Skip to content
体验新版
项目
组织
正在加载...
登录
切换导航
打开侧边栏
PaddlePaddle
Paddle
提交
e7e4f084
P
Paddle
项目概览
PaddlePaddle
/
Paddle
大约 1 年 前同步成功
通知
2298
Star
20931
Fork
5422
代码
文件
提交
分支
Tags
贡献者
分支图
Diff
Issue
1423
列表
看板
标记
里程碑
合并请求
543
Wiki
0
Wiki
分析
仓库
DevOps
项目成员
Pages
P
Paddle
项目概览
项目概览
详情
发布
仓库
仓库
文件
提交
分支
标签
贡献者
分支图
比较
Issue
1,423
Issue
1,423
列表
看板
标记
里程碑
合并请求
543
合并请求
543
Pages
分析
分析
仓库分析
DevOps
Wiki
0
Wiki
成员
成员
收起侧边栏
关闭侧边栏
动态
分支图
创建新Issue
提交
Issue看板
提交
e7e4f084
编写于
12月 20, 2018
作者:
D
dengkaipeng
浏览文件
操作
浏览文件
下载
电子邮件补丁
差异文件
ignore pred overlap gt > 0.7. test=develop
上级
bd6deb1a
变更
5
展开全部
隐藏空白更改
内联
并排
Showing
5 changed file
with
668 addition
and
125 deletion
+668
-125
paddle/fluid/operators/yolov3_loss_op.cc
paddle/fluid/operators/yolov3_loss_op.cc
+25
-10
paddle/fluid/operators/yolov3_loss_op.h
paddle/fluid/operators/yolov3_loss_op.h
+474
-82
python/paddle/fluid/layers/detection.py
python/paddle/fluid/layers/detection.py
+10
-4
python/paddle/fluid/tests/test_detection.py
python/paddle/fluid/tests/test_detection.py
+2
-2
python/paddle/fluid/tests/unittests/test_yolov3_loss_op.py
python/paddle/fluid/tests/unittests/test_yolov3_loss_op.py
+157
-27
未找到文件。
paddle/fluid/operators/yolov3_loss_op.cc
浏览文件 @
e7e4f084
...
...
@@ -35,13 +35,16 @@ class Yolov3LossOp : public framework::OperatorWithKernel {
auto
dim_gtlabel
=
ctx
->
GetInputDim
(
"GTLabel"
);
auto
anchors
=
ctx
->
Attrs
().
Get
<
std
::
vector
<
int
>>
(
"anchors"
);
int
anchor_num
=
anchors
.
size
()
/
2
;
auto
anchor_mask
=
ctx
->
Attrs
().
Get
<
std
::
vector
<
int
>>
(
"anchor_mask"
);
int
mask_num
=
anchor_mask
.
size
();
auto
class_num
=
ctx
->
Attrs
().
Get
<
int
>
(
"class_num"
);
PADDLE_ENFORCE_EQ
(
dim_x
.
size
(),
4
,
"Input(X) should be a 4-D tensor."
);
PADDLE_ENFORCE_EQ
(
dim_x
[
2
],
dim_x
[
3
],
"Input(X) dim[3] and dim[4] should be euqal."
);
PADDLE_ENFORCE_EQ
(
dim_x
[
1
],
anchor_num
*
(
5
+
class_num
),
"Input(X) dim[1] should be equal to (anchor_number * (5 "
"+ class_num))."
);
PADDLE_ENFORCE_EQ
(
dim_x
[
1
],
mask_num
*
(
5
+
class_num
),
"Input(X) dim[1] should be equal to (anchor_mask_number * (5 "
"+ class_num))."
);
PADDLE_ENFORCE_EQ
(
dim_gtbox
.
size
(),
3
,
"Input(GTBox) should be a 3-D tensor"
);
PADDLE_ENFORCE_EQ
(
dim_gtbox
[
2
],
4
,
"Input(GTBox) dim[2] should be 5"
);
...
...
@@ -55,6 +58,11 @@ class Yolov3LossOp : public framework::OperatorWithKernel {
"Attr(anchors) length should be greater then 0."
);
PADDLE_ENFORCE_EQ
(
anchors
.
size
()
%
2
,
0
,
"Attr(anchors) length should be even integer."
);
for
(
size_t
i
=
0
;
i
<
anchor_mask
.
size
();
i
++
)
{
PADDLE_ENFORCE_LT
(
anchor_mask
[
i
],
anchor_num
,
"Attr(anchor_mask) should not crossover Attr(anchors)."
);
}
PADDLE_ENFORCE_GT
(
class_num
,
0
,
"Attr(class_num) should be an integer greater then 0."
);
...
...
@@ -74,7 +82,7 @@ class Yolov3LossOpMaker : public framework::OpProtoAndCheckerMaker {
public:
void
Make
()
override
{
AddInput
(
"X"
,
"The input tensor of YOLO
v3 loss operator, "
"The input tensor of YOLOv3 loss operator, "
"This is a 4-D tensor with shape of [N, C, H, W]."
"H and W should be same, and the second dimention(C) stores"
"box locations, confidence score and classification one-hot"
...
...
@@ -99,13 +107,20 @@ class Yolov3LossOpMaker : public framework::OpProtoAndCheckerMaker {
AddAttr
<
int
>
(
"class_num"
,
"The number of classes to predict."
);
AddAttr
<
std
::
vector
<
int
>>
(
"anchors"
,
"The anchor width and height, "
"it will be parsed pair by pair."
);
AddAttr
<
int
>
(
"input_size"
,
"The input size of YOLOv3 net, "
"generally this is set as 320, 416 or 608."
)
.
SetDefault
(
406
);
"it will be parsed pair by pair."
)
.
SetDefault
(
std
::
vector
<
int
>
{});
AddAttr
<
std
::
vector
<
int
>>
(
"anchor_mask"
,
"The mask index of anchors used in "
"current YOLOv3 loss calculation."
)
.
SetDefault
(
std
::
vector
<
int
>
{});
AddAttr
<
int
>
(
"downsample"
,
"The downsample ratio from network input to YOLOv3 loss "
"input, so 32, 16, 8 should be set for the first, second, "
"and thrid YOLOv3 loss operators."
)
.
SetDefault
(
32
);
AddAttr
<
float
>
(
"ignore_thresh"
,
"The ignore threshold to ignore confidence loss."
);
"The ignore threshold to ignore confidence loss."
)
.
SetDefault
(
0.7
);
AddComment
(
R"DOC(
This operator generate yolov3 loss by given predict result and ground
truth boxes.
...
...
paddle/fluid/operators/yolov3_loss_op.h
浏览文件 @
e7e4f084
此差异已折叠。
点击以展开。
python/paddle/fluid/layers/detection.py
浏览文件 @
e7e4f084
...
...
@@ -413,9 +413,10 @@ def yolov3_loss(x,
gtbox
,
gtlabel
,
anchors
,
anchor_mask
,
class_num
,
ignore_thresh
,
input_siz
e
,
downsampl
e
,
name
=
None
):
"""
${comment}
...
...
@@ -430,9 +431,10 @@ def yolov3_loss(x,
gtlabel (Variable): class id of ground truth boxes, shoud be ins shape
of [N, B].
anchors (list|tuple): ${anchors_comment}
anchor_mask (list|tuple): ${anchor_mask_comment}
class_num (int): ${class_num_comment}
ignore_thresh (float): ${ignore_thresh_comment}
input_size (int): ${input_siz
e_comment}
downsample (int): ${downsampl
e_comment}
name (string): the name of yolov3 loss
Returns:
...
...
@@ -452,7 +454,8 @@ def yolov3_loss(x,
x = fluid.layers.data(name='x', shape=[255, 13, 13], dtype='float32')
gtbox = fluid.layers.data(name='gtbox', shape=[6, 5], dtype='float32')
gtlabel = fluid.layers.data(name='gtlabel', shape=[6, 1], dtype='int32')
anchors = [10, 13, 16, 30, 33, 23]
anchors = [10, 13, 16, 30, 33, 23, 30, 61, 62, 45, 59, 119, 116, 90, 156, 198, 373, 326]
anchors = [0, 1, 2]
loss = fluid.layers.yolov3_loss(x=x, gtbox=gtbox, class_num=80
anchors=anchors, ignore_thresh=0.5)
"""
...
...
@@ -466,6 +469,8 @@ def yolov3_loss(x,
raise
TypeError
(
"Input gtlabel of yolov3_loss must be Variable"
)
if
not
isinstance
(
anchors
,
list
)
and
not
isinstance
(
anchors
,
tuple
):
raise
TypeError
(
"Attr anchors of yolov3_loss must be list or tuple"
)
if
not
isinstance
(
anchor_mask
,
list
)
and
not
isinstance
(
anchor_mask
,
tuple
):
raise
TypeError
(
"Attr anchor_mask of yolov3_loss must be list or tuple"
)
if
not
isinstance
(
class_num
,
int
):
raise
TypeError
(
"Attr class_num of yolov3_loss must be an integer"
)
if
not
isinstance
(
ignore_thresh
,
float
):
...
...
@@ -480,9 +485,10 @@ def yolov3_loss(x,
attrs
=
{
"anchors"
:
anchors
,
"anchor_mask"
:
anchor_mask
,
"class_num"
:
class_num
,
"ignore_thresh"
:
ignore_thresh
,
"
input_size"
:
input_siz
e
,
"
downsample"
:
downsampl
e
,
}
helper
.
append_op
(
...
...
python/paddle/fluid/tests/test_detection.py
浏览文件 @
e7e4f084
...
...
@@ -463,8 +463,8 @@ class TestYoloDetection(unittest.TestCase):
x
=
layers
.
data
(
name
=
'x'
,
shape
=
[
30
,
7
,
7
],
dtype
=
'float32'
)
gtbox
=
layers
.
data
(
name
=
'gtbox'
,
shape
=
[
10
,
4
],
dtype
=
'float32'
)
gtlabel
=
layers
.
data
(
name
=
'gtlabel'
,
shape
=
[
10
],
dtype
=
'int32'
)
loss
=
layers
.
yolov3_loss
(
x
,
gtbox
,
gtlabel
,
[
10
,
13
,
30
,
13
],
10
,
0.7
,
416
)
loss
=
layers
.
yolov3_loss
(
x
,
gtbox
,
gtlabel
,
[
10
,
13
,
30
,
13
],
[
0
,
1
],
10
,
0.7
,
32
)
self
.
assertIsNotNone
(
loss
)
...
...
python/paddle/fluid/tests/unittests/test_yolov3_loss_op.py
浏览文件 @
e7e4f084
...
...
@@ -22,32 +22,42 @@ from op_test import OpTest
from
paddle.fluid
import
core
def
l1loss
(
x
,
y
,
weight
):
n
=
x
.
shape
[
0
]
x
=
x
.
reshape
((
n
,
-
1
))
y
=
y
.
reshape
((
n
,
-
1
))
weight
=
weight
.
reshape
((
n
,
-
1
))
return
(
np
.
abs
(
y
-
x
)
*
weight
).
sum
(
axis
=
1
)
# def l1loss(x, y, weight):
# n = x.shape[0]
# x = x.reshape((n, -1))
# y = y.reshape((n, -1))
# weight = weight.reshape((n, -1))
# return (np.abs(y - x) * weight).sum(axis=1)
#
#
# def mse(x, y, weight):
# n = x.shape[0]
# x = x.reshape((n, -1))
# y = y.reshape((n, -1))
# weight = weight.reshape((n, -1))
# return ((y - x)**2 * weight).sum(axis=1)
#
#
# def sce(x, label, weight):
# n = x.shape[0]
# x = x.reshape((n, -1))
# label = label.reshape((n, -1))
# weight = weight.reshape((n, -1))
# sigmoid_x = expit(x)
# term1 = label * np.log(sigmoid_x)
# term2 = (1.0 - label) * np.log(1.0 - sigmoid_x)
# return ((-term1 - term2) * weight).sum(axis=1)
def
mse
(
x
,
y
,
weight
):
n
=
x
.
shape
[
0
]
x
=
x
.
reshape
((
n
,
-
1
))
y
=
y
.
reshape
((
n
,
-
1
))
weight
=
weight
.
reshape
((
n
,
-
1
))
return
((
y
-
x
)
**
2
*
weight
).
sum
(
axis
=
1
)
def
l1loss
(
x
,
y
):
return
abs
(
x
-
y
)
def
sce
(
x
,
label
,
weight
):
n
=
x
.
shape
[
0
]
x
=
x
.
reshape
((
n
,
-
1
))
label
=
label
.
reshape
((
n
,
-
1
))
weight
=
weight
.
reshape
((
n
,
-
1
))
def
sce
(
x
,
label
):
sigmoid_x
=
expit
(
x
)
term1
=
label
*
np
.
log
(
sigmoid_x
)
term2
=
(
1.0
-
label
)
*
np
.
log
(
1.0
-
sigmoid_x
)
return
((
-
term1
-
term2
)
*
weight
).
sum
(
axis
=
1
)
return
-
term1
-
term2
def
box_iou
(
box1
,
box2
):
...
...
@@ -160,6 +170,121 @@ def YoloV3Loss(x, gtbox, gtlabel, attrs):
return
loss_x
+
loss_y
+
loss_w
+
loss_h
+
loss_obj
+
loss_class
def
sigmoid
(
x
):
return
1.0
/
(
1.0
+
np
.
exp
(
-
1.0
*
x
))
def
batch_xywh_box_iou
(
box1
,
box2
):
b1_left
=
box1
[:,
:,
0
]
-
box1
[:,
:,
2
]
/
2
b1_right
=
box1
[:,
:,
0
]
+
box1
[:,
:,
2
]
/
2
b1_top
=
box1
[:,
:,
1
]
-
box1
[:,
:,
3
]
/
2
b1_bottom
=
box1
[:,
:,
1
]
+
box1
[:,
:,
3
]
/
2
b2_left
=
box2
[:,
:,
0
]
-
box2
[:,
:,
2
]
/
2
b2_right
=
box2
[:,
:,
0
]
+
box2
[:,
:,
2
]
/
2
b2_top
=
box2
[:,
:,
1
]
-
box2
[:,
:,
3
]
/
2
b2_bottom
=
box2
[:,
:,
1
]
+
box2
[:,
:,
3
]
/
2
left
=
np
.
maximum
(
b1_left
[:,
:,
np
.
newaxis
],
b2_left
[:,
np
.
newaxis
,
:])
right
=
np
.
minimum
(
b1_right
[:,
:,
np
.
newaxis
],
b2_right
[:,
np
.
newaxis
,
:])
top
=
np
.
maximum
(
b1_top
[:,
:,
np
.
newaxis
],
b2_top
[:,
np
.
newaxis
,
:])
bottom
=
np
.
minimum
(
b1_bottom
[:,
:,
np
.
newaxis
],
b2_bottom
[:,
np
.
newaxis
,
:])
inter_w
=
np
.
clip
(
right
-
left
,
0.
,
1.
)
inter_h
=
np
.
clip
(
bottom
-
top
,
0.
,
1.
)
inter_area
=
inter_w
*
inter_h
b1_area
=
(
b1_right
-
b1_left
)
*
(
b1_bottom
-
b1_top
)
b2_area
=
(
b2_right
-
b2_left
)
*
(
b2_bottom
-
b2_top
)
union
=
b1_area
[:,
:,
np
.
newaxis
]
+
b2_area
[:,
np
.
newaxis
,
:]
-
inter_area
return
inter_area
/
union
def
YOLOv3Loss
(
x
,
gtbox
,
gtlabel
,
attrs
):
n
,
c
,
h
,
w
=
x
.
shape
b
=
gtbox
.
shape
[
1
]
anchors
=
attrs
[
'anchors'
]
an_num
=
len
(
anchors
)
//
2
anchor_mask
=
attrs
[
'anchor_mask'
]
mask_num
=
len
(
anchor_mask
)
class_num
=
attrs
[
"class_num"
]
ignore_thresh
=
attrs
[
'ignore_thresh'
]
downsample
=
attrs
[
'downsample'
]
input_size
=
downsample
*
h
x
=
x
.
reshape
((
n
,
mask_num
,
5
+
class_num
,
h
,
w
)).
transpose
((
0
,
1
,
3
,
4
,
2
))
loss
=
np
.
zeros
((
n
)).
astype
(
'float32'
)
pred_box
=
x
[:,
:,
:,
:,
:
4
].
copy
()
grid_x
=
np
.
tile
(
np
.
arange
(
w
).
reshape
((
1
,
w
)),
(
h
,
1
))
grid_y
=
np
.
tile
(
np
.
arange
(
h
).
reshape
((
h
,
1
)),
(
1
,
w
))
pred_box
[:,
:,
:,
:,
0
]
=
(
grid_x
+
sigmoid
(
pred_box
[:,
:,
:,
:,
0
]))
/
w
pred_box
[:,
:,
:,
:,
1
]
=
(
grid_y
+
sigmoid
(
pred_box
[:,
:,
:,
:,
1
]))
/
h
mask_anchors
=
[]
for
m
in
anchor_mask
:
mask_anchors
.
append
((
anchors
[
2
*
m
],
anchors
[
2
*
m
+
1
]))
anchors_s
=
np
.
array
(
[(
an_w
/
input_size
,
an_h
/
input_size
)
for
an_w
,
an_h
in
mask_anchors
])
anchor_w
=
anchors_s
[:,
0
:
1
].
reshape
((
1
,
mask_num
,
1
,
1
))
anchor_h
=
anchors_s
[:,
1
:
2
].
reshape
((
1
,
mask_num
,
1
,
1
))
pred_box
[:,
:,
:,
:,
2
]
=
np
.
exp
(
pred_box
[:,
:,
:,
:,
2
])
*
anchor_w
pred_box
[:,
:,
:,
:,
3
]
=
np
.
exp
(
pred_box
[:,
:,
:,
:,
3
])
*
anchor_h
pred_box
=
pred_box
.
reshape
((
n
,
-
1
,
4
))
pred_obj
=
x
[:,
:,
:,
:,
4
].
reshape
((
n
,
-
1
))
objness
=
np
.
zeros
(
pred_box
.
shape
[:
2
])
ious
=
batch_xywh_box_iou
(
pred_box
,
gtbox
)
ious_max
=
np
.
max
(
ious
,
axis
=-
1
)
objness
=
np
.
where
(
ious_max
>
ignore_thresh
,
-
np
.
ones_like
(
objness
),
objness
)
gtbox_shift
=
gtbox
.
copy
()
gtbox_shift
[:,
:,
0
]
=
0
gtbox_shift
[:,
:,
1
]
=
0
anchors
=
[(
anchors
[
2
*
i
],
anchors
[
2
*
i
+
1
])
for
i
in
range
(
0
,
an_num
)]
anchors_s
=
np
.
array
(
[(
an_w
/
input_size
,
an_h
/
input_size
)
for
an_w
,
an_h
in
anchors
])
anchor_boxes
=
np
.
concatenate
(
[
np
.
zeros_like
(
anchors_s
),
anchors_s
],
axis
=-
1
)
anchor_boxes
=
np
.
tile
(
anchor_boxes
[
np
.
newaxis
,
:,
:],
(
n
,
1
,
1
))
ious
=
batch_xywh_box_iou
(
gtbox_shift
,
anchor_boxes
)
iou_matches
=
np
.
argmax
(
ious
,
axis
=-
1
)
for
i
in
range
(
n
):
for
j
in
range
(
b
):
if
gtbox
[
i
,
j
,
2
:].
sum
()
==
0
:
continue
if
iou_matches
[
i
,
j
]
not
in
anchor_mask
:
continue
an_idx
=
anchor_mask
.
index
(
iou_matches
[
i
,
j
])
gi
=
int
(
gtbox
[
i
,
j
,
0
]
*
w
)
gj
=
int
(
gtbox
[
i
,
j
,
1
]
*
h
)
tx
=
gtbox
[
i
,
j
,
0
]
*
w
-
gi
ty
=
gtbox
[
i
,
j
,
1
]
*
w
-
gj
tw
=
np
.
log
(
gtbox
[
i
,
j
,
2
]
*
input_size
/
mask_anchors
[
an_idx
][
0
])
th
=
np
.
log
(
gtbox
[
i
,
j
,
3
]
*
input_size
/
mask_anchors
[
an_idx
][
1
])
scale
=
2.0
-
gtbox
[
i
,
j
,
2
]
*
gtbox
[
i
,
j
,
3
]
loss
[
i
]
+=
sce
(
x
[
i
,
an_idx
,
gj
,
gi
,
0
],
tx
)
*
scale
loss
[
i
]
+=
sce
(
x
[
i
,
an_idx
,
gj
,
gi
,
1
],
ty
)
*
scale
loss
[
i
]
+=
l1loss
(
x
[
i
,
an_idx
,
gj
,
gi
,
2
],
tw
)
*
scale
loss
[
i
]
+=
l1loss
(
x
[
i
,
an_idx
,
gj
,
gi
,
3
],
th
)
*
scale
objness
[
i
,
an_idx
*
h
*
w
+
gj
*
w
+
gi
]
=
1
for
label_idx
in
range
(
class_num
):
loss
[
i
]
+=
sce
(
x
[
i
,
an_idx
,
gj
,
gi
,
5
+
label_idx
],
int
(
label_idx
==
gtlabel
[
i
,
j
]))
for
j
in
range
(
mask_num
*
h
*
w
):
if
objness
[
i
,
j
]
>=
0
:
loss
[
i
]
+=
sce
(
pred_obj
[
i
,
j
],
objness
[
i
,
j
])
return
loss
class
TestYolov3LossOp
(
OpTest
):
def
setUp
(
self
):
self
.
initTestCase
()
...
...
@@ -171,13 +296,14 @@ class TestYolov3LossOp(OpTest):
self
.
attrs
=
{
"anchors"
:
self
.
anchors
,
"anchor_mask"
:
self
.
anchor_mask
,
"class_num"
:
self
.
class_num
,
"ignore_thresh"
:
self
.
ignore_thresh
,
"
input_size"
:
self
.
input_siz
e
,
"
downsample"
:
self
.
downsampl
e
,
}
self
.
inputs
=
{
'X'
:
x
,
'GTBox'
:
gtbox
,
'GTLabel'
:
gtlabel
}
self
.
outputs
=
{
'Loss'
:
Y
oloV
3Loss
(
x
,
gtbox
,
gtlabel
,
self
.
attrs
)}
self
.
outputs
=
{
'Loss'
:
Y
OLOv
3Loss
(
x
,
gtbox
,
gtlabel
,
self
.
attrs
)}
def
test_check_output
(
self
):
place
=
core
.
CPUPlace
()
...
...
@@ -189,15 +315,19 @@ class TestYolov3LossOp(OpTest):
place
,
[
'X'
],
'Loss'
,
no_grad_set
=
set
([
"GTBox"
,
"GTLabel"
]),
max_relative_error
=
0.
31
)
max_relative_error
=
0.
15
)
def
initTestCase
(
self
):
self
.
anchors
=
[
12
,
12
]
self
.
anchors
=
[
10
,
13
,
16
,
30
,
33
,
23
,
30
,
61
,
62
,
45
,
59
,
119
,
116
,
90
,
156
,
198
,
373
,
326
]
self
.
anchor_mask
=
[
0
,
1
,
2
]
self
.
class_num
=
5
self
.
ignore_thresh
=
0.
5
self
.
input_size
=
416
self
.
x_shape
=
(
1
,
len
(
self
.
anchors
)
//
2
*
(
5
+
self
.
class_num
),
3
,
3
)
self
.
gtbox_shape
=
(
1
,
5
,
4
)
self
.
ignore_thresh
=
0.
7
self
.
downsample
=
32
self
.
x_shape
=
(
3
,
len
(
self
.
anchor_mask
)
*
(
5
+
self
.
class_num
),
5
,
5
)
self
.
gtbox_shape
=
(
3
,
10
,
4
)
if
__name__
==
"__main__"
:
...
...
编辑
预览
Markdown
is supported
0%
请重试
或
添加新附件
.
添加附件
取消
You are about to add
0
people
to the discussion. Proceed with caution.
先完成此消息的编辑!
取消
想要评论请
注册
或
登录