Skip to content
体验新版
项目
组织
正在加载...
登录
切换导航
打开侧边栏
PaddlePaddle
Paddle
提交
e4e37640
P
Paddle
项目概览
PaddlePaddle
/
Paddle
1 年多 前同步成功
通知
2302
Star
20931
Fork
5422
代码
文件
提交
分支
Tags
贡献者
分支图
Diff
Issue
1423
列表
看板
标记
里程碑
合并请求
543
Wiki
0
Wiki
分析
仓库
DevOps
项目成员
Pages
P
Paddle
项目概览
项目概览
详情
发布
仓库
仓库
文件
提交
分支
标签
贡献者
分支图
比较
Issue
1,423
Issue
1,423
列表
看板
标记
里程碑
合并请求
543
合并请求
543
Pages
分析
分析
仓库分析
DevOps
Wiki
0
Wiki
成员
成员
收起侧边栏
关闭侧边栏
动态
分支图
创建新Issue
提交
Issue看板
提交
e4e37640
编写于
3月 12, 2019
作者:
D
dengkaipeng
浏览文件
操作
浏览文件
下载
电子邮件补丁
差异文件
use memory Copy. test=develop
上级
626fb859
变更
5
隐藏空白更改
内联
并排
Showing
5 changed file
with
39 addition
and
23 deletion
+39
-23
paddle/fluid/operators/detection/yolo_box_op.cc
paddle/fluid/operators/detection/yolo_box_op.cc
+11
-8
paddle/fluid/operators/detection/yolo_box_op.cu
paddle/fluid/operators/detection/yolo_box_op.cu
+16
-7
python/paddle/fluid/layers/detection.py
python/paddle/fluid/layers/detection.py
+3
-3
python/paddle/fluid/tests/unittests/test_yolo_box_op.py
python/paddle/fluid/tests/unittests/test_yolo_box_op.py
+1
-1
python/paddle/fluid/tests/unittests/test_yolov3_loss_op.py
python/paddle/fluid/tests/unittests/test_yolov3_loss_op.py
+8
-4
未找到文件。
paddle/fluid/operators/detection/yolo_box_op.cc
浏览文件 @
e4e37640
...
...
@@ -74,9 +74,8 @@ class YoloBoxOpMaker : public framework::OpProtoAndCheckerMaker {
public:
void
Make
()
override
{
AddInput
(
"X"
,
"The input tensor of YoloBox operator, "
"This is a 4-D tensor with shape of [N, C, H, W]. "
"H and W should be same, and the second dimension(C) stores "
"The input tensor of YoloBox operator is a 4-D tensor with "
"shape of [N, C, H, W]. The second dimension(C) stores "
"box locations, confidence score and classification one-hot "
"keys of each anchor box. Generally, X should be the output "
"of YOLOv3 network."
);
...
...
@@ -91,10 +90,10 @@ class YoloBoxOpMaker : public framework::OpProtoAndCheckerMaker {
"batch num, M is output box number, and the 3rd dimension "
"stores [xmin, ymin, xmax, ymax] coordinates of boxes."
);
AddOutput
(
"Scores"
,
"The output tensor ofdetection boxes scores of YoloBox "
"operator, This is a 3-D tensor with shape of
[N, M, C],
"
"
N is the batch num, M is output box number, C is the
"
"
class
number."
);
"The output tensor of
detection boxes scores of YoloBox "
"operator, This is a 3-D tensor with shape of "
"
[N, M, :attr:`class_num`], N is the batch num, M is
"
"
output box
number."
);
AddAttr
<
int
>
(
"class_num"
,
"The number of classes to predict."
);
AddAttr
<
std
::
vector
<
int
>>
(
"anchors"
,
...
...
@@ -112,7 +111,7 @@ class YoloBoxOpMaker : public framework::OpProtoAndCheckerMaker {
"be ignored."
)
.
SetDefault
(
0.01
);
AddComment
(
R"DOC(
This operator generate YOLO detection boxes from output of YOLOv3 network.
This operator generate
s
YOLO detection boxes from output of YOLOv3 network.
The output of previous network is in shape [N, C, H, W], while H and W
should be the same, H and W specify the grid size, each grid point predict
...
...
@@ -150,6 +149,10 @@ class YoloBoxOpMaker : public framework::OpProtoAndCheckerMaker {
:attr:`conf_thresh` should be ignored, and box final scores is the product of
confidence scores and classification scores.
$$
score_{pred} = score_{conf} * score_{class}
$$
)DOC"
);
}
};
...
...
paddle/fluid/operators/detection/yolo_box_op.cu
浏览文件 @
e4e37640
...
...
@@ -83,12 +83,22 @@ class YoloBoxOpCUDAKernel : public framework::OpKernel<T> {
const
int
an_num
=
anchors
.
size
()
/
2
;
int
input_size
=
downsample_ratio
*
h
;
Tensor
anchors_t
,
cpu_anchors_t
;
auto
cpu_anchors_data
=
cpu_anchors_t
.
mutable_data
<
int
>
({
an_num
*
2
},
platform
::
CPUPlace
());
std
::
copy
(
anchors
.
begin
(),
anchors
.
end
(),
cpu_anchors_data
);
TensorCopySync
(
cpu_anchors_t
,
ctx
.
GetPlace
(),
&
anchors_t
);
auto
anchors_data
=
anchors_t
.
data
<
int
>
();
/* Tensor anchors_t, cpu_anchors_t; */
/* auto cpu_anchors_data = */
/* cpu_anchors_t.mutable_data<int>({an_num * 2}, platform::CPUPlace()); */
/* std::copy(anchors.begin(), anchors.end(), cpu_anchors_data); */
/* TensorCopySync(cpu_anchors_t, ctx.GetPlace(), &anchors_t); */
/* auto anchors_data = anchors_t.data<int>(); */
auto
&
dev_ctx
=
ctx
.
cuda_device_context
();
auto
&
allocator
=
platform
::
DeviceTemporaryAllocator
::
Instance
().
Get
(
dev_ctx
);
int
bytes
=
sizeof
(
int
)
*
anchors
.
size
();
auto
anchors_ptr
=
allocator
.
Allocate
(
sizeof
(
int
)
*
anchors
.
size
());
int
*
anchors_data
=
reinterpret_cast
<
int
*>
(
anchors_ptr
->
ptr
());
const
auto
gplace
=
boost
::
get
<
platform
::
CUDAPlace
>
(
ctx
.
GetPlace
());
const
auto
cplace
=
platform
::
CPUPlace
();
memory
::
Copy
(
gplace
,
anchors_data
,
cplace
,
anchors
.
data
(),
bytes
,
dev_ctx
.
stream
());
const
T
*
input_data
=
input
->
data
<
T
>
();
const
int
*
imgsize_data
=
img_size
->
data
<
int
>
();
...
...
@@ -96,7 +106,6 @@ class YoloBoxOpCUDAKernel : public framework::OpKernel<T> {
T
*
scores_data
=
scores
->
mutable_data
<
T
>
({
n
,
box_num
,
class_num
},
ctx
.
GetPlace
());
math
::
SetConstant
<
platform
::
CUDADeviceContext
,
T
>
set_zero
;
auto
&
dev_ctx
=
ctx
.
template
device_context
<
platform
::
CUDADeviceContext
>();
set_zero
(
dev_ctx
,
boxes
,
static_cast
<
T
>
(
0
));
set_zero
(
dev_ctx
,
scores
,
static_cast
<
T
>
(
0
));
...
...
python/paddle/fluid/layers/detection.py
浏览文件 @
e4e37640
...
...
@@ -632,8 +632,8 @@ def yolo_box(x,
Returns:
Variable: A 3-D tensor with shape [N, M, 4], the coordinates of boxes,
and a 3-D tensor with shape [N, M,
C], the classification scores
of boxes.
and a 3-D tensor with shape [N, M,
:attr:`class_num`], the classification
scores
of boxes.
Raises:
TypeError: Input x of yolov_box must be Variable
...
...
@@ -647,7 +647,7 @@ def yolo_box(x,
x = fluid.layers.data(name='x', shape=[255, 13, 13], dtype='float32')
anchors = [10, 13, 16, 30, 33, 23]
loss = fluid.layers.yolo
v3_loss
(x=x, class_num=80, anchors=anchors,
loss = fluid.layers.yolo
_box
(x=x, class_num=80, anchors=anchors,
conf_thresh=0.01, downsample_ratio=32)
"""
helper
=
LayerHelper
(
'yolo_box'
,
**
locals
())
...
...
python/paddle/fluid/tests/unittests/test_yolo_box_op.py
浏览文件 @
e4e37640
# Copyright (c) 201
8
PaddlePaddle Authors. All Rights Reserved.
# Copyright (c) 201
9
PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
...
...
python/paddle/fluid/tests/unittests/test_yolov3_loss_op.py
浏览文件 @
e4e37640
...
...
@@ -75,8 +75,8 @@ def YOLOv3Loss(x, gtbox, gtlabel, attrs):
mask_num
=
len
(
anchor_mask
)
class_num
=
attrs
[
"class_num"
]
ignore_thresh
=
attrs
[
'ignore_thresh'
]
downsample
_ratio
=
attrs
[
'downsample_ratio
'
]
input_size
=
downsample
_ratio
*
h
downsample
=
attrs
[
'downsample
'
]
input_size
=
downsample
*
h
x
=
x
.
reshape
((
n
,
mask_num
,
5
+
class_num
,
h
,
w
)).
transpose
((
0
,
1
,
3
,
4
,
2
))
loss
=
np
.
zeros
((
n
)).
astype
(
'float32'
)
...
...
@@ -86,6 +86,10 @@ def YOLOv3Loss(x, gtbox, gtlabel, attrs):
pred_box
[:,
:,
:,
:,
0
]
=
(
grid_x
+
sigmoid
(
pred_box
[:,
:,
:,
:,
0
]))
/
w
pred_box
[:,
:,
:,
:,
1
]
=
(
grid_y
+
sigmoid
(
pred_box
[:,
:,
:,
:,
1
]))
/
h
x
[:,
:,
:,
:,
5
:]
=
np
.
where
(
x
[:,
:,
:,
:,
5
:]
<
-
0.5
,
x
[:,
:,
:,
:,
5
:],
np
.
ones_like
(
x
[:,
:,
:,
:,
5
:])
*
1.0
/
class_num
)
mask_anchors
=
[]
for
m
in
anchor_mask
:
mask_anchors
.
append
((
anchors
[
2
*
m
],
anchors
[
2
*
m
+
1
]))
...
...
@@ -172,7 +176,7 @@ class TestYolov3LossOp(OpTest):
"anchor_mask"
:
self
.
anchor_mask
,
"class_num"
:
self
.
class_num
,
"ignore_thresh"
:
self
.
ignore_thresh
,
"downsample
_ratio"
:
self
.
downsample_ratio
,
"downsample
"
:
self
.
downsample
,
}
self
.
inputs
=
{
...
...
@@ -204,7 +208,7 @@ class TestYolov3LossOp(OpTest):
self
.
anchor_mask
=
[
1
,
2
]
self
.
class_num
=
5
self
.
ignore_thresh
=
0.5
self
.
downsample
_ratio
=
32
self
.
downsample
=
32
self
.
x_shape
=
(
3
,
len
(
self
.
anchor_mask
)
*
(
5
+
self
.
class_num
),
5
,
5
)
self
.
gtbox_shape
=
(
3
,
5
,
4
)
...
...
编辑
预览
Markdown
is supported
0%
请重试
或
添加新附件
.
添加附件
取消
You are about to add
0
people
to the discussion. Proceed with caution.
先完成此消息的编辑!
取消
想要评论请
注册
或
登录