Skip to content
体验新版
项目
组织
正在加载...
登录
切换导航
打开侧边栏
PaddlePaddle
Paddle
提交
6b9fbcf3
P
Paddle
项目概览
PaddlePaddle
/
Paddle
1 年多 前同步成功
通知
2302
Star
20931
Fork
5422
代码
文件
提交
分支
Tags
贡献者
分支图
Diff
Issue
1423
列表
看板
标记
里程碑
合并请求
543
Wiki
0
Wiki
分析
仓库
DevOps
项目成员
Pages
P
Paddle
项目概览
项目概览
详情
发布
仓库
仓库
文件
提交
分支
标签
贡献者
分支图
比较
Issue
1,423
Issue
1,423
列表
看板
标记
里程碑
合并请求
543
合并请求
543
Pages
分析
分析
仓库分析
DevOps
Wiki
0
Wiki
成员
成员
收起侧边栏
关闭侧边栏
动态
分支图
创建新Issue
提交
Issue看板
提交
6b9fbcf3
编写于
12月 24, 2019
作者:
F
FDInSky
提交者:
qingqing01
12月 24, 2019
浏览文件
操作
浏览文件
下载
电子邮件补丁
差异文件
Update iou_similarity op to support non-normalized bbox (#21671)
Update iou_similarity op to support non-normalized bbox
上级
d053561d
变更
4
隐藏空白更改
内联
并排
Showing
4 changed file
with
71 addition
and
16 deletion
+71
-16
paddle/fluid/operators/detection/iou_similarity_op.cc
paddle/fluid/operators/detection/iou_similarity_op.cc
+4
-1
paddle/fluid/operators/detection/iou_similarity_op.h
paddle/fluid/operators/detection/iou_similarity_op.h
+26
-7
python/paddle/fluid/layers/detection.py
python/paddle/fluid/layers/detection.py
+4
-3
python/paddle/fluid/tests/unittests/test_iou_similarity_op.py
...on/paddle/fluid/tests/unittests/test_iou_similarity_op.py
+37
-5
未找到文件。
paddle/fluid/operators/detection/iou_similarity_op.cc
浏览文件 @
6b9fbcf3
...
...
@@ -61,7 +61,10 @@ class IOUSimilarityOpMaker : public framework::OpProtoAndCheckerMaker {
"[xmin, ymin] is the left top coordinate of the box if the "
"input is image feature map, and [xmax, ymax] is the right "
"bottom coordinate of the box."
);
AddAttr
<
bool
>
(
"box_normalized"
,
"(bool, default true) "
"whether treat the priorbox as a noramlized box"
)
.
SetDefault
(
true
);
AddOutput
(
"Out"
,
"(LoDTensor, the lod is same as input X) The output of "
"iou_similarity op, a tensor with shape [N, M] "
...
...
paddle/fluid/operators/detection/iou_similarity_op.h
浏览文件 @
6b9fbcf3
...
...
@@ -18,16 +18,28 @@ limitations under the License. */
template
<
typename
T
>
inline
HOSTDEVICE
T
IOUSimilarity
(
T
xmin1
,
T
ymin1
,
T
xmax1
,
T
ymax1
,
T
xmin2
,
T
ymin2
,
T
xmax2
,
T
ymax2
)
{
T
ymin2
,
T
xmax2
,
T
ymax2
,
bool
normalized
)
{
constexpr
T
zero
=
static_cast
<
T
>
(
0
);
T
area1
=
(
ymax1
-
ymin1
)
*
(
xmax1
-
xmin1
);
T
area2
=
(
ymax2
-
ymin2
)
*
(
xmax2
-
xmin2
);
T
area1
;
T
area2
;
if
(
!
normalized
)
{
area1
=
(
ymax1
-
ymin1
+
1
)
*
(
xmax1
-
xmin1
+
1
);
area2
=
(
ymax2
-
ymin2
+
1
)
*
(
xmax2
-
xmin2
+
1
);
}
else
{
area1
=
(
ymax1
-
ymin1
)
*
(
xmax1
-
xmin1
);
area2
=
(
ymax2
-
ymin2
)
*
(
xmax2
-
xmin2
);
}
T
inter_xmax
=
xmax1
>
xmax2
?
xmax2
:
xmax1
;
T
inter_ymax
=
ymax1
>
ymax2
?
ymax2
:
ymax1
;
T
inter_xmin
=
xmin1
>
xmin2
?
xmin1
:
xmin2
;
T
inter_ymin
=
ymin1
>
ymin2
?
ymin1
:
ymin2
;
T
inter_height
=
inter_ymax
-
inter_ymin
;
T
inter_width
=
inter_xmax
-
inter_xmin
;
if
(
!
normalized
)
{
inter_height
=
inter_height
+
1
;
inter_width
=
inter_width
+
1
;
}
inter_height
=
inter_height
>
zero
?
inter_height
:
zero
;
inter_width
=
inter_width
>
zero
?
inter_width
:
zero
;
T
inter_area
=
inter_width
*
inter_height
;
...
...
@@ -38,8 +50,12 @@ inline HOSTDEVICE T IOUSimilarity(T xmin1, T ymin1, T xmax1, T ymax1, T xmin2,
template
<
typename
T
>
struct
IOUSimilarityFunctor
{
IOUSimilarityFunctor
(
const
T
*
x
,
const
T
*
y
,
T
*
z
,
int
cols
)
:
x_
(
x
),
y_
(
y
),
z_
(
z
),
cols_
(
static_cast
<
size_t
>
(
cols
))
{}
IOUSimilarityFunctor
(
const
T
*
x
,
const
T
*
y
,
T
*
z
,
int
cols
,
bool
normalized
)
:
x_
(
x
),
y_
(
y
),
z_
(
z
),
cols_
(
static_cast
<
size_t
>
(
cols
)),
normalized_
(
normalized
)
{}
inline
HOSTDEVICE
void
operator
()(
size_t
tid
)
const
{
size_t
row_id
=
tid
/
cols_
;
...
...
@@ -56,7 +72,7 @@ struct IOUSimilarityFunctor {
T
y_max2
=
y_
[
col_id
*
4
+
3
];
T
sim
=
IOUSimilarity
(
x_min1
,
y_min1
,
x_max1
,
y_max1
,
x_min2
,
y_min2
,
x_max2
,
y_max2
);
x_max2
,
y_max2
,
normalized_
);
z_
[
row_id
*
cols_
+
col_id
]
=
sim
;
}
...
...
@@ -64,6 +80,7 @@ struct IOUSimilarityFunctor {
const
T
*
y_
;
T
*
z_
;
const
size_t
cols_
;
bool
normalized_
;
};
namespace
paddle
{
...
...
@@ -75,12 +92,14 @@ class IOUSimilarityKernel : public framework::OpKernel<T> {
void
Compute
(
const
framework
::
ExecutionContext
&
ctx
)
const
override
{
const
framework
::
LoDTensor
*
in_x
=
ctx
.
Input
<
framework
::
LoDTensor
>
(
"X"
);
const
framework
::
Tensor
*
in_y
=
ctx
.
Input
<
framework
::
Tensor
>
(
"Y"
);
bool
normalized
=
ctx
.
Attr
<
bool
>
(
"box_normalized"
);
framework
::
LoDTensor
*
out
=
ctx
.
Output
<
framework
::
LoDTensor
>
(
"Out"
);
int
x_n
=
in_x
->
dims
()[
0
];
int
y_n
=
in_y
->
dims
()[
0
];
IOUSimilarityFunctor
<
T
>
functor
(
in_x
->
data
<
T
>
(),
in_y
->
data
<
T
>
(),
out
->
mutable_data
<
T
>
(
ctx
.
GetPlace
()),
y_n
);
out
->
mutable_data
<
T
>
(
ctx
.
GetPlace
()),
y_n
,
normalized
);
platform
::
ForRange
<
DeviceContext
>
for_range
(
static_cast
<
const
DeviceContext
&>
(
ctx
.
device_context
()),
x_n
*
y_n
);
...
...
python/paddle/fluid/layers/detection.py
浏览文件 @
6b9fbcf3
...
...
@@ -653,14 +653,15 @@ def detection_output(loc,
@
templatedoc
()
def
iou_similarity
(
x
,
y
,
name
=
None
):
def
iou_similarity
(
x
,
y
,
box_normalized
=
True
,
name
=
None
):
"""
${comment}
Args:
x (Variable): ${x_comment}.The data type is float32 or float64.
y (Variable): ${y_comment}.The data type is float32 or float64.
box_normalized(bool): Whether treat the priorbox as a noramlized box.
Set true by default.
Returns:
Variable: ${out_comment}.The data type is same with x.
...
...
@@ -700,7 +701,7 @@ def iou_similarity(x, y, name=None):
type
=
"iou_similarity"
,
inputs
=
{
"X"
:
x
,
"Y"
:
y
},
attrs
=
{},
attrs
=
{
"box_normalized"
:
box_normalized
},
outputs
=
{
"Out"
:
out
})
return
out
...
...
python/paddle/fluid/tests/unittests/test_iou_similarity_op.py
浏览文件 @
6b9fbcf3
...
...
@@ -31,27 +31,40 @@ class TestIOUSimilarityOp(OpTest):
self
.
boxes1
=
random
.
rand
(
2
,
4
).
astype
(
'float32'
)
self
.
boxes2
=
random
.
rand
(
3
,
4
).
astype
(
'float32'
)
self
.
output
=
random
.
rand
(
2
,
3
).
astype
(
'float32'
)
self
.
box_normalized
=
False
# run python iou computation
self
.
_compute_iou
()
self
.
inputs
=
{
'X'
:
self
.
boxes1
,
'Y'
:
self
.
boxes2
}
self
.
attrs
=
{
"box_normalized"
:
self
.
box_normalized
}
self
.
outputs
=
{
'Out'
:
self
.
output
}
def
_compute_iou
(
self
,
):
for
row
in
range
(
self
.
boxes1
.
shape
[
0
]):
for
col
in
range
(
self
.
boxes2
.
shape
[
0
]):
xmin1
,
ymin1
,
xmax1
,
ymax1
=
self
.
boxes1
[
row
]
xmin2
,
ymin2
,
xmax2
,
ymax2
=
self
.
boxes2
[
col
]
area1
=
(
ymax1
-
ymin1
)
*
(
xmax1
-
xmin1
)
area2
=
(
ymax2
-
ymin2
)
*
(
xmax2
-
xmin2
)
if
not
self
.
box_normalized
:
area1
=
(
ymax1
-
ymin1
+
1
)
*
(
xmax1
-
xmin1
+
1
)
area2
=
(
ymax2
-
ymin2
+
1
)
*
(
xmax2
-
xmin2
+
1
)
else
:
area1
=
(
ymax1
-
ymin1
)
*
(
xmax1
-
xmin1
)
area2
=
(
ymax2
-
ymin2
)
*
(
xmax2
-
xmin2
)
inter_xmax
=
min
(
xmax1
,
xmax2
)
inter_ymax
=
min
(
ymax1
,
ymax2
)
inter_xmin
=
max
(
xmin1
,
xmin2
)
inter_ymin
=
max
(
ymin1
,
ymin2
)
inter_height
=
inter_ymax
-
inter_ymin
inter_width
=
inter_xmax
-
inter_xmin
if
not
self
.
box_normalized
:
inter_height
+=
1
inter_width
+=
1
inter_height
=
max
(
inter_height
,
0
)
inter_width
=
max
(
inter_width
,
0
)
inter_area
=
inter_width
*
inter_height
union_area
=
area1
+
area2
-
inter_area
sim_score
=
inter_area
/
union_area
self
.
output
[
row
,
col
]
=
sim_score
self
.
inputs
=
{
'X'
:
self
.
boxes1
,
'Y'
:
self
.
boxes2
}
self
.
outputs
=
{
'Out'
:
self
.
output
}
class
TestIOUSimilarityOpWithLoD
(
TestIOUSimilarityOp
):
...
...
@@ -62,8 +75,27 @@ class TestIOUSimilarityOpWithLoD(TestIOUSimilarityOp):
super
(
TestIOUSimilarityOpWithLoD
,
self
).
setUp
()
self
.
boxes1_lod
=
[[
1
,
1
]]
self
.
output_lod
=
[[
1
,
1
]]
self
.
box_normalized
=
False
# run python iou computation
self
.
_compute_iou
()
self
.
inputs
=
{
'X'
:
(
self
.
boxes1
,
self
.
boxes1_lod
),
'Y'
:
self
.
boxes2
}
self
.
attrs
=
{
"box_normalized"
:
self
.
box_normalized
}
self
.
outputs
=
{
'Out'
:
(
self
.
output
,
self
.
output_lod
)}
class
TestIOUSimilarityOpWithBoxNormalized
(
TestIOUSimilarityOp
):
def
test_check_output
(
self
):
self
.
check_output
(
check_dygraph
=
False
)
def
setUp
(
self
):
super
(
TestIOUSimilarityOpWithBoxNormalized
,
self
).
setUp
()
self
.
boxes1_lod
=
[[
1
,
1
]]
self
.
output_lod
=
[[
1
,
1
]]
self
.
box_normalized
=
True
# run python iou computation
self
.
_compute_iou
()
self
.
inputs
=
{
'X'
:
(
self
.
boxes1
,
self
.
boxes1_lod
),
'Y'
:
self
.
boxes2
}
self
.
attrs
=
{
"box_normalized"
:
self
.
box_normalized
}
self
.
outputs
=
{
'Out'
:
(
self
.
output
,
self
.
output_lod
)}
...
...
编辑
预览
Markdown
is supported
0%
请重试
或
添加新附件
.
添加附件
取消
You are about to add
0
people
to the discussion. Proceed with caution.
先完成此消息的编辑!
取消
想要评论请
注册
或
登录