Skip to content
体验新版
项目
组织
正在加载...
登录
切换导航
打开侧边栏
PaddlePaddle
Paddle
提交
2ad5d91e
P
Paddle
项目概览
PaddlePaddle
/
Paddle
1 年多 前同步成功
通知
2302
Star
20931
Fork
5422
代码
文件
提交
分支
Tags
贡献者
分支图
Diff
Issue
1423
列表
看板
标记
里程碑
合并请求
543
Wiki
0
Wiki
分析
仓库
DevOps
项目成员
Pages
P
Paddle
项目概览
项目概览
详情
发布
仓库
仓库
文件
提交
分支
标签
贡献者
分支图
比较
Issue
1,423
Issue
1,423
列表
看板
标记
里程碑
合并请求
543
合并请求
543
Pages
分析
分析
仓库分析
DevOps
Wiki
0
Wiki
成员
成员
收起侧边栏
关闭侧边栏
动态
分支图
创建新Issue
提交
Issue看板
提交
2ad5d91e
编写于
8月 29, 2018
作者:
X
Xingyuan Bu
提交者:
qingqing01
8月 29, 2018
浏览文件
操作
浏览文件
下载
电子邮件补丁
差异文件
Faster RCNN Generate Proposals (#12056)
* Add proposals generation operator for Faster-RCNN.
上级
01e96a8e
变更
6
隐藏空白更改
内联
并排
Showing
6 changed file
with
918 addition
and
2 deletion
+918
-2
paddle/fluid/API.spec
paddle/fluid/API.spec
+1
-0
paddle/fluid/operators/detection/CMakeLists.txt
paddle/fluid/operators/detection/CMakeLists.txt
+2
-2
paddle/fluid/operators/detection/generate_proposals_op.cc
paddle/fluid/operators/detection/generate_proposals_op.cc
+485
-0
python/paddle/fluid/layers/detection.py
python/paddle/fluid/layers/detection.py
+71
-0
python/paddle/fluid/tests/test_detection.py
python/paddle/fluid/tests/test_detection.py
+39
-0
python/paddle/fluid/tests/unittests/test_generate_proposals.py
...n/paddle/fluid/tests/unittests/test_generate_proposals.py
+320
-0
未找到文件。
paddle/fluid/API.spec
浏览文件 @
2ad5d91e
...
...
@@ -299,6 +299,7 @@ paddle.fluid.layers.ssd_loss ArgSpec(args=['location', 'confidence', 'gt_box', '
paddle.fluid.layers.detection_map ArgSpec(args=['detect_res', 'label', 'class_num', 'background_label', 'overlap_threshold', 'evaluate_difficult', 'has_state', 'input_states', 'out_states', 'ap_version'], varargs=None, keywords=None, defaults=(0, 0.3, True, None, None, None, 'integral'))
paddle.fluid.layers.rpn_target_assign ArgSpec(args=['loc', 'scores', 'anchor_box', 'gt_box', 'rpn_batch_size_per_im', 'fg_fraction', 'rpn_positive_overlap', 'rpn_negative_overlap'], varargs=None, keywords=None, defaults=(256, 0.25, 0.7, 0.3))
paddle.fluid.layers.anchor_generator ArgSpec(args=['input', 'anchor_sizes', 'aspect_ratios', 'variance', 'stride', 'offset', 'name'], varargs=None, keywords=None, defaults=(None, None, [0.1, 0.1, 0.2, 0.2], None, 0.5, None))
paddle.fluid.layers.generate_proposals ArgSpec(args=['scores', 'bbox_deltas', 'im_info', 'anchors', 'variances', 'pre_nms_top_n', 'post_nms_top_n', 'nms_thresh', 'min_size', 'eta', 'name'], varargs=None, keywords=None, defaults=(6000, 1000, 0.5, 0.1, 1.0, None))
paddle.fluid.layers.iou_similarity ArgSpec(args=[], varargs='args', keywords='kwargs', defaults=None)
paddle.fluid.layers.box_coder ArgSpec(args=[], varargs='args', keywords='kwargs', defaults=None)
paddle.fluid.layers.polygon_box_transform ArgSpec(args=[], varargs='args', keywords='kwargs', defaults=None)
...
...
paddle/fluid/operators/detection/CMakeLists.txt
浏览文件 @
2ad5d91e
...
...
@@ -29,6 +29,6 @@ target_assign_op.cu)
detection_library
(
polygon_box_transform_op SRCS polygon_box_transform_op.cc
polygon_box_transform_op.cu
)
detection_library
(
rpn_target_assign_op SRCS rpn_target_assign_op.cc
)
#
Export local libraries to parent
detection_library
(
generate_proposals_op SRCS generate_proposals_op.cc
)
#Export local libraries to parent
set
(
DETECTION_LIBRARY
${
LOCAL_DETECTION_LIBS
}
PARENT_SCOPE
)
paddle/fluid/operators/detection/generate_proposals_op.cc
0 → 100644
浏览文件 @
2ad5d91e
/* Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
#include <string>
#include <vector>
#include "paddle/fluid/framework/op_registry.h"
#include "paddle/fluid/operators/gather.h"
#include "paddle/fluid/operators/math/math_function.h"
namespace
paddle
{
namespace
operators
{
using
Tensor
=
framework
::
Tensor
;
using
LoDTensor
=
framework
::
LoDTensor
;
struct
AppendProposalsFunctor
{
LoDTensor
*
out_
;
int64_t
offset_
;
Tensor
*
to_add_
;
AppendProposalsFunctor
(
LoDTensor
*
out
,
int64_t
offset
,
Tensor
*
to_add
)
:
out_
(
out
),
offset_
(
offset
),
to_add_
(
to_add
)
{}
template
<
typename
T
>
void
operator
()()
const
{
auto
*
out_data
=
out_
->
data
<
T
>
();
auto
*
to_add_data
=
to_add_
->
data
<
T
>
();
memcpy
(
out_data
+
offset_
,
to_add_data
,
to_add_
->
numel
()
*
sizeof
(
T
));
}
};
class
GenerateProposalsOp
:
public
framework
::
OperatorWithKernel
{
public:
using
framework
::
OperatorWithKernel
::
OperatorWithKernel
;
void
InferShape
(
framework
::
InferShapeContext
*
ctx
)
const
override
{
PADDLE_ENFORCE
(
ctx
->
HasInput
(
"Scores"
),
"Input(Scores) shouldn't be null."
);
PADDLE_ENFORCE
(
ctx
->
HasInput
(
"BboxDeltas"
),
"Input(BboxDeltas) shouldn't be null."
);
PADDLE_ENFORCE
(
ctx
->
HasInput
(
"ImInfo"
),
"Input(ImInfo) shouldn't be null."
);
PADDLE_ENFORCE
(
ctx
->
HasInput
(
"Anchors"
),
"Input(Anchors) shouldn't be null."
);
PADDLE_ENFORCE
(
ctx
->
HasInput
(
"Variances"
),
"Input(Variances) shouldn't be null."
);
auto
scores_dims
=
ctx
->
GetInputDim
(
"Scores"
);
auto
bbox_deltas_dims
=
ctx
->
GetInputDim
(
"BboxDeltas"
);
auto
im_info_dims
=
ctx
->
GetInputDim
(
"ImInfo"
);
auto
anchors_dims
=
ctx
->
GetInputDim
(
"Anchors"
);
auto
variances_dims
=
ctx
->
GetInputDim
(
"Variances"
);
ctx
->
SetOutputDim
(
"RpnRois"
,
{
-
1
,
4
});
ctx
->
SetOutputDim
(
"RpnRoiProbs"
,
{
-
1
,
1
});
}
protected:
framework
::
OpKernelType
GetExpectedKernelType
(
const
framework
::
ExecutionContext
&
ctx
)
const
override
{
return
framework
::
OpKernelType
(
framework
::
ToDataType
(
ctx
.
Input
<
Tensor
>
(
"Anchors"
)
->
type
()),
platform
::
CPUPlace
());
}
};
template
<
class
T
>
void
BoxCoder
(
const
platform
::
DeviceContext
&
ctx
,
Tensor
*
all_anchors
,
Tensor
*
bbox_deltas
,
Tensor
*
variances
,
Tensor
*
proposals
)
{
T
*
proposals_data
=
proposals
->
mutable_data
<
T
>
(
ctx
.
GetPlace
());
int64_t
row
=
all_anchors
->
dims
()[
0
];
int64_t
len
=
all_anchors
->
dims
()[
1
];
auto
*
bbox_deltas_data
=
bbox_deltas
->
data
<
T
>
();
auto
*
anchor_data
=
all_anchors
->
data
<
T
>
();
const
T
*
variances_data
=
nullptr
;
if
(
variances
)
{
variances_data
=
variances
->
data
<
T
>
();
}
for
(
int64_t
i
=
0
;
i
<
row
;
++
i
)
{
T
anchor_width
=
anchor_data
[
i
*
len
+
2
]
-
anchor_data
[
i
*
len
];
T
anchor_height
=
anchor_data
[
i
*
len
+
3
]
-
anchor_data
[
i
*
len
+
1
];
T
anchor_center_x
=
(
anchor_data
[
i
*
len
+
2
]
+
anchor_data
[
i
*
len
])
/
2
;
T
anchor_center_y
=
(
anchor_data
[
i
*
len
+
3
]
+
anchor_data
[
i
*
len
+
1
])
/
2
;
T
bbox_center_x
=
0
,
bbox_center_y
=
0
;
T
bbox_width
=
0
,
bbox_height
=
0
;
if
(
variances
)
{
bbox_center_x
=
variances_data
[
i
*
len
]
*
bbox_deltas_data
[
i
*
len
]
*
anchor_width
+
anchor_center_x
;
bbox_center_y
=
variances_data
[
i
*
len
+
1
]
*
bbox_deltas_data
[
i
*
len
+
1
]
*
anchor_height
+
anchor_center_y
;
bbox_width
=
std
::
exp
(
variances_data
[
i
*
len
+
2
]
*
bbox_deltas_data
[
i
*
len
+
2
])
*
anchor_width
;
bbox_height
=
std
::
exp
(
variances_data
[
i
*
len
+
3
]
*
bbox_deltas_data
[
i
*
len
+
3
])
*
anchor_height
;
}
else
{
bbox_center_x
=
bbox_deltas_data
[
i
*
len
]
*
anchor_width
+
anchor_center_x
;
bbox_center_y
=
bbox_deltas_data
[
i
*
len
+
1
]
*
anchor_height
+
anchor_center_y
;
bbox_width
=
std
::
exp
(
bbox_deltas_data
[
i
*
len
+
2
])
*
anchor_width
;
bbox_height
=
std
::
exp
(
bbox_deltas_data
[
i
*
len
+
3
])
*
anchor_height
;
}
proposals_data
[
i
*
len
]
=
bbox_center_x
-
bbox_width
/
2
;
proposals_data
[
i
*
len
+
1
]
=
bbox_center_y
-
bbox_height
/
2
;
proposals_data
[
i
*
len
+
2
]
=
bbox_center_x
+
bbox_width
/
2
;
proposals_data
[
i
*
len
+
3
]
=
bbox_center_y
+
bbox_height
/
2
;
}
// return proposals;
}
template
<
class
T
>
void
ClipTiledBoxes
(
const
platform
::
DeviceContext
&
ctx
,
const
Tensor
&
im_info
,
Tensor
*
boxes
)
{
T
*
boxes_data
=
boxes
->
mutable_data
<
T
>
(
ctx
.
GetPlace
());
const
T
*
im_info_data
=
im_info
.
data
<
T
>
();
for
(
int64_t
i
=
0
;
i
<
boxes
->
numel
();
++
i
)
{
if
(
i
%
4
==
0
)
{
boxes_data
[
i
]
=
std
::
max
(
std
::
min
(
boxes_data
[
i
],
im_info_data
[
1
]
-
1
),
0.0
f
);
}
else
if
(
i
%
4
==
1
)
{
boxes_data
[
i
]
=
std
::
max
(
std
::
min
(
boxes_data
[
i
],
im_info_data
[
0
]
-
1
),
0.0
f
);
}
else
if
(
i
%
4
==
2
)
{
boxes_data
[
i
]
=
std
::
max
(
std
::
min
(
boxes_data
[
i
],
im_info_data
[
1
]
-
1
),
0.0
f
);
}
else
{
boxes_data
[
i
]
=
std
::
max
(
std
::
min
(
boxes_data
[
i
],
im_info_data
[
0
]
-
1
),
0.0
f
);
}
}
}
template
<
class
T
>
void
FilterBoxes
(
const
platform
::
DeviceContext
&
ctx
,
Tensor
*
boxes
,
float
min_size
,
const
Tensor
&
im_info
,
Tensor
*
keep
)
{
const
T
*
im_info_data
=
im_info
.
data
<
T
>
();
T
*
boxes_data
=
boxes
->
mutable_data
<
T
>
(
ctx
.
GetPlace
());
min_size
*=
im_info_data
[
2
];
keep
->
Resize
({
boxes
->
dims
()[
0
],
1
});
int
*
keep_data
=
keep
->
mutable_data
<
int
>
(
ctx
.
GetPlace
());
int
keep_len
=
0
;
for
(
int
i
=
0
;
i
<
boxes
->
dims
()[
0
];
++
i
)
{
T
ws
=
boxes_data
[
4
*
i
+
2
]
-
boxes_data
[
4
*
i
]
+
1
;
T
hs
=
boxes_data
[
4
*
i
+
3
]
-
boxes_data
[
4
*
i
+
1
]
+
1
;
T
x_ctr
=
boxes_data
[
4
*
i
]
+
ws
/
2
;
T
y_ctr
=
boxes_data
[
4
*
i
+
1
]
+
hs
/
2
;
if
(
ws
>=
min_size
&&
hs
>=
min_size
&&
x_ctr
<=
im_info_data
[
1
]
&&
y_ctr
<=
im_info_data
[
0
])
{
keep_data
[
keep_len
++
]
=
i
;
}
}
keep
->
Resize
({
keep_len
});
}
bool
SortScorePairDescend
(
const
std
::
pair
<
float
,
int
>
&
pair1
,
const
std
::
pair
<
float
,
int
>
&
pair2
)
{
return
pair1
.
first
>
pair2
.
first
;
}
template
<
class
T
>
void
GetMaxScoreIndex
(
const
std
::
vector
<
T
>
&
scores
,
std
::
vector
<
std
::
pair
<
T
,
int
>>
*
sorted_indices
)
{
for
(
size_t
i
=
0
;
i
<
scores
.
size
();
++
i
)
{
sorted_indices
->
push_back
(
std
::
make_pair
(
scores
[
i
],
i
));
}
// Sort the score pair according to the scores in descending order
std
::
stable_sort
(
sorted_indices
->
begin
(),
sorted_indices
->
end
(),
SortScorePairDescend
);
}
template
<
class
T
>
T
BBoxArea
(
const
T
*
box
,
const
bool
normalized
)
{
if
(
box
[
2
]
<
box
[
0
]
||
box
[
3
]
<
box
[
1
])
{
// If coordinate values are is invalid
// (e.g. xmax < xmin or ymax < ymin), return 0.
return
static_cast
<
T
>
(
0.
);
}
else
{
const
T
w
=
box
[
2
]
-
box
[
0
];
const
T
h
=
box
[
3
]
-
box
[
1
];
if
(
normalized
)
{
return
w
*
h
;
}
else
{
// If coordinate values are not within range [0, 1].
return
(
w
+
1
)
*
(
h
+
1
);
}
}
}
template
<
class
T
>
T
JaccardOverlap
(
const
T
*
box1
,
const
T
*
box2
,
const
bool
normalized
)
{
if
(
box2
[
0
]
>
box1
[
2
]
||
box2
[
2
]
<
box1
[
0
]
||
box2
[
1
]
>
box1
[
3
]
||
box2
[
3
]
<
box1
[
1
])
{
return
static_cast
<
T
>
(
0.
);
}
else
{
const
T
inter_xmin
=
std
::
max
(
box1
[
0
],
box2
[
0
]);
const
T
inter_ymin
=
std
::
max
(
box1
[
1
],
box2
[
1
]);
const
T
inter_xmax
=
std
::
min
(
box1
[
2
],
box2
[
2
]);
const
T
inter_ymax
=
std
::
min
(
box1
[
3
],
box2
[
3
]);
const
T
inter_w
=
inter_xmax
-
inter_xmin
;
const
T
inter_h
=
inter_ymax
-
inter_ymin
;
const
T
inter_area
=
inter_w
*
inter_h
;
const
T
bbox1_area
=
BBoxArea
<
T
>
(
box1
,
normalized
);
const
T
bbox2_area
=
BBoxArea
<
T
>
(
box2
,
normalized
);
return
inter_area
/
(
bbox1_area
+
bbox2_area
-
inter_area
);
}
}
template
<
class
T
>
Tensor
NMS
(
const
platform
::
DeviceContext
&
ctx
,
Tensor
*
bbox
,
Tensor
*
scores
,
const
T
nms_threshold
,
const
float
eta
)
{
PADDLE_ENFORCE_NOT_NULL
(
bbox
);
int64_t
num_boxes
=
bbox
->
dims
()[
0
];
// 4: [xmin ymin xmax ymax]
int64_t
box_size
=
bbox
->
dims
()[
1
];
std
::
vector
<
T
>
scores_data
(
num_boxes
);
std
::
copy_n
(
scores
->
data
<
T
>
(),
num_boxes
,
scores_data
.
begin
());
std
::
vector
<
std
::
pair
<
T
,
int
>>
sorted_indices
;
GetMaxScoreIndex
<
T
>
(
scores_data
,
&
sorted_indices
);
std
::
vector
<
int
>
selected_indices
;
int
selected_num
=
0
;
T
adaptive_threshold
=
nms_threshold
;
const
T
*
bbox_data
=
bbox
->
data
<
T
>
();
bool
flag
;
while
(
sorted_indices
.
size
()
!=
0
)
{
int
idx
=
sorted_indices
.
front
().
second
;
flag
=
true
;
for
(
size_t
k
=
0
;
k
<
selected_indices
.
size
();
++
k
)
{
if
(
flag
)
{
const
int
kept_idx
=
selected_indices
[
k
];
T
overlap
=
JaccardOverlap
<
T
>
(
bbox_data
+
idx
*
box_size
,
bbox_data
+
kept_idx
*
box_size
,
false
);
flag
=
(
overlap
<=
adaptive_threshold
);
}
else
{
break
;
}
}
if
(
flag
)
{
selected_indices
.
push_back
(
idx
);
selected_num
++
;
}
sorted_indices
.
erase
(
sorted_indices
.
begin
());
if
(
flag
&&
eta
<
1
&&
adaptive_threshold
>
0.5
)
{
adaptive_threshold
*=
eta
;
}
}
Tensor
keep_nms
;
keep_nms
.
Resize
({
selected_num
});
int
*
keep_data
=
keep_nms
.
mutable_data
<
int
>
(
ctx
.
GetPlace
());
for
(
int
i
=
0
;
i
<
selected_num
;
++
i
)
{
keep_data
[
i
]
=
selected_indices
[
i
];
}
return
keep_nms
;
}
template
<
typename
DeviceContext
,
typename
T
>
class
GenerateProposalsKernel
:
public
framework
::
OpKernel
<
T
>
{
public:
void
Compute
(
const
framework
::
ExecutionContext
&
context
)
const
override
{
auto
*
scores
=
context
.
Input
<
Tensor
>
(
"Scores"
);
auto
*
bbox_deltas
=
context
.
Input
<
Tensor
>
(
"BboxDeltas"
);
auto
*
im_info
=
context
.
Input
<
Tensor
>
(
"ImInfo"
);
auto
*
anchors
=
context
.
Input
<
Tensor
>
(
"Anchors"
);
auto
*
variances
=
context
.
Input
<
Tensor
>
(
"Variances"
);
auto
*
rpn_rois
=
context
.
Output
<
LoDTensor
>
(
"RpnRois"
);
auto
*
rpn_roi_probs
=
context
.
Output
<
LoDTensor
>
(
"RpnRoiProbs"
);
int
pre_nms_top_n
=
context
.
Attr
<
int
>
(
"pre_nms_topN"
);
int
post_nms_top_n
=
context
.
Attr
<
int
>
(
"post_nms_topN"
);
float
nms_thresh
=
context
.
Attr
<
float
>
(
"nms_thresh"
);
float
min_size
=
context
.
Attr
<
float
>
(
"min_size"
);
float
eta
=
context
.
Attr
<
float
>
(
"eta"
);
auto
&
dev_ctx
=
context
.
template
device_context
<
DeviceContext
>();
auto
scores_dim
=
scores
->
dims
();
int64_t
num
=
scores_dim
[
0
];
int64_t
c_score
=
scores_dim
[
1
];
int64_t
h_score
=
scores_dim
[
2
];
int64_t
w_score
=
scores_dim
[
3
];
auto
bbox_dim
=
bbox_deltas
->
dims
();
int64_t
c_bbox
=
bbox_dim
[
1
];
int64_t
h_bbox
=
bbox_dim
[
2
];
int64_t
w_bbox
=
bbox_dim
[
3
];
rpn_rois
->
mutable_data
<
T
>
({
bbox_deltas
->
numel
()
/
4
,
4
},
context
.
GetPlace
());
rpn_roi_probs
->
mutable_data
<
T
>
({
scores
->
numel
()
/
4
,
1
},
context
.
GetPlace
());
Tensor
bbox_deltas_swap
,
scores_swap
;
bbox_deltas_swap
.
mutable_data
<
T
>
({
num
,
h_bbox
,
w_bbox
,
c_bbox
},
dev_ctx
.
GetPlace
());
scores_swap
.
mutable_data
<
T
>
({
num
,
h_score
,
w_score
,
c_score
},
dev_ctx
.
GetPlace
());
math
::
Transpose
<
DeviceContext
,
T
,
4
>
trans
;
std
::
vector
<
int
>
axis
=
{
0
,
2
,
3
,
1
};
trans
(
dev_ctx
,
*
bbox_deltas
,
&
bbox_deltas_swap
,
axis
);
trans
(
dev_ctx
,
*
scores
,
&
scores_swap
,
axis
);
framework
::
LoD
lod
;
std
::
vector
<
size_t
>
lod0
(
1
,
0
);
Tensor
*
anchor
=
const_cast
<
framework
::
Tensor
*>
(
anchors
);
anchor
->
Resize
({
anchors
->
numel
()
/
4
,
4
});
Tensor
*
var
=
const_cast
<
framework
::
Tensor
*>
(
variances
);
var
->
Resize
({
var
->
numel
()
/
4
,
4
});
int64_t
num_proposals
=
0
;
for
(
int64_t
i
=
0
;
i
<
num
;
++
i
)
{
Tensor
im_info_slice
=
im_info
->
Slice
(
i
,
i
+
1
);
Tensor
bbox_deltas_slice
=
bbox_deltas_swap
.
Slice
(
i
,
i
+
1
);
Tensor
scores_slice
=
scores_swap
.
Slice
(
i
,
i
+
1
);
bbox_deltas_slice
.
Resize
({
h_bbox
*
w_bbox
*
c_bbox
/
4
,
4
});
scores_slice
.
Resize
({
h_score
*
w_score
*
c_score
,
1
});
std
::
pair
<
Tensor
,
Tensor
>
tensor_pair
=
ProposalForOneImage
(
dev_ctx
,
im_info_slice
,
*
anchor
,
*
var
,
bbox_deltas_slice
,
scores_slice
,
pre_nms_top_n
,
post_nms_top_n
,
nms_thresh
,
min_size
,
eta
);
Tensor
proposals
=
tensor_pair
.
first
;
Tensor
scores
=
tensor_pair
.
second
;
framework
::
VisitDataType
(
framework
::
ToDataType
(
rpn_rois
->
type
()),
AppendProposalsFunctor
(
rpn_rois
,
4
*
num_proposals
,
&
proposals
));
framework
::
VisitDataType
(
framework
::
ToDataType
(
rpn_roi_probs
->
type
()),
AppendProposalsFunctor
(
rpn_roi_probs
,
num_proposals
,
&
scores
));
num_proposals
+=
proposals
.
dims
()[
0
];
lod0
.
emplace_back
(
num_proposals
);
}
lod
.
emplace_back
(
lod0
);
rpn_rois
->
set_lod
(
lod
);
rpn_roi_probs
->
set_lod
(
lod
);
rpn_rois
->
Resize
({
num_proposals
,
4
});
rpn_roi_probs
->
Resize
({
num_proposals
,
1
});
}
std
::
pair
<
Tensor
,
Tensor
>
ProposalForOneImage
(
const
DeviceContext
&
ctx
,
const
Tensor
&
im_info_slice
,
const
Tensor
&
anchors
,
const
Tensor
&
variances
,
const
Tensor
&
bbox_deltas_slice
,
// [M, 4]
const
Tensor
&
scores_slice
,
// [N, 1]
int
pre_nms_top_n
,
int
post_nms_top_n
,
float
nms_thresh
,
float
min_size
,
float
eta
)
const
{
auto
*
scores_data
=
scores_slice
.
data
<
T
>
();
// Sort index
Tensor
index_t
;
index_t
.
Resize
({
scores_slice
.
numel
()});
int
*
index
=
index_t
.
mutable_data
<
int
>
(
ctx
.
GetPlace
());
for
(
int
i
=
0
;
i
<
scores_slice
.
numel
();
++
i
)
{
index
[
i
]
=
i
;
}
std
::
function
<
bool
(
const
int64_t
&
,
const
int64_t
&
)
>
compare
=
[
scores_data
](
const
int64_t
&
i
,
const
int64_t
&
j
)
{
return
scores_data
[
i
]
>
scores_data
[
j
];
};
if
(
pre_nms_top_n
<=
0
||
pre_nms_top_n
>=
scores_slice
.
numel
())
{
std
::
sort
(
index
,
index
+
scores_slice
.
numel
(),
compare
);
}
else
{
std
::
nth_element
(
index
,
index
+
pre_nms_top_n
,
index
+
scores_slice
.
numel
(),
compare
);
index_t
.
Resize
({
pre_nms_top_n
});
}
Tensor
scores_sel
,
bbox_sel
,
anchor_sel
,
var_sel
;
scores_sel
.
mutable_data
<
T
>
({
index_t
.
numel
(),
1
},
ctx
.
GetPlace
());
bbox_sel
.
mutable_data
<
T
>
({
index_t
.
numel
(),
4
},
ctx
.
GetPlace
());
anchor_sel
.
mutable_data
<
T
>
({
index_t
.
numel
(),
4
},
ctx
.
GetPlace
());
var_sel
.
mutable_data
<
T
>
({
index_t
.
numel
(),
4
},
ctx
.
GetPlace
());
CPUGather
<
T
>
(
ctx
,
scores_slice
,
index_t
,
&
scores_sel
);
CPUGather
<
T
>
(
ctx
,
bbox_deltas_slice
,
index_t
,
&
bbox_sel
);
CPUGather
<
T
>
(
ctx
,
anchors
,
index_t
,
&
anchor_sel
);
CPUGather
<
T
>
(
ctx
,
variances
,
index_t
,
&
var_sel
);
Tensor
proposals
;
proposals
.
mutable_data
<
T
>
({
index_t
.
numel
(),
4
},
ctx
.
GetPlace
());
BoxCoder
<
T
>
(
ctx
,
&
anchor_sel
,
&
bbox_sel
,
&
var_sel
,
&
proposals
);
ClipTiledBoxes
<
T
>
(
ctx
,
im_info_slice
,
&
proposals
);
Tensor
keep
;
FilterBoxes
<
T
>
(
ctx
,
&
proposals
,
min_size
,
im_info_slice
,
&
keep
);
Tensor
scores_filter
;
bbox_sel
.
mutable_data
<
T
>
({
keep
.
numel
(),
4
},
ctx
.
GetPlace
());
scores_filter
.
mutable_data
<
T
>
({
keep
.
numel
(),
1
},
ctx
.
GetPlace
());
CPUGather
<
T
>
(
ctx
,
proposals
,
keep
,
&
bbox_sel
);
CPUGather
<
T
>
(
ctx
,
scores_sel
,
keep
,
&
scores_filter
);
if
(
nms_thresh
<=
0
)
{
return
std
::
make_pair
(
bbox_sel
,
scores_sel
);
}
Tensor
keep_nms
=
NMS
<
T
>
(
ctx
,
&
bbox_sel
,
&
scores_filter
,
nms_thresh
,
eta
);
if
(
post_nms_top_n
>
0
&&
post_nms_top_n
<
keep_nms
.
numel
())
{
keep_nms
.
Resize
({
post_nms_top_n
});
}
proposals
.
mutable_data
<
T
>
({
keep_nms
.
numel
(),
4
},
ctx
.
GetPlace
());
scores_sel
.
mutable_data
<
T
>
({
keep_nms
.
numel
(),
1
},
ctx
.
GetPlace
());
CPUGather
<
T
>
(
ctx
,
bbox_sel
,
keep_nms
,
&
proposals
);
CPUGather
<
T
>
(
ctx
,
scores_filter
,
keep_nms
,
&
scores_sel
);
return
std
::
make_pair
(
proposals
,
scores_sel
);
}
};
class
GenerateProposalsOpMaker
:
public
framework
::
OpProtoAndCheckerMaker
{
public:
void
Make
()
override
{
AddInput
(
"Scores"
,
"The scores of anchors should be foreground."
);
AddInput
(
"BboxDeltas"
,
"bbox_deltas."
);
AddInput
(
"ImInfo"
,
"Information for image reshape."
);
AddInput
(
"Anchors"
,
"All anchors."
);
AddInput
(
"Variances"
,
" variances"
);
AddOutput
(
"RpnRois"
,
"Anchors."
);
AddOutput
(
"RpnRoiProbs"
,
"Anchors."
);
AddAttr
<
int
>
(
"pre_nms_topN"
,
"pre_nms_topN"
);
AddAttr
<
int
>
(
"post_nms_topN"
,
"post_nms_topN"
);
AddAttr
<
float
>
(
"nms_thresh"
,
"nms_thres"
);
AddAttr
<
float
>
(
"min_size"
,
"min size"
);
AddAttr
<
float
>
(
"eta"
,
"eta"
);
AddComment
(
R"DOC(
Generate Proposals OP
This operator proposes rois according to each box with their probability to be a foreground object and
the box can be calculated by anchors. Bbox_deltais and scores are the output of RPN. Final proposals
could be used to train detection net.
Scores is the probability for each box to be an object. In format of (N, A, H, W) where N is batch size, A is number
of anchors, H and W are height and width of the feature map.
BboxDeltas is the differece between predicted box locatoin and anchor location. In format of (N, 4*A, H, W)
For generating proposals, this operator transposes and resizes scores and bbox_deltas in size of (H*W*A, 1) and (H*W*A, 4) and
calculate box locations as proposals candidates. Then clip boxes to image and remove predicted boxes with small area.
Finally, apply nms to get final proposals as output.
)DOC"
);
}
};
}
// namespace operators
}
// namespace paddle
namespace
ops
=
paddle
::
operators
;
REGISTER_OPERATOR
(
generate_proposals
,
ops
::
GenerateProposalsOp
,
ops
::
GenerateProposalsOpMaker
,
paddle
::
framework
::
EmptyGradOpMaker
);
REGISTER_OP_CPU_KERNEL
(
generate_proposals
,
ops
::
GenerateProposalsKernel
<
paddle
::
platform
::
CPUDeviceContext
,
float
>
);
python/paddle/fluid/layers/detection.py
浏览文件 @
2ad5d91e
...
...
@@ -39,6 +39,7 @@ __all__ = [
'detection_map'
,
'rpn_target_assign'
,
'anchor_generator'
,
'generate_proposals'
,
]
__auto__
=
[
...
...
@@ -1253,3 +1254,73 @@ def anchor_generator(input,
anchor
.
stop_gradient
=
True
var
.
stop_gradient
=
True
return
anchor
,
var
def
generate_proposals
(
scores
,
bbox_deltas
,
im_info
,
anchors
,
variances
,
pre_nms_top_n
=
6000
,
post_nms_top_n
=
1000
,
nms_thresh
=
0.5
,
min_size
=
0.1
,
eta
=
1.0
,
name
=
None
):
"""
** Generate proposal labels Faster-RCNN **
This operation proposes RoIs according to each box with their probability to be a foreground object and
the box can be calculated by anchors. Bbox_deltais and scores to be an object are the output of RPN. Final proposals
could be used to train detection net.
For generating proposals, this operation performs following steps:
1. Transposes and resizes scores and bbox_deltas in size of (H*W*A, 1) and (H*W*A, 4)
2. Calculate box locations as proposals candidates.
3. Clip boxes to image
4. Remove predicted boxes with small area.
5. Apply NMS to get final proposals as output.
Args:
scores(Variable): A 4-D Tensor with shape [N, A, H, W] represents the probability for each box to be an object.
N is batch size, A is number of anchors, H and W are height and width of the feature map.
bbox_deltas(Variable): A 4-D Tensor with shape [N, 4*A, H, W] represents the differece between predicted box locatoin and anchor location.
im_info(Variable): A 2-D Tensor with shape [N, 3] represents origin image information for N batch. Info contains height, width and scale
between origin image size and the size of feature map.
anchors(Variable): A 4-D Tensor represents the anchors with a layout of [H, W, A, 4]. H and W are height and width of the feature map,
num_anchors is the box count of each position. Each anchor is in (xmin, ymin, xmax, ymax) format an unnormalized.
variances(Variable): The expanded variances of anchors with a layout of [H, W, num_priors, 4]. Each variance is in (xcenter, ycenter, w, h) format.
pre_nms_top_n(float): Number of total bboxes to be kept per image before NMS. 6000 by default.
post_nms_top_n(float): Number of total bboxes to be kept per image after NMS. 1000 by default.
nms_thresh(float): Threshold in NMS, 0.5 by default.
min_size(float): Remove predicted boxes with either height or width < min_size. 0.1 by default.
eta(float): Apply in adaptive NMS, if adaptive threshold > 0.5, adaptive_threshold = adaptive_threshold * eta in each iteration.
"""
helper
=
LayerHelper
(
'generate_proposals'
,
**
locals
())
rpn_rois
=
helper
.
create_tmp_variable
(
dtype
=
bbox_deltas
.
dtype
)
rpn_roi_probs
=
helper
.
create_tmp_variable
(
dtype
=
scores
.
dtype
)
helper
.
append_op
(
type
=
"generate_proposals"
,
inputs
=
{
'Scores'
:
scores
,
'BboxDeltas'
:
bbox_deltas
,
'ImInfo'
:
im_info
,
'Anchors'
:
anchors
,
'Variances'
:
variances
},
attrs
=
{
'pre_nms_topN'
:
pre_nms_top_n
,
'post_nms_topN'
:
post_nms_top_n
,
'nms_thresh'
:
nms_thresh
,
'min_size'
:
min_size
,
'eta'
:
eta
},
outputs
=
{
'RpnRois'
:
rpn_rois
,
'RpnRoiProbs'
:
rpn_roi_probs
})
rpn_rois
.
stop_gradient
=
True
rpn_roi_probs
.
stop_gradient
=
True
return
rpn_rois
,
rpn_roi_probs
python/paddle/fluid/tests/test_detection.py
浏览文件 @
2ad5d91e
...
...
@@ -201,5 +201,44 @@ class TestDetectionMAP(unittest.TestCase):
print
(
str
(
program
))
class
TestGenerateProposals
(
unittest
.
TestCase
):
def
test_generate_proposals
(
self
):
data_shape
=
[
20
,
64
,
64
]
images
=
fluid
.
layers
.
data
(
name
=
'images'
,
shape
=
data_shape
,
dtype
=
'float32'
)
im_info
=
fluid
.
layers
.
data
(
name
=
'im_info'
,
shape
=
[
1
,
3
],
dtype
=
'float32'
)
anchors
,
variances
=
fluid
.
layers
.
anchor_generator
(
name
=
'anchor_generator'
,
input
=
images
,
anchor_sizes
=
[
32
,
64
],
aspect_ratios
=
[
1.0
],
variance
=
[
0.1
,
0.1
,
0.2
,
0.2
],
stride
=
[
16.0
,
16.0
],
offset
=
0.5
)
num_anchors
=
anchors
.
shape
[
2
]
scores
=
fluid
.
layers
.
data
(
name
=
'scores'
,
shape
=
[
1
,
num_anchors
,
8
,
8
],
dtype
=
'float32'
)
bbox_deltas
=
fluid
.
layers
.
data
(
name
=
'bbox_deltas'
,
shape
=
[
1
,
num_anchors
*
4
,
8
,
8
],
dtype
=
'float32'
)
rpn_rois
,
rpn_roi_probs
=
fluid
.
layers
.
generate_proposals
(
name
=
'generate_proposals'
,
scores
=
scores
,
bbox_deltas
=
bbox_deltas
,
im_info
=
im_info
,
anchors
=
anchors
,
variances
=
variances
,
pre_nms_top_n
=
6000
,
post_nms_top_n
=
1000
,
nms_thresh
=
0.5
,
min_size
=
0.1
,
eta
=
1.0
)
self
.
assertIsNotNone
(
rpn_rois
)
self
.
assertIsNotNone
(
rpn_roi_probs
)
print
(
rpn_rois
.
shape
)
if
__name__
==
'__main__'
:
unittest
.
main
()
python/paddle/fluid/tests/unittests/test_generate_proposals.py
0 → 100644
浏览文件 @
2ad5d91e
# Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://w_idxw.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import
unittest
import
numpy
as
np
import
sys
import
math
import
paddle.fluid
as
fluid
from
op_test
import
OpTest
from
test_multiclass_nms_op
import
nms
from
test_anchor_generator_op
import
anchor_generator_in_python
import
copy
def
generate_proposals_in_python
(
scores
,
bbox_deltas
,
im_info
,
anchors
,
variances
,
pre_nms_topN
,
post_nms_topN
,
nms_thresh
,
min_size
,
eta
):
all_anchors
=
anchors
.
reshape
(
-
1
,
4
)
rois
=
np
.
empty
((
0
,
5
),
dtype
=
np
.
float32
)
roi_probs
=
np
.
empty
((
0
,
1
),
dtype
=
np
.
float32
)
rpn_rois
=
[]
rpn_roi_probs
=
[]
lod
=
[]
num_images
=
scores
.
shape
[
0
]
for
img_idx
in
range
(
num_images
):
img_i_boxes
,
img_i_probs
=
proposal_for_one_image
(
im_info
[
img_idx
,
:],
all_anchors
,
variances
,
bbox_deltas
[
img_idx
,
:,
:,
:],
scores
[
img_idx
,
:,
:,
:],
pre_nms_topN
,
post_nms_topN
,
nms_thresh
,
min_size
,
eta
)
lod
.
append
(
img_i_probs
.
shape
[
0
])
rpn_rois
.
append
(
img_i_boxes
)
rpn_roi_probs
.
append
(
img_i_probs
)
return
rpn_rois
,
rpn_roi_probs
,
lod
def
proposal_for_one_image
(
im_info
,
all_anchors
,
variances
,
bbox_deltas
,
scores
,
pre_nms_topN
,
post_nms_topN
,
nms_thresh
,
min_size
,
eta
):
# Transpose and reshape predicted bbox transformations to get them
# into the same order as the anchors:
# - bbox deltas will be (4 * A, H, W) format from conv output
# - transpose to (H, W, 4 * A)
# - reshape to (H * W * A, 4) where rows are ordered by (H, W, A)
# in slowest to fastest order to match the enumerated anchors
bbox_deltas
=
bbox_deltas
.
transpose
((
1
,
2
,
0
)).
reshape
(
-
1
,
4
)
all_anchors
=
all_anchors
.
reshape
(
-
1
,
4
)
variances
=
variances
.
reshape
(
-
1
,
4
)
# Same story for the scores:
# - scores are (A, H, W) format from conv output
# - transpose to (H, W, A)
# - reshape to (H * W * A, 1) where rows are ordered by (H, W, A)
# to match the order of anchors and bbox_deltas
scores
=
scores
.
transpose
((
1
,
2
,
0
)).
reshape
(
-
1
,
1
)
# sort all (proposal, score) pairs by score from highest to lowest
# take top pre_nms_topN (e.g. 6000)
if
pre_nms_topN
<=
0
or
pre_nms_topN
>=
len
(
scores
):
order
=
np
.
argsort
(
-
scores
.
squeeze
())
else
:
# Avoid sorting possibly large arrays;
# First partition to get top K unsorted
# and then sort just thoes
inds
=
np
.
argpartition
(
-
scores
.
squeeze
(),
pre_nms_topN
)[:
pre_nms_topN
]
order
=
np
.
argsort
(
-
scores
[
inds
].
squeeze
())
order
=
inds
[
order
]
scores
=
scores
[
order
,
:]
bbox_deltas
=
bbox_deltas
[
order
,
:]
all_anchors
=
all_anchors
[
order
,
:]
proposals
=
box_coder
(
all_anchors
,
bbox_deltas
,
variances
)
# clip proposals to image (may result in proposals with zero area
# that will be removed in the next step)
proposals
=
clip_tiled_boxes
(
proposals
,
im_info
[:
2
])
# remove predicted boxes with height or width < min_size
keep
=
filter_boxes
(
proposals
,
min_size
,
im_info
)
proposals
=
proposals
[
keep
,
:]
scores
=
scores
[
keep
,
:]
# apply loose nms (e.g. threshold = 0.7)
# take post_nms_topN (e.g. 1000)
# return the top proposals
if
nms_thresh
>
0
:
keep
=
nms
(
boxes
=
proposals
,
scores
=
scores
,
nms_threshold
=
nms_thresh
,
eta
=
eta
)
if
post_nms_topN
>
0
and
post_nms_topN
<
len
(
keep
):
keep
=
keep
[:
post_nms_topN
]
proposals
=
proposals
[
keep
,
:]
scores
=
scores
[
keep
,
:]
return
proposals
,
scores
def
box_coder
(
all_anchors
,
bbox_deltas
,
variances
):
"""
Decode proposals by anchors and bbox_deltas from RPN
"""
#proposals: xmin, ymin, xmax, ymax
proposals
=
np
.
zeros_like
(
bbox_deltas
,
dtype
=
np
.
float32
)
#anchor_loc: width, height, center_x, center_y
anchor_loc
=
np
.
zeros_like
(
bbox_deltas
,
dtype
=
np
.
float32
)
anchor_loc
[:,
0
]
=
all_anchors
[:,
2
]
-
all_anchors
[:,
0
]
anchor_loc
[:,
1
]
=
all_anchors
[:,
3
]
-
all_anchors
[:,
1
]
anchor_loc
[:,
2
]
=
(
all_anchors
[:,
2
]
+
all_anchors
[:,
0
])
/
2
anchor_loc
[:,
3
]
=
(
all_anchors
[:,
3
]
+
all_anchors
[:,
1
])
/
2
#predicted bbox: bbox_center_x, bbox_center_y, bbox_width, bbox_height
pred_bbox
=
np
.
zeros_like
(
bbox_deltas
,
dtype
=
np
.
float32
)
if
variances
is
not
None
:
for
i
in
range
(
bbox_deltas
.
shape
[
0
]):
pred_bbox
[
i
,
0
]
=
variances
[
i
,
0
]
*
bbox_deltas
[
i
,
0
]
*
anchor_loc
[
i
,
0
]
+
anchor_loc
[
i
,
2
]
pred_bbox
[
i
,
1
]
=
variances
[
i
,
1
]
*
bbox_deltas
[
i
,
1
]
*
anchor_loc
[
i
,
1
]
+
anchor_loc
[
i
,
3
]
pred_bbox
[
i
,
2
]
=
math
.
exp
(
variances
[
i
,
2
]
*
bbox_deltas
[
i
,
2
])
*
anchor_loc
[
i
,
0
]
pred_bbox
[
i
,
3
]
=
math
.
exp
(
variances
[
i
,
3
]
*
bbox_deltas
[
i
,
3
])
*
anchor_loc
[
i
,
1
]
else
:
for
i
in
range
(
bbox_deltas
.
shape
[
0
]):
pred_bbox
[
i
,
0
]
=
bbox_deltas
[
i
,
0
]
*
anchor_loc
[
i
,
0
]
+
anchor_loc
[
i
,
2
]
pred_bbox
[
i
,
1
]
=
bbox_deltas
[
i
,
1
]
*
anchor_loc
[
i
,
1
]
+
anchor_loc
[
i
,
3
]
pred_bbox
[
i
,
2
]
=
math
.
exp
(
bbox_deltas
[
i
,
2
])
*
anchor_loc
[
i
,
0
]
pred_bbox
[
i
,
3
]
=
math
.
exp
(
bbox_deltas
[
i
,
3
])
*
anchor_loc
[
i
,
1
]
proposals
[:,
0
]
=
pred_bbox
[:,
0
]
-
pred_bbox
[:,
2
]
/
2
proposals
[:,
1
]
=
pred_bbox
[:,
1
]
-
pred_bbox
[:,
3
]
/
2
proposals
[:,
2
]
=
pred_bbox
[:,
0
]
+
pred_bbox
[:,
2
]
/
2
proposals
[:,
3
]
=
pred_bbox
[:,
1
]
+
pred_bbox
[:,
3
]
/
2
return
proposals
def
clip_tiled_boxes
(
boxes
,
im_shape
):
"""Clip boxes to image boundaries. im_shape is [height, width] and boxes
has shape (N, 4 * num_tiled_boxes)."""
assert
boxes
.
shape
[
1
]
%
4
==
0
,
\
'boxes.shape[1] is {:d}, but must be divisible by 4.'
.
format
(
boxes
.
shape
[
1
]
)
# x1 >= 0
boxes
[:,
0
::
4
]
=
np
.
maximum
(
np
.
minimum
(
boxes
[:,
0
::
4
],
im_shape
[
1
]
-
1
),
0
)
# y1 >= 0
boxes
[:,
1
::
4
]
=
np
.
maximum
(
np
.
minimum
(
boxes
[:,
1
::
4
],
im_shape
[
0
]
-
1
),
0
)
# x2 < im_shape[1]
boxes
[:,
2
::
4
]
=
np
.
maximum
(
np
.
minimum
(
boxes
[:,
2
::
4
],
im_shape
[
1
]
-
1
),
0
)
# y2 < im_shape[0]
boxes
[:,
3
::
4
]
=
np
.
maximum
(
np
.
minimum
(
boxes
[:,
3
::
4
],
im_shape
[
0
]
-
1
),
0
)
return
boxes
def
filter_boxes
(
boxes
,
min_size
,
im_info
):
"""Only keep boxes with both sides >= min_size and center within the image.
"""
# Scale min_size to match image scale
min_size
*=
im_info
[
2
]
ws
=
boxes
[:,
2
]
-
boxes
[:,
0
]
+
1
hs
=
boxes
[:,
3
]
-
boxes
[:,
1
]
+
1
x_ctr
=
boxes
[:,
0
]
+
ws
/
2.
y_ctr
=
boxes
[:,
1
]
+
hs
/
2.
keep
=
np
.
where
((
ws
>=
min_size
)
&
(
hs
>=
min_size
)
&
(
x_ctr
<
im_info
[
1
])
&
(
y_ctr
<
im_info
[
0
]))[
0
]
return
keep
def
iou
(
box_a
,
box_b
):
"""
Apply intersection-over-union overlap between box_a and box_b
"""
xmin_a
=
min
(
box_a
[
0
],
box_a
[
2
])
ymin_a
=
min
(
box_a
[
1
],
box_a
[
3
])
xmax_a
=
max
(
box_a
[
0
],
box_a
[
2
])
ymax_a
=
max
(
box_a
[
1
],
box_a
[
3
])
xmin_b
=
min
(
box_b
[
0
],
box_b
[
2
])
ymin_b
=
min
(
box_b
[
1
],
box_b
[
3
])
xmax_b
=
max
(
box_b
[
0
],
box_b
[
2
])
ymax_b
=
max
(
box_b
[
1
],
box_b
[
3
])
area_a
=
(
ymax_a
-
ymin_a
+
1
)
*
(
xmax_a
-
xmin_a
+
1
)
area_b
=
(
ymax_b
-
ymin_b
+
1
)
*
(
xmax_b
-
xmin_b
+
1
)
if
area_a
<=
0
and
area_b
<=
0
:
return
0.0
xa
=
max
(
xmin_a
,
xmin_b
)
ya
=
max
(
ymin_a
,
ymin_b
)
xb
=
min
(
xmax_a
,
xmax_b
)
yb
=
min
(
ymax_a
,
ymax_b
)
inter_area
=
max
(
xb
-
xa
,
0.0
)
*
max
(
yb
-
ya
,
0.0
)
iou_ratio
=
inter_area
/
(
area_a
+
area_b
-
inter_area
)
return
iou_ratio
def
nms
(
boxes
,
scores
,
nms_threshold
,
eta
=
1.0
):
"""Apply non-maximum suppression at test time to avoid detecting too many
overlapping bounding boxes for a given object.
Args:
boxes: (tensor) The location preds for the img, Shape: [num_priors,4].
scores: (tensor) The class predscores for the img, Shape:[num_priors].
nms_threshold: (float) The overlap thresh for suppressing unnecessary
boxes.
eta: (float) The parameter for adaptive NMS.
Return:
The indices of the kept boxes with respect to num_priors.
"""
all_scores
=
copy
.
deepcopy
(
scores
)
all_scores
=
all_scores
.
flatten
()
sorted_indices
=
np
.
argsort
(
-
all_scores
,
axis
=
0
,
kind
=
'mergesort'
)
sorted_scores
=
all_scores
[
sorted_indices
]
selected_indices
=
[]
adaptive_threshold
=
nms_threshold
for
i
in
range
(
sorted_scores
.
shape
[
0
]):
idx
=
sorted_indices
[
i
]
keep
=
True
for
k
in
range
(
len
(
selected_indices
)):
if
keep
:
kept_idx
=
selected_indices
[
k
]
overlap
=
iou
(
boxes
[
idx
],
boxes
[
kept_idx
])
keep
=
True
if
overlap
<=
adaptive_threshold
else
False
else
:
break
if
keep
:
selected_indices
.
append
(
idx
)
if
keep
and
eta
<
1
and
adaptive_threshold
>
0.5
:
adaptive_threshold
*=
eta
return
selected_indices
class
TestGenerateProposalsOp
(
OpTest
):
def
set_data
(
self
):
self
.
init_test_params
()
self
.
init_test_input
()
self
.
init_test_output
()
self
.
inputs
=
{
'Scores'
:
self
.
scores
,
'BboxDeltas'
:
self
.
bbox_deltas
,
'ImInfo'
:
self
.
im_info
.
astype
(
np
.
float32
),
'Anchors'
:
self
.
anchors
,
'Variances'
:
self
.
variances
}
self
.
attrs
=
{
'pre_nms_topN'
:
self
.
pre_nms_topN
,
'post_nms_topN'
:
self
.
post_nms_topN
,
'nms_thresh'
:
self
.
nms_thresh
,
'min_size'
:
self
.
min_size
,
'eta'
:
self
.
eta
}
print
(
"lod = "
,
self
.
lod
)
self
.
outputs
=
{
'RpnRois'
:
(
self
.
rpn_rois
[
0
],
[
self
.
lod
]),
'RpnRoiProbs'
:
(
self
.
rpn_roi_probs
[
0
],
[
self
.
lod
])
}
def
test_check_output
(
self
):
self
.
check_output
()
def
setUp
(
self
):
self
.
op_type
=
"generate_proposals"
self
.
set_data
()
def
init_test_params
(
self
):
self
.
pre_nms_topN
=
12000
# train 12000, test 2000
self
.
post_nms_topN
=
5000
# train 6000, test 1000
self
.
nms_thresh
=
0.7
self
.
min_size
=
3.0
self
.
eta
=
0.8
def
init_test_input
(
self
):
batch_size
=
1
input_channels
=
20
layer_h
=
16
layer_w
=
16
input_feat
=
np
.
random
.
random
(
(
batch_size
,
input_channels
,
layer_h
,
layer_w
)).
astype
(
'float32'
)
self
.
anchors
,
self
.
variances
=
anchor_generator_in_python
(
input_feat
=
input_feat
,
anchor_sizes
=
[
16.
,
32.
],
aspect_ratios
=
[
0.5
,
1.0
],
variances
=
[
1.0
,
1.0
,
1.0
,
1.0
],
stride
=
[
16.0
,
16.0
],
offset
=
0.5
)
self
.
im_info
=
np
.
array
([[
64.
,
64.
,
8.
]])
#im_height, im_width, scale
num_anchors
=
self
.
anchors
.
shape
[
2
]
self
.
scores
=
np
.
random
.
random
(
(
batch_size
,
num_anchors
,
layer_h
,
layer_w
)).
astype
(
'float32'
)
self
.
bbox_deltas
=
np
.
random
.
random
(
(
batch_size
,
num_anchors
*
4
,
layer_h
,
layer_w
)).
astype
(
'float32'
)
def
init_test_output
(
self
):
self
.
rpn_rois
,
self
.
rpn_roi_probs
,
self
.
lod
=
generate_proposals_in_python
(
self
.
scores
,
self
.
bbox_deltas
,
self
.
im_info
,
self
.
anchors
,
self
.
variances
,
self
.
pre_nms_topN
,
self
.
post_nms_topN
,
self
.
nms_thresh
,
self
.
min_size
,
self
.
eta
)
if
__name__
==
'__main__'
:
unittest
.
main
()
编辑
预览
Markdown
is supported
0%
请重试
或
添加新附件
.
添加附件
取消
You are about to add
0
people
to the discussion. Proceed with caution.
先完成此消息的编辑!
取消
想要评论请
注册
或
登录