Skip to content
体验新版
项目
组织
正在加载...
登录
切换导航
打开侧边栏
PaddlePaddle
Paddle
提交
282c9e7c
P
Paddle
项目概览
PaddlePaddle
/
Paddle
接近 2 年 前同步成功
通知
2323
Star
20933
Fork
5424
代码
文件
提交
分支
Tags
贡献者
分支图
Diff
Issue
1423
列表
看板
标记
里程碑
合并请求
543
Wiki
0
Wiki
分析
仓库
DevOps
项目成员
Pages
P
Paddle
项目概览
项目概览
详情
发布
仓库
仓库
文件
提交
分支
标签
贡献者
分支图
比较
Issue
1,423
Issue
1,423
列表
看板
标记
里程碑
合并请求
543
合并请求
543
Pages
分析
分析
仓库分析
DevOps
Wiki
0
Wiki
成员
成员
收起侧边栏
关闭侧边栏
动态
分支图
创建新Issue
提交
Issue看板
提交
282c9e7c
编写于
10月 10, 2019
作者:
L
LielinJiang
提交者:
qingqing01
10月 10, 2019
浏览文件
操作
浏览文件
下载
电子邮件补丁
差异文件
Polish english apis' doc (#20198)
* refine Normal Uniform documnet
上级
f4c56e9f
变更
4
隐藏空白更改
内联
并排
Showing
4 changed file
with
103 addition
and
72 deletion
+103
-72
paddle/fluid/API.spec
paddle/fluid/API.spec
+11
-11
python/paddle/fluid/layers/detection.py
python/paddle/fluid/layers/detection.py
+21
-5
python/paddle/fluid/layers/distributions.py
python/paddle/fluid/layers/distributions.py
+42
-43
python/paddle/fluid/layers/nn.py
python/paddle/fluid/layers/nn.py
+29
-13
未找到文件。
paddle/fluid/API.spec
浏览文件 @
282c9e7c
...
...
@@ -279,7 +279,7 @@ paddle.fluid.layers.maxout (ArgSpec(args=['x', 'groups', 'name'], varargs=None,
paddle.fluid.layers.space_to_depth (ArgSpec(args=['x', 'blocksize', 'name'], varargs=None, keywords=None, defaults=(None,)), ('document', '26decdea9376b6b9a0d3432d82ca207b'))
paddle.fluid.layers.affine_grid (ArgSpec(args=['theta', 'out_shape', 'name'], varargs=None, keywords=None, defaults=(None,)), ('document', '315b50c1cbd9569375b098c56f1e91c9'))
paddle.fluid.layers.sequence_reverse (ArgSpec(args=['x', 'name'], varargs=None, keywords=None, defaults=(None,)), ('document', '5b32ed21ab89140a8e758002923a0da3'))
paddle.fluid.layers.affine_channel (ArgSpec(args=['x', 'scale', 'bias', 'data_layout', 'name', 'act'], varargs=None, keywords=None, defaults=(None, None, 'NCHW', None, None)), ('document', '
9f303c67538e468a36c5904a0a3aa110
'))
paddle.fluid.layers.affine_channel (ArgSpec(args=['x', 'scale', 'bias', 'data_layout', 'name', 'act'], varargs=None, keywords=None, defaults=(None, None, 'NCHW', None, None)), ('document', '
ecc4b1323028bde0518d666882d03515
'))
paddle.fluid.layers.similarity_focus (ArgSpec(args=['input', 'axis', 'indexes', 'name'], varargs=None, keywords=None, defaults=(None,)), ('document', '18ec2e3afeb90e70c8b73d2b71c40fdb'))
paddle.fluid.layers.hash (ArgSpec(args=['input', 'hash_size', 'num_hash', 'name'], varargs=None, keywords=None, defaults=(1, None)), ('document', 'a0b73c21be618cec0281e7903039e5e3'))
paddle.fluid.layers.grid_sampler (ArgSpec(args=['x', 'grid', 'name'], varargs=None, keywords=None, defaults=(None,)), ('document', '5d16663e096d7f04954c70ce1cc5e195'))
...
...
@@ -424,7 +424,7 @@ paddle.fluid.layers.roi_perspective_transform (ArgSpec(args=['input', 'rois', 't
paddle.fluid.layers.generate_proposal_labels (ArgSpec(args=['rpn_rois', 'gt_classes', 'is_crowd', 'gt_boxes', 'im_info', 'batch_size_per_im', 'fg_fraction', 'fg_thresh', 'bg_thresh_hi', 'bg_thresh_lo', 'bbox_reg_weights', 'class_nums', 'use_random', 'is_cls_agnostic', 'is_cascade_rcnn'], varargs=None, keywords=None, defaults=(256, 0.25, 0.25, 0.5, 0.0, [0.1, 0.1, 0.2, 0.2], None, True, False, False)), ('document', 'f2342042127b536a0a16390f149f1bba'))
paddle.fluid.layers.generate_proposals (ArgSpec(args=['scores', 'bbox_deltas', 'im_info', 'anchors', 'variances', 'pre_nms_top_n', 'post_nms_top_n', 'nms_thresh', 'min_size', 'eta', 'name'], varargs=None, keywords=None, defaults=(6000, 1000, 0.5, 0.1, 1.0, None)), ('document', '5cba014b41610431f8949e2d7336f1cc'))
paddle.fluid.layers.generate_mask_labels (ArgSpec(args=['im_info', 'gt_classes', 'is_crowd', 'gt_segms', 'rois', 'labels_int32', 'num_classes', 'resolution'], varargs=None, keywords=None, defaults=None), ('document', 'b319b10ddaf17fb4ddf03518685a17ef'))
paddle.fluid.layers.iou_similarity (ArgSpec(args=['x', 'y', 'name'], varargs=None, keywords=None, defaults=(None,)), ('document', '
72fca4a39ccf82d5c746ae62d1868a99
'))
paddle.fluid.layers.iou_similarity (ArgSpec(args=['x', 'y', 'name'], varargs=None, keywords=None, defaults=(None,)), ('document', '
e24478fd1fcf1727d4947fe14356b3d4
'))
paddle.fluid.layers.box_coder (ArgSpec(args=['prior_box', 'prior_box_var', 'target_box', 'code_type', 'box_normalized', 'name', 'axis'], varargs=None, keywords=None, defaults=('encode_center_size', True, None, 0)), ('document', '511d7033c0cfce1a5b88c04ad6e7ed5b'))
paddle.fluid.layers.polygon_box_transform (ArgSpec(args=['input', 'name'], varargs=None, keywords=None, defaults=(None,)), ('document', '2183f03c4f16712dcef6a474dbcefa24'))
paddle.fluid.layers.yolov3_loss (ArgSpec(args=['x', 'gt_box', 'gt_label', 'anchors', 'anchor_mask', 'class_num', 'ignore_thresh', 'downsample_ratio', 'gt_score', 'use_label_smooth', 'name'], varargs=None, keywords=None, defaults=(None, True, None)), ('document', '400403175718d5a632402cdae88b01b8'))
...
...
@@ -446,18 +446,18 @@ paddle.fluid.layers.piecewise_decay (ArgSpec(args=['boundaries', 'values'], vara
paddle.fluid.layers.noam_decay (ArgSpec(args=['d_model', 'warmup_steps'], varargs=None, keywords=None, defaults=None), ('document', 'fd57228fb76195e66bbcc8d8e42c494d'))
paddle.fluid.layers.cosine_decay (ArgSpec(args=['learning_rate', 'step_each_epoch', 'epochs'], varargs=None, keywords=None, defaults=None), ('document', '1062e487dd3b50a6e58b5703b4f594c9'))
paddle.fluid.layers.linear_lr_warmup (ArgSpec(args=['learning_rate', 'warmup_steps', 'start_lr', 'end_lr'], varargs=None, keywords=None, defaults=None), ('document', 'dc7292c456847ba41cfd318e9f7f4363'))
paddle.fluid.layers.Uniform ('paddle.fluid.layers.distributions.Uniform', ('document', '
af70e7003f437e7a8a9e28cded35c433
'))
paddle.fluid.layers.Uniform ('paddle.fluid.layers.distributions.Uniform', ('document', '
9b1a9ebdd8ae18bf562486611ed74e59
'))
paddle.fluid.layers.Uniform.__init__ (ArgSpec(args=['self', 'low', 'high'], varargs=None, keywords=None, defaults=None), ('document', '6adf97f83acf6453d4a6a4b1070f3754'))
paddle.fluid.layers.Uniform.entropy (ArgSpec(args=['self'], varargs=None, keywords=None, defaults=None), ('document', '
ba59f9ce77af3c93e2b4c8af1801a24e
'))
paddle.fluid.layers.Uniform.entropy (ArgSpec(args=['self'], varargs=None, keywords=None, defaults=None), ('document', '
cde9f1980a2be7939798b32ec8cd59e1
'))
paddle.fluid.layers.Uniform.kl_divergence (ArgSpec(args=['self', 'other'], varargs=None, keywords=None, defaults=None), ('document', '3baee52abbed82d47e9588d9dfe2f42f'))
paddle.fluid.layers.Uniform.log_prob (ArgSpec(args=['self', 'value'], varargs=None, keywords=None, defaults=None), ('document', '
b79091014ceaffb6a7372a198a341c23
'))
paddle.fluid.layers.Uniform.sample (ArgSpec(args=['self', 'shape', 'seed'], varargs=None, keywords=None, defaults=(0,)), ('document', '
adac334af13f6984e991b3ecf12b8cb7
'))
paddle.fluid.layers.Normal ('paddle.fluid.layers.distributions.Normal', ('document', '
3265262d0d8b3b32c6245979a5cdced
9'))
paddle.fluid.layers.Uniform.log_prob (ArgSpec(args=['self', 'value'], varargs=None, keywords=None, defaults=None), ('document', '
ad4ed169f86c00923621504c782010b0
'))
paddle.fluid.layers.Uniform.sample (ArgSpec(args=['self', 'shape', 'seed'], varargs=None, keywords=None, defaults=(0,)), ('document', '
9002ab4a80769211565b64298a770db5
'))
paddle.fluid.layers.Normal ('paddle.fluid.layers.distributions.Normal', ('document', '
948f3a95ca14c952401e6a2ec30a35f
9'))
paddle.fluid.layers.Normal.__init__ (ArgSpec(args=['self', 'loc', 'scale'], varargs=None, keywords=None, defaults=None), ('document', '6adf97f83acf6453d4a6a4b1070f3754'))
paddle.fluid.layers.Normal.entropy (ArgSpec(args=['self'], varargs=None, keywords=None, defaults=None), ('document', '
d2db47b1e62c037a2570fc526b93f518
'))
paddle.fluid.layers.Normal.kl_divergence (ArgSpec(args=['self', 'other'], varargs=None, keywords=None, defaults=None), ('document', '
2e8845cdf1129647e6fa6e816876cd3b
'))
paddle.fluid.layers.Normal.log_prob (ArgSpec(args=['self', 'value'], varargs=None, keywords=None, defaults=None), ('document', '
b79091014ceaffb6a7372a198a341c23
'))
paddle.fluid.layers.Normal.sample (ArgSpec(args=['self', 'shape', 'seed'], varargs=None, keywords=None, defaults=(0,)), ('document', '
adac334af13f6984e991b3ecf12b8cb7
'))
paddle.fluid.layers.Normal.entropy (ArgSpec(args=['self'], varargs=None, keywords=None, defaults=None), ('document', '
254ff8081a9df3cb96db045411dfbcbd
'))
paddle.fluid.layers.Normal.kl_divergence (ArgSpec(args=['self', 'other'], varargs=None, keywords=None, defaults=None), ('document', '
9fc9bd26e5211e2c6ad703a7fba08e65
'))
paddle.fluid.layers.Normal.log_prob (ArgSpec(args=['self', 'value'], varargs=None, keywords=None, defaults=None), ('document', '
ad4ed169f86c00923621504c782010b0
'))
paddle.fluid.layers.Normal.sample (ArgSpec(args=['self', 'shape', 'seed'], varargs=None, keywords=None, defaults=(0,)), ('document', '
9002ab4a80769211565b64298a770db5
'))
paddle.fluid.layers.Categorical ('paddle.fluid.layers.distributions.Categorical', ('document', '865c9dac8af6190e05588486ba091ee8'))
paddle.fluid.layers.Categorical.__init__ (ArgSpec(args=['self', 'logits'], varargs=None, keywords=None, defaults=None), ('document', '933b96c9ebab8e2c1f6007a50287311e'))
paddle.fluid.layers.Categorical.entropy (ArgSpec(args=['self'], varargs=None, keywords=None, defaults=None), ('document', 'b360a2a7a4da07c2d268b329e09c82c1'))
...
...
python/paddle/fluid/layers/detection.py
浏览文件 @
282c9e7c
...
...
@@ -587,20 +587,36 @@ def iou_similarity(x, y, name=None):
${comment}
Args:
x
(${x_type}): ${x_comment}
y
(${y_type}): ${y_comment}
x
(Variable): ${x_comment}.The data type is float32 or float64.
y
(Variable): ${y_comment}.The data type is float32 or float64.
Returns:
out(${out_type}): ${out_comment}
Variable: ${out_comment}.The data type is same with x.
Examples:
.. code-block:: python
import numpy as np
import paddle.fluid as fluid
x = fluid.layers.data(name='x', shape=[4], dtype='float32')
y = fluid.layers.data(name='y', shape=[4], dtype='float32')
use_gpu = False
place = fluid.CUDAPlace(0) if use_gpu else fluid.CPUPlace()
exe = fluid.Executor(place)
x = fluid.data(name='x', shape=[None, 4], dtype='float32')
y = fluid.data(name='y', shape=[None, 4], dtype='float32')
iou = fluid.layers.iou_similarity(x=x, y=y)
exe.run(fluid.default_startup_program())
test_program = fluid.default_main_program().clone(for_test=True)
[out_iou] = exe.run(test_program,
fetch_list=iou,
feed={'x': np.array([[0.5, 0.5, 2.0, 2.0],
[0., 0., 1.0, 1.0]]).astype('float32'),
'y': np.array([[1.0, 1.0, 2.5, 2.5]]).astype('float32')})
# out_iou is [[0.2857143],
# [0. ]] with shape: [2, 1]
"""
helper
=
LayerHelper
(
"iou_similarity"
,
**
locals
())
if
name
is
None
:
...
...
python/paddle/fluid/layers/distributions.py
浏览文件 @
282c9e7c
...
...
@@ -135,12 +135,13 @@ class Uniform(Distribution):
broadcasting (e.g., `high - low` is a valid operation).
Args:
low(float|list|numpy.ndarray|Variable): The lower boundary of uniform distribution.
high(float|list|numpy.ndarray|Variable): The higher boundary of uniform distribution.
low(float|list|numpy.ndarray|Variable): The lower boundary of uniform distribution.
The data type is float32
high(float|list|numpy.ndarray|Variable): The higher boundary of uniform distribution.
The data type is float32
Examples:
.. code-block:: python
import numpy as np
from paddle.fluid import layers
from paddle.fluid.layers import Uniform
...
...
@@ -158,19 +159,19 @@ class Uniform(Distribution):
# With broadcasting:
u4 = Uniform(low=3.0, high=[5.0, 6.0, 7.0])
# Variable as input
dims = 3
low = layers.data(name='low', shape=[dims], dtype='float32')
high = layers.data(name='high', shape=[dims], dtype='float32')
values = layers.data(name='values', shape=[dims], dtype='float32')
# Complete example
value_npdata = np.array([0.8], dtype="float32")
value_tensor = layers.create_tensor(dtype="float32")
layers.assign(value_npdata, value_tensor)
uniform = Uniform(
low, high
)
uniform = Uniform(
[0.], [2.]
)
sample = uniform.sample([2, 3])
sample = uniform.sample([2])
# a random tensor created by uniform distribution with shape: [2, 1]
entropy = uniform.entropy()
lp = uniform.log_prob(values)
# [0.6931472] with shape: [1]
lp = uniform.log_prob(value_tensor)
# [-0.6931472] with shape: [1]
"""
def
__init__
(
self
,
low
,
high
):
...
...
@@ -193,7 +194,7 @@ class Uniform(Distribution):
seed (int): Python integer number.
Returns:
Variable: A tensor with prepended dimensions shape.
Variable: A tensor with prepended dimensions shape.
The data type is float32.
"""
batch_shape
=
list
((
self
.
low
+
self
.
high
).
shape
)
...
...
@@ -224,7 +225,7 @@ class Uniform(Distribution):
value (Variable): The input tensor.
Returns:
Variable: log probability.
Variable: log probability.
The data type is same with value.
"""
lb_bool
=
control_flow
.
less_than
(
self
.
low
,
value
)
...
...
@@ -237,7 +238,7 @@ class Uniform(Distribution):
"""Shannon entropy in nats.
Returns:
Variable: Shannon entropy of uniform distribution.
Variable: Shannon entropy of uniform distribution.
The data type is float32.
"""
return
nn
.
log
(
self
.
high
-
self
.
low
)
...
...
@@ -265,8 +266,8 @@ class Normal(Distribution):
* :math:`Z`: is the normalization constant.
Args:
loc(float|list|numpy.ndarray|Variable): The mean of normal distribution.
scale(float|list|numpy.ndarray|Variable): The std of normal distribution.
loc(float|list|numpy.ndarray|Variable): The mean of normal distribution.
The data type is float32.
scale(float|list|numpy.ndarray|Variable): The std of normal distribution.
The data type is float32.
Examples:
.. code-block:: python
...
...
@@ -278,36 +279,34 @@ class Normal(Distribution):
dist = Normal(loc=0., scale=3.)
# Define a batch of two scalar valued Normals.
# The first has mean 1 and standard deviation 11, the second 2 and 22.
dist = Normal(loc=[1
, 2.], scale=[11
, 22.])
dist = Normal(loc=[1
., 2.], scale=[11.
, 22.])
# Get 3 samples, returning a 3 x 2 tensor.
dist.sample([3])
# Define a batch of two scalar valued Normals.
# Both have mean 1, but different standard deviations.
dist = Normal(loc=1., scale=[11, 22.])
dist = Normal(loc=1., scale=[11
.
, 22.])
# Define a batch of two scalar valued Normals.
# Both have mean 1, but different standard deviations.
dist = Normal(loc=1., scale=[11, 22.])
# Variable as input
dims = 3
loc = layers.data(name='loc', shape=[dims], dtype='float32')
scale = layers.data(name='scale', shape=[dims], dtype='float32')
other_loc = layers.data(
name='other_loc', shape=[dims], dtype='float32')
other_scale = layers.data(
name='other_scale', shape=[dims], dtype='float32')
values = layers.data(name='values', shape=[dims], dtype='float32')
normal = Normal(loc, scale)
other_normal = Normal(other_loc, other_scale)
sample = normal.sample([2, 3])
entropy = normal.entropy()
lp = normal.log_prob(values)
kl = normal.kl_divergence(other_normal)
dist = Normal(loc=1., scale=[11., 22.])
# Complete example
value_npdata = np.array([0.8], dtype="float32")
value_tensor = layers.create_tensor(dtype="float32")
layers.assign(value_npdata, value_tensor)
normal_a = Normal([0.], [1.])
normal_b = Normal([0.5], [2.])
sample = normal_a.sample([2])
# a random tensor created by normal distribution with shape: [2, 1]
entropy = normal_a.entropy()
# [1.4189385] with shape: [1]
lp = normal_a.log_prob(value_tensor)
# [-1.2389386] with shape: [1]
kl = normal_a.kl_divergence(normal_b)
# [0.34939718] with shape: [1]
"""
def
__init__
(
self
,
loc
,
scale
):
...
...
@@ -330,7 +329,7 @@ class Normal(Distribution):
seed (int): Python integer number.
Returns:
Variable: A tensor with prepended dimensions shape.
Variable: A tensor with prepended dimensions shape.
The data type is float32.
"""
batch_shape
=
list
((
self
.
loc
+
self
.
scale
).
shape
)
...
...
@@ -356,7 +355,7 @@ class Normal(Distribution):
"""Shannon entropy in nats.
Returns:
Variable: Shannon entropy of normal distribution.
Variable: Shannon entropy of normal distribution.
The data type is float32.
"""
batch_shape
=
list
((
self
.
loc
+
self
.
scale
).
shape
)
...
...
@@ -372,7 +371,7 @@ class Normal(Distribution):
value (Variable): The input tensor.
Returns:
Variable: log probability.
Variable: log probability.
The data type is same with value.
"""
var
=
self
.
scale
*
self
.
scale
...
...
@@ -387,7 +386,7 @@ class Normal(Distribution):
other (Normal): instance of Normal.
Returns:
Variable: kl-divergence between two normal distributions.
Variable: kl-divergence between two normal distributions.
The data type is float32.
"""
assert
isinstance
(
other
,
Normal
),
"another distribution must be Normal"
...
...
python/paddle/fluid/layers/nn.py
浏览文件 @
282c9e7c
...
...
@@ -13780,32 +13780,48 @@ def affine_channel(x,
Args:
x (Variable): Feature map input can be a 4D tensor with order NCHW
or NHWC. It also can be a 2D tensor and the affine transformation
is applied in the second dimension.
is applied in the second dimension.
The data type is float32 or float64.
scale (Variable): 1D input of shape (C), the c-th element is the scale
factor of the affine transformation for the c-th channel of
the input.
the input.
The data type is float32 or float64.
bias (Variable): 1D input of shape (C), the c-th element is the bias
of the affine transformation for the c-th channel of the input.
data_layout (string, default NCHW): NCHW or NHWC. If input is 2D
The data type is float32 or float64.
data_layout (str, default NCHW): NCHW or NHWC. If input is 2D
tensor, you can ignore data_layout.
name (str, default None): The name of this layer.
name (str, default None): The name of this layer. For more information,
please refer to :ref:`api_guide_Name` .
act (str, default None): Activation to be applied to the output of this layer.
Returns:
out (Variable): A tensor of the same shape and data layout
with x.
Variable: A tensor which has the same shape, data layout and data type
with x.
Examples:
.. code-block:: python
import numpy as np
import paddle.fluid as fluid
data = fluid.layers.data(name='data', shape=[3, 32, 32],
dtype='float32')
input_scale = fluid.layers.create_parameter(shape=[3],
dtype="float32")
input_bias = fluid.layers.create_parameter(shape=[3],
dtype="float32")
use_gpu = False
place = fluid.CUDAPlace(0) if use_gpu else fluid.CPUPlace()
exe = fluid.Executor(place)
data = fluid.data(name='data', shape=[None, 1, 2, 2], dtype='float32')
input_scale = fluid.layers.create_parameter(shape=[1], dtype="float32",
default_initializer=fluid.initializer.Constant(2.0))
input_bias = fluid.layers.create_parameter(shape=[1],dtype="float32",
default_initializer=fluid.initializer.Constant(0.5))
out = fluid.layers.affine_channel(data,scale=input_scale,
bias=input_bias)
bias=input_bias)
exe.run(fluid.default_startup_program())
test_program = fluid.default_main_program().clone(for_test=True)
[out_array] = exe.run(test_program,
fetch_list=out,
feed={'data': np.ones([1,1,2,2]).astype('float32')})
# out_array is [[[[2.5, 2.5],
# [2.5, 2.5]]]] with shape: [1, 1, 2, 2]
"""
helper = LayerHelper("affine_channel", **locals())
...
...
编辑
预览
Markdown
is supported
0%
请重试
或
添加新附件
.
添加附件
取消
You are about to add
0
people
to the discussion. Proceed with caution.
先完成此消息的编辑!
取消
想要评论请
注册
或
登录