Skip to content
体验新版
项目
组织
正在加载...
登录
切换导航
打开侧边栏
PaddlePaddle
Paddle
提交
0d1a9996
P
Paddle
项目概览
PaddlePaddle
/
Paddle
大约 1 年 前同步成功
通知
2298
Star
20931
Fork
5422
代码
文件
提交
分支
Tags
贡献者
分支图
Diff
Issue
1423
列表
看板
标记
里程碑
合并请求
543
Wiki
0
Wiki
分析
仓库
DevOps
项目成员
Pages
P
Paddle
项目概览
项目概览
详情
发布
仓库
仓库
文件
提交
分支
标签
贡献者
分支图
比较
Issue
1,423
Issue
1,423
列表
看板
标记
里程碑
合并请求
543
合并请求
543
Pages
分析
分析
仓库分析
DevOps
Wiki
0
Wiki
成员
成员
收起侧边栏
关闭侧边栏
动态
分支图
创建新Issue
提交
Issue看板
提交
0d1a9996
编写于
3月 05, 2019
作者:
D
dengkaipeng
浏览文件
操作
浏览文件
下载
电子邮件补丁
差异文件
fix unittest for yolov3_loss. test=develop
上级
f0804433
变更
4
隐藏空白更改
内联
并排
Showing
4 changed file
with
86 addition
and
36 deletion
+86
-36
paddle/fluid/operators/detection/yolov3_loss_op.cc
paddle/fluid/operators/detection/yolov3_loss_op.cc
+9
-0
python/paddle/fluid/layers/detection.py
python/paddle/fluid/layers/detection.py
+29
-10
python/paddle/fluid/tests/test_detection.py
python/paddle/fluid/tests/test_detection.py
+10
-2
python/paddle/fluid/tests/unittests/test_yolov3_loss_op.py
python/paddle/fluid/tests/unittests/test_yolov3_loss_op.py
+38
-24
未找到文件。
paddle/fluid/operators/detection/yolov3_loss_op.cc
浏览文件 @
0d1a9996
...
...
@@ -223,6 +223,15 @@ class Yolov3LossOpMaker : public framework::OpProtoAndCheckerMaker {
loss = (loss_{xy} + loss_{wh}) * weight_{box}
+ loss_{conf} + loss_{class}
$$
While :attr:`use_label_smooth` is set to be :attr:`True`, the classification
target will be smoothed when calculating classification loss, target of
positive samples will be smoothed to $$1.0 - 1.0/class_num$$ and target of
negetive samples will be smoothed to $$1.0/class_num$$.
While :attr:`GTScore` is given, which means the mixup score of ground truth
boxes, all looses incured by a ground truth box will be multiplied by its
mixup score.
)DOC"
);
}
};
...
...
python/paddle/fluid/layers/detection.py
浏览文件 @
0d1a9996
...
...
@@ -515,7 +515,9 @@ def yolov3_loss(x,
class_num
,
ignore_thresh
,
downsample_ratio
,
name
=
None
):
name
=
None
,
gtscore
=
None
,
use_label_smooth
=
True
):
"""
${comment}
...
...
@@ -534,27 +536,34 @@ def yolov3_loss(x,
ignore_thresh (float): ${ignore_thresh_comment}
downsample_ratio (int): ${downsample_ratio_comment}
name (string): the name of yolov3 loss
gtscore (Variable): mixup score of ground truth boxes, shoud be in shape
of [N, B].
use_label_smooth (bool): ${use_label_smooth_comment}
Returns:
Variable: A 1-D tensor with shape [
1
], the value of yolov3 loss
Variable: A 1-D tensor with shape [
N
], the value of yolov3 loss
Raises:
TypeError: Input x of yolov3_loss must be Variable
TypeError: Input gtbox of yolov3_loss must be Variable"
TypeError: Input gtlabel of yolov3_loss must be Variable"
TypeError: Input gtscore of yolov3_loss must be Variable"
TypeError: Attr anchors of yolov3_loss must be list or tuple
TypeError: Attr class_num of yolov3_loss must be an integer
TypeError: Attr ignore_thresh of yolov3_loss must be a float number
TypeError: Attr use_label_smooth of yolov3_loss must be a bool value
Examples:
.. code-block:: python
x = fluid.layers.data(name='x', shape=[255, 13, 13], dtype='float32')
gtbox = fluid.layers.data(name='gtbox', shape=[6, 5], dtype='float32')
gtlabel = fluid.layers.data(name='gtlabel', shape=[6, 1], dtype='int32')
gtbox = fluid.layers.data(name='gtbox', shape=[6, 4], dtype='float32')
gtlabel = fluid.layers.data(name='gtlabel', shape=[6], dtype='int32')
gtscore = fluid.layers.data(name='gtlabel', shape=[6], dtype='int32')
anchors = [10, 13, 16, 30, 33, 23, 30, 61, 62, 45, 59, 119, 116, 90, 156, 198, 373, 326]
anchor_mask = [0, 1, 2]
loss = fluid.layers.yolov3_loss(x=x, gtbox=gtbox, gtlabel=gtlabel, anchors=anchors,
loss = fluid.layers.yolov3_loss(x=x, gtbox=gtbox, gtlabel=gtlabel,
gtscore=gtscore, anchors=anchors,
anchor_mask=anchor_mask, class_num=80,
ignore_thresh=0.7, downsample_ratio=32)
"""
...
...
@@ -566,6 +575,8 @@ def yolov3_loss(x,
raise
TypeError
(
"Input gtbox of yolov3_loss must be Variable"
)
if
not
isinstance
(
gtlabel
,
Variable
):
raise
TypeError
(
"Input gtlabel of yolov3_loss must be Variable"
)
if
not
isinstance
(
gtscore
,
Variable
):
raise
TypeError
(
"Input gtscore of yolov3_loss must be Variable"
)
if
not
isinstance
(
anchors
,
list
)
and
not
isinstance
(
anchors
,
tuple
):
raise
TypeError
(
"Attr anchors of yolov3_loss must be list or tuple"
)
if
not
isinstance
(
anchor_mask
,
list
)
and
not
isinstance
(
anchor_mask
,
tuple
):
...
...
@@ -575,6 +586,9 @@ def yolov3_loss(x,
if
not
isinstance
(
ignore_thresh
,
float
):
raise
TypeError
(
"Attr ignore_thresh of yolov3_loss must be a float number"
)
if
not
isinstance
(
use_label_smooth
,
bool
):
raise
TypeError
(
"Attr use_label_smooth of yolov3_loss must be a bool value"
)
if
name
is
None
:
loss
=
helper
.
create_variable_for_type_inference
(
dtype
=
x
.
dtype
)
...
...
@@ -585,21 +599,26 @@ def yolov3_loss(x,
objectness_mask
=
helper
.
create_variable_for_type_inference
(
dtype
=
'int32'
)
gt_match_mask
=
helper
.
create_variable_for_type_inference
(
dtype
=
'int32'
)
inputs
=
{
"X"
:
x
,
"GTBox"
:
gtbox
,
"GTLabel"
:
gtlabel
,
}
if
gtscore
:
inputs
[
"GTScore"
]
=
gtscore
attrs
=
{
"anchors"
:
anchors
,
"anchor_mask"
:
anchor_mask
,
"class_num"
:
class_num
,
"ignore_thresh"
:
ignore_thresh
,
"downsample_ratio"
:
downsample_ratio
,
"use_label_smooth"
:
use_label_smooth
,
}
helper
.
append_op
(
type
=
'yolov3_loss'
,
inputs
=
{
"X"
:
x
,
"GTBox"
:
gtbox
,
"GTLabel"
:
gtlabel
,
},
inputs
=
inputs
,
outputs
=
{
'Loss'
:
loss
,
'ObjectnessMask'
:
objectness_mask
,
...
...
python/paddle/fluid/tests/test_detection.py
浏览文件 @
0d1a9996
...
...
@@ -476,8 +476,16 @@ class TestYoloDetection(unittest.TestCase):
x
=
layers
.
data
(
name
=
'x'
,
shape
=
[
30
,
7
,
7
],
dtype
=
'float32'
)
gtbox
=
layers
.
data
(
name
=
'gtbox'
,
shape
=
[
10
,
4
],
dtype
=
'float32'
)
gtlabel
=
layers
.
data
(
name
=
'gtlabel'
,
shape
=
[
10
],
dtype
=
'int32'
)
loss
=
layers
.
yolov3_loss
(
x
,
gtbox
,
gtlabel
,
[
10
,
13
,
30
,
13
],
[
0
,
1
],
10
,
0.7
,
32
)
gtscore
=
layers
.
data
(
name
=
'gtscore'
,
shape
=
[
10
],
dtype
=
'int32'
)
loss
=
layers
.
yolov3_loss
(
x
,
gtbox
,
gtlabel
,
[
10
,
13
,
30
,
13
],
[
0
,
1
],
10
,
0.7
,
32
,
gtscore
=
gtscore
,
use_label_smooth
=
False
)
self
.
assertIsNotNone
(
loss
)
...
...
python/paddle/fluid/tests/unittests/test_yolov3_loss_op.py
浏览文件 @
0d1a9996
...
...
@@ -23,8 +23,8 @@ from op_test import OpTest
from
paddle.fluid
import
core
def
l
2
loss
(
x
,
y
):
return
0.5
*
(
y
-
x
)
*
(
y
-
x
)
def
l
1
loss
(
x
,
y
):
return
abs
(
x
-
y
)
def
sce
(
x
,
label
):
...
...
@@ -66,7 +66,7 @@ def batch_xywh_box_iou(box1, box2):
return
inter_area
/
union
def
YOLOv3Loss
(
x
,
gtbox
,
gtlabel
,
attrs
):
def
YOLOv3Loss
(
x
,
gtbox
,
gtlabel
,
gtscore
,
attrs
):
n
,
c
,
h
,
w
=
x
.
shape
b
=
gtbox
.
shape
[
1
]
anchors
=
attrs
[
'anchors'
]
...
...
@@ -75,21 +75,21 @@ def YOLOv3Loss(x, gtbox, gtlabel, attrs):
mask_num
=
len
(
anchor_mask
)
class_num
=
attrs
[
"class_num"
]
ignore_thresh
=
attrs
[
'ignore_thresh'
]
downsample
=
attrs
[
'downsample'
]
input_size
=
downsample
*
h
downsample_ratio
=
attrs
[
'downsample_ratio'
]
use_label_smooth
=
attrs
[
'use_label_smooth'
]
input_size
=
downsample_ratio
*
h
x
=
x
.
reshape
((
n
,
mask_num
,
5
+
class_num
,
h
,
w
)).
transpose
((
0
,
1
,
3
,
4
,
2
))
loss
=
np
.
zeros
((
n
)).
astype
(
'float32'
)
label_pos
=
1.0
-
1.0
/
class_num
if
use_label_smooth
else
1.0
label_neg
=
1.0
/
class_num
if
use_label_smooth
else
0.0
pred_box
=
x
[:,
:,
:,
:,
:
4
].
copy
()
grid_x
=
np
.
tile
(
np
.
arange
(
w
).
reshape
((
1
,
w
)),
(
h
,
1
))
grid_y
=
np
.
tile
(
np
.
arange
(
h
).
reshape
((
h
,
1
)),
(
1
,
w
))
pred_box
[:,
:,
:,
:,
0
]
=
(
grid_x
+
sigmoid
(
pred_box
[:,
:,
:,
:,
0
]))
/
w
pred_box
[:,
:,
:,
:,
1
]
=
(
grid_y
+
sigmoid
(
pred_box
[:,
:,
:,
:,
1
]))
/
h
x
[:,
:,
:,
:,
5
:]
=
np
.
where
(
x
[:,
:,
:,
:,
5
:]
<
-
0.5
,
x
[:,
:,
:,
:,
5
:],
np
.
ones_like
(
x
[:,
:,
:,
:,
5
:])
*
1.0
/
class_num
)
mask_anchors
=
[]
for
m
in
anchor_mask
:
mask_anchors
.
append
((
anchors
[
2
*
m
],
anchors
[
2
*
m
+
1
]))
...
...
@@ -138,21 +138,22 @@ def YOLOv3Loss(x, gtbox, gtlabel, attrs):
ty
=
gtbox
[
i
,
j
,
1
]
*
w
-
gj
tw
=
np
.
log
(
gtbox
[
i
,
j
,
2
]
*
input_size
/
mask_anchors
[
an_idx
][
0
])
th
=
np
.
log
(
gtbox
[
i
,
j
,
3
]
*
input_size
/
mask_anchors
[
an_idx
][
1
])
scale
=
(
2.0
-
gtbox
[
i
,
j
,
2
]
*
gtbox
[
i
,
j
,
3
])
scale
=
(
2.0
-
gtbox
[
i
,
j
,
2
]
*
gtbox
[
i
,
j
,
3
])
*
gtscore
[
i
,
j
]
loss
[
i
]
+=
sce
(
x
[
i
,
an_idx
,
gj
,
gi
,
0
],
tx
)
*
scale
loss
[
i
]
+=
sce
(
x
[
i
,
an_idx
,
gj
,
gi
,
1
],
ty
)
*
scale
loss
[
i
]
+=
l
2
loss
(
x
[
i
,
an_idx
,
gj
,
gi
,
2
],
tw
)
*
scale
loss
[
i
]
+=
l
2
loss
(
x
[
i
,
an_idx
,
gj
,
gi
,
3
],
th
)
*
scale
loss
[
i
]
+=
l
1
loss
(
x
[
i
,
an_idx
,
gj
,
gi
,
2
],
tw
)
*
scale
loss
[
i
]
+=
l
1
loss
(
x
[
i
,
an_idx
,
gj
,
gi
,
3
],
th
)
*
scale
objness
[
i
,
an_idx
*
h
*
w
+
gj
*
w
+
gi
]
=
1.0
objness
[
i
,
an_idx
*
h
*
w
+
gj
*
w
+
gi
]
=
gtscore
[
i
,
j
]
for
label_idx
in
range
(
class_num
):
loss
[
i
]
+=
sce
(
x
[
i
,
an_idx
,
gj
,
gi
,
5
+
label_idx
],
float
(
label_idx
==
gtlabel
[
i
,
j
]))
loss
[
i
]
+=
sce
(
x
[
i
,
an_idx
,
gj
,
gi
,
5
+
label_idx
],
label_pos
if
label_idx
==
gtlabel
[
i
,
j
]
else
label_neg
)
*
gtscore
[
i
,
j
]
for
j
in
range
(
mask_num
*
h
*
w
):
if
objness
[
i
,
j
]
>
0
:
loss
[
i
]
+=
sce
(
pred_obj
[
i
,
j
],
1.0
)
loss
[
i
]
+=
sce
(
pred_obj
[
i
,
j
],
1.0
)
*
objness
[
i
,
j
]
elif
objness
[
i
,
j
]
==
0
:
loss
[
i
]
+=
sce
(
pred_obj
[
i
,
j
],
0.0
)
...
...
@@ -167,6 +168,7 @@ class TestYolov3LossOp(OpTest):
x
=
logit
(
np
.
random
.
uniform
(
0
,
1
,
self
.
x_shape
).
astype
(
'float32'
))
gtbox
=
np
.
random
.
random
(
size
=
self
.
gtbox_shape
).
astype
(
'float32'
)
gtlabel
=
np
.
random
.
randint
(
0
,
self
.
class_num
,
self
.
gtbox_shape
[:
2
])
gtscore
=
np
.
random
.
random
(
self
.
gtbox_shape
[:
2
]).
astype
(
'float32'
)
gtmask
=
np
.
random
.
randint
(
0
,
2
,
self
.
gtbox_shape
[:
2
])
gtbox
=
gtbox
*
gtmask
[:,
:,
np
.
newaxis
]
gtlabel
=
gtlabel
*
gtmask
...
...
@@ -176,15 +178,18 @@ class TestYolov3LossOp(OpTest):
"anchor_mask"
:
self
.
anchor_mask
,
"class_num"
:
self
.
class_num
,
"ignore_thresh"
:
self
.
ignore_thresh
,
"downsample"
:
self
.
downsample
,
"downsample_ratio"
:
self
.
downsample_ratio
,
"use_label_smooth"
:
self
.
use_label_smooth
,
}
self
.
inputs
=
{
'X'
:
x
,
'GTBox'
:
gtbox
.
astype
(
'float32'
),
'GTLabel'
:
gtlabel
.
astype
(
'int32'
),
'GTScore'
:
gtscore
.
astype
(
'float32'
)
}
loss
,
objness
,
gt_matches
=
YOLOv3Loss
(
x
,
gtbox
,
gtlabel
,
self
.
attrs
)
loss
,
objness
,
gt_matches
=
YOLOv3Loss
(
x
,
gtbox
,
gtlabel
,
gtscore
,
self
.
attrs
)
self
.
outputs
=
{
'Loss'
:
loss
,
'ObjectnessMask'
:
objness
,
...
...
@@ -193,24 +198,33 @@ class TestYolov3LossOp(OpTest):
def
test_check_output
(
self
):
place
=
core
.
CPUPlace
()
self
.
check_output_with_place
(
place
,
atol
=
1
e-3
)
self
.
check_output_with_place
(
place
,
atol
=
2
e-3
)
def
test_check_grad_ignore_gtbox
(
self
):
place
=
core
.
CPUPlace
()
self
.
check_grad_with_place
(
place
,
[
'X'
],
'Loss'
,
no_grad_set
=
set
([
"GTBox"
,
"GTLabel"
]),
max_relative_error
=
0.
3
)
no_grad_set
=
set
([
"GTBox"
,
"GTLabel"
,
"GTScore"
]),
max_relative_error
=
0.
2
)
def
initTestCase
(
self
):
self
.
anchors
=
[
10
,
13
,
16
,
30
,
33
,
23
]
self
.
anchor_mask
=
[
1
,
2
]
self
.
anchors
=
[
10
,
13
,
16
,
30
,
33
,
23
,
30
,
61
,
62
,
45
,
59
,
119
,
116
,
90
,
156
,
198
,
373
,
326
]
self
.
anchor_mask
=
[
0
,
1
,
2
]
self
.
class_num
=
5
self
.
ignore_thresh
=
0.5
self
.
downsample
=
32
self
.
downsample
_ratio
=
32
self
.
x_shape
=
(
3
,
len
(
self
.
anchor_mask
)
*
(
5
+
self
.
class_num
),
5
,
5
)
self
.
gtbox_shape
=
(
3
,
5
,
4
)
self
.
use_label_smooth
=
True
class
TestYolov3LossWithoutLabelSmooth
(
TestYolov3LossOp
):
def
set_label_smooth
(
self
):
self
.
use_label_smooth
=
False
if
__name__
==
"__main__"
:
...
...
编辑
预览
Markdown
is supported
0%
请重试
或
添加新附件
.
添加附件
取消
You are about to add
0
people
to the discussion. Proceed with caution.
先完成此消息的编辑!
取消
想要评论请
注册
或
登录