(loc, scores, gt_box, gt_label, pb, pbv)
1543 1544 1545 1546 1547 1548 1549
    """

    helper = LayerHelper('ssd_loss', **locals())
    if mining_type != 'max_negative':
        raise ValueError("Only support mining_type == max_negative now.")

    num, num_prior, num_class = confidence.shape
G
merge  
gongweibao 已提交
1550
    conf_shape = nn.shape(confidence)
1551 1552

    def __reshape_to_2d(var):
1553
        return nn.flatten(x=var, axis=2)
1554

T
tianshuo78520a 已提交
1555
    # 1. Find matched bounding box by prior box.
1556 1557
    #   1.1 Compute IOU similarity between ground-truth boxes and prior boxes.
    iou = iou_similarity(x=gt_box, y=prior_box)
T
tianshuo78520a 已提交
1558
    #   1.2 Compute matched bounding box by bipartite matching algorithm.
1559 1560
    matched_indices, matched_dist = bipartite_match(iou, match_type,
                                                    overlap_threshold)
1561 1562 1563

    # 2. Compute confidence for mining hard examples
    # 2.1. Get the target label based on matched indices
1564 1565
    gt_label = nn.reshape(
        x=gt_label, shape=(len(gt_label.shape) - 1) * (0, ) + (-1, 1))
1566
    gt_label.stop_gradient = True
1567 1568 1569 1570 1571 1572 1573
    target_label, _ = target_assign(
        gt_label, matched_indices, mismatch_value=background_label)
    # 2.2. Compute confidence loss.
    # Reshape confidence to 2D tensor.
    confidence = __reshape_to_2d(confidence)
    target_label = tensor.cast(x=target_label, dtype='int64')
    target_label = __reshape_to_2d(target_label)
1574
    target_label.stop_gradient = True
1575
    conf_loss = softmax_with_cross_entropy(confidence, target_label)
1576
    # 3. Mining hard examples
G
merge  
gongweibao 已提交
1577
    actual_shape = nn.slice(conf_shape, axes=[0], starts=[0], ends=[2])
1578
    actual_shape.stop_gradient = True
1579 1580
    # shape=(-1, 0) is set for compile-time, the correct shape is set by
    # actual_shape in runtime.
1581
    conf_loss = nn.reshape(
1582
        x=conf_loss, shape=(-1, 0), actual_shape=actual_shape)
1583
    conf_loss.stop_gradient = True
X
Xin Pan 已提交
1584
    neg_indices = helper.create_variable_for_type_inference(dtype='int32')
1585
    dtype = matched_indices.dtype
X
Xin Pan 已提交
1586 1587
    updated_matched_indices = helper.create_variable_for_type_inference(
        dtype=dtype)
1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601
    helper.append_op(
        type='mine_hard_examples',
        inputs={
            'ClsLoss': conf_loss,
            'LocLoss': None,
            'MatchIndices': matched_indices,
            'MatchDist': matched_dist,
        },
        outputs={
            'NegIndices': neg_indices,
            'UpdatedMatchIndices': updated_matched_indices
        },
        attrs={
            'neg_pos_ratio': neg_pos_ratio,
B
Bai Yifan 已提交
1602
            'neg_dist_threshold': neg_overlap,
1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627
            'mining_type': mining_type,
            'sample_size': sample_size,
        })

    # 4. Assign classification and regression targets
    # 4.1. Encoded bbox according to the prior boxes.
    encoded_bbox = box_coder(
        prior_box=prior_box,
        prior_box_var=prior_box_var,
        target_box=gt_box,
        code_type='encode_center_size')
    # 4.2. Assign regression targets
    target_bbox, target_loc_weight = target_assign(
        encoded_bbox, updated_matched_indices, mismatch_value=background_label)
    # 4.3. Assign classification targets
    target_label, target_conf_weight = target_assign(
        gt_label,
        updated_matched_indices,
        negative_indices=neg_indices,
        mismatch_value=background_label)

    # 5. Compute loss.
    # 5.1 Compute confidence loss.
    target_label = __reshape_to_2d(target_label)
    target_label = tensor.cast(x=target_label, dtype='int64')
1628

1629
    conf_loss = softmax_with_cross_entropy(confidence, target_label)
1630 1631 1632
    target_conf_weight = __reshape_to_2d(target_conf_weight)
    conf_loss = conf_loss * target_conf_weight

1633 1634 1635 1636
    # the target_label and target_conf_weight do not have gradient.
    target_label.stop_gradient = True
    target_conf_weight.stop_gradient = True

1637 1638 1639 1640 1641 1642 1643 1644
    # 5.2 Compute regression loss.
    location = __reshape_to_2d(location)
    target_bbox = __reshape_to_2d(target_bbox)

    loc_loss = nn.smooth_l1(location, target_bbox)
    target_loc_weight = __reshape_to_2d(target_loc_weight)
    loc_loss = loc_loss * target_loc_weight

1645 1646 1647 1648
    # the target_bbox and target_loc_weight do not have gradient.
    target_bbox.stop_gradient = True
    target_loc_weight.stop_gradient = True

1649 1650
    # 5.3 Compute overall weighted loss.
    loss = conf_loss_weight * conf_loss + loc_loss_weight * loc_loss
1651
    # reshape to [N, Np], N is the batch size and Np is the prior box number.
1652 1653 1654
    # shape=(-1, 0) is set for compile-time, the correct shape is set by
    # actual_shape in runtime.
    loss = nn.reshape(x=loss, shape=(-1, 0), actual_shape=actual_shape)
1655 1656 1657 1658 1659
    loss = nn.reduce_sum(loss, dim=1, keep_dim=True)
    if normalize:
        normalizer = nn.reduce_sum(target_loc_weight)
        loss = loss / normalizer

1660
    return loss
C
chengduoZH 已提交
1661 1662


1663 1664 1665 1666
def prior_box(input,
              image,
              min_sizes,
              max_sizes=None,
1667
              aspect_ratios=[1.],
1668 1669 1670 1671 1672
              variance=[0.1, 0.1, 0.2, 0.2],
              flip=False,
              clip=False,
              steps=[0.0, 0.0],
              offset=0.5,
1673 1674
              name=None,
              min_max_aspect_ratios_order=False):
1675
    """
R
ruri 已提交
1676
    This op generates prior boxes for SSD(Single Shot MultiBox Detector) algorithm.
1677 1678 1679 1680 1681
    Each position of the input produce N prior boxes, N is determined by
    the count of min_sizes, max_sizes and aspect_ratios, The size of the
    box is in range(min_size, max_size) interval, which is generated in
    sequence according to the aspect_ratios.

R
ruri 已提交
1682
    Parameters:
T
tianshuo78520a 已提交
1683
       input(Variable): 4-D tensor(NCHW), the data type should be float32 or float64.
R
ruri 已提交
1684 1685 1686 1687
       image(Variable): 4-D tensor(NCHW), the input image data of PriorBoxOp,
            the data type should be float32 or float64.
       min_sizes(list|tuple|float): the min sizes of generated prior boxes.
       max_sizes(list|tuple|None): the max sizes of generated prior boxes.
1688
            Default: None.
R
ruri 已提交
1689
       aspect_ratios(list|tuple|float): the aspect ratios of generated
1690
            prior boxes. Default: [1.].
1691 1692 1693 1694
       variance(list|tuple): the variances to be encoded in prior boxes.
            Default:[0.1, 0.1, 0.2, 0.2].
       flip(bool): Whether to flip aspect ratios. Default:False.
       clip(bool): Whether to clip out-of-boundary boxes. Default: False.
翟飞跃 已提交
1695
       step(list|tuple): Prior boxes step across width and height, If
R
ruri 已提交
1696 1697
            step[0] equals to 0.0 or step[1] equals to 0.0, the prior boxes step across
            height or weight of the input will be automatically calculated.
1698
            Default: [0., 0.]
1699
       offset(float): Prior boxes center offset. Default: 0.5
1700
       min_max_aspect_ratios_order(bool): If set True, the output prior box is
M
minqiyang 已提交
1701
            in order of [min, max, aspect_ratios], which is consistent with
1702 1703 1704
            Caffe. Please note, this order affects the weights order of
            convolution layer followed by and does not affect the final
            detection results. Default: False.
R
ruri 已提交
1705
       name(str, optional): The default value is None.  Normally there is no need for user to set this property.  For more information, please refer to :ref:`api_guide_Name`
1706 1707

    Returns:
R
ruri 已提交
1708
        Tuple: A tuple with two Variable (boxes, variances)
Q
update  
qiaolongfei 已提交
1709

R
ruri 已提交
1710 1711
        boxes(Variable): the output prior boxes of PriorBox.
	4-D tensor, the layout is [H, W, num_priors, 4].
Q
update  
qiaolongfei 已提交
1712
        H is the height of input, W is the width of input,
R
ruri 已提交
1713
        num_priors is the total box count of each position of input.
Q
update  
qiaolongfei 已提交
1714

R
ruri 已提交
1715 1716
        variances(Variable): the expanded variances of PriorBox.
    	4-D tensor, the layput is [H, W, num_priors, 4].
Q
update  
qiaolongfei 已提交
1717
        H is the height of input, W is the width of input
R
ruri 已提交
1718
        num_priors is the total box count of each position of input
1719 1720 1721

    Examples:
        .. code-block:: python
Q
update  
qiaolongfei 已提交
1722

R
ruri 已提交
1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769
	    #declarative mode
	    import paddle.fluid as fluid
	    import numpy as np
	    input = fluid.data(name="input", shape=[None,3,6,9])
	    image = fluid.data(name="image", shape=[None,3,9,12])
	    box, var = fluid.layers.prior_box(
                 input=input,
                 image=image,
		 min_sizes=[100.],
                 clip=True,
                 flip=True)

	    place = fluid.CPUPlace()
	    exe = fluid.Executor(place)
	    exe.run(fluid.default_startup_program())
 
	    # prepare a batch of data
	    input_data = np.random.rand(1,3,6,9).astype("float32")
	    image_data = np.random.rand(1,3,9,12).astype("float32")
 
	    box_out, var_out = exe.run(fluid.default_main_program(),
                feed={"input":input_data,"image":image_data},
                fetch_list=[box,var],
                return_numpy=True)
 
	    # print(box_out.shape)
	    # (6, 9, 1, 4)
	    # print(var_out.shape)
	    # (6, 9, 1, 4)

	    # imperative mode
	    import paddle.fluid.dygraph as dg

	    with dg.guard(place) as g:
    		input = dg.to_variable(input_data)
    		image = dg.to_variable(image_data)
    		box, var = fluid.layers.prior_box(
		    input=input,
		    image=image,
		    min_sizes=[100.],
		    clip=True,
		    flip=True)
		# print(box.shape)
		# [6L, 9L, 1L, 4L]
                # print(var.shape)
		# [6L, 9L, 1L, 4L]

1770 1771 1772
    """
    helper = LayerHelper("prior_box", **locals())
    dtype = helper.input_dtype()
1773 1774
    check_variable_and_dtype(
        input, 'input', ['uint8', 'int8', 'float32', 'float64'], 'prior_box')
1775

1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790
    def _is_list_or_tuple_(data):
        return (isinstance(data, list) or isinstance(data, tuple))

    if not _is_list_or_tuple_(min_sizes):
        min_sizes = [min_sizes]
    if not _is_list_or_tuple_(aspect_ratios):
        aspect_ratios = [aspect_ratios]
    if not (_is_list_or_tuple_(steps) and len(steps) == 2):
        raise ValueError('steps should be a list or tuple ',
                         'with length 2, (step_width, step_height).')

    min_sizes = list(map(float, min_sizes))
    aspect_ratios = list(map(float, aspect_ratios))
    steps = list(map(float, steps))

1791 1792 1793 1794 1795 1796 1797 1798
    attrs = {
        'min_sizes': min_sizes,
        'aspect_ratios': aspect_ratios,
        'variances': variance,
        'flip': flip,
        'clip': clip,
        'step_w': steps[0],
        'step_h': steps[1],
1799 1800
        'offset': offset,
        'min_max_aspect_ratios_order': min_max_aspect_ratios_order
1801 1802
    }
    if max_sizes is not None and len(max_sizes) > 0 and max_sizes[0] > 0:
1803 1804
        if not _is_list_or_tuple_(max_sizes):
            max_sizes = [max_sizes]
1805 1806
        attrs['max_sizes'] = max_sizes

X
Xin Pan 已提交
1807 1808
    box = helper.create_variable_for_type_inference(dtype)
    var = helper.create_variable_for_type_inference(dtype)
1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820
    helper.append_op(
        type="prior_box",
        inputs={"Input": input,
                "Image": image},
        outputs={"Boxes": box,
                 "Variances": var},
        attrs=attrs, )
    box.stop_gradient = True
    var.stop_gradient = True
    return box, var


R
ruri 已提交
1821 1822 1823 1824 1825 1826 1827 1828 1829
def density_prior_box(input,
                      image,
                      densities=None,
                      fixed_sizes=None,
                      fixed_ratios=None,
                      variance=[0.1, 0.1, 0.2, 0.2],
                      clip=False,
                      steps=[0.0, 0.0],
                      offset=0.5,
1830
                      flatten_to_2d=False,
R
ruri 已提交
1831 1832 1833
                      name=None):
    """

R
ruri 已提交
1834
    This op generates density prior boxes for SSD(Single Shot MultiBox Detector) 
R
ruri 已提交
1835 1836 1837 1838 1839 1840
    algorithm. Each position of the input produce N prior boxes, N is 
    determined by the count of densities, fixed_sizes and fixed_ratios. 
    Boxes center at grid points around each input position is generated by 
    this operator, and the grid points is determined by densities and 
    the count of density prior box is determined by fixed_sizes and fixed_ratios. 
    Obviously, the number of fixed_sizes is equal to the number of densities.
R
ruri 已提交
1841
    
R
ruri 已提交
1842
    For densities_i in densities:
R
ruri 已提交
1843 1844
    
    .. math::
R
ruri 已提交
1845

R
ruri 已提交
1846 1847 1848 1849 1850 1851 1852
        N\_density_prior\_box = SUM(N\_fixed\_ratios * densities\_i^2)

    N_density_prior_box is the number of density_prior_box and N_fixed_ratios is the number of fixed_ratios.

    Parameters:
       input(Variable): 4-D tensor(NCHW), the data type should be float32 of float64.
       image(Variable): 4-D tensor(NCHW), the input image data of PriorBoxOp, the data type should be float32 or float64.
R
ruri 已提交
1853
            the layout is NCHW.
R
ruri 已提交
1854
       densities(list|tuple|None): The densities of generated density prior 
R
ruri 已提交
1855 1856
            boxes, this attribute should be a list or tuple of integers. 
            Default: None.
R
ruri 已提交
1857
       fixed_sizes(list|tuple|None): The fixed sizes of generated density
R
ruri 已提交
1858 1859
            prior boxes, this attribute should a list or tuple of same 
            length with :attr:`densities`. Default: None.
R
ruri 已提交
1860
       fixed_ratios(list|tuple|None): The fixed ratios of generated density
R
ruri 已提交
1861 1862 1863
            prior boxes, if this attribute is not set and :attr:`densities`
            and :attr:`fix_sizes` is set, :attr:`aspect_ratios` will be used
            to generate density prior boxes.
R
ruri 已提交
1864
       variance(list|tuple): The variances to be encoded in density prior boxes.
R
ruri 已提交
1865
            Default:[0.1, 0.1, 0.2, 0.2].
R
ruri 已提交
1866
       clip(bool): Whether to clip out of boundary boxes. Default: False.
翟飞跃 已提交
1867
       step(list|tuple): Prior boxes step across width and height, If
R
ruri 已提交
1868 1869
            step[0] equals 0.0 or step[1] equals 0.0, the density prior boxes step across
            height or weight of the input will be automatically calculated.
R
ruri 已提交
1870 1871
            Default: [0., 0.]
       offset(float): Prior boxes center offset. Default: 0.5
1872 1873
       flatten_to_2d(bool): Whether to flatten output prior boxes and variance
           to 2D shape, the second dim is 4. Default: False.
R
ruri 已提交
1874 1875
       name(str, optional): The default value is None.  Normally there is no need for user to set this property.  For more information, please refer to :ref:`api_guide_Name`
    
R
ruri 已提交
1876
    Returns:
R
ruri 已提交
1877
        Tuple: A tuple with two Variable (boxes, variances)
R
ruri 已提交
1878 1879

        boxes: the output density prior boxes of PriorBox.
R
ruri 已提交
1880 1881 1882
        4-D tensor, the layout is [H, W, num_priors, 4] when flatten_to_2d is False.
        2-D tensor, the layout is [H * W * num_priors, 4] when flatten_to_2d is True.
        H is the height of input, W is the width of input, and num_priors is the total box count of each position of input.
R
ruri 已提交
1883 1884

        variances: the expanded variances of PriorBox.
R
ruri 已提交
1885 1886 1887
        4-D tensor, the layout is [H, W, num_priors, 4] when flatten_to_2d is False.
        2-D tensor, the layout is [H * W * num_priors, 4] when flatten_to_2d is True.
        H is the height of input, W is the width of input, and num_priors is the total box count of each position of input.
R
ruri 已提交
1888 1889 1890


    Examples:
R
ruri 已提交
1891

R
ruri 已提交
1892 1893
        .. code-block:: python

R
ruri 已提交
1894
            #declarative mode
R
ruri 已提交
1895

R
ruri 已提交
1896 1897
            import paddle.fluid as fluid
            import numpy as np
R
ruri 已提交
1898

R
ruri 已提交
1899 1900 1901
            input = fluid.data(name="input", shape=[None,3,6,9])
            image = fluid.data(name="image", shape=[None,3,9,12])
            box, var = fluid.layers.density_prior_box(
R
ruri 已提交
1902 1903 1904 1905 1906 1907 1908 1909
                 input=input,
                 image=image,
                 densities=[4, 2, 1],
                 fixed_sizes=[32.0, 64.0, 128.0],
                 fixed_ratios=[1.],
                 clip=True,
                 flatten_to_2d=True)

R
ruri 已提交
1910 1911 1912
            place = fluid.CPUPlace()
            exe = fluid.Executor(place)
            exe.run(fluid.default_startup_program())
R
ruri 已提交
1913
 
R
ruri 已提交
1914 1915 1916 1917 1918 1919
            # prepare a batch of data
            input_data = np.random.rand(1,3,6,9).astype("float32")
            image_data = np.random.rand(1,3,9,12).astype("float32")

            box_out, var_out = exe.run(
                fluid.default_main_program(),
R
ruri 已提交
1920
                feed={"input":input_data,
R
ruri 已提交
1921
                      "image":image_data},
R
ruri 已提交
1922 1923 1924
                fetch_list=[box,var],
                return_numpy=True)

R
ruri 已提交
1925 1926 1927 1928
            # print(box_out.shape)
            # (1134, 4)
            # print(var_out.shape)
            # (1134, 4)
R
ruri 已提交
1929 1930


R
ruri 已提交
1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948
            #imperative mode
            import paddle.fluid.dygraph as dg

            with dg.guard(place) as g:
                input = dg.to_variable(input_data)
                image = dg.to_variable(image_data)
                box, var = fluid.layers.density_prior_box(
                    input=input,
                    image=image,
                    densities=[4, 2, 1],
                    fixed_sizes=[32.0, 64.0, 128.0],
                    fixed_ratios=[1.],
                    clip=True)

                # print(box.shape)
                # [6L, 9L, 21L, 4L]
                # print(var.shape)
                # [6L, 9L, 21L, 4L]
R
ruri 已提交
1949

R
ruri 已提交
1950 1951 1952
    """
    helper = LayerHelper("density_prior_box", **locals())
    dtype = helper.input_dtype()
1953 1954
    check_variable_and_dtype(input, 'input', ['float32', 'float64'],
                             'density_prior_box')
R
ruri 已提交
1955 1956 1957 1958

    def _is_list_or_tuple_(data):
        return (isinstance(data, list) or isinstance(data, tuple))

1959 1960 1961
    check_type(densities, 'densities', (list, tuple), 'density_prior_box')
    check_type(fixed_sizes, 'fixed_sizes', (list, tuple), 'density_prior_box')
    check_type(fixed_ratios, 'fixed_ratios', (list, tuple), 'density_prior_box')
R
ruri 已提交
1962 1963
    if len(densities) != len(fixed_sizes):
        raise ValueError('densities and fixed_sizes length should be euqal.')
1964

R
ruri 已提交
1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979
    if not (_is_list_or_tuple_(steps) and len(steps) == 2):
        raise ValueError('steps should be a list or tuple ',
                         'with length 2, (step_width, step_height).')

    densities = list(map(int, densities))
    fixed_sizes = list(map(float, fixed_sizes))
    fixed_ratios = list(map(float, fixed_ratios))
    steps = list(map(float, steps))

    attrs = {
        'variances': variance,
        'clip': clip,
        'step_w': steps[0],
        'step_h': steps[1],
        'offset': offset,
1980 1981 1982 1983
        'densities': densities,
        'fixed_sizes': fixed_sizes,
        'fixed_ratios': fixed_ratios,
        'flatten_to_2d': flatten_to_2d,
R
ruri 已提交
1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998
    }
    box = helper.create_variable_for_type_inference(dtype)
    var = helper.create_variable_for_type_inference(dtype)
    helper.append_op(
        type="density_prior_box",
        inputs={"Input": input,
                "Image": image},
        outputs={"Boxes": box,
                 "Variances": var},
        attrs=attrs, )
    box.stop_gradient = True
    var.stop_gradient = True
    return box, var


C
chengduoZH 已提交
1999
def multi_box_head(inputs,
C
chengduoZH 已提交
2000 2001
                   image,
                   base_size,
C
chengduoZH 已提交
2002
                   num_classes,
C
chengduoZH 已提交
2003
                   aspect_ratios,
2004 2005
                   min_ratio=None,
                   max_ratio=None,
C
chengduoZH 已提交
2006 2007
                   min_sizes=None,
                   max_sizes=None,
C
chengduoZH 已提交
2008 2009 2010 2011
                   steps=None,
                   step_w=None,
                   step_h=None,
                   offset=0.5,
2012 2013
                   variance=[0.1, 0.1, 0.2, 0.2],
                   flip=True,
C
chengduoZH 已提交
2014
                   clip=False,
C
chengduoZH 已提交
2015
                   kernel_size=1,
C
chengduoZH 已提交
2016
                   pad=0,
C
chengduoZH 已提交
2017
                   stride=1,
2018 2019
                   name=None,
                   min_max_aspect_ratios_order=False):
C
chengduoZH 已提交
2020
    """
Q
qingqing01 已提交
2021 2022 2023 2024
    Base on SSD ((Single Shot MultiBox Detector) algorithm, generate prior boxes,
    regression location and classification confidence on multiple input feature
    maps, then output the concatenate results. The details of this algorithm,
    please refer the section 2.2 of SSD paper `SSD: Single Shot MultiBox Detector
C
chengduoZH 已提交
2025
    <https://arxiv.org/abs/1512.02325>`_ .
C
chengduoZH 已提交
2026 2027

    Args:
Q
qingqing01 已提交
2028 2029 2030 2031 2032 2033 2034 2035 2036 2037 2038 2039 2040 2041 2042 2043 2044 2045 2046 2047 2048
       inputs (list(Variable)|tuple(Variable)): The list of input variables,
           the format of all Variables are 4-D Tensor, layout is NCHW.
           Data type should be float32 or float64.
       image (Variable): The input image, layout is NCHW. Data type should be
           the same as inputs.
       base_size(int): the base_size is input image size. When len(inputs) > 2
           and `min_size` and `max_size` are None, the `min_size` and `max_size`
           are calculated by `baze_size`, 'min_ratio' and `max_ratio`. The
           formula is as follows:

              ..  code-block:: text

                  min_sizes = []
                  max_sizes = []
                  step = int(math.floor(((max_ratio - min_ratio)) / (num_layer - 2)))
                  for ratio in six.moves.range(min_ratio, max_ratio + 1, step):
                      min_sizes.append(base_size * ratio / 100.)
                      max_sizes.append(base_size * (ratio + step) / 100.)
                      min_sizes = [base_size * .10] + min_sizes
                      max_sizes = [base_size * .20] + max_sizes

C
chengduoZH 已提交
2049
       num_classes(int): The number of classes.
Q
qingqing01 已提交
2050 2051
       aspect_ratios(list(float) | tuple(float)): the aspect ratios of generated
           prior boxes. The length of input and aspect_ratios must be equal.
C
chengduoZH 已提交
2052 2053 2054 2055 2056 2057 2058 2059 2060 2061 2062 2063 2064 2065 2066 2067 2068 2069 2070
       min_ratio(int): the min ratio of generated prior boxes.
       max_ratio(int): the max ratio of generated prior boxes.
       min_sizes(list|tuple|None): If `len(inputs) <=2`,
            min_sizes must be set up, and the length of min_sizes
            should equal to the length of inputs. Default: None.
       max_sizes(list|tuple|None): If `len(inputs) <=2`,
            max_sizes must be set up, and the length of min_sizes
            should equal to the length of inputs. Default: None.
       steps(list|tuple): If step_w and step_h are the same,
            step_w and step_h can be replaced by steps.
       step_w(list|tuple): Prior boxes step
            across width. If step_w[i] == 0.0, the prior boxes step
            across width of the inputs[i] will be automatically
            calculated. Default: None.
       step_h(list|tuple): Prior boxes step across height, If
            step_h[i] == 0.0, the prior boxes step across height of
            the inputs[i] will be automatically calculated. Default: None.
       offset(float): Prior boxes center offset. Default: 0.5
       variance(list|tuple): the variances to be encoded in prior boxes.
2071
            Default:[0.1, 0.1, 0.2, 0.2].
C
chengduoZH 已提交
2072 2073 2074 2075 2076
       flip(bool): Whether to flip aspect ratios. Default:False.
       clip(bool): Whether to clip out-of-boundary boxes. Default: False.
       kernel_size(int): The kernel size of conv2d. Default: 1.
       pad(int|list|tuple): The padding of conv2d. Default:0.
       stride(int|list|tuple): The stride of conv2d. Default:1,
Q
qingqing01 已提交
2077 2078 2079
       name(str): The default value is None.  Normally there is no need
           for user to set this property.  For more information, please
           refer to :ref:`api_guide_Name`.
2080
       min_max_aspect_ratios_order(bool): If set True, the output prior box is
M
minqiyang 已提交
2081
            in order of [min, max, aspect_ratios], which is consistent with
2082
            Caffe. Please note, this order affects the weights order of
T
tianshuo78520a 已提交
2083
            convolution layer followed by and does not affect the final
2084
            detection results. Default: False.
C
chengduoZH 已提交
2085 2086

    Returns:
Q
update  
qiaolongfei 已提交
2087 2088
        tuple: A tuple with four Variables. (mbox_loc, mbox_conf, boxes, variances)

Q
qingqing01 已提交
2089 2090 2091
        mbox_loc (Variable): The predicted boxes' location of the inputs. The
        layout is [N, num_priors, 4], where N is batch size, ``num_priors``
        is the number of prior boxes. Data type is the same as input.
Q
update  
qiaolongfei 已提交
2092

Q
qingqing01 已提交
2093 2094 2095 2096
        mbox_conf (Variable): The predicted boxes' confidence of the inputs.
        The layout is [N, num_priors, C], where ``N`` and ``num_priors`` 
        has the same meaning as above. C is the number of Classes.
        Data type is the same as input.
Q
update  
qiaolongfei 已提交
2097

Q
qingqing01 已提交
2098 2099 2100
        boxes (Variable): the output prior boxes. The layout is [num_priors, 4].
        The meaning of num_priors is the same as above.
        Data type is the same as input.
C
chengduoZH 已提交
2101

Q
qingqing01 已提交
2102 2103
        variances (Variable): the expanded variances for prior boxes.
        The layout is [num_priors, 4]. Data type is the same as input.
C
chengduoZH 已提交
2104

Q
qingqing01 已提交
2105
    Examples 1: set min_ratio and max_ratio:
C
chengduoZH 已提交
2106
        .. code-block:: python
Q
update  
qiaolongfei 已提交
2107

2108 2109
          import paddle.fluid as fluid

Q
qingqing01 已提交
2110 2111 2112 2113 2114 2115 2116
          images = fluid.data(name='data', shape=[None, 3, 300, 300], dtype='float32')
          conv1 = fluid.data(name='conv1', shape=[None, 512, 19, 19], dtype='float32')
          conv2 = fluid.data(name='conv2', shape=[None, 1024, 10, 10], dtype='float32')
          conv3 = fluid.data(name='conv3', shape=[None, 512, 5, 5], dtype='float32')
          conv4 = fluid.data(name='conv4', shape=[None, 256, 3, 3], dtype='float32')
          conv5 = fluid.data(name='conv5', shape=[None, 256, 2, 2], dtype='float32')
          conv6 = fluid.data(name='conv6', shape=[None, 128, 1, 1], dtype='float32')
2117

Q
update  
qiaolongfei 已提交
2118
          mbox_locs, mbox_confs, box, var = fluid.layers.multi_box_head(
2119
            inputs=[conv1, conv2, conv3, conv4, conv5, conv6],
C
chengduoZH 已提交
2120 2121 2122 2123 2124 2125 2126 2127 2128
            image=images,
            num_classes=21,
            min_ratio=20,
            max_ratio=90,
            aspect_ratios=[[2.], [2., 3.], [2., 3.], [2., 3.], [2.], [2.]],
            base_size=300,
            offset=0.5,
            flip=True,
            clip=True)
Q
qingqing01 已提交
2129 2130 2131 2132 2133 2134 2135 2136 2137 2138 2139 2140 2141 2142 2143 2144 2145 2146 2147 2148 2149 2150 2151 2152 2153 2154

    Examples 2: set min_sizes and max_sizes:
        .. code-block:: python

          import paddle.fluid as fluid

          images = fluid.data(name='data', shape=[None, 3, 300, 300], dtype='float32')
          conv1 = fluid.data(name='conv1', shape=[None, 512, 19, 19], dtype='float32')
          conv2 = fluid.data(name='conv2', shape=[None, 1024, 10, 10], dtype='float32')
          conv3 = fluid.data(name='conv3', shape=[None, 512, 5, 5], dtype='float32')
          conv4 = fluid.data(name='conv4', shape=[None, 256, 3, 3], dtype='float32')
          conv5 = fluid.data(name='conv5', shape=[None, 256, 2, 2], dtype='float32')
          conv6 = fluid.data(name='conv6', shape=[None, 128, 1, 1], dtype='float32')

          mbox_locs, mbox_confs, box, var = fluid.layers.multi_box_head(
            inputs=[conv1, conv2, conv3, conv4, conv5, conv6],
            image=images,
            num_classes=21,
            min_sizes=[60.0, 105.0, 150.0, 195.0, 240.0, 285.0],
            max_sizes=[[], 150.0, 195.0, 240.0, 285.0, 300.0],
            aspect_ratios=[[2.], [2., 3.], [2., 3.], [2., 3.], [2.], [2.]],
            base_size=300,
            offset=0.5,
            flip=True,
            clip=True)

C
chengduoZH 已提交
2155 2156
    """

C
chengduoZH 已提交
2157
    def _reshape_with_axis_(input, axis=1):
2158
        out = nn.flatten(x=input, axis=axis)
C
chengduoZH 已提交
2159
        return out
2160

2161 2162
    def _is_list_or_tuple_(data):
        return (isinstance(data, list) or isinstance(data, tuple))
2163

C
chengduoZH 已提交
2164 2165 2166 2167
    def _is_list_or_tuple_and_equal(data, length, err_info):
        if not (_is_list_or_tuple_(data) and len(data) == length):
            raise ValueError(err_info)

2168 2169
    if not _is_list_or_tuple_(inputs):
        raise ValueError('inputs should be a list or tuple.')
C
chengduoZH 已提交
2170

C
chengduoZH 已提交
2171 2172 2173 2174 2175
    num_layer = len(inputs)

    if num_layer <= 2:
        assert min_sizes is not None and max_sizes is not None
        assert len(min_sizes) == num_layer and len(max_sizes) == num_layer
2176
    elif min_sizes is None and max_sizes is None:
C
chengduoZH 已提交
2177 2178 2179
        min_sizes = []
        max_sizes = []
        step = int(math.floor(((max_ratio - min_ratio)) / (num_layer - 2)))
M
minqiyang 已提交
2180
        for ratio in six.moves.range(min_ratio, max_ratio + 1, step):
C
chengduoZH 已提交
2181 2182 2183 2184 2185
            min_sizes.append(base_size * ratio / 100.)
            max_sizes.append(base_size * (ratio + step) / 100.)
        min_sizes = [base_size * .10] + min_sizes
        max_sizes = [base_size * .20] + max_sizes

C
chengduoZH 已提交
2186 2187 2188 2189 2190
    if aspect_ratios:
        _is_list_or_tuple_and_equal(
            aspect_ratios, num_layer,
            'aspect_ratios should be list or tuple, and the length of inputs '
            'and aspect_ratios should be the same.')
Z
zhongpu 已提交
2191
    if step_h is not None:
C
chengduoZH 已提交
2192 2193 2194 2195
        _is_list_or_tuple_and_equal(
            step_h, num_layer,
            'step_h should be list or tuple, and the length of inputs and '
            'step_h should be the same.')
Z
zhongpu 已提交
2196
    if step_w is not None:
C
chengduoZH 已提交
2197 2198 2199 2200
        _is_list_or_tuple_and_equal(
            step_w, num_layer,
            'step_w should be list or tuple, and the length of inputs and '
            'step_w should be the same.')
Z
zhongpu 已提交
2201
    if steps is not None:
C
chengduoZH 已提交
2202 2203 2204 2205 2206 2207 2208
        _is_list_or_tuple_and_equal(
            steps, num_layer,
            'steps should be list or tuple, and the length of inputs and '
            'step_w should be the same.')
        step_w = steps
        step_h = steps

C
chengduoZH 已提交
2209 2210
    mbox_locs = []
    mbox_confs = []
C
chengduoZH 已提交
2211 2212
    box_results = []
    var_results = []
C
chengduoZH 已提交
2213 2214
    for i, input in enumerate(inputs):
        min_size = min_sizes[i]
C
chengduoZH 已提交
2215 2216
        max_size = max_sizes[i]

2217
        if not _is_list_or_tuple_(min_size):
C
chengduoZH 已提交
2218
            min_size = [min_size]
C
chengduoZH 已提交
2219 2220
        if not _is_list_or_tuple_(max_size):
            max_size = [max_size]
C
chengduoZH 已提交
2221 2222 2223 2224

        aspect_ratio = []
        if aspect_ratios is not None:
            aspect_ratio = aspect_ratios[i]
2225
            if not _is_list_or_tuple_(aspect_ratio):
C
chengduoZH 已提交
2226
                aspect_ratio = [aspect_ratio]
2227
        step = [step_w[i] if step_w else 0.0, step_h[i] if step_w else 0.0]
C
chengduoZH 已提交
2228

2229
        box, var = prior_box(input, image, min_size, max_size, aspect_ratio,
2230 2231
                             variance, flip, clip, step, offset, None,
                             min_max_aspect_ratios_order)
C
chengduoZH 已提交
2232 2233 2234 2235 2236

        box_results.append(box)
        var_results.append(var)

        num_boxes = box.shape[2]
C
chengduoZH 已提交
2237

2238
        # get loc
Y
Yuan Gao 已提交
2239
        num_loc_output = num_boxes * 4
2240
        mbox_loc = nn.conv2d(
C
chengduoZH 已提交
2241
            input=input,
2242 2243 2244 2245 2246
            num_filters=num_loc_output,
            filter_size=kernel_size,
            padding=pad,
            stride=stride)

2247
        mbox_loc = nn.transpose(mbox_loc, perm=[0, 2, 3, 1])
2248
        mbox_loc_flatten = nn.flatten(mbox_loc, axis=1)
Y
Yuan Gao 已提交
2249
        mbox_locs.append(mbox_loc_flatten)
C
chengduoZH 已提交
2250

2251
        # get conf
C
chengduoZH 已提交
2252
        num_conf_output = num_boxes * num_classes
2253
        conf_loc = nn.conv2d(
C
chengduoZH 已提交
2254
            input=input,
2255 2256 2257 2258
            num_filters=num_conf_output,
            filter_size=kernel_size,
            padding=pad,
            stride=stride)
2259
        conf_loc = nn.transpose(conf_loc, perm=[0, 2, 3, 1])
2260
        conf_loc_flatten = nn.flatten(conf_loc, axis=1)
Y
Yuan Gao 已提交
2261
        mbox_confs.append(conf_loc_flatten)
C
chengduoZH 已提交
2262

C
chengduoZH 已提交
2263 2264 2265
    if len(box_results) == 1:
        box = box_results[0]
        var = var_results[0]
Y
Yuan Gao 已提交
2266 2267
        mbox_locs_concat = mbox_locs[0]
        mbox_confs_concat = mbox_confs[0]
C
chengduoZH 已提交
2268 2269 2270 2271 2272 2273 2274 2275 2276
    else:
        reshaped_boxes = []
        reshaped_vars = []
        for i in range(len(box_results)):
            reshaped_boxes.append(_reshape_with_axis_(box_results[i], axis=3))
            reshaped_vars.append(_reshape_with_axis_(var_results[i], axis=3))

        box = tensor.concat(reshaped_boxes)
        var = tensor.concat(reshaped_vars)
Y
Yuan Gao 已提交
2277
        mbox_locs_concat = tensor.concat(mbox_locs, axis=1)
2278
        mbox_locs_concat = nn.reshape(mbox_locs_concat, shape=[0, -1, 4])
Y
Yuan Gao 已提交
2279
        mbox_confs_concat = tensor.concat(mbox_confs, axis=1)
2280 2281
        mbox_confs_concat = nn.reshape(
            mbox_confs_concat, shape=[0, -1, num_classes])
C
chengduoZH 已提交
2282

2283 2284
    box.stop_gradient = True
    var.stop_gradient = True
Y
Yuan Gao 已提交
2285
    return mbox_locs_concat, mbox_confs_concat, box, var
2286 2287 2288 2289 2290 2291 2292 2293 2294 2295 2296 2297 2298 2299 2300 2301 2302 2303


def anchor_generator(input,
                     anchor_sizes=None,
                     aspect_ratios=None,
                     variance=[0.1, 0.1, 0.2, 0.2],
                     stride=None,
                     offset=0.5,
                     name=None):
    """
    **Anchor generator operator**

    Generate anchors for Faster RCNN algorithm.
    Each position of the input produce N anchors, N =
    size(anchor_sizes) * size(aspect_ratios). The order of generated anchors
    is firstly aspect_ratios loop then anchor_sizes loop.

    Args:
W
wangguanzhong 已提交
2304 2305 2306 2307 2308 2309 2310 2311 2312 2313 2314 2315 2316 2317 2318 2319
       input(Variable): 4-D Tensor with shape [N,C,H,W]. The input feature map.
       anchor_sizes(float32|list|tuple, optional): The anchor sizes of generated
          anchors, given in absolute pixels e.g. [64., 128., 256., 512.].
          For instance, the anchor size of 64 means the area of this anchor 
          equals to 64**2. None by default.
       aspect_ratios(float32|list|tuple, optional): The height / width ratios 
           of generated anchors, e.g. [0.5, 1.0, 2.0]. None by default.
       variance(list|tuple, optional): The variances to be used in box 
           regression deltas. The data type is float32, [0.1, 0.1, 0.2, 0.2] by 
           default.
       stride(list|tuple, optional): The anchors stride across width and height.
           The data type is float32. e.g. [16.0, 16.0]. None by default.
       offset(float32, optional): Prior boxes center offset. 0.5 by default.
       name(str, optional): For detailed information, please refer 
           to :ref:`api_guide_Name`. Usually name is no need to set and None 
           by default. 
2320 2321

    Returns:
W
wangguanzhong 已提交
2322 2323 2324 2325 2326 2327 2328 2329 2330 2331 2332 2333
        Tuple:

        Anchors(Variable): The output anchors with a layout of [H, W, num_anchors, 4].
        H is the height of input, W is the width of input,
        num_anchors is the box count of each position. 
        Each anchor is in (xmin, ymin, xmax, ymax) format an unnormalized.
 
        Variances(Variable): The expanded variances of anchors
        with a layout of [H, W, num_priors, 4].
        H is the height of input, W is the width of input
        num_anchors is the box count of each position.
        Each variance is in (xcenter, ycenter, w, h) format.
2334 2335 2336 2337 2338 2339


    Examples:

        .. code-block:: python

2340
            import paddle.fluid as fluid
2341
            conv1 = fluid.data(name='conv1', shape=[None, 48, 16, 16], dtype='float32')
J
jerrywgz 已提交
2342
            anchor, var = fluid.layers.anchor_generator(
2343 2344 2345 2346 2347 2348 2349 2350 2351 2352 2353 2354 2355 2356 2357 2358 2359 2360 2361 2362 2363 2364 2365 2366 2367 2368 2369 2370 2371 2372 2373 2374 2375
                input=conv1,
                anchor_sizes=[64, 128, 256, 512],
                aspect_ratios=[0.5, 1.0, 2.0],
                variance=[0.1, 0.1, 0.2, 0.2],
                stride=[16.0, 16.0],
                offset=0.5)
    """
    helper = LayerHelper("anchor_generator", **locals())
    dtype = helper.input_dtype()

    def _is_list_or_tuple_(data):
        return (isinstance(data, list) or isinstance(data, tuple))

    if not _is_list_or_tuple_(anchor_sizes):
        anchor_sizes = [anchor_sizes]
    if not _is_list_or_tuple_(aspect_ratios):
        aspect_ratios = [aspect_ratios]
    if not (_is_list_or_tuple_(stride) and len(stride) == 2):
        raise ValueError('stride should be a list or tuple ',
                         'with length 2, (stride_width, stride_height).')

    anchor_sizes = list(map(float, anchor_sizes))
    aspect_ratios = list(map(float, aspect_ratios))
    stride = list(map(float, stride))

    attrs = {
        'anchor_sizes': anchor_sizes,
        'aspect_ratios': aspect_ratios,
        'variances': variance,
        'stride': stride,
        'offset': offset
    }

X
Xin Pan 已提交
2376 2377
    anchor = helper.create_variable_for_type_inference(dtype)
    var = helper.create_variable_for_type_inference(dtype)
2378 2379 2380 2381 2382 2383 2384 2385 2386
    helper.append_op(
        type="anchor_generator",
        inputs={"Input": input},
        outputs={"Anchors": anchor,
                 "Variances": var},
        attrs=attrs, )
    anchor.stop_gradient = True
    var.stop_gradient = True
    return anchor, var
2387 2388


W
whs 已提交
2389 2390 2391 2392
def roi_perspective_transform(input,
                              rois,
                              transformed_height,
                              transformed_width,
S
SunGaofeng 已提交
2393 2394
                              spatial_scale=1.0,
                              name=None):
W
whs 已提交
2395
    """
S
SunGaofeng 已提交
2396
    **The** `rois` **of this op should be a LoDTensor.**
W
whs 已提交
2397

S
SunGaofeng 已提交
2398 2399 2400 2401 2402
    ROI perspective transform op applies perspective transform to map each roi into an 
    rectangular region. Perspective transform is a type of transformation in linear algebra.

    Parameters:
        input (Variable): 4-D Tensor, input of ROIPerspectiveTransformOp. The format of 
W
whs 已提交
2403 2404
                          input tensor is NCHW. Where N is batch size, C is the
                          number of input channels, H is the height of the feature,
S
SunGaofeng 已提交
2405 2406 2407
                          and W is the width of the feature. The data type is float32.
        rois (Variable):  2-D LoDTensor, ROIs (Regions of Interest) to be transformed. 
                          It should be a 2-D LoDTensor of shape (num_rois, 8). Given as 
W
whs 已提交
2408 2409 2410
                          [[x1, y1, x2, y2, x3, y3, x4, y4], ...], (x1, y1) is the 
                          top left coordinates, and (x2, y2) is the top right 
                          coordinates, and (x3, y3) is the bottom right coordinates, 
S
SunGaofeng 已提交
2411 2412 2413 2414
                          and (x4, y4) is the bottom left coordinates. The data type is the
                          same as `input` 
        transformed_height (int): The height of transformed output.
        transformed_width (int): The width of transformed output.
W
whs 已提交
2415
        spatial_scale (float): Spatial scale factor to scale ROI coords. Default: 1.0
S
SunGaofeng 已提交
2416 2417 2418
        name(str, optional): The default value is None.  
                             Normally there is no need for user to set this property.  
                             For more information, please refer to :ref:`api_guide_Name`
W
whs 已提交
2419 2420

    Returns:
S
SunGaofeng 已提交
2421
            A tuple with three Variables. (out, mask, transform_matrix)
2422 2423

            out: The output of ROIPerspectiveTransformOp which is a 4-D tensor with shape
S
SunGaofeng 已提交
2424
            (num_rois, channels, transformed_h, transformed_w). The data type is the same as `input`
2425 2426

            mask: The mask of ROIPerspectiveTransformOp which is a 4-D tensor with shape
S
SunGaofeng 已提交
2427
            (num_rois, 1, transformed_h, transformed_w). The data type is int32
2428 2429

            transform_matrix: The transform matrix of ROIPerspectiveTransformOp which is
S
SunGaofeng 已提交
2430 2431 2432 2433
            a 2-D tensor with shape (num_rois, 9). The data type is the same as `input`

    Return Type:
        tuple
W
whs 已提交
2434 2435 2436 2437

    Examples:
        .. code-block:: python

S
SunGaofeng 已提交
2438
            import paddle.fluid as fluid
2439

S
SunGaofeng 已提交
2440 2441
            x = fluid.data(name='x', shape=[100, 256, 28, 28], dtype='float32')
            rois = fluid.data(name='rois', shape=[None, 8], lod_level=1, dtype='float32')
2442
            out, mask, transform_matrix = fluid.layers.roi_perspective_transform(x, rois, 7, 7, 1.0)
W
whs 已提交
2443
    """
2444 2445 2446 2447 2448 2449 2450 2451 2452 2453 2454
    check_variable_and_dtype(input, 'input', ['float32'],
                             'roi_perspective_transform')
    check_variable_and_dtype(rois, 'rois', ['float32'],
                             'roi_perspective_transform')
    check_type(transformed_height, 'transformed_height', int,
               'roi_perspective_transform')
    check_type(transformed_width, 'transformed_width', int,
               'roi_perspective_transform')
    check_type(spatial_scale, 'spatial_scale', float,
               'roi_perspective_transform')

W
whs 已提交
2455 2456
    helper = LayerHelper('roi_perspective_transform', **locals())
    dtype = helper.input_dtype()
X
Xin Pan 已提交
2457
    out = helper.create_variable_for_type_inference(dtype)
2458 2459
    mask = helper.create_variable_for_type_inference(dtype="int32")
    transform_matrix = helper.create_variable_for_type_inference(dtype)
2460 2461
    out2in_idx = helper.create_variable_for_type_inference(dtype="int32")
    out2in_w = helper.create_variable_for_type_inference(dtype)
W
whs 已提交
2462 2463 2464 2465
    helper.append_op(
        type="roi_perspective_transform",
        inputs={"X": input,
                "ROIs": rois},
2466 2467 2468
        outputs={
            "Out": out,
            "Out2InIdx": out2in_idx,
2469 2470 2471
            "Out2InWeights": out2in_w,
            "Mask": mask,
            "TransformMatrix": transform_matrix
2472
        },
W
whs 已提交
2473 2474 2475 2476 2477
        attrs={
            "transformed_height": transformed_height,
            "transformed_width": transformed_width,
            "spatial_scale": spatial_scale
        })
2478
    return out, mask, transform_matrix
W
whs 已提交
2479 2480


2481 2482
def generate_proposal_labels(rpn_rois,
                             gt_classes,
2483
                             is_crowd,
2484
                             gt_boxes,
2485
                             im_info,
2486 2487 2488 2489 2490 2491
                             batch_size_per_im=256,
                             fg_fraction=0.25,
                             fg_thresh=0.25,
                             bg_thresh_hi=0.5,
                             bg_thresh_lo=0.0,
                             bbox_reg_weights=[0.1, 0.1, 0.2, 0.2],
2492
                             class_nums=None,
2493 2494 2495
                             use_random=True,
                             is_cls_agnostic=False,
                             is_cascade_rcnn=False):
2496
    """
2497
    **Generate Proposal Labels of Faster-RCNN**
2498

B
buxingyuan 已提交
2499
    This operator can be, for given the GenerateProposalOp output bounding boxes and groundtruth,
B
buxingyuan 已提交
2500
    to sample foreground boxes and background boxes, and compute loss target.
B
buxingyuan 已提交
2501 2502 2503

    RpnRois is the output boxes of RPN and was processed by generate_proposal_op, these boxes
    were combined with groundtruth boxes and sampled according to batch_size_per_im and fg_fraction,
B
buxingyuan 已提交
2504
    If an instance with a groundtruth overlap greater than fg_thresh, then it was considered as a foreground sample.
B
buxingyuan 已提交
2505 2506
    If an instance with a groundtruth overlap greater than bg_thresh_lo and lower than bg_thresh_hi,
    then it was considered as a background sample.
B
buxingyuan 已提交
2507
    After all foreground and background boxes are chosen (so called Rois),
B
buxingyuan 已提交
2508
    then we apply random sampling to make sure
B
buxingyuan 已提交
2509
    the number of foreground boxes is no more than batch_size_per_im * fg_fraction.
B
buxingyuan 已提交
2510 2511 2512 2513 2514

    For each box in Rois, we assign the classification (class label) and regression targets (box label) to it.
    Finally BboxInsideWeights and BboxOutsideWeights are used to specify whether it would contribute to training loss.

    Args:
2515 2516 2517
        rpn_rois(Variable): A 2-D LoDTensor with shape [N, 4]. N is the number of the GenerateProposalOp's output, each element is a bounding box with [xmin, ymin, xmax, ymax] format. The data type can be float32 or float64.
        gt_classes(Variable): A 2-D LoDTensor with shape [M, 1]. M is the number of groundtruth, each element is a class label of groundtruth. The data type must be int32.
        is_crowd(Variable): A 2-D LoDTensor with shape [M, 1]. M is the number of groundtruth, each element is a flag indicates whether a groundtruth is crowd. The data type must be int32.
B
buxingyuan 已提交
2518 2519 2520
        gt_boxes(Variable): A 2-D LoDTensor with shape [M, 4]. M is the number of groundtruth, each element is a bounding box with [xmin, ymin, xmax, ymax] format.
        im_info(Variable): A 2-D LoDTensor with shape [B, 3]. B is the number of input images, each element consists of im_height, im_width, im_scale.

2521 2522 2523 2524 2525 2526 2527
        batch_size_per_im(int): Batch size of rois per images. The data type must be int32.
        fg_fraction(float): Foreground fraction in total batch_size_per_im. The data type must be float32.
        fg_thresh(float): Overlap threshold which is used to chose foreground sample. The data type must be float32.
        bg_thresh_hi(float): Overlap threshold upper bound which is used to chose background sample. The data type must be float32.
        bg_thresh_lo(float): Overlap threshold lower bound which is used to chose background sample. The data type must be float32.
        bbox_reg_weights(list|tuple): Box regression weights. The data type must be float32.
        class_nums(int): Class number. The data type must be int32.
B
buxingyuan 已提交
2528
        use_random(bool): Use random sampling to choose foreground and background boxes.
2529 2530
        is_cls_agnostic(bool): bbox regression use class agnostic simply which only represent fg and bg boxes.
        is_cascade_rcnn(bool): it will filter some bbox crossing the image's boundary when setting True.
B
Bai Yifan 已提交
2531

2532 2533 2534 2535 2536 2537 2538 2539 2540 2541 2542
    Returns:
        tuple:
        A tuple with format``(rois, labels_int32, bbox_targets, bbox_inside_weights, bbox_outside_weights)``.

        - **rois**: 2-D LoDTensor with shape ``[batch_size_per_im * batch_size, 4]``. The data type is the same as ``rpn_rois``.
        - **labels_int32**: 2-D LoDTensor with shape ``[batch_size_per_im * batch_size, 1]``. The data type must be int32.
        - **bbox_targets**: 2-D LoDTensor with shape ``[batch_size_per_im * batch_size, 4 * class_num]``. The regression targets of all RoIs. The data type is the same as ``rpn_rois``.
        - **bbox_inside_weights**: 2-D LoDTensor with shape ``[batch_size_per_im * batch_size, 4 * class_num]``. The weights of foreground boxes' regression loss. The data type is the same as ``rpn_rois``.
        - **bbox_outside_weights**: 2-D LoDTensor with shape ``[batch_size_per_im * batch_size, 4 * class_num]``. The weights of regression loss. The data type is the same as ``rpn_rois``.


B
Bai Yifan 已提交
2543 2544 2545 2546
    Examples:
        .. code-block:: python

            import paddle.fluid as fluid
2547 2548 2549 2550 2551
            rpn_rois = fluid.data(name='rpn_rois', shape=[None, 4], dtype='float32')
            gt_classes = fluid.data(name='gt_classes', shape=[None, 1], dtype='float32')
            is_crowd = fluid.data(name='is_crowd', shape=[None, 1], dtype='float32')
            gt_boxes = fluid.data(name='gt_boxes', shape=[None, 4], dtype='float32')
            im_info = fluid.data(name='im_info', shape=[None, 3], dtype='float32')
2552
            rois, labels, bbox, inside_weights, outside_weights = fluid.layers.generate_proposal_labels(
B
Bai Yifan 已提交
2553 2554 2555
                           rpn_rois, gt_classes, is_crowd, gt_boxes, im_info,
                           class_nums=10)

2556 2557 2558 2559
    """

    helper = LayerHelper('generate_proposal_labels', **locals())

2560 2561 2562 2563 2564 2565 2566
    check_variable_and_dtype(rpn_rois, 'rpn_rois', ['float32', 'float64'],
                             'generate_proposal_labels')
    check_variable_and_dtype(gt_classes, 'gt_classes', ['int32'],
                             'generate_proposal_labels')
    check_variable_and_dtype(is_crowd, 'is_crowd', ['int32'],
                             'generate_proposal_labels')

X
Xin Pan 已提交
2567 2568 2569 2570 2571 2572 2573 2574 2575
    rois = helper.create_variable_for_type_inference(dtype=rpn_rois.dtype)
    labels_int32 = helper.create_variable_for_type_inference(
        dtype=gt_classes.dtype)
    bbox_targets = helper.create_variable_for_type_inference(
        dtype=rpn_rois.dtype)
    bbox_inside_weights = helper.create_variable_for_type_inference(
        dtype=rpn_rois.dtype)
    bbox_outside_weights = helper.create_variable_for_type_inference(
        dtype=rpn_rois.dtype)
2576 2577 2578 2579 2580 2581

    helper.append_op(
        type="generate_proposal_labels",
        inputs={
            'RpnRois': rpn_rois,
            'GtClasses': gt_classes,
2582
            'IsCrowd': is_crowd,
2583
            'GtBoxes': gt_boxes,
2584
            'ImInfo': im_info
2585 2586 2587 2588 2589 2590 2591 2592 2593 2594 2595 2596 2597 2598 2599
        },
        outputs={
            'Rois': rois,
            'LabelsInt32': labels_int32,
            'BboxTargets': bbox_targets,
            'BboxInsideWeights': bbox_inside_weights,
            'BboxOutsideWeights': bbox_outside_weights
        },
        attrs={
            'batch_size_per_im': batch_size_per_im,
            'fg_fraction': fg_fraction,
            'fg_thresh': fg_thresh,
            'bg_thresh_hi': bg_thresh_hi,
            'bg_thresh_lo': bg_thresh_lo,
            'bbox_reg_weights': bbox_reg_weights,
2600
            'class_nums': class_nums,
2601 2602 2603
            'use_random': use_random,
            'is_cls_agnostic': is_cls_agnostic,
            'is_cascade_rcnn': is_cascade_rcnn
2604 2605 2606 2607 2608 2609 2610 2611 2612 2613 2614
        })

    rois.stop_gradient = True
    labels_int32.stop_gradient = True
    bbox_targets.stop_gradient = True
    bbox_inside_weights.stop_gradient = True
    bbox_outside_weights.stop_gradient = True

    return rois, labels_int32, bbox_targets, bbox_inside_weights, bbox_outside_weights


2615 2616 2617
def generate_mask_labels(im_info, gt_classes, is_crowd, gt_segms, rois,
                         labels_int32, num_classes, resolution):
    """
Q
qingqing01 已提交
2618
    **Generate Mask Labels for Mask-RCNN**
2619 2620 2621 2622 2623 2624 2625 2626 2627 2628 2629 2630 2631 2632 2633 2634 2635 2636 2637 2638 2639 2640 2641 2642 2643 2644 2645 2646 2647 2648 2649 2650 2651 2652 2653

    This operator can be, for given the RoIs and corresponding labels,
    to sample foreground RoIs. This mask branch also has
    a :math: `K \\times M^{2}` dimensional output targets for each foreground
    RoI, which encodes K binary masks of resolution M x M, one for each of the
    K classes. This mask targets are used to compute loss of mask branch.

    Please note, the data format of groud-truth segmentation, assumed the
    segmentations are as follows. The first instance has two gt objects.
    The second instance has one gt object, this object has two gt segmentations.

        .. code-block:: python

            #[
            #  [[[229.14, 370.9, 229.14, 370.9, ...]],
            #   [[343.7, 139.85, 349.01, 138.46, ...]]], # 0-th instance
            #  [[[500.0, 390.62, ...],[115.48, 187.86, ...]]] # 1-th instance
            #]

            batch_masks = []
            for semgs in batch_semgs:
                gt_masks = []
                for semg in semgs:
                    gt_segm = []
                    for polys in semg:
                        gt_segm.append(np.array(polys).reshape(-1, 2))
                    gt_masks.append(gt_segm)
                batch_masks.append(gt_masks)
            
            
            place = fluid.CPUPlace()
            feeder = fluid.DataFeeder(place=place, feed_list=feeds)
            feeder.feed(batch_masks)

    Args:
Q
qingqing01 已提交
2654 2655 2656 2657 2658 2659
        im_info (Variable): A 2-D Tensor with shape [N, 3] and float32
            data type. N is the batch size, each element is
            [height, width, scale] of image. Image scale is
            target_size / original_size, target_size is the size after resize,
            original_size is the original image size.
        gt_classes (Variable): A 2-D LoDTensor with shape [M, 1]. Data type
T
tianshuo78520a 已提交
2660
            should be int. M is the total number of ground-truth, each
Q
qingqing01 已提交
2661 2662 2663 2664 2665 2666 2667
            element is a class label.
        is_crowd (Variable): A 2-D LoDTensor with same shape and same data type
            as gt_classes, each element is a flag indicating whether a
            groundtruth is crowd.
        gt_segms (Variable): This input is a 2D LoDTensor with shape [S, 2] and
            float32 data type, it's LoD level is 3.
            Usually users do not needs to understand LoD,
2668
            The users should return correct data format in reader.
Q
qingqing01 已提交
2669
            The LoD[0] represents the ground-truth objects number of
2670 2671 2672 2673
            each instance. LoD[1] represents the segmentation counts of each
            objects. LoD[2] represents the polygons number of each segmentation.
            S the total number of polygons coordinate points. Each element is
            (x, y) coordinate points.
Q
qingqing01 已提交
2674 2675 2676 2677
        rois (Variable): A 2-D LoDTensor with shape [R, 4] and float32 data type
            float32. R is the total number of RoIs, each element is a bounding
            box with (xmin, ymin, xmax, ymax) format in the range of original image.
        labels_int32 (Variable): A 2-D LoDTensor in shape of [R, 1] with type
T
tianshuo78520a 已提交
2678
            of int32. R is the same as it in `rois`. Each element represents
2679
            a class label of a RoI.
Q
qingqing01 已提交
2680 2681
        num_classes (int): Class number.
        resolution (int): Resolution of mask predictions.
2682 2683

    Returns:
Q
qingqing01 已提交
2684 2685 2686
        mask_rois (Variable):  A 2D LoDTensor with shape [P, 4] and same data
        type as `rois`. P is the total number of sampled RoIs. Each element
        is a bounding box with [xmin, ymin, xmax, ymax] format in range of
T
tianshuo78520a 已提交
2687
        original image size.
Q
qingqing01 已提交
2688 2689

        mask_rois_has_mask_int32 (Variable): A 2D LoDTensor with shape [P, 1]
T
tianshuo78520a 已提交
2690
        and int data type, each element represents the output mask RoI
Q
qingqing01 已提交
2691 2692 2693 2694
        index with regard to input RoIs.

        mask_int32 (Variable): A 2D LoDTensor with shape [P, K * M * M] and int
        data type, K is the classes number and M is the resolution of mask
T
tianshuo78520a 已提交
2695
        predictions. Each element represents the binary mask targets.
2696 2697 2698 2699

    Examples:
        .. code-block:: python

2700 2701
          import paddle.fluid as fluid

Q
qingqing01 已提交
2702
          im_info = fluid.data(name="im_info", shape=[None, 3],
2703
              dtype="float32")
Q
qingqing01 已提交
2704
          gt_classes = fluid.data(name="gt_classes", shape=[None, 1],
2705
              dtype="float32", lod_level=1)
Q
qingqing01 已提交
2706
          is_crowd = fluid.data(name="is_crowd", shape=[None, 1],
2707
              dtype="float32", lod_level=1)
Q
qingqing01 已提交
2708
          gt_masks = fluid.data(name="gt_masks", shape=[None, 2],
2709
              dtype="float32", lod_level=3)
2710
          # rois, roi_labels can be the output of
2711
          # fluid.layers.generate_proposal_labels.
Q
qingqing01 已提交
2712
          rois = fluid.data(name="rois", shape=[None, 4],
2713
              dtype="float32", lod_level=1)
Q
qingqing01 已提交
2714
          roi_labels = fluid.data(name="roi_labels", shape=[None, 1],
2715
              dtype="int32", lod_level=1)
2716 2717 2718 2719 2720 2721
          mask_rois, mask_index, mask_int32 = fluid.layers.generate_mask_labels(
              im_info=im_info,
              gt_classes=gt_classes,
              is_crowd=is_crowd,
              gt_segms=gt_masks,
              rois=rois,
2722
              labels_int32=roi_labels,
2723 2724 2725 2726 2727 2728 2729 2730 2731 2732 2733 2734 2735 2736 2737 2738 2739 2740 2741 2742 2743 2744 2745 2746 2747 2748 2749 2750 2751 2752 2753 2754 2755 2756 2757 2758 2759
              num_classes=81,
              resolution=14)
    """

    helper = LayerHelper('generate_mask_labels', **locals())

    mask_rois = helper.create_variable_for_type_inference(dtype=rois.dtype)
    roi_has_mask_int32 = helper.create_variable_for_type_inference(
        dtype=gt_classes.dtype)
    mask_int32 = helper.create_variable_for_type_inference(
        dtype=gt_classes.dtype)

    helper.append_op(
        type="generate_mask_labels",
        inputs={
            'ImInfo': im_info,
            'GtClasses': gt_classes,
            'IsCrowd': is_crowd,
            'GtSegms': gt_segms,
            'Rois': rois,
            'LabelsInt32': labels_int32
        },
        outputs={
            'MaskRois': mask_rois,
            'RoiHasMaskInt32': roi_has_mask_int32,
            'MaskInt32': mask_int32
        },
        attrs={'num_classes': num_classes,
               'resolution': resolution})

    mask_rois.stop_gradient = True
    roi_has_mask_int32.stop_gradient = True
    mask_int32.stop_gradient = True

    return mask_rois, roi_has_mask_int32, mask_int32


2760 2761 2762 2763 2764 2765 2766 2767 2768 2769
def generate_proposals(scores,
                       bbox_deltas,
                       im_info,
                       anchors,
                       variances,
                       pre_nms_top_n=6000,
                       post_nms_top_n=1000,
                       nms_thresh=0.5,
                       min_size=0.1,
                       eta=1.0,
2770 2771
                       name=None,
                       return_rois_num=False):
2772
    """
H
haowang101779990 已提交
2773 2774
    **Generate proposal Faster-RCNN**

2775 2776 2777 2778
    This operation proposes RoIs according to each box with their
    probability to be a foreground object and 
    the box can be calculated by anchors. Bbox_deltais and scores
    to be an object are the output of RPN. Final proposals
H
haowang101779990 已提交
2779 2780 2781 2782
    could be used to train detection net.

    For generating proposals, this operation performs following steps:

2783 2784
    1. Transposes and resizes scores and bbox_deltas in size of
       (H*W*A, 1) and (H*W*A, 4)
H
haowang101779990 已提交
2785 2786 2787 2788 2789 2790
    2. Calculate box locations as proposals candidates. 
    3. Clip boxes to image
    4. Remove predicted boxes with small area. 
    5. Apply NMS to get final proposals as output.

    Args:
2791 2792 2793
        scores(Variable): A 4-D Tensor with shape [N, A, H, W] represents
            the probability for each box to be an object.
            N is batch size, A is number of anchors, H and W are height and
2794
            width of the feature map. The data type must be float32.
2795
        bbox_deltas(Variable): A 4-D Tensor with shape [N, 4*A, H, W]
T
tianshuo78520a 已提交
2796
            represents the difference between predicted box location and
2797
            anchor location. The data type must be float32.
2798
        im_info(Variable): A 2-D Tensor with shape [N, 3] represents origin
2799 2800
            image information for N batch. Height and width are the input sizes 
            and scale is the ratio of network input size and original size. 
2801
            The data type can be float32 or float64.
2802 2803 2804
        anchors(Variable):   A 4-D Tensor represents the anchors with a layout
            of [H, W, A, 4]. H and W are height and width of the feature map,
            num_anchors is the box count of each position. Each anchor is
2805 2806
            in (xmin, ymin, xmax, ymax) format an unnormalized. The data type must be float32.
        variances(Variable): A 4-D Tensor. The expanded variances of anchors with a layout of
2807
            [H, W, num_priors, 4]. Each variance is in
2808
            (xcenter, ycenter, w, h) format. The data type must be float32.
2809
        pre_nms_top_n(float): Number of total bboxes to be kept per
2810
            image before NMS. The data type must be float32. `6000` by default.
2811
        post_nms_top_n(float): Number of total bboxes to be kept per
2812 2813
            image after NMS. The data type must be float32. `1000` by default.
        nms_thresh(float): Threshold in NMS. The data type must be float32. `0.5` by default.
2814
        min_size(float): Remove predicted boxes with either height or
2815 2816 2817
            width < min_size. The data type must be float32. `0.1` by default.
        eta(float): Apply in adaptive NMS, if adaptive `threshold > 0.5`,
            `adaptive_threshold = adaptive_threshold * eta` in each iteration.
2818 2819 2820 2821
        return_rois_num(bool): When setting True, it will return a 1D Tensor with shape [N, ] that includes Rois's 
            num of each image in one batch. The N is the image's num. For example, the tensor has values [4,5] that represents
            the first image has 4 Rois, the second image has 5 Rois. It only used in rcnn model. 
            'False' by default. 
2822 2823 2824 2825 2826 2827
    Returns:
        tuple:
        A tuple with format ``(rpn_rois, rpn_roi_probs)``.

        - **rpn_rois**: The generated RoIs. 2-D Tensor with shape ``[N, 4]`` while ``N`` is the number of RoIs. The data type is the same as ``scores``.
        - **rpn_roi_probs**: The scores of generated RoIs. 2-D Tensor with shape ``[N, 1]`` while ``N`` is the number of RoIs. The data type is the same as ``scores``.
B
Bai Yifan 已提交
2828 2829 2830 2831 2832

    Examples:
        .. code-block:: python
        
            import paddle.fluid as fluid
2833 2834 2835 2836 2837
            scores = fluid.data(name='scores', shape=[None, 4, 5, 5], dtype='float32')
            bbox_deltas = fluid.data(name='bbox_deltas', shape=[None, 16, 5, 5], dtype='float32')
            im_info = fluid.data(name='im_info', shape=[None, 3], dtype='float32')
            anchors = fluid.data(name='anchors', shape=[None, 5, 4, 4], dtype='float32')
            variances = fluid.data(name='variances', shape=[None, 5, 10, 4], dtype='float32')
B
Bai Yifan 已提交
2838 2839 2840
            rois, roi_probs = fluid.layers.generate_proposals(scores, bbox_deltas,
                         im_info, anchors, variances)

2841 2842 2843
    """
    helper = LayerHelper('generate_proposals', **locals())

2844 2845 2846 2847 2848 2849 2850 2851 2852 2853 2854
    check_variable_and_dtype(scores, 'scores', ['float32'],
                             'generate_proposals')
    check_variable_and_dtype(bbox_deltas, 'bbox_deltas', ['float32'],
                             'generate_proposals')
    check_variable_and_dtype(im_info, 'im_info', ['float32', 'float64'],
                             'generate_proposals')
    check_variable_and_dtype(anchors, 'anchors', ['float32'],
                             'generate_proposals')
    check_variable_and_dtype(variances, 'variances', ['float32'],
                             'generate_proposals')

X
Xin Pan 已提交
2855 2856 2857 2858
    rpn_rois = helper.create_variable_for_type_inference(
        dtype=bbox_deltas.dtype)
    rpn_roi_probs = helper.create_variable_for_type_inference(
        dtype=scores.dtype)
F
FDInSky 已提交
2859 2860
    rpn_rois_lod = helper.create_variable_for_type_inference(dtype='int32')

2861 2862 2863 2864 2865 2866 2867 2868 2869 2870 2871 2872 2873 2874 2875 2876
    helper.append_op(
        type="generate_proposals",
        inputs={
            'Scores': scores,
            'BboxDeltas': bbox_deltas,
            'ImInfo': im_info,
            'Anchors': anchors,
            'Variances': variances
        },
        attrs={
            'pre_nms_topN': pre_nms_top_n,
            'post_nms_topN': post_nms_top_n,
            'nms_thresh': nms_thresh,
            'min_size': min_size,
            'eta': eta
        },
F
FDInSky 已提交
2877 2878 2879 2880 2881
        outputs={
            'RpnRois': rpn_rois,
            'RpnRoiProbs': rpn_roi_probs,
            'RpnRoisLod': rpn_rois_lod
        })
2882 2883
    rpn_rois.stop_gradient = True
    rpn_roi_probs.stop_gradient = True
F
FDInSky 已提交
2884
    rpn_rois_lod.stop_gradient = True
2885

2886 2887 2888 2889
    if return_rois_num:
        return rpn_rois, rpn_roi_probs, rpn_rois_lod
    else:
        return rpn_rois, rpn_roi_probs
J
jerrywgz 已提交
2890 2891


J
jerrywgz 已提交
2892
def box_clip(input, im_info, name=None):
J
jerrywgz 已提交
2893 2894
    """
    Clip the box into the size given by im_info
J
jerrywgz 已提交
2895
    For each input box, The formula is given as follows:
2896 2897 2898
        
    .. code-block:: text

J
jerrywgz 已提交
2899 2900 2901 2902 2903 2904 2905 2906 2907 2908 2909
        xmin = max(min(xmin, im_w - 1), 0)
        ymin = max(min(ymin, im_h - 1), 0) 
        xmax = max(min(xmax, im_w - 1), 0)
        ymax = max(min(ymax, im_h - 1), 0)
    
    where im_w and im_h are computed from im_info:
 
    .. code-block:: text

        im_h = round(height / scale)
        im_w = round(weight / scale)
J
jerrywgz 已提交
2910 2911

    Args:
W
wangguanzhong 已提交
2912 2913 2914
        input(Variable): The input Tensor with shape :math:`[N_1, N_2, ..., N_k, 4]`,
            the last dimension is 4 and data type is float32 or float64.
        im_info(Variable): The 2-D Tensor with shape [N, 3] with layout 
T
tianshuo78520a 已提交
2915
            (height, width, scale) representing the information of image. 
2916
            Height and width are the input sizes and scale is the ratio of network input
W
wangguanzhong 已提交
2917 2918 2919 2920
            size and original size. The data type is float32 or float64.
        name(str, optional): For detailed information, please refer 
            to :ref:`api_guide_Name`. Usually name is no need to set and 
            None by default. 
J
jerrywgz 已提交
2921 2922
    
    Returns:
W
wangguanzhong 已提交
2923 2924
        Variable:

T
tianshuo78520a 已提交
2925
        output(Variable): The clipped tensor with data type float32 or float64. 
W
wangguanzhong 已提交
2926 2927
        The shape is same as input.

2928
        
J
jerrywgz 已提交
2929 2930
    Examples:
        .. code-block:: python
2931
        
2932
            import paddle.fluid as fluid
2933 2934 2935
            boxes = fluid.data(
                name='boxes', shape=[None, 8, 4], dtype='float32', lod_level=1)
            im_info = fluid.data(name='im_info', shape=[-1 ,3])
J
jerrywgz 已提交
2936
            out = fluid.layers.box_clip(
J
jerrywgz 已提交
2937
                input=boxes, im_info=im_info)
J
jerrywgz 已提交
2938 2939
    """

2940 2941 2942 2943
    check_variable_and_dtype(input, 'input', ['float32', 'float64'], 'box_clip')
    check_variable_and_dtype(im_info, 'im_info', ['float32', 'float64'],
                             'box_clip')

J
jerrywgz 已提交
2944
    helper = LayerHelper("box_clip", **locals())
J
jerrywgz 已提交
2945
    output = helper.create_variable_for_type_inference(dtype=input.dtype)
2946
    inputs = {"Input": input, "ImInfo": im_info}
J
jerrywgz 已提交
2947
    helper.append_op(type="box_clip", inputs=inputs, outputs={"Output": output})
J
jerrywgz 已提交
2948

2949 2950
    return output

J
jerrywgz 已提交
2951

2952 2953 2954 2955 2956 2957 2958 2959
def retinanet_detection_output(bboxes,
                               scores,
                               anchors,
                               im_info,
                               score_threshold=0.05,
                               nms_top_k=1000,
                               keep_top_k=100,
                               nms_threshold=0.3,
2960
                               nms_eta=1.0):
2961
    """
2962
    **Detection Output Layer for the detector RetinaNet.**
2963

2964 2965 2966 2967
    In the detector `RetinaNet <https://arxiv.org/abs/1708.02002>`_ , many 
    `FPN <https://arxiv.org/abs/1612.03144>`_ levels output the category
    and location predictions, this OP is to get the detection results by
    performing following steps:
2968

2969 2970 2971
    1. For each FPN level, decode box predictions according to the anchor
       boxes from at most :attr:`nms_top_k` top-scoring predictions after
       thresholding detector confidence at :attr:`score_threshold`.
2972 2973 2974 2975
    2. Merge top predictions from all levels and apply multi-class non 
       maximum suppression (NMS) on them to get the final detections.

    Args:
2976 2977 2978 2979 2980 2981 2982 2983 2984 2985 2986 2987 2988 2989 2990 2991 2992
        bboxes(List): A list of Tensors from multiple FPN levels represents
            the location prediction for all anchor boxes. Each element is
            a 3-D Tensor with shape :math:`[N, Mi, 4]`, :math:`N` is the
            batch size, :math:`Mi` is the number of bounding boxes from
            :math:`i`-th FPN level and each bounding box has four coordinate
            values and the layout is [xmin, ymin, xmax, ymax]. The data type
            of each element is float32 or float64.
        scores(List): A list of Tensors from multiple FPN levels represents
            the category prediction for all anchor boxes. Each element is a
            3-D Tensor with shape :math:`[N, Mi, C]`,  :math:`N` is the batch
            size, :math:`C` is the class number (**excluding background**),
            :math:`Mi` is the number of bounding boxes from :math:`i`-th FPN
            level. The data type of each element is float32 or float64.
        anchors(List): A list of Tensors from multiple FPN levels represents
            the locations of all anchor boxes. Each element is a 2-D Tensor
            with shape :math:`[Mi, 4]`, :math:`Mi` is the number of bounding
            boxes from :math:`i`-th FPN level, and each bounding box has four
2993
            coordinate values and the layout is [xmin, ymin, xmax, ymax].
2994 2995 2996
            The data type of each element is float32 or float64.
        im_info(Variable): A 2-D Tensor with shape :math:`[N, 3]` represents the size
            information of input images. :math:`N` is the batch size, the size
T
tianshuo78520a 已提交
2997
            information of each image is a 3-vector which are the height and width
2998 2999
            of the network input along with the factor scaling the origin image to
            the network input. The data type of :attr:`im_info` is float32.
3000
        score_threshold(float): Threshold to filter out bounding boxes
3001
            with a confidence score before NMS, default value is set to 0.05.
3002
        nms_top_k(int): Maximum number of detections per FPN layer to be
3003 3004
            kept according to the confidences before NMS, default value is set to
            1000.
3005
        keep_top_k(int): Number of total bounding boxes to be kept per image after
3006 3007 3008 3009 3010 3011 3012 3013 3014 3015 3016 3017 3018 3019 3020 3021 3022 3023
            NMS step. Default value is set to 100, -1 means keeping all bounding
            boxes after NMS step.
        nms_threshold(float): The Intersection-over-Union(IoU) threshold used to 
            filter out boxes in NMS.
        nms_eta(float): The parameter for adjusting :attr:`nms_threshold` in NMS.
            Default value is set to 1., which represents the value of
            :attr:`nms_threshold` keep the same in NMS. If :attr:`nms_eta` is set
            to be lower than 1. and the value of :attr:`nms_threshold` is set to
            be higher than 0.5, everytime a bounding box is filtered out,
            the adjustment for :attr:`nms_threshold` like :attr:`nms_threshold`
            = :attr:`nms_threshold` * :attr:`nms_eta`  will not be stopped until
            the actual value of :attr:`nms_threshold` is lower than or equal to
            0.5.

    **Notice**: In some cases where the image sizes are very small, it's possible
    that there is no detection if :attr:`score_threshold` are used at all
    levels. Hence, this OP do not filter out anchors from the highest FPN level
    before NMS. And the last element in :attr:`bboxes`:, :attr:`scores` and
T
tianshuo78520a 已提交
3024
    :attr:`anchors` is required to be from the highest FPN level.
3025 3026

    Returns:
3027 3028
        Variable(The data type is float32 or float64):
            The detection output is a 1-level LoDTensor with shape :math:`[No, 6]`.
3029
            Each row has six values: [label, confidence, xmin, ymin, xmax, ymax].
3030 3031 3032
            :math:`No` is the total number of detections in this mini-batch.
            The :math:`i`-th image has `LoD[i + 1] - LoD[i]` detected
            results, if `LoD[i + 1] - LoD[i]` is 0, the :math:`i`-th image
3033 3034 3035 3036 3037 3038
            has no detected results. If all images have no detected results,
            LoD will be set to 0, and the output tensor is empty (None).

    Examples:
        .. code-block:: python

3039 3040 3041 3042 3043 3044 3045 3046 3047 3048 3049 3050 3051 3052 3053 3054 3055
           import paddle.fluid as fluid

           bboxes_low = fluid.data(
               name='bboxes_low', shape=[1, 44, 4], dtype='float32')
           bboxes_high = fluid.data(
               name='bboxes_high', shape=[1, 11, 4], dtype='float32')
           scores_low = fluid.data(
               name='scores_low', shape=[1, 44, 10], dtype='float32')
           scores_high = fluid.data(
               name='scores_high', shape=[1, 11, 10], dtype='float32')
           anchors_low = fluid.data(
               name='anchors_low', shape=[44, 4], dtype='float32')
           anchors_high = fluid.data(
               name='anchors_high', shape=[11, 4], dtype='float32')
           im_info = fluid.data(
               name="im_info", shape=[1, 3], dtype='float32')
           nmsed_outs = fluid.layers.retinanet_detection_output(
3056 3057 3058 3059 3060 3061 3062 3063 3064
               bboxes=[bboxes_low, bboxes_high],
               scores=[scores_low, scores_high],
               anchors=[anchors_low, anchors_high],
               im_info=im_info,
               score_threshold=0.05,
               nms_top_k=1000,
               keep_top_k=100,
               nms_threshold=0.45,
               nms_eta=1.0)
3065 3066
    """

3067 3068 3069 3070 3071 3072 3073 3074 3075 3076 3077 3078 3079 3080 3081 3082 3083 3084
    check_type(bboxes, 'bboxes', (list), 'retinanet_detection_output')
    for i, bbox in enumerate(bboxes):
        check_variable_and_dtype(bbox, 'bbox{}'.format(i),
                                 ['float32', 'float64'],
                                 'retinanet_detection_output')
    check_type(scores, 'scores', (list), 'retinanet_detection_output')
    for i, score in enumerate(scores):
        check_variable_and_dtype(score, 'score{}'.format(i),
                                 ['float32', 'float64'],
                                 'retinanet_detection_output')
    check_type(anchors, 'anchors', (list), 'retinanet_detection_output')
    for i, anchor in enumerate(anchors):
        check_variable_and_dtype(anchor, 'anchor{}'.format(i),
                                 ['float32', 'float64'],
                                 'retinanet_detection_output')
    check_variable_and_dtype(im_info, 'im_info', ['float32', 'float64'],
                             'retinanet_detection_output')

3085 3086 3087 3088 3089 3090 3091 3092 3093 3094 3095 3096 3097 3098 3099 3100 3101 3102 3103 3104 3105 3106 3107
    helper = LayerHelper('retinanet_detection_output', **locals())
    output = helper.create_variable_for_type_inference(
        dtype=helper.input_dtype('scores'))
    helper.append_op(
        type="retinanet_detection_output",
        inputs={
            'BBoxes': bboxes,
            'Scores': scores,
            'Anchors': anchors,
            'ImInfo': im_info
        },
        attrs={
            'score_threshold': score_threshold,
            'nms_top_k': nms_top_k,
            'nms_threshold': nms_threshold,
            'keep_top_k': keep_top_k,
            'nms_eta': 1.,
        },
        outputs={'Out': output})
    output.stop_gradient = True
    return output


J
jerrywgz 已提交
3108 3109 3110 3111 3112
def multiclass_nms(bboxes,
                   scores,
                   score_threshold,
                   nms_top_k,
                   keep_top_k,
J
jerrywgz 已提交
3113
                   nms_threshold=0.3,
J
jerrywgz 已提交
3114 3115
                   normalized=True,
                   nms_eta=1.,
3116 3117
                   background_label=0,
                   name=None):
J
jerrywgz 已提交
3118
    """
3119 3120 3121 3122 3123 3124 3125 3126 3127 3128 3129 3130 3131 3132
    **Multiclass NMS**
    
    This operator is to do multi-class non maximum suppression (NMS) on
    boxes and scores.

    In the NMS step, this operator greedily selects a subset of detection bounding
    boxes that have high scores larger than score_threshold, if providing this
    threshold, then selects the largest nms_top_k confidences scores if nms_top_k
    is larger than -1. Then this operator pruns away boxes that have high IOU
    (intersection over union) overlap with already selected boxes by adaptive
    threshold NMS based on parameters of nms_threshold and nms_eta.
    Aftern NMS step, at most keep_top_k number of total bboxes are to be kept
    per image if keep_top_k is larger than -1.

3133 3134 3135 3136 3137 3138 3139 3140 3141 3142 3143 3144 3145 3146
    See below for an example:

    .. code-block:: text

        if:
            box1.data = (2.0, 3.0, 7.0, 5.0) format is (xmin, ymin, xmax, ymax)
            box1.scores = (0.7, 0.2, 0.4)  which is (label0.score=0.7, label1.score=0.2, label2.cores=0.4)

            box2.data = (3.0, 4.0, 8.0, 5.0)
            box2.score = (0.3, 0.3, 0.1)

            nms_threshold = 0.3
            background_label = 0
            score_threshold = 0
3147

3148 3149 3150 3151 3152 3153 3154

        Then:
            iou = 4/11 > 0.3
            out.data = [[1, 0.3, 3.0, 4.0, 8.0, 5.0],    
                         [2, 0.4, 2.0, 3.0, 7.0, 5.0]]
                         
            Out format is (label, confidence, xmin, ymin, xmax, ymax)
3155 3156 3157 3158 3159 3160 3161 3162
    Args:
        bboxes (Variable): Two types of bboxes are supported:
                           1. (Tensor) A 3-D Tensor with shape
                           [N, M, 4 or 8 16 24 32] represents the
                           predicted locations of M bounding bboxes,
                           N is the batch size. Each bounding box has four
                           coordinate values and the layout is 
                           [xmin, ymin, xmax, ymax], when box size equals to 4.
X
xiaoting 已提交
3163
                           The data type is float32 or float64.
3164 3165
                           2. (LoDTensor) A 3-D Tensor with shape [M, C, 4]
                           M is the number of bounding boxes, C is the 
X
xiaoting 已提交
3166
                           class number. The data type is float32 or float64.   
3167 3168 3169 3170 3171 3172 3173
        scores (Variable): Two types of scores are supported:
                           1. (Tensor) A 3-D Tensor with shape [N, C, M]
                           represents the predicted confidence predictions.
                           N is the batch size, C is the class number, M is 
                           number of bounding boxes. For each category there 
                           are total M scores which corresponding M bounding
                           boxes. Please note, M is equal to the 2nd dimension
X
xiaoting 已提交
3174
                           of BBoxes.The data type is float32 or float64. 
3175 3176 3177
                           2. (LoDTensor) A 2-D LoDTensor with shape [M, C].
                           M is the number of bbox, C is the class number.
                           In this case, input BBoxes should be the second
X
xiaoting 已提交
3178
                           case with shape [M, C, 4].The data type is float32 or float64. 
3179 3180 3181 3182 3183 3184 3185
        background_label (int): The index of background label, the background 
                                label will be ignored. If set to -1, then all
                                categories will be considered. Default: 0
        score_threshold (float): Threshold to filter out bounding boxes with
                                 low confidence score. If not provided, 
                                 consider all boxes.
        nms_top_k (int): Maximum number of detections to be kept according to
T
tianshuo78520a 已提交
3186
                         the confidences after the filtering detections based
3187 3188 3189 3190 3191 3192 3193 3194 3195
                         on score_threshold.
        nms_threshold (float): The threshold to be used in NMS. Default: 0.3
        nms_eta (float): The threshold to be used in NMS. Default: 1.0
        keep_top_k (int): Number of total bboxes to be kept per image after NMS
                          step. -1 means keeping all bboxes after NMS step.
        normalized (bool): Whether detections are normalized. Default: True
        name(str): Name of the multiclass nms op. Default: None.

    Returns:
X
xiaoting 已提交
3196
        Variable: A 2-D LoDTensor with shape [No, 6] represents the detections.
3197 3198 3199 3200 3201
             Each row has 6 values: [label, confidence, xmin, ymin, xmax, ymax]
             or A 2-D LoDTensor with shape [No, 10] represents the detections.
             Each row has 10 values: 
             [label, confidence, x1, y1, x2, y2, x3, y3, x4, y4]. No is the 
             total number of detections. If there is no detected boxes for all
J
jerrywgz 已提交
3202 3203 3204 3205
             images, lod will be set to {1} and Out only contains one value
             which is -1.
             (After version 1.3, when no boxes detected, the lod is changed 
             from {0} to {1}) 
3206

3207

3208 3209 3210
    Examples:
        .. code-block:: python

3211

3212
            import paddle.fluid as fluid
X
xiaoting 已提交
3213
            boxes = fluid.data(name='bboxes', shape=[None,81, 4],
3214
                                      dtype='float32', lod_level=1)
X
xiaoting 已提交
3215
            scores = fluid.data(name='scores', shape=[None,81],
3216 3217 3218 3219 3220 3221 3222 3223 3224
                                      dtype='float32', lod_level=1)
            out = fluid.layers.multiclass_nms(bboxes=boxes,
                                              scores=scores,
                                              background_label=0,
                                              score_threshold=0.5,
                                              nms_top_k=400,
                                              nms_threshold=0.3,
                                              keep_top_k=200,
                                              normalized=False)
J
jerrywgz 已提交
3225
    """
X
xiaoting 已提交
3226 3227 3228 3229 3230 3231 3232 3233 3234 3235 3236 3237
    check_variable_and_dtype(bboxes, 'BBoxes', ['float32', 'float64'],
                             'multiclass_nms')
    check_variable_and_dtype(scores, 'Scores', ['float32', 'float64'],
                             'multiclass_nms')
    check_type(score_threshold, 'score_threshold', float, 'multicalss_nms')
    check_type(nms_top_k, 'nums_top_k', int, 'multiclass_nms')
    check_type(keep_top_k, 'keep_top_k', int, 'mutliclass_nms')
    check_type(nms_threshold, 'nms_threshold', float, 'multiclass_nms')
    check_type(normalized, 'normalized', bool, 'multiclass_nms')
    check_type(nms_eta, 'nms_eta', float, 'multiclass_nms')
    check_type(background_label, 'background_label', int, 'multiclass_nms')

J
jerrywgz 已提交
3238 3239 3240 3241 3242 3243 3244 3245 3246 3247 3248 3249 3250 3251 3252 3253 3254 3255
    helper = LayerHelper('multiclass_nms', **locals())

    output = helper.create_variable_for_type_inference(dtype=bboxes.dtype)
    helper.append_op(
        type="multiclass_nms",
        inputs={'BBoxes': bboxes,
                'Scores': scores},
        attrs={
            'background_label': background_label,
            'score_threshold': score_threshold,
            'nms_top_k': nms_top_k,
            'nms_threshold': nms_threshold,
            'nms_eta': nms_eta,
            'keep_top_k': keep_top_k,
            'normalized': normalized
        },
        outputs={'Out': output})
    output.stop_gradient = True
J
jerrywgz 已提交
3256 3257

    return output
3258 3259


3260 3261 3262 3263 3264 3265 3266 3267 3268 3269 3270 3271 3272 3273 3274 3275 3276 3277 3278 3279 3280 3281 3282 3283 3284 3285 3286 3287 3288 3289 3290 3291 3292 3293 3294 3295 3296 3297 3298 3299 3300 3301 3302 3303 3304 3305 3306 3307
def locality_aware_nms(bboxes,
                       scores,
                       score_threshold,
                       nms_top_k,
                       keep_top_k,
                       nms_threshold=0.3,
                       normalized=True,
                       nms_eta=1.,
                       background_label=-1,
                       name=None):
    """
    **Local Aware NMS**
    
    `Local Aware NMS <https://arxiv.org/abs/1704.03155>`_ is to do locality-aware non maximum
    suppression (LANMS) on boxes and scores.

    Firstly, this operator merge box and score according their IOU
    (intersection over union). In the NMS step, this operator greedily selects a
    subset of detection bounding boxes that have high scores larger than score_threshold,
    if providing this threshold, then selects the largest nms_top_k confidences scores
    if nms_top_k is larger than -1. Then this operator pruns away boxes that have high
    IOU overlap with already selected boxes by adaptive threshold NMS based on parameters
    of nms_threshold and nms_eta.

    Aftern NMS step, at most keep_top_k number of total bboxes are to be kept
    per image if keep_top_k is larger than -1.

    Args:
        bboxes (Variable): A 3-D Tensor with shape [N, M, 4 or 8 16 24 32]
                           represents the predicted locations of M bounding
                           bboxes, N is the batch size. Each bounding box
                           has four coordinate values and the layout is
                           [xmin, ymin, xmax, ymax], when box size equals to 4.
                           The data type is float32 or float64.
        scores (Variable): A 3-D Tensor with shape [N, C, M] represents the
                           predicted confidence predictions. N is the batch
                           size, C is the class number, M is number of bounding
                           boxes. Now only support 1 class. For each category
                           there are total M scores which corresponding M bounding
                           boxes. Please note, M is equal to the 2nd dimension of
                           BBoxes. The data type is float32 or float64.
        background_label (int): The index of background label, the background
                                label will be ignored. If set to -1, then all
                                categories will be considered. Default: -1
        score_threshold (float): Threshold to filter out bounding boxes with
                                 low confidence score. If not provided,
                                 consider all boxes.
        nms_top_k (int): Maximum number of detections to be kept according to
T
tianshuo78520a 已提交
3308
                         the confidences after the filtering detections based
3309 3310 3311
                         on score_threshold.
        keep_top_k (int): Number of total bboxes to be kept per image after NMS
                          step. -1 means keeping all bboxes after NMS step.
3312 3313
        nms_threshold (float): The threshold to be used in NMS. Default: 0.3
        nms_eta (float): The threshold to be used in NMS. Default: 1.0
3314 3315 3316 3317 3318 3319 3320 3321 3322 3323 3324 3325 3326 3327 3328 3329 3330 3331 3332 3333 3334 3335 3336 3337 3338 3339 3340 3341 3342 3343 3344 3345 3346 3347
        normalized (bool): Whether detections are normalized. Default: True
        name(str): Name of the locality aware nms op, please refer to :ref:`api_guide_Name` .
                          Default: None.

    Returns:
        Variable: A 2-D LoDTensor with shape [No, 6] represents the detections.
             Each row has 6 values: [label, confidence, xmin, ymin, xmax, ymax]
             or A 2-D LoDTensor with shape [No, 10] represents the detections.
             Each row has 10 values:
             [label, confidence, x1, y1, x2, y2, x3, y3, x4, y4]. No is the
             total number of detections. If there is no detected boxes for all
             images, lod will be set to {1} and Out only contains one value
             which is -1.
             (After version 1.3, when no boxes detected, the lod is changed
             from {0} to {1}). The data type is float32 or float64.


    Examples:
        .. code-block:: python


            import paddle.fluid as fluid
            boxes = fluid.data(name='bboxes', shape=[None, 81, 8],
                                      dtype='float32')
            scores = fluid.data(name='scores', shape=[None, 1, 81],
                                      dtype='float32')
            out = fluid.layers.locality_aware_nms(bboxes=boxes,
                                              scores=scores,
                                              score_threshold=0.5,
                                              nms_top_k=400,
                                              nms_threshold=0.3,
                                              keep_top_k=200,
                                              normalized=False)
    """
3348 3349 3350 3351 3352 3353 3354 3355 3356 3357 3358 3359
    check_variable_and_dtype(bboxes, 'bboxes', ['float32', 'float64'],
                             'locality_aware_nms')
    check_variable_and_dtype(scores, 'scores', ['float32', 'float64'],
                             'locality_aware_nms')
    check_type(background_label, 'background_label', int, 'locality_aware_nms')
    check_type(score_threshold, 'score_threshold', float, 'locality_aware_nms')
    check_type(nms_top_k, 'nms_top_k', int, 'locality_aware_nms')
    check_type(nms_eta, 'nms_eta', float, 'locality_aware_nms')
    check_type(nms_threshold, 'nms_threshold', float, 'locality_aware_nms')
    check_type(keep_top_k, 'keep_top_k', int, 'locality_aware_nms')
    check_type(normalized, 'normalized', bool, 'locality_aware_nms')

3360 3361 3362 3363 3364 3365 3366 3367 3368 3369 3370 3371 3372 3373 3374 3375 3376 3377 3378 3379 3380 3381 3382 3383 3384 3385 3386 3387 3388 3389
    shape = scores.shape
    assert len(shape) == 3, "dim size of scores must be 3"
    assert shape[
        1] == 1, "locality_aware_nms only support one class, Tensor score shape must be [N, 1, M]"

    helper = LayerHelper('locality_aware_nms', **locals())

    output = helper.create_variable_for_type_inference(dtype=bboxes.dtype)
    out = {'Out': output}

    helper.append_op(
        type="locality_aware_nms",
        inputs={'BBoxes': bboxes,
                'Scores': scores},
        attrs={
            'background_label': background_label,
            'score_threshold': score_threshold,
            'nms_top_k': nms_top_k,
            'nms_threshold': nms_threshold,
            'nms_eta': nms_eta,
            'keep_top_k': keep_top_k,
            'nms_eta': nms_eta,
            'normalized': normalized
        },
        outputs={'Out': output})
    output.stop_gradient = True

    return output


3390 3391 3392 3393 3394 3395 3396
def distribute_fpn_proposals(fpn_rois,
                             min_level,
                             max_level,
                             refer_level,
                             refer_scale,
                             name=None):
    """
W
wangguanzhong 已提交
3397 3398 3399 3400 3401 3402
    **This op only takes LoDTensor as input.** In Feature Pyramid Networks 
    (FPN) models, it is needed to distribute all proposals into different FPN 
    level, with respect to scale of the proposals, the referring scale and the 
    referring level. Besides, to restore the order of proposals, we return an 
    array which indicates the original index of rois in current proposals. 
    To compute FPN level for each roi, the formula is given as follows:
3403
    
J
jerrywgz 已提交
3404
    .. math::
3405

J
jerrywgz 已提交
3406
        roi\_scale &= \sqrt{BBoxArea(fpn\_roi)}
3407

J
jerrywgz 已提交
3408 3409 3410
        level = floor(&\log(\\frac{roi\_scale}{refer\_scale}) + refer\_level)

    where BBoxArea is a function to compute the area of each roi.
3411 3412

    Args:
W
wangguanzhong 已提交
3413 3414 3415 3416 3417 3418 3419 3420 3421 3422 3423 3424

        fpn_rois(Variable): 2-D Tensor with shape [N, 4] and data type is 
            float32 or float64. The input fpn_rois.
        min_level(int32): The lowest level of FPN layer where the proposals come 
            from.
        max_level(int32): The highest level of FPN layer where the proposals
            come from.
        refer_level(int32): The referring level of FPN layer with specified scale.
        refer_scale(int32): The referring scale of FPN layer with specified level.
        name(str, optional): For detailed information, please refer 
            to :ref:`api_guide_Name`. Usually name is no need to set and 
            None by default. 
J
jerrywgz 已提交
3425

3426
    Returns:
W
wangguanzhong 已提交
3427 3428 3429 3430 3431 3432 3433 3434 3435 3436
        Tuple:

        multi_rois(List) : A list of 2-D LoDTensor with shape [M, 4] 
        and data type of float32 and float64. The length is 
        max_level-min_level+1. The proposals in each FPN level.

        restore_ind(Variable): A 2-D Tensor with shape [N, 1], N is 
        the number of total rois. The data type is int32. It is
        used to restore the order of fpn_rois.

3437 3438 3439 3440

    Examples:
        .. code-block:: python

3441
            import paddle.fluid as fluid
3442 3443
            fpn_rois = fluid.data(
                name='data', shape=[None, 4], dtype='float32', lod_level=1)
3444
            multi_rois, restore_ind = fluid.layers.distribute_fpn_proposals(
3445 3446 3447
                fpn_rois=fpn_rois,
                min_level=2,
                max_level=5,
3448 3449 3450 3451 3452
                refer_level=4,
                refer_scale=224)
    """

    helper = LayerHelper('distribute_fpn_proposals', **locals())
3453
    dtype = helper.input_dtype('fpn_rois')
3454 3455 3456 3457 3458 3459 3460 3461 3462 3463 3464 3465 3466 3467 3468 3469 3470
    num_lvl = max_level - min_level + 1
    multi_rois = [
        helper.create_variable_for_type_inference(dtype) for i in range(num_lvl)
    ]
    restore_ind = helper.create_variable_for_type_inference(dtype='int32')
    helper.append_op(
        type='distribute_fpn_proposals',
        inputs={'FpnRois': fpn_rois},
        outputs={'MultiFpnRois': multi_rois,
                 'RestoreIndex': restore_ind},
        attrs={
            'min_level': min_level,
            'max_level': max_level,
            'refer_level': refer_level,
            'refer_scale': refer_scale
        })
    return multi_rois, restore_ind
3471 3472


3473
@templatedoc()
J
jerrywgz 已提交
3474 3475 3476 3477 3478 3479
def box_decoder_and_assign(prior_box,
                           prior_box_var,
                           target_box,
                           box_score,
                           box_clip,
                           name=None):
3480 3481 3482 3483 3484 3485 3486
    """
    ${comment}
    Args:
        prior_box(${prior_box_type}): ${prior_box_comment}
        prior_box_var(${prior_box_var_type}): ${prior_box_var_comment}
        target_box(${target_box_type}): ${target_box_comment}
        box_score(${box_score_type}): ${box_score_comment}
J
jerrywgz 已提交
3487
        box_clip(${box_clip_type}): ${box_clip_comment}
W
wangguanzhong 已提交
3488 3489 3490 3491
        name(str, optional): For detailed information, please refer 
            to :ref:`api_guide_Name`. Usually name is no need to set and 
            None by default. 

3492
    Returns:
W
wangguanzhong 已提交
3493
        Tuple:
J
jerrywgz 已提交
3494

W
wangguanzhong 已提交
3495 3496 3497
        decode_box(${decode_box_type}): ${decode_box_comment}

        output_assign_box(${output_assign_box_type}): ${output_assign_box_comment}
J
jerrywgz 已提交
3498 3499


3500 3501 3502
    Examples:
        .. code-block:: python

3503
            import paddle.fluid as fluid
3504 3505 3506 3507 3508 3509 3510 3511
            pb = fluid.data(
                name='prior_box', shape=[None, 4], dtype='float32')
            pbv = fluid.data(
                name='prior_box_var', shape=[4], dtype='float32')
            loc = fluid.data(
                name='target_box', shape=[None, 4*81], dtype='float32')
            scores = fluid.data(
                name='scores', shape=[None, 81], dtype='float32')
J
jerrywgz 已提交
3512
            decoded_box, output_assign_box = fluid.layers.box_decoder_and_assign(
J
jerrywgz 已提交
3513
                pb, pbv, loc, scores, 4.135)
3514 3515 3516 3517

    """
    helper = LayerHelper("box_decoder_and_assign", **locals())

J
jerrywgz 已提交
3518
    decoded_box = helper.create_variable_for_type_inference(
3519 3520 3521 3522 3523 3524 3525 3526 3527 3528 3529 3530 3531 3532
        dtype=prior_box.dtype)
    output_assign_box = helper.create_variable_for_type_inference(
        dtype=prior_box.dtype)

    helper.append_op(
        type="box_decoder_and_assign",
        inputs={
            "PriorBox": prior_box,
            "PriorBoxVar": prior_box_var,
            "TargetBox": target_box,
            "BoxScore": box_score
        },
        attrs={"box_clip": box_clip},
        outputs={
J
jerrywgz 已提交
3533
            "DecodeBox": decoded_box,
3534 3535
            "OutputAssignBox": output_assign_box
        })
J
jerrywgz 已提交
3536
    return decoded_box, output_assign_box
3537 3538 3539 3540 3541 3542 3543 3544 3545


def collect_fpn_proposals(multi_rois,
                          multi_scores,
                          min_level,
                          max_level,
                          post_nms_top_n,
                          name=None):
    """
W
wangguanzhong 已提交
3546 3547 3548
    **This OP only supports LoDTensor as input**. Concat multi-level RoIs 
    (Region of Interest) and select N RoIs with respect to multi_scores. 
    This operation performs the following steps:
3549 3550 3551 3552 3553 3554 3555 3556

    1. Choose num_level RoIs and scores as input: num_level = max_level - min_level
    2. Concat multi-level RoIs and scores
    3. Sort scores and select post_nms_top_n scores
    4. Gather RoIs by selected indices from scores
    5. Re-sort RoIs by corresponding batch_id

    Args:
W
wangguanzhong 已提交
3557 3558 3559 3560 3561 3562
        multi_rois(list): List of RoIs to collect. Element in list is 2-D 
            LoDTensor with shape [N, 4] and data type is float32 or float64, 
            N is the number of RoIs.
        multi_scores(list): List of scores of RoIs to collect. Element in list 
            is 2-D LoDTensor with shape [N, 1] and data type is float32 or
            float64, N is the number of RoIs.
3563 3564 3565
        min_level(int): The lowest level of FPN layer to collect
        max_level(int): The highest level of FPN layer to collect
        post_nms_top_n(int): The number of selected RoIs
W
wangguanzhong 已提交
3566 3567 3568 3569
        name(str, optional): For detailed information, please refer 
            to :ref:`api_guide_Name`. Usually name is no need to set and 
            None by default.        

3570
    Returns:
W
wangguanzhong 已提交
3571 3572 3573 3574 3575
        Variable:

        fpn_rois(Variable): 2-D LoDTensor with shape [N, 4] and data type is 
        float32 or float64. Selected RoIs. 

3576 3577 3578 3579

    Examples:
        .. code-block:: python
           
3580
            import paddle.fluid as fluid
3581 3582 3583
            multi_rois = []
            multi_scores = []
            for i in range(4):
3584 3585
                multi_rois.append(fluid.data(
                    name='roi_'+str(i), shape=[None, 4], dtype='float32', lod_level=1))
3586
            for i in range(4):
3587 3588
                multi_scores.append(fluid.data(
                    name='score_'+str(i), shape=[None, 1], dtype='float32', lod_level=1))
3589 3590 3591 3592 3593 3594 3595 3596 3597 3598 3599 3600 3601 3602 3603 3604 3605 3606 3607 3608 3609 3610 3611 3612 3613

            fpn_rois = fluid.layers.collect_fpn_proposals(
                multi_rois=multi_rois, 
                multi_scores=multi_scores,
                min_level=2, 
                max_level=5, 
                post_nms_top_n=2000)
    """

    helper = LayerHelper('collect_fpn_proposals', **locals())
    dtype = helper.input_dtype('multi_rois')
    num_lvl = max_level - min_level + 1
    input_rois = multi_rois[:num_lvl]
    input_scores = multi_scores[:num_lvl]
    output_rois = helper.create_variable_for_type_inference(dtype)
    output_rois.stop_gradient = True
    helper.append_op(
        type='collect_fpn_proposals',
        inputs={
            'MultiLevelRois': input_rois,
            'MultiLevelScores': input_scores
        },
        outputs={'FpnRois': output_rois},
        attrs={'post_nms_topN': post_nms_top_n})
    return output_rois