nn.py 272.9 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13
# Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
Y
Yu Yang 已提交
14
"""
15
All layers just related to the neural network.
Y
Yu Yang 已提交
16 17
"""

18 19
from __future__ import print_function

20
import numpy as np
Y
Yu Yang 已提交
21 22
from ..layer_helper import LayerHelper
from ..initializer import Normal, Constant
S
sneaxiy 已提交
23
from ..framework import Variable, OpProtoHolder
Y
yangyaming 已提交
24
from ..param_attr import ParamAttr
S
sneaxiy 已提交
25
from .layer_function_generator import autodoc, templatedoc, _generate_doc_string_
26 27
from .tensor import concat
from . import utils
F
fengjiayi 已提交
28
from .. import unique_name
29
from functools import reduce
Y
Yu Yang 已提交
30 31

__all__ = [
X
Xin Pan 已提交
32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58
    'fc',
    'embedding',
    'dynamic_lstm',
    'dynamic_lstmp',
    'dynamic_gru',
    'gru_unit',
    'linear_chain_crf',
    'crf_decoding',
    'cos_sim',
    'cross_entropy',
    'square_error_cost',
    'chunk_eval',
    'sequence_conv',
    'conv2d',
    'conv3d',
    'sequence_pool',
    'sequence_softmax',
    'softmax',
    'pool2d',
    'pool3d',
    'batch_norm',
    'beam_search_decode',
    'conv2d_transpose',
    'conv3d_transpose',
    'sequence_expand',
    'sequence_expand_as',
    'sequence_pad',
Y
Yibing Liu 已提交
59
    'sequence_unpad',
X
Xin Pan 已提交
60 61 62 63 64 65 66 67
    'lstm_unit',
    'reduce_sum',
    'reduce_mean',
    'reduce_max',
    'reduce_min',
    'reduce_prod',
    'sequence_first_step',
    'sequence_last_step',
Y
Yibing Liu 已提交
68
    'sequence_slice',
X
Xin Pan 已提交
69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98
    'dropout',
    'split',
    'ctc_greedy_decoder',
    'edit_distance',
    'l2_normalize',
    'matmul',
    'topk',
    'warpctc',
    'sequence_reshape',
    'transpose',
    'im2sequence',
    'nce',
    'hsigmoid',
    'beam_search',
    'row_conv',
    'multiplex',
    'layer_norm',
    'softmax_with_cross_entropy',
    'smooth_l1',
    'one_hot',
    'autoincreased_step_counter',
    'reshape',
    'squeeze',
    'unsqueeze',
    'lod_reset',
    'lrn',
    'pad',
    'pad_constant_like',
    'label_smooth',
    'roi_pool',
J
jerrywgz 已提交
99
    'roi_align',
X
Xin Pan 已提交
100 101 102 103 104 105 106 107 108 109 110 111 112
    'dice_loss',
    'image_resize',
    'image_resize_short',
    'resize_bilinear',
    'gather',
    'scatter',
    'sequence_scatter',
    'random_crop',
    'mean_iou',
    'relu',
    'log',
    'crop',
    'rank_loss',
M
minqiyang 已提交
113
    'margin_rank_loss',
X
Xin Pan 已提交
114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156
    'elu',
    'relu6',
    'pow',
    'stanh',
    'hard_sigmoid',
    'swish',
    'prelu',
    'brelu',
    'leaky_relu',
    'soft_relu',
    'flatten',
    'sequence_mask',
    'stack',
    'pad2d',
    'unstack',
    'sequence_enumerate',
    'expand',
    'sequence_concat',
    'scale',
    'elementwise_add',
    'elementwise_div',
    'elementwise_sub',
    'elementwise_mul',
    'elementwise_max',
    'elementwise_min',
    'elementwise_pow',
    'uniform_random_batch_size_like',
    'gaussian_random',
    'sampling_id',
    'gaussian_random_batch_size_like',
    'sum',
    'slice',
    'shape',
    'logical_and',
    'logical_or',
    'logical_xor',
    'logical_not',
    'clip',
    'clip_by_norm',
    'mean',
    'mul',
    'sigmoid_cross_entropy_with_logits',
    'maxout',
S
sneaxiy 已提交
157
    'sequence_reverse',
158
    'affine_channel',
M
minqiyang 已提交
159
    'hash',
G
gmcather 已提交
160 161
    'log_loss',
    'add_position_encoding',
Y
Yu Yang 已提交
162 163 164 165 166 167 168 169 170
]


def fc(input,
       size,
       num_flatten_dims=1,
       param_attr=None,
       bias_attr=None,
       act=None,
J
Jacek Czaja 已提交
171
       is_test=False,
172
       name=None):
Y
Yu Yang 已提交
173
    """
174
    **Fully Connected Layer**
Y
Yu Yang 已提交
175

176 177 178 179 180 181 182 183
    This function creates a fully connected layer in the network. It can take
    multiple tensors as its inputs. It creates a variable called weights for
    each input tensor, which represents a fully connected weight matrix from
    each input unit to each output unit. The fully connected layer multiplies
    each input tensor with its coresponding weight to produce an output Tensor.
    If multiple input tensors are given, the results of multiple multiplications
    will be sumed up. If bias_attr is not None, a bias variable will be created
    and added to the output. Finally, if activation is not None, it will be applied
F
fengjiayi 已提交
184
    to the output as well.
C
caoying03 已提交
185

C
caoying03 已提交
186
    This process can be formulated as follows:
187 188 189

    .. math::

190
        Out = Act({\sum_{i=0}^{N-1}X_iW_i + b})
191 192 193

    In the above equation:

C
caoying03 已提交
194 195 196 197
    * :math:`N`: Number of the input.
    * :math:`X_i`: The input tensor.
    * :math:`W`: The weights created by this layer.
    * :math:`b`: The bias parameter created by this layer (if needed).
198
    * :math:`Act`: The activation function.
C
caoying03 已提交
199
    * :math:`Out`: The output tensor.
Y
Yu Yang 已提交
200 201

    Args:
R
ranqiu 已提交
202 203 204 205 206 207 208 209 210 211 212 213 214 215 216
        input (Variable|list of Variable): The input tensor(s) of this layer, and the dimension of
            the input tensor(s) is at least 2.
        size(int): The number of output units in this layer.
        num_flatten_dims (int, default 1): The fc layer can accept an input tensor with more than
            two dimensions. If this happens, the multidimensional tensor will first be flattened
            into a 2-dimensional matrix. The parameter `num_flatten_dims` determines how the input
            tensor is flattened: the first `num_flatten_dims` (inclusive, index starts from 1)
            dimensions will be flatten to form the first dimension of the final matrix (height of
            the matrix), and the rest `rank(X) - num_flatten_dims` dimensions are flattened to
            form the second dimension of the final matrix (width of the matrix). For example, suppose
            `X` is a 6-dimensional tensor with a shape [2, 3, 4, 5, 6], and `num_flatten_dims` = 3.
            Then, the flattened matrix will have a shape [2 x 3 x 4, 5 x 6] = [24, 30].
        param_attr (ParamAttr|list of ParamAttr, default None): The parameter attribute for learnable
            parameters/weights of this layer.
        bias_attr (ParamAttr|list of ParamAttr, default None): The parameter attribute for the bias
217 218
            of this layer. If it is set to False, no bias will be added to the output units.
            If it is set to None, the bias is initialized zero. Default: None.
R
ranqiu 已提交
219
        act (str, default None): Activation to be applied to the output of this layer.
J
Jacek Czaja 已提交
220
        is_test(bool): A flag indicating whether execution is in test phase.
R
ranqiu 已提交
221
        name (str, default None): The name of this layer.
Y
Yu Yang 已提交
222

223
    Returns:
F
fengjiayi 已提交
224
        Variable: The transformation result.
225 226

    Raises:
C
caoying03 已提交
227
        ValueError: If rank of the input tensor is less than 2.
228 229 230 231

    Examples:
        .. code-block:: python

F
fengjiayi 已提交
232
          data = fluid.layers.data(name="data", shape=[32, 32], dtype="float32")
233
          fc = fluid.layers.fc(input=data, size=1000, act="tanh")
Y
Yu Yang 已提交
234
    """
C
caoying03 已提交
235

C
caoying03 已提交
236
    helper = LayerHelper("fc", **locals())
Y
Yu Yang 已提交
237 238 239 240

    dtype = helper.input_dtype()

    mul_results = []
241 242
    for input_var, param_attr in helper.iter_inputs_and_params():
        input_shape = input_var.shape
Y
Yu Yang 已提交
243 244 245
        param_shape = [
            reduce(lambda a, b: a * b, input_shape[num_flatten_dims:], 1)
        ] + [size]
Y
ying 已提交
246

Y
Yu Yang 已提交
247
        w = helper.create_parameter(
248
            attr=param_attr, shape=param_shape, dtype=dtype, is_bias=False)
X
Xin Pan 已提交
249
        tmp = helper.create_variable_for_type_inference(dtype)
250
        helper.append_op(
251 252 253
            type="mul",
            inputs={"X": input_var,
                    "Y": w},
254
            outputs={"Out": tmp},
M
mozga-intel 已提交
255 256
            attrs={"x_num_col_dims": num_flatten_dims,
                   "y_num_col_dims": 1})
257 258 259 260
        mul_results.append(tmp)

    if len(mul_results) == 1:
        pre_bias = mul_results[0]
261
    else:
X
Xin Pan 已提交
262
        pre_bias = helper.create_variable_for_type_inference(dtype)
263
        helper.append_op(
264 265 266
            type="sum",
            inputs={"X": mul_results},
            outputs={"Out": pre_bias},
X
Xin Pan 已提交
267
            attrs={"use_mkldnn": False})
268 269 270 271
    # add bias
    pre_activation = helper.append_bias_op(pre_bias, dim_start=num_flatten_dims)
    # add activation
    return helper.append_activation(pre_activation)
Y
Yu Yang 已提交
272 273


274 275 276
def embedding(input,
              size,
              is_sparse=False,
277
              is_distributed=False,
278 279 280
              padding_idx=None,
              param_attr=None,
              dtype='float32'):
Y
Yu Yang 已提交
281
    """
282 283
    **Embedding Layer**

284
    This layer is used to lookup embeddings of IDs, provided by :attr:`input`, in
285 286
    a lookup table. The result of this lookup is the embedding of each ID in the
    :attr:`input`.
287 288 289

    All the input variables are passed in as local variables to the LayerHelper
    constructor.
Y
Yu Yang 已提交
290 291

    Args:
292 293 294 295 296
        input(Variable): The tensor variable containing the IDs.
        size(tuple|list): The shape of the look up table parameter. It should
            have two elements which indicate the size of the dictionary of
            embeddings and the size of each embedding vector respectively.
        is_sparse(bool): The flag indicating whether to use sparse update.
297
        is_distributed(bool): Whether to run lookup table from remote parameter server.
298 299
        padding_idx(int|long|None): If :attr:`None`, it makes no effect to lookup.
            Otherwise the given :attr:`padding_idx` indicates padding the output
300
            with zeros whenever lookup encounters it in :attr:`input`. If
301
            :math:`padding_idx < 0`, the :attr:`padding_idx` to use in lookup is
302 303
            :math:`size[0] + dim`.
        param_attr(ParamAttr): Parameters for this layer
304
        dtype(np.dtype|core.VarDesc.VarType|str): The type of data : float32, float_16, int etc
Y
Yu Yang 已提交
305

306 307 308
    Returns:
        Variable: The tensor variable storing the embeddings of the \
                  supplied inputs.
Y
Yu Yang 已提交
309

310 311
    Examples:
        .. code-block:: python
Y
Yu Yang 已提交
312

C
chengduoZH 已提交
313
          dict_size = len(dataset.ids)
314
          data = fluid.layers.data(name='ids', shape=[32, 32], dtype='float32')
C
chengduoZH 已提交
315
          fc = fluid.layers.embedding(input=data, size=[dict_size, 16])
Y
Yu Yang 已提交
316 317 318 319 320
    """

    helper = LayerHelper('embedding', **locals())
    w = helper.create_parameter(
        attr=helper.param_attr, shape=size, dtype=dtype, is_bias=False)
X
Xin Pan 已提交
321
    tmp = helper.create_variable_for_type_inference(dtype)
322 323
    padding_idx = -1 if padding_idx is None else padding_idx if padding_idx >= 0 else (
        size[0] + padding_idx)
Y
Yu Yang 已提交
324 325 326 327 328
    helper.append_op(
        type='lookup_table',
        inputs={'Ids': input,
                'W': w},
        outputs={'Out': tmp},
329 330 331 332 333
        attrs={
            'is_sparse': is_sparse,
            'is_distributed': is_distributed,
            'padding_idx': padding_idx
        })
Y
Yu Yang 已提交
334 335 336
    return tmp


Y
yi.wu 已提交
337
@templatedoc(op_type="lstm")
Y
Yu Yang 已提交
338 339
def dynamic_lstm(input,
                 size,
Y
Yancey 已提交
340 341
                 h_0=None,
                 c_0=None,
Y
Yu Yang 已提交
342 343 344 345 346 347 348
                 param_attr=None,
                 bias_attr=None,
                 use_peepholes=True,
                 is_reverse=False,
                 gate_activation='sigmoid',
                 cell_activation='tanh',
                 candidate_activation='tanh',
349 350
                 dtype='float32',
                 name=None):
Y
Yibing Liu 已提交
351
    """
Y
yi.wu 已提交
352
    ${comment}
Y
Yibing Liu 已提交
353 354

    Args:
Y
yi.wu 已提交
355 356
        input (Variable): ${input_comment}
        size (int): 4 * hidden size.
Y
Yancey 已提交
357 358 359 360 361 362
        h_0(Variable): The initial hidden state is an optional input, default is zero.
                       This is a tensor with shape (N x D), where N is the
                       batch size and D is the hidden size.
        c_0(Variable): The initial cell state is an optional input, default is zero.
                       This is a tensor with shape (N x D), where N is the
                       batch size. `h_0` and `c_0` can be NULL but only at the same time.
363
        param_attr(ParamAttr|None): The parameter attribute for the learnable
364
                               hidden-hidden weights.
Y
Yibing Liu 已提交
365 366 367

                               - Weights = {:math:`W_{ch}, W_{ih}, \
                                                W_{fh}, W_{oh}`}
368 369
                               - The shape is (D x 4D), where D is the hidden
                                 size.
C
chengduo 已提交
370 371 372 373 374

                               If it is set to None or one attribute of ParamAttr,
                               dynamic_lstm will create ParamAttr as param_attr.
                               If the Initializer of the param_attr is not set, the
                               parameter is initialized with Xavier. Default: None.
Y
yi.wu 已提交
375
        bias_attr (ParamAttr|None): The bias attribute for the learnable bias
376 377 378
                              weights, which contains two parts, input-hidden
                              bias weights and peephole connections weights if
                              setting `use_peepholes` to `True`.
Y
Yibing Liu 已提交
379

380
                              1. `use_peepholes = False`
Y
yi.wu 已提交
381 382
                                 - Biases = {:math:`b_c, b_i, b_f, b_o`}.
                                 - The shape is (1 x 4D).
383
                              2. `use_peepholes = True`
Y
yi.wu 已提交
384
                                 - Biases = { :math:`b_c, b_i, b_f, b_o, W_{ic}, \
Y
Yibing Liu 已提交
385
                                                 W_{fc}, W_{oc}`}.
Y
yi.wu 已提交
386
                                 - The shape is (1 x 7D).
C
chengduo 已提交
387 388 389 390 391

                              If it is set to None or one attribute of ParamAttr,
                              dynamic_lstm will create ParamAttr as bias_attr.
                              If the Initializer of the bias_attr is not set,
                              the bias is initialized zero. Default: None.
Y
yi.wu 已提交
392 393 394 395 396 397 398 399
        use_peepholes (bool): ${use_peepholes_comment}
        is_reverse (bool): ${is_reverse_comment}
        gate_activation (str): ${gate_activation_comment}
        cell_activation (str): ${cell_activation_comment}
        candidate_activation (str): ${candidate_activation_comment}
        dtype (str): Data type. Choices = ["float32", "float64"], default "float32".
        name (str|None): A name for this layer(optional). If set None, the layer
                         will be named automatically.
Y
Yibing Liu 已提交
400 401

    Returns:
Y
Yibing Liu 已提交
402 403
        tuple: The hidden state, and cell state of LSTM. The shape of both \
        is (T x D), and lod is the same with the `input`.
Y
Yibing Liu 已提交
404

Y
Yibing Liu 已提交
405
    Examples:
Y
Yibing Liu 已提交
406 407
        .. code-block:: python

Y
Yibing Liu 已提交
408 409
            hidden_dim = 512
            forward_proj = fluid.layers.fc(input=input_seq, size=hidden_dim * 4,
C
chengduo 已提交
410
                                           bias_attr=False)
Y
Yibing Liu 已提交
411 412
            forward, _ = fluid.layers.dynamic_lstm(
                input=forward_proj, size=hidden_dim * 4, use_peepholes=False)
Y
Yibing Liu 已提交
413
    """
C
chengduo 已提交
414
    assert bias_attr is not False, "bias_attr should not be False in dynamic_lstmp."
Y
Yu Yang 已提交
415
    helper = LayerHelper('lstm', **locals())
M
minqiyang 已提交
416
    size = size // 4
Y
Yu Yang 已提交
417 418 419 420 421 422 423 424
    weight = helper.create_parameter(
        attr=helper.param_attr, shape=[size, 4 * size], dtype=dtype)
    bias_size = [1, 7 * size]
    if not use_peepholes:
        bias_size[1] = 4 * size
    bias = helper.create_parameter(
        attr=helper.bias_attr, shape=bias_size, dtype=dtype, is_bias=True)

X
Xin Pan 已提交
425 426 427 428
    hidden = helper.create_variable_for_type_inference(dtype)
    cell = helper.create_variable_for_type_inference(dtype)
    batch_gate = helper.create_variable_for_type_inference(dtype)
    batch_cell_pre_act = helper.create_variable_for_type_inference(dtype)
Y
Yancey 已提交
429 430 431 432 433 434 435 436 437 438
    inputs = {'Input': input, 'Weight': weight, 'Bias': bias}
    batch_size = input.shape[0]
    if h_0:
        assert h_0.shape == (batch_size, size), \
            'The shape of h0 should be (batch_size, %d)' % size
        inputs['H0'] = h_0
    if c_0:
        assert c_0.shape == (batch_size, size), \
            'The shape of c0 should be (batch_size, %d)' % size
        inputs['C0'] = c_0
Y
Yu Yang 已提交
439 440 441

    helper.append_op(
        type='lstm',
Y
Yancey 已提交
442
        inputs=inputs,
Y
Yu Yang 已提交
443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458
        outputs={
            'Hidden': hidden,
            'Cell': cell,
            'BatchGate': batch_gate,
            'BatchCellPreAct': batch_cell_pre_act
        },
        attrs={
            'use_peepholes': use_peepholes,
            'is_reverse': is_reverse,
            'gate_activation': gate_activation,
            'cell_activation': cell_activation,
            'candidate_activation': candidate_activation
        })
    return hidden, cell


Y
Yibing Liu 已提交
459 460 461 462 463 464 465 466 467 468 469
def dynamic_lstmp(input,
                  size,
                  proj_size,
                  param_attr=None,
                  bias_attr=None,
                  use_peepholes=True,
                  is_reverse=False,
                  gate_activation='sigmoid',
                  cell_activation='tanh',
                  candidate_activation='tanh',
                  proj_activation='tanh',
470 471
                  dtype='float32',
                  name=None):
Y
Yibing Liu 已提交
472 473 474
    """
    **Dynamic LSTMP Layer**

475 476 477 478 479 480
    LSTMP (LSTM with recurrent projection) layer has a separate projection
    layer after the LSTM layer, projecting the original hidden state to a
    lower-dimensional one, which is proposed to reduce the number of total
    parameters and furthermore computational complexity for the LSTM,
    espeacially for the case that the size of output units is relative
    large (https://research.google.com/pubs/archive/43905.pdf).
Y
Yibing Liu 已提交
481 482 483 484 485

    The formula is as follows:

    .. math::

486
        i_t & = \sigma(W_{ix}x_{t} + W_{ir}r_{t-1} + W_{ic}c_{t-1} + b_i)
Y
Yibing Liu 已提交
487

488
        f_t & = \sigma(W_{fx}x_{t} + W_{fr}r_{t-1} + W_{fc}c_{t-1} + b_f)
Y
Yibing Liu 已提交
489

490
        \\tilde{c_t} & = act_g(W_{cx}x_t + W_{cr}r_{t-1} + b_c)
Y
Yibing Liu 已提交
491

492
        o_t & = \sigma(W_{ox}x_{t} + W_{or}r_{t-1} + W_{oc}c_t + b_o)
Y
Yibing Liu 已提交
493

494
        c_t & = f_t \odot c_{t-1} + i_t \odot \\tilde{c_t}
Y
Yibing Liu 已提交
495

496
        h_t & = o_t \odot act_h(c_t)
Y
Yibing Liu 已提交
497

498
        r_t & = \overline{act_h}(W_{rh}h_t)
Y
Yibing Liu 已提交
499

Y
Yibing Liu 已提交
500 501 502 503 504 505
    In the above formula:

    * :math:`W`: Denotes weight matrices (e.g. :math:`W_{xi}` is \
          the matrix of weights from the input gate to the input).
    * :math:`W_{ic}`, :math:`W_{fc}`, :math:`W_{oc}`: Diagonal weight \
          matrices for peephole connections. In our implementation, \
506
          we use vectors to reprenset these diagonal weight matrices.
Y
Yibing Liu 已提交
507
    * :math:`b`: Denotes bias vectors (e.g. :math:`b_i` is the input gate \
508
          bias vector).
Y
Yibing Liu 已提交
509 510 511
    * :math:`\sigma`: The activation, such as logistic sigmoid function.
    * :math:`i, f, o` and :math:`c`: The input gate, forget gate, output \
          gate, and cell activation vectors, respectively, all of which have \
512
          the same size as the cell output activation vector :math:`h`.
Y
Yibing Liu 已提交
513
    * :math:`h`: The hidden state.
514
    * :math:`r`: The recurrent projection of the hidden state.
Y
Yibing Liu 已提交
515 516
    * :math:`\\tilde{c_t}`: The candidate hidden state, whose \
          computation is based on the current input and previous hidden state.
517
    * :math:`\odot`: The element-wise product of the vectors.
Y
Yibing Liu 已提交
518
    * :math:`act_g` and :math:`act_h`: The cell input and cell output \
519
          activation functions and `tanh` is usually used for them.
Y
Yibing Liu 已提交
520 521
    * :math:`\overline{act_h}`: The activation function for the projection \
          output, usually using `identity` or same as :math:`act_h`.
Y
Yibing Liu 已提交
522 523 524 525

    Set `use_peepholes` to `False` to disable peephole connection. The formula
    is omitted here, please refer to the paper
    http://www.bioinf.jku.at/publications/older/2604.pdf for details.
526

Y
Yibing Liu 已提交
527 528 529 530 531 532 533 534 535 536 537 538
    Note that these :math:`W_{xi}x_{t}, W_{xf}x_{t}, W_{xc}x_{t}, W_{xo}x_{t}`
    operations on the input :math:`x_{t}` are NOT included in this operator.
    Users can choose to use fully-connected layer before LSTMP layer.

    Args:
        input(Variable): The input of dynamic_lstmp layer, which supports
                         variable-time length input sequence. The underlying
                         tensor in this Variable is a matrix with shape
                         (T X 4D), where T is the total time steps in this
                         mini-batch, D is the hidden size.
        size(int): 4 * hidden size.
        proj_size(int): The size of projection output.
539
        param_attr(ParamAttr|None): The parameter attribute for the learnable
Y
Yibing Liu 已提交
540 541
                               hidden-hidden weight and projection weight.

542 543
                               - Hidden-hidden weight = {:math:`W_{ch}, W_{ih}, \
                                                W_{fh}, W_{oh}`}.
544 545
                               - The shape of hidden-hidden weight is (P x 4D),
                                 where P is the projection size and D the hidden
Y
Yibing Liu 已提交
546 547
                                 size.
                               - Projection weight = {:math:`W_{rh}`}.
548
                               - The shape of projection weight is (D x P).
C
chengduo 已提交
549 550 551 552 553

                               If it is set to None or one attribute of ParamAttr,
                               dynamic_lstm will create ParamAttr as param_attr.
                               If the Initializer of the param_attr is not set, the
                               parameter is initialized with Xavier. Default: None.
554
        bias_attr(ParamAttr|None): The bias attribute for the learnable bias
Y
Yibing Liu 已提交
555 556 557 558 559 560
                              weights, which contains two parts, input-hidden
                              bias weights and peephole connections weights if
                              setting `use_peepholes` to `True`.

                              1. `use_peepholes = False`
                                - Biases = {:math:`b_c, b_i, b_f, b_o`}.
561
                                - The shape is (1 x 4D).
Y
Yibing Liu 已提交
562 563 564
                              2. `use_peepholes = True`
                                - Biases = { :math:`b_c, b_i, b_f, b_o, W_{ic}, \
                                                 W_{fc}, W_{oc}`}.
565
                                - The shape is (1 x 7D).
C
chengduo 已提交
566 567 568 569 570

                              If it is set to None or one attribute of ParamAttr,
                              dynamic_lstm will create ParamAttr as bias_attr.
                              If the Initializer of the bias_attr is not set,
                              the bias is initialized zero. Default: None.
Y
Yibing Liu 已提交
571 572 573 574 575 576 577 578 579
        use_peepholes(bool): Whether to enable diagonal/peephole connections,
                             default `True`.
        is_reverse(bool): Whether to compute reversed LSTM, default `False`.
        gate_activation(str): The activation for input gate, forget gate and
                              output gate. Choices = ["sigmoid", "tanh", "relu",
                              "identity"], default "sigmoid".
        cell_activation(str): The activation for cell output. Choices = ["sigmoid",
                              "tanh", "relu", "identity"], default "tanh".
        candidate_activation(str): The activation for candidate hidden state.
580
                              Choices = ["sigmoid", "tanh", "relu", "identity"],
Y
Yibing Liu 已提交
581 582
                              default "tanh".
        proj_activation(str): The activation for projection output.
583
                              Choices = ["sigmoid", "tanh", "relu", "identity"],
Y
Yibing Liu 已提交
584 585
                              default "tanh".
        dtype(str): Data type. Choices = ["float32", "float64"], default "float32".
586 587
        name(str|None): A name for this layer(optional). If set None, the layer
                        will be named automatically.
Y
Yibing Liu 已提交
588 589

    Returns:
590 591 592 593
        tuple: A tuple of two output variable: the projection of hidden state, \
               and cell state of LSTMP. The shape of projection is (T x P), \
               for the cell state which is (T x D), and both LoD is the same \
               with the `input`.
Y
Yibing Liu 已提交
594 595

    Examples:
596

Y
Yibing Liu 已提交
597 598
        .. code-block:: python

599 600 601 602
            dict_dim, emb_dim = 128, 64
            data = fluid.layers.data(name='sequence', shape=[1],
                                     dtype='int32', lod_level=1)
            emb = fluid.layers.embedding(input=data, size=[dict_dim, emb_dim])
Y
Yibing Liu 已提交
603
            hidden_dim, proj_dim = 512, 256
604
            fc_out = fluid.layers.fc(input=emb, size=hidden_dim * 4,
Y
Yibing Liu 已提交
605
                                     act=None, bias_attr=None)
606 607 608
            proj_out, _ = fluid.layers.dynamic_lstmp(input=fc_out,
                                                     size=hidden_dim * 4,
                                                     proj_size=proj_dim,
Y
Yibing Liu 已提交
609 610 611 612
                                                     use_peepholes=False,
                                                     is_reverse=True,
                                                     cell_activation="tanh",
                                                     proj_activation="tanh")
Y
Yibing Liu 已提交
613
    """
614

C
chengduo 已提交
615
    assert bias_attr is not False, "bias_attr should not be False in dynamic_lstmp."
Y
Yibing Liu 已提交
616
    helper = LayerHelper('lstmp', **locals())
M
minqiyang 已提交
617
    size = size // 4
Y
Yibing Liu 已提交
618 619 620 621 622 623 624 625 626 627
    weight = helper.create_parameter(
        attr=helper.param_attr, shape=[proj_size, 4 * size], dtype=dtype)
    proj_weight = helper.create_parameter(
        attr=helper.param_attr, shape=[size, proj_size], dtype=dtype)
    bias_size = [1, 7 * size]
    if not use_peepholes:
        bias_size[1] = 4 * size
    bias = helper.create_parameter(
        attr=helper.bias_attr, shape=bias_size, dtype=dtype, is_bias=True)

X
Xin Pan 已提交
628 629 630 631 632 633
    projection = helper.create_variable_for_type_inference(dtype)
    cell = helper.create_variable_for_type_inference(dtype)
    ordered_proj0 = helper.create_variable_for_type_inference(dtype)
    batch_hidden = helper.create_variable_for_type_inference(dtype)
    batch_gate = helper.create_variable_for_type_inference(dtype)
    batch_cell_pre_act = helper.create_variable_for_type_inference(dtype)
Y
Yibing Liu 已提交
634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661

    helper.append_op(
        type='lstmp',
        inputs={
            'Input': input,
            'Weight': weight,
            'ProjWeight': proj_weight,
            'Bias': bias
        },
        outputs={
            'Projection': projection,
            'Cell': cell,
            'OrderedP0': ordered_proj0,
            'BatchHidden': batch_hidden,
            'BatchGate': batch_gate,
            'BatchCellPreAct': batch_cell_pre_act
        },
        attrs={
            'use_peepholes': use_peepholes,
            'is_reverse': is_reverse,
            'gate_activation': gate_activation,
            'cell_activation': cell_activation,
            'candidate_activation': candidate_activation,
            'proj_activation': proj_activation
        })
    return projection, cell


G
guosheng 已提交
662 663 664 665 666 667 668 669 670
def dynamic_gru(input,
                size,
                param_attr=None,
                bias_attr=None,
                is_reverse=False,
                gate_activation='sigmoid',
                candidate_activation='tanh',
                h_0=None):
    """
671
    **Gated Recurrent Unit (GRU) Layer**
G
guosheng 已提交
672

673
    Refer to `Empirical Evaluation of Gated Recurrent Neural Networks on
674
    Sequence Modeling <https://arxiv.org/abs/1412.3555>`_ .
675

G
guosheng 已提交
676 677 678 679 680 681 682 683 684
    The formula is as follows:

    .. math::

        u_t & = act_g(W_{ux}x_{t} + W_{uh}h_{t-1} + b_u)

        r_t & = act_g(W_{rx}x_{t} + W_{rh}h_{t-1} + b_r)

        \\tilde{h_t} & = act_c(W_{cx}x_{t} + W_{ch}(r_t \odot h_{t-1}) + b_c)
685

G
guosheng 已提交
686
        h_t & = (1-u_t) \odot h_{t-1} + u_t \odot \\tilde{h_t}
687

G
guosheng 已提交
688
    The :math:`\odot` is the element-wise product of the vectors. :math:`act_g`
689 690
    is the update gate and reset gate activation function and :math:`sigmoid`
    is usually used for it. :math:`act_c` is the activation function for
G
guosheng 已提交
691 692 693 694
    candidate hidden state and :math:`tanh` is usually used for it.

    Note that these :math:`W_{ux}x_{t}, W_{rx}x_{t}, W_{cx}x_{t}` operations on
    the input :math:`x_{t}` are NOT included in this operator. Users can choose
695
    to use fully-connect layer before GRU layer.
G
guosheng 已提交
696 697

    Args:
698 699
        input(Variable): The input of dynamic_gru layer, which supports
            variable-time length input sequence. The underlying tensor in this
G
guosheng 已提交
700
            Variable is a matrix with shape :math:`(T \\times 3D)`, where
701
            :math:`T` is the total time steps in this mini-batch, :math:`D`
G
guosheng 已提交
702 703
            is the hidden size.
        size(int): The dimension of the gru cell.
704
        param_attr(ParamAttr|None): The parameter attribute for the learnable
G
guosheng 已提交
705 706
            hidden-hidden weight matrix. Note:

707
            - The shape of the weight matrix is :math:`(T \\times 3D)`, where
G
guosheng 已提交
708
              :math:`D` is the hidden size.
709
            - All elements in the weight matrix can be divided into two parts.
G
guosheng 已提交
710
              The first part are weights of the update gate and reset gate with
711
              shape :math:`(D \\times 2D)`, and the second part are weights for
G
guosheng 已提交
712
              candidate hidden state with shape :math:`(D \\times D)`.
713
        bias_attr(ParamAttr): The parameter attribute for learnable the
G
guosheng 已提交
714
            hidden-hidden bias.
715
        is_reverse(bool): Whether to compute reversed GRU, default
G
guosheng 已提交
716 717 718
            :attr:`False`.
        gate_activation(str): The activation for update gate and reset gate.
            Choices = ["sigmoid", "tanh", "relu", "identity"], default "sigmoid".
719
        candidate_activation(str): The activation for candidate hidden state.
G
guosheng 已提交
720
            Choices = ["sigmoid", "tanh", "relu", "identity"], default "tanh".
721 722 723 724
        h_0 (Variable): This is initial hidden state. If not set, default is
            zero. This is a tensor with shape (N x D), where N is the number of
            total time steps of input mini-batch feature and D is the hidden
            size.
G
guosheng 已提交
725 726

    Returns:
G
guosheng 已提交
727
        Variable: The hidden state of GRU. The shape is :math:`(T \\times D)`, \
728
            and sequence length is the same with the input.
729

G
guosheng 已提交
730
    Examples:
731

G
guosheng 已提交
732 733
        .. code-block:: python

734 735 736 737
            dict_dim, emb_dim = 128, 64
            data = fluid.layers.data(name='sequence', shape=[1],
                                     dtype='int32', lod_level=1)
            emb = fluid.layers.embedding(input=data, size=[dict_dim, emb_dim])
G
guosheng 已提交
738
            hidden_dim = 512
739
            x = fluid.layers.fc(input=emb, size=hidden_dim * 3)
G
guosheng 已提交
740 741 742 743 744 745 746 747 748 749
            hidden = fluid.layers.dynamic_gru(input=x, dim=hidden_dim)
    """

    helper = LayerHelper('gru', **locals())
    dtype = helper.input_dtype()

    weight = helper.create_parameter(
        attr=helper.param_attr, shape=[size, 3 * size], dtype=dtype)
    bias = helper.create_parameter(
        attr=helper.bias_attr, shape=[1, 3 * size], dtype=dtype, is_bias=True)
Y
Yancey 已提交
750
    batch_size = input.shape[0]
G
guosheng 已提交
751
    inputs = {'Input': input, 'Weight': weight, 'Bias': bias}
S
sneaxiy 已提交
752
    if h_0:
G
guosheng 已提交
753
        assert h_0.shape == (
Y
Yancey 已提交
754 755 756
            batch_size, size
        ), 'The shape of h0 should be(batch_size, %d)' % size
        inputs['H0'] = h_0
G
guosheng 已提交
757

X
Xin Pan 已提交
758 759 760 761
    hidden = helper.create_variable_for_type_inference(dtype)
    batch_gate = helper.create_variable_for_type_inference(dtype)
    batch_reset_hidden_prev = helper.create_variable_for_type_inference(dtype)
    batch_hidden = helper.create_variable_for_type_inference(dtype)
G
guosheng 已提交
762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779

    helper.append_op(
        type='gru',
        inputs=inputs,
        outputs={
            'Hidden': hidden,
            'BatchGate': batch_gate,
            'BatchResetHiddenPrev': batch_reset_hidden_prev,
            'BatchHidden': batch_hidden
        },
        attrs={
            'is_reverse': is_reverse,
            'gate_activation': gate_activation,
            'activation': candidate_activation
        })
    return hidden


Y
Yu Yang 已提交
780 781 782
def gru_unit(input,
             hidden,
             size,
783 784
             param_attr=None,
             bias_attr=None,
Y
Yu Yang 已提交
785
             activation='tanh',
786
             gate_activation='sigmoid'):
Y
Yu Yang 已提交
787
    """
788
    GRU unit layer. The equation of a gru step is:
Y
Yu Yang 已提交
789

790 791
        .. math::
            u_t & = actGate(xu_{t} + W_u h_{t-1} + b_u)
Y
Yu Yang 已提交
792

793
            r_t & = actGate(xr_{t} + W_r h_{t-1} + b_r)
Y
Yu Yang 已提交
794

795
            m_t & = actNode(xm_t + W_c dot(r_t, h_{t-1}) + b_m)
796

797
            h_t & = dot((1-u_t), m_t) + dot(u_t, h_{t-1})
798 799

    The inputs of gru unit includes :math:`z_t`, :math:`h_{t-1}`. In terms
800 801 802
    of the equation above, the :math:`z_t` is split into 3 parts -
    :math:`xu_t`, :math:`xr_t` and :math:`xm_t`. This means that in order to
    implement a full GRU unit operator for an input, a fully
803 804
    connected layer has to be applied, such that :math:`z_t = W_{fc}x_t`.

805 806
    The terms :math:`u_t` and :math:`r_t` represent the update and reset gates
    of the GRU cell. Unlike LSTM, GRU has one lesser gate. However, there is
807 808 809
    an intermediate candidate hidden output, which is denoted by :math:`m_t`.
    This layer has three outputs :math:`h_t`, :math:`dot(r_t, h_{t-1})`
    and concatenation of :math:`u_t`, :math:`r_t` and :math:`m_t`.
810 811 812 813 814

    Args:
        input (Variable): The fc transformed input value of current step.
        hidden (Variable): The hidden value of lstm unit from previous step.
        size (integer): The input dimension value.
815 816
        param_attr (ParamAttr): The weight parameters for gru unit. Default: None
        bias_attr (ParamAttr): The bias parameters for gru unit. Default: None
817 818 819 820
        activation (string): The activation type for cell (actNode).
                             Default: 'tanh'
        gate_activation (string): The activation type for gates (actGate).
                                  Default: 'sigmoid'
Y
Yu Yang 已提交
821

822 823 824 825 826 827
    Returns:
        tuple: The hidden value, reset-hidden value and gate values.

    Examples:

        .. code-block:: python
Y
Yu Yang 已提交
828

829
             # assuming we have x_t_data and prev_hidden of size=10
830
             x_t = fluid.layers.fc(input=x_t_data, size=30)
831 832
             hidden_val, r_h_val, gate_val = fluid.layers.gru_unit(input=x_t,
                                                    hidden = prev_hidden)
Y
Yu Yang 已提交
833 834 835 836 837 838 839 840 841 842 843 844

    """
    activation_dict = dict(
        identity=0,
        sigmoid=1,
        tanh=2,
        relu=3, )
    activation = activation_dict[activation]
    gate_activation = activation_dict[gate_activation]

    helper = LayerHelper('gru_unit', **locals())
    dtype = helper.input_dtype()
M
minqiyang 已提交
845
    size = size // 3
Y
Yu Yang 已提交
846 847

    # create weight
848 849
    weight = helper.create_parameter(
        attr=helper.param_attr, shape=[size, 3 * size], dtype=dtype)
Y
Yu Yang 已提交
850

X
Xin Pan 已提交
851 852 853
    gate = helper.create_variable_for_type_inference(dtype)
    reset_hidden_pre = helper.create_variable_for_type_inference(dtype)
    updated_hidden = helper.create_variable_for_type_inference(dtype)
854
    inputs = {'Input': input, 'HiddenPrev': hidden, 'Weight': weight}
Y
Yu Yang 已提交
855
    # create bias
856
    if helper.bias_attr:
Y
Yu Yang 已提交
857 858 859
        bias_size = [1, 3 * size]
        bias = helper.create_parameter(
            attr=helper.bias_attr, shape=bias_size, dtype=dtype, is_bias=True)
860
        inputs['Bias'] = bias
Y
Yu Yang 已提交
861 862 863

    helper.append_op(
        type='gru_unit',
864
        inputs=inputs,
Y
Yu Yang 已提交
865 866 867 868 869 870
        outputs={
            'Gate': gate,
            'ResetHiddenPrev': reset_hidden_pre,
            'Hidden': updated_hidden,
        },
        attrs={
871 872
            'activation': 2,  # tanh
            'gate_activation': 1,  # sigmoid
Y
Yu Yang 已提交
873 874 875 876 877
        })

    return updated_hidden, reset_hidden_pre, gate


Y
yuyang18 已提交
878
@templatedoc()
879
def linear_chain_crf(input, label, param_attr=None):
Y
yuyang18 已提交
880 881 882 883 884 885 886
    """
    Linear Chain CRF.

    ${comment}

    Args:
        input(${emission_type}): ${emission_comment}
D
dzhwinter 已提交
887
        input(${transition_type}): ${transition_comment}
Y
yuyang18 已提交
888 889 890 891
        label(${label_type}): ${label_comment}
        param_attr(ParamAttr): The attribute of the learnable parameter.

    Returns:
D
dzhwinter 已提交
892 893 894
        output(${emission_exps_type}): ${emission_exps_comment} \n
        output(${transition_exps_type}): ${transition_exps_comment} \n
        output(${log_likelihood_type}): ${log_likelihood_comment}
Y
yuyang18 已提交
895 896

    """
Y
Yu Yang 已提交
897 898 899 900 901 902
    helper = LayerHelper('linear_chain_crf', **locals())
    size = input.shape[1]
    transition = helper.create_parameter(
        attr=helper.param_attr,
        shape=[size + 2, size],
        dtype=helper.input_dtype())
X
Xin Pan 已提交
903 904 905 906 907 908 909 910
    alpha = helper.create_variable_for_type_inference(
        dtype=helper.input_dtype())
    emission_exps = helper.create_variable_for_type_inference(
        dtype=helper.input_dtype())
    transition_exps = helper.create_variable_for_type_inference(
        dtype=helper.input_dtype())
    log_likelihood = helper.create_variable_for_type_inference(
        dtype=helper.input_dtype())
Y
Yu Yang 已提交
911 912 913 914 915 916 917 918 919 920 921 922 923 924 925
    helper.append_op(
        type='linear_chain_crf',
        inputs={"Emission": [input],
                "Transition": transition,
                "Label": label},
        outputs={
            "Alpha": [alpha],
            "EmissionExps": [emission_exps],
            "TransitionExps": transition_exps,
            "LogLikelihood": log_likelihood
        })

    return log_likelihood


Y
yuyang18 已提交
926
@templatedoc()
927
def crf_decoding(input, param_attr, label=None):
Y
yuyang18 已提交
928 929 930 931 932
    """
    ${comment}

    Args:
        input(${emission_type}): ${emission_comment}
Y
yi.wu 已提交
933

Y
yuyang18 已提交
934
        param_attr(ParamAttr): The parameter attribute for training.
Y
yi.wu 已提交
935

Y
yuyang18 已提交
936 937 938
        label(${label_type}): ${label_comment}

    Returns:
Y
update  
yi.wu 已提交
939
        Variable: ${viterbi_path_comment}
940

Y
yi.wu 已提交
941 942 943 944 945
    Examples:
        .. code-block:: python

           crf_decode = layers.crf_decoding(
                input=hidden, param_attr=ParamAttr(name="crfw"))
Y
yuyang18 已提交
946
    """
Y
Yu Yang 已提交
947 948
    helper = LayerHelper('crf_decoding', **locals())
    transition = helper.get_parameter(param_attr.name)
X
Xin Pan 已提交
949 950
    viterbi_path = helper.create_variable_for_type_inference(
        dtype=helper.input_dtype())
Y
Yu Yang 已提交
951 952 953 954 955 956 957 958 959 960
    helper.append_op(
        type='crf_decoding',
        inputs={"Emission": [input],
                "Transition": transition,
                "Label": label},
        outputs={"ViterbiPath": [viterbi_path]})

    return viterbi_path


Y
yi.wu 已提交
961
@templatedoc()
F
fengjiayi 已提交
962
def cos_sim(X, Y):
Y
Yu Yang 已提交
963
    """
Y
yi.wu 已提交
964 965 966
    ${comment}

    Args:
967 968
        X (Variable): ${x_comment}.
        Y (Variable): ${y_comment}.
F
fengjiayi 已提交
969

Y
yi.wu 已提交
970
    Returns:
971
        Variable: the output of cosine(X, Y).
Y
Yu Yang 已提交
972
    """
F
fengjiayi 已提交
973
    helper = LayerHelper('cos_sim', **locals())
X
Xin Pan 已提交
974 975 976
    out = helper.create_variable_for_type_inference(dtype=X.dtype)
    xnorm = helper.create_variable_for_type_inference(dtype=X.dtype)
    ynorm = helper.create_variable_for_type_inference(dtype=X.dtype)
Y
Yu Yang 已提交
977 978 979 980 981 982 983 984 985 986
    helper.append_op(
        type='cos_sim',
        inputs={'X': [X],
                'Y': [Y]},
        outputs={'Out': [out],
                 'XNorm': [xnorm],
                 'YNorm': [ynorm]})
    return out


P
phlrain 已提交
987 988 989 990 991
def dropout(x,
            dropout_prob,
            is_test=False,
            seed=None,
            name=None,
P
phlrain 已提交
992
            dropout_implementation="downgrade_in_infer"):
993 994 995 996 997
    """
    Computes dropout.

    Drop or keep each element of `x` independently. Dropout is a regularization
    technique for reducing overfitting by preventing neuron co-adaption during
998
    training. The dropout operator randomly sets (according to the given dropout
999 1000 1001 1002
    probability) the outputs of some units to zero, while others are remain
    unchanged.

    Args:
1003 1004
        x (Variable): The input tensor variable.
        dropout_prob (float): Probability of setting units to zero.
1005 1006 1007 1008 1009 1010 1011
        is_test (bool): A flag indicating whether it is in test phrase or not.
        seed (int): A Python integer used to create random seeds. If this
                    parameter is set to None, a random seed is used.
                    NOTE: If an integer seed is given, always the same output
                    units will be dropped. DO NOT use a fixed seed in training.
        name (str|None): A name for this layer(optional). If set None, the layer
                         will be named automatically.
P
phlrain 已提交
1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025
        dropout_implementation(string): ['downgrade_in_infer'(defauld)|'upscale_in_train']
                                        1. downgrade_in_infer(default), downgrade the outcome at inference
                                           train: out = input * mask
                                           inference: out = input * dropout_prob
                                           (make is a tensor same shape with input, value is 0 or 1
                                            ratio of 0 is dropout_prob)
                                        2. upscale_in_train, upscale the outcome at training time
                                           train: out = input * mask / ( 1.0 - dropout_prob )
                                           inference: out = input
                                           (make is a tensor same shape with input, value is 0 or 1
                                            ratio of 0 is dropout_prob)
                                           dropout op can be removed from the program. 
                                           the program will be efficient
                                        
P
phlrain 已提交
1026

1027 1028

    Returns:
1029
        Variable: A tensor variable is the shape with `x`.
1030 1031

    Examples:
1032

1033 1034
        .. code-block:: python

1035 1036
            x = fluid.layers.data(name="data", shape=[32, 32], dtype="float32")
            droped = fluid.layers.dropout(x, dropout_prob=0.5)
1037 1038
    """

F
fengjiayi 已提交
1039
    helper = LayerHelper('dropout', **locals())
X
Xin Pan 已提交
1040 1041 1042
    out = helper.create_variable_for_type_inference(dtype=x.dtype)
    mask = helper.create_variable_for_type_inference(
        dtype=x.dtype, stop_gradient=True)
C
chengduo 已提交
1043 1044 1045 1046

    if (seed is None or seed == 0) and helper.main_program.random_seed != 0:
        seed = helper.main_program.random_seed

1047 1048 1049 1050 1051
    helper.append_op(
        type='dropout',
        inputs={'X': [x]},
        outputs={'Out': [out],
                 'Mask': [mask]},
1052 1053 1054 1055
        attrs={
            'dropout_prob': dropout_prob,
            'is_test': is_test,
            'fix_seed': seed is not None,
P
phlrain 已提交
1056 1057
            'seed': seed if seed is not None else 0,
            'dropout_implementation': dropout_implementation,
1058
        })
1059 1060 1061
    return out


1062
def cross_entropy(input, label, soft_label=False, ignore_index=-100):
Y
Yu Yang 已提交
1063
    """
Y
Yibing Liu 已提交
1064 1065
    **Cross Entropy Layer**

1066 1067 1068
    This layer computes the cross entropy between `input` and `label`. It
    supports both standard cross-entropy and soft-label cross-entropy loss
    computation.
Y
Yibing Liu 已提交
1069 1070

    1) One-hot cross-entropy:
F
fengjiayi 已提交
1071
        `soft_label = False`, `Label[i, 0]` indicates the class index for sample i:
Y
yangyaming 已提交
1072

Y
Yibing Liu 已提交
1073
        .. math::
Y
yangyaming 已提交
1074

Y
Yibing Liu 已提交
1075 1076 1077
            Y[i] = -\log(X[i, Label[i]])

    2) Soft-label cross-entropy:
F
fengjiayi 已提交
1078 1079
        `soft_label = True`, `Label[i, j]` indicates the soft label of class j
        for sample i:
Y
Yibing Liu 已提交
1080 1081 1082 1083 1084

        .. math::

            Y[i] = \sum_j{-Label[i, j] * log(X[i, j])}

Y
Yibing Liu 已提交
1085
       Please make sure that in this case the summation of each row of `label`
Y
Yibing Liu 已提交
1086 1087 1088
       equals one.

    3) One-hot cross-entropy with vecterized `label`:
F
fengjiayi 已提交
1089 1090
         As a special case of 2), when each row of 'label' has only one
         non-zero element which is equal to 1, soft-label cross-entropy degenerates
Y
Yibing Liu 已提交
1091
         to a one-hot cross-entropy with one-hot label representation.
Y
yangyaming 已提交
1092

Y
Yibing Liu 已提交
1093
    Args:
Y
yangyaming 已提交
1094
        input (Variable|list):  a 2-D tensor with shape [N x D], where N is the
1095 1096 1097 1098
                                batch size and D is the number of classes. This
                                input is a probability computed by the previous
                                operator, which is almost always the result of
                                a softmax operator.
Y
yangyaming 已提交
1099
        label (Variable|list): the ground truth which is a 2-D tensor. When
1100 1101 1102 1103
                               `soft_label` is set to `False`, `label` is a
                               tensor<int64> with shape [N x 1]. When
                               `soft_label` is set to `True`, `label` is a
                               tensor<float/double> with shape [N x D].
F
fengjiayi 已提交
1104
        soft_label (bool): a flag indicating whether to
1105
                                           interpretate the given labels as soft
1106
                                           labels. Default: `False`.
M
minqiyang 已提交
1107 1108
        ignore_index (int): Specifies a target value that is ignored and does
                            not contribute to the input gradient. Only valid
1109
                            if soft_label is set to False. Default: -100
Y
Yibing Liu 已提交
1110 1111 1112 1113 1114

    Returns:
         A 2-D tensor with shape [N x 1], the cross entropy loss.

    Raises:
1115 1116 1117 1118 1119
        `ValueError`: 1) the 1st dimension of `input` and `label` are not equal.
                      2) when `soft_label == True`, and the 2nd dimension of
                         `input` and `label` are not equal.
                      3) when `soft_label == False`, and the 2nd dimension of
                         `label` is not 1.
Y
Yibing Liu 已提交
1120 1121 1122 1123 1124 1125

    Examples:
        .. code-block:: python

          predict = fluid.layers.fc(input=net, size=classdim, act='softmax')
          cost = fluid.layers.cross_entropy(input=predict, label=label)
Y
Yu Yang 已提交
1126
    """
F
fengjiayi 已提交
1127
    helper = LayerHelper('cross_entropy', **locals())
X
Xin Pan 已提交
1128
    out = helper.create_variable_for_type_inference(dtype=input.dtype)
Y
Yu Yang 已提交
1129 1130 1131 1132 1133
    helper.append_op(
        type='cross_entropy',
        inputs={'X': [input],
                'Label': [label]},
        outputs={'Y': [out]},
1134 1135
        attrs={"soft_label": soft_label,
               "ignore_index": ignore_index})
Y
Yu Yang 已提交
1136 1137 1138
    return out


F
fengjiayi 已提交
1139
def square_error_cost(input, label):
Y
Yu Yang 已提交
1140
    """
1141 1142
    **Square error cost layer**

1143 1144
    This layer accepts input predictions and target label and returns the
    squared error cost.
Y
ying 已提交
1145

1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158
    For predictions, :math:`X`, and target labels, :math:`Y`, the equation is:

    .. math::

        Out = (X - Y)^2

    In the above equation:

        * :math:`X`: Input predictions, a tensor.
        * :math:`Y`: Input labels, a tensor.
        * :math:`Out`: Output value, same shape with :math:`X`.

    Args:
1159 1160
        input (Variable): Input tensor, has predictions.
        label (Variable): Label tensor, has target labels.
1161 1162

    Returns:
G
guosheng 已提交
1163
        Variable: The tensor variable storing the element-wise squared error \
1164
                  difference of input and label.
1165 1166 1167 1168 1169 1170 1171 1172

    Examples:
        .. code-block:: python

          y = layers.data(name='y', shape=[1], dtype='float32')
          y_predict = layers.data(name='y_predict', shape=[1], dtype='float32')
          cost = layers.square_error_cost(input=y_predict, label=y)

Y
Yu Yang 已提交
1173
    """
F
fengjiayi 已提交
1174
    helper = LayerHelper('square_error_cost', **locals())
X
Xin Pan 已提交
1175
    minus_out = helper.create_variable_for_type_inference(dtype=input.dtype)
Y
Yu Yang 已提交
1176 1177 1178 1179 1180 1181
    helper.append_op(
        type='elementwise_sub',
        inputs={'X': [input],
                'Y': [label]},
        outputs={'Out': [minus_out]})

X
Xin Pan 已提交
1182
    square_out = helper.create_variable_for_type_inference(dtype=input.dtype)
Y
Yu Yang 已提交
1183
    helper.append_op(
F
fengjiayi 已提交
1184 1185
        type='square', inputs={'X': [minus_out]},
        outputs={'Out': [square_out]})
Y
Yu Yang 已提交
1186 1187 1188
    return square_out


Y
yi.wu 已提交
1189
@templatedoc()
Y
Yu Yang 已提交
1190 1191 1192 1193
def chunk_eval(input,
               label,
               chunk_scheme,
               num_chunk_types,
F
fengjiayi 已提交
1194
               excluded_chunk_types=None):
Y
Yu Yang 已提交
1195
    """
Y
yi.wu 已提交
1196
    **Chunk Evaluator**
Y
yi.wu 已提交
1197

Y
yangyaming 已提交
1198
    This function computes and outputs the precision, recall and
1199
    F1-score of chunk detection.
Y
yi.wu 已提交
1200

Y
yi.wu 已提交
1201 1202 1203 1204 1205 1206 1207 1208
    For some basics of chunking, please refer to
    'Chunking with Support Vector Machines <https://aclanthology.info/pdf/N/N01/N01-1025.pdf>'.

    ChunkEvalOp computes the precision, recall, and F1-score of chunk detection,
    and supports IOB, IOE, IOBES and IO (also known as plain) tagging schemes.
    Here is a NER example of labeling for these tagging schemes:

    .. code-block:: python
1209

Y
yi.wu 已提交
1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234
       ====== ====== ======  =====  ==  ============   =====  ===== =====  ==  =========
              Li     Ming    works  at  Agricultural   Bank   of    China  in  Beijing.
       ====== ====== ======  =====  ==  ============   =====  ===== =====  ==  =========
       IO     I-PER  I-PER   O      O   I-ORG          I-ORG  I-ORG I-ORG  O   I-LOC
       IOB    B-PER  I-PER   O      O   B-ORG          I-ORG  I-ORG I-ORG  O   B-LOC
       IOE    I-PER  E-PER   O      O   I-ORG          I-ORG  I-ORG E-ORG  O   E-LOC
       IOBES  B-PER  E-PER   O      O   I-ORG          I-ORG  I-ORG E-ORG  O   S-LOC
       ====== ====== ======  =====  ==  ============   =====  ===== =====  ==  =========

    There are three chunk types(named entity types) including PER(person), ORG(organization)
    and LOC(LOCATION), and we can see that the labels have the form <tag type>-<chunk type>.

    Since the calculations actually use label ids rather than labels, extra attention
    should be paid when mapping labels to ids to make CheckEvalOp work. The key point
    is that the listed equations are satisfied by ids.

    .. code-block:: python

       tag_type = label % num_tag_type
       chunk_type = label / num_tag_type

    where `num_tag_type` is the num of tag types in the tagging scheme, `num_chunk_type`
    is the num of chunk types, and `tag_type` get its value from the following table.

    .. code-block:: python
1235

Y
yi.wu 已提交
1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259
       Scheme Begin Inside End   Single
        plain   0     -      -     -
        IOB     0     1      -     -
        IOE     -     0      1     -
        IOBES   0     1      2     3

    Still use NER as example, assuming the tagging scheme is IOB while chunk types are ORG,
    PER and LOC. To satisfy the above equations, the label map can be like this:

    .. code-block:: python

       B-ORG  0
       I-ORG  1
       B-PER  2
       I-PER  3
       B-LOC  4
       I-LOC  5
       O      6

    It's not hard to verify the equations noting that the num of chunk types
    is 3 and the num of tag types in IOB scheme is 2. For example, the label
    id of I-LOC is 5, the tag type id of I-LOC is 1, and the chunk type id of
    I-LOC is 2, which consistent with the results from the equations.

Y
yi.wu 已提交
1260
    Args:
1261 1262 1263 1264 1265
        input (Variable): prediction output of the network.
        label (Variable): label of the test data set.
        chunk_scheme (str): ${chunk_scheme_comment}
        num_chunk_types (int): ${num_chunk_types_comment}
        excluded_chunk_types (list): ${excluded_chunk_types_comment}
F
fengjiayi 已提交
1266

Y
yi.wu 已提交
1267
    Returns:
Y
update  
yi.wu 已提交
1268 1269 1270
        tuple: tuple containing: precision, recall, f1_score,
        num_infer_chunks, num_label_chunks,
        num_correct_chunks
1271

Y
yi.wu 已提交
1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283
    Examples:
        .. code-block:: python

            crf = fluid.layers.linear_chain_crf(
                input=hidden, label=label, param_attr=ParamAttr(name="crfw"))
            crf_decode = fluid.layers.crf_decoding(
                input=hidden, param_attr=ParamAttr(name="crfw"))
            fluid.layers.chunk_eval(
                input=crf_decode,
                label=label,
                chunk_scheme="IOB",
                num_chunk_types=(label_dict_len - 1) / 2)
Y
Yu Yang 已提交
1284
    """
F
fengjiayi 已提交
1285
    helper = LayerHelper("chunk_eval", **locals())
Y
Yu Yang 已提交
1286 1287

    # prepare output
X
Xin Pan 已提交
1288 1289 1290 1291 1292 1293 1294
    precision = helper.create_variable_for_type_inference(dtype="float32")
    recall = helper.create_variable_for_type_inference(dtype="float32")
    f1_score = helper.create_variable_for_type_inference(dtype="float32")
    num_infer_chunks = helper.create_variable_for_type_inference(dtype="int64")
    num_label_chunks = helper.create_variable_for_type_inference(dtype="int64")
    num_correct_chunks = helper.create_variable_for_type_inference(
        dtype="int64")
Y
Yu Yang 已提交
1295 1296 1297 1298 1299 1300 1301 1302

    helper.append_op(
        type="chunk_eval",
        inputs={"Inference": [input],
                "Label": [label]},
        outputs={
            "Precision": [precision],
            "Recall": [recall],
1303 1304 1305 1306
            "F1-Score": [f1_score],
            "NumInferChunks": [num_infer_chunks],
            "NumLabelChunks": [num_label_chunks],
            "NumCorrectChunks": [num_correct_chunks]
Y
Yu Yang 已提交
1307 1308 1309
        },
        attrs={
            "num_chunk_types": num_chunk_types,
G
guosheng 已提交
1310 1311
            "chunk_scheme": chunk_scheme,
            "excluded_chunk_types": excluded_chunk_types or []
Y
Yu Yang 已提交
1312
        })
1313 1314
    return (precision, recall, f1_score, num_infer_chunks, num_label_chunks,
            num_correct_chunks)
Y
Yu Yang 已提交
1315 1316


1317
@templatedoc()
Y
Yu Yang 已提交
1318 1319 1320 1321 1322 1323 1324
def sequence_conv(input,
                  num_filters,
                  filter_size=3,
                  filter_stride=1,
                  padding=None,
                  bias_attr=None,
                  param_attr=None,
C
chengduo 已提交
1325 1326
                  act=None,
                  name=None):
Y
Yu Yang 已提交
1327 1328 1329 1330
    """
    This function creates the op for sequence_conv, using the inputs and
    other convolutional configurations for the filters and stride as given
    in the input parameters to the function.
1331 1332 1333 1334 1335 1336 1337

    Args:
        input (Variable): ${x_comment}
        num_filters (int): number of filters.
        filter_size (int): the filter size (H and W).
        filter_stride (int): stride of the filter.
        padding (bool): if True, add paddings.
C
chengduo 已提交
1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350
        bias_attr (ParamAttr|bool|None): The parameter attribute for the bias of sequence_conv.
            If it is set to False, no bias will be added to the output units.
            If it is set to None or one attribute of ParamAttr, sequence_conv
            will create ParamAttr as bias_attr. If the Initializer of the bias_attr
            is not set, the bias is initialized zero. Default: None.
        param_attr (ParamAttr|None): The parameter attribute for learnable parameters/weights
            of sequence_conv. If it is set to None or one attribute of ParamAttr, sequence_conv
            will create ParamAttr as param_attr. If the Initializer of the param_attr
            is not set, the parameter is initialized with Xavier. Default: None.
        act (str): Activation type, if it is set to None, activation is not appended.
            Default: None.
        name (str|None): A name for this layer(optional). If set None, the layer
            will be named automatically. Default: None.
F
fengjiayi 已提交
1351

1352 1353
    Returns:
        Variable: output of sequence_conv
Y
Yu Yang 已提交
1354 1355 1356 1357 1358 1359 1360
    """

    helper = LayerHelper('sequence_conv', **locals())
    dtype = helper.input_dtype()
    filter_shape = [filter_size * input.shape[1], num_filters]
    filter_param = helper.create_parameter(
        attr=helper.param_attr, shape=filter_shape, dtype=dtype)
X
Xin Pan 已提交
1361
    pre_bias = helper.create_variable_for_type_inference(dtype)
Y
Yu Yang 已提交
1362 1363 1364 1365 1366 1367 1368 1369 1370 1371

    helper.append_op(
        type='sequence_conv',
        inputs={
            'X': [input],
            'Filter': [filter_param],
        },
        outputs={"Out": pre_bias},
        attrs={
            'contextStride': filter_stride,
M
minqiyang 已提交
1372
            'contextStart': -int(filter_size // 2),
Y
Yu Yang 已提交
1373 1374 1375 1376 1377 1378
            'contextLength': filter_size
        })
    pre_act = helper.append_bias_op(pre_bias)
    return helper.append_activation(pre_act)


C
chengduo 已提交
1379
def sequence_softmax(input, use_cudnn=False, name=None):
1380 1381 1382
    """
    This function computes the softmax activation among all time-steps for each
    sequence. The dimension of each time-step should be 1. Thus, the shape of
1383
    input Tensor can be either :math:`[N, 1]` or :math:`[N]`, where :math:`N`
1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399
    is the sum of the length of all sequences.

    For i-th sequence in a mini-batch:

    .. math::

        Out(X[lod[i]:lod[i+1]], :) = \\frac{\exp(X[lod[i]:lod[i+1], :])}{\sum(\exp(X[lod[i]:lod[i+1], :]))}

    For example, for a mini-batch of 3 sequences with variable-length,
    each containing 2, 3, 2 time-steps, the lod of which is [0, 2, 5, 7],
    then softmax will be computed among :math:`X[0:2, :]`, :math:`X[2:5, :]`,
    :math:`X[5:7, :]`, and :math:`N` turns out to be 7.

    Args:
        input (Variable): The input variable which is a LoDTensor.
        use_cudnn (bool): Use cudnn kernel or not, it is valid only when the cudnn \
C
chengduo 已提交
1400 1401 1402
            library is installed. Default: False.
        name (str|None): A name for this layer(optional). If set None, the layer
            will be named automatically. Default: None.
1403

1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414
    Returns:
        Variable: output of sequence_softmax

    Examples:

        .. code-block:: python

             x = fluid.layers.data(name='x', shape=[7, 1],
                              dtype='float32', lod_level=1)
             x_sequence_softmax = fluid.layers.sequence_softmax(input=x)
    """
1415 1416
    helper = LayerHelper('sequence_softmax', **locals())
    dtype = helper.input_dtype()
X
Xin Pan 已提交
1417
    softmax_out = helper.create_variable_for_type_inference(dtype)
1418 1419 1420 1421 1422 1423 1424 1425
    helper.append_op(
        type="sequence_softmax",
        inputs={"X": input},
        outputs={"Out": softmax_out},
        attrs={"use_cudnn": use_cudnn})
    return softmax_out


C
chengduo 已提交
1426
def softmax(input, use_cudnn=True, name=None):
Q
qiaolongfei 已提交
1427
    """
1428
    The input of the softmax operator is a tensor of any rank. The output tensor
F
fengjiayi 已提交
1429
    has the same shape as the input.
Q
qiaolongfei 已提交
1430

1431 1432 1433 1434 1435 1436
    The input tensor will first be logically flattened to a 2-D matrix. The matrix's
    second dimension(row length) is as same as the last dimension of the input
    tensor, and the first dimension(column length) is the product of all other
    dimensions of the input tensor. For each row of the matrix, the softmax operator
    squashes the K-dimensional(K is the width of the matrix, which is also the size
    of the input tensor's last dimension) vector of arbitrary real values to a
F
fengjiayi 已提交
1437
    K-dimensional vector of real values in the range [0, 1] that add up to 1.
Q
qiaolongfei 已提交
1438 1439 1440 1441 1442 1443 1444

    It computes the exponential of the given dimension and the sum of exponential
    values of all the other dimensions in the K-dimensional vector input.
    Then the ratio of the exponential of the given dimension and the sum of
    exponential values of all the other dimensions is the output of the softmax
    operator.

F
fengjiayi 已提交
1445
    For each row :math:`i` and each column :math:`j` in the matrix, we have:
Q
qiaolongfei 已提交
1446 1447 1448 1449 1450 1451 1452 1453

    .. math::

        Out[i, j] = \\frac{\exp(X[i, j])}{\sum_j(exp(X[i, j])}

    Args:
        input (Variable): The input variable.
        use_cudnn (bool): Use cudnn kernel or not, it is valid only when the cudnn \
C
chengduo 已提交
1454 1455 1456
            library is installed.
        name (str|None): A name for this layer(optional). If set None, the layer
            will be named automatically. Default: None.
Q
qiaolongfei 已提交
1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468

    Returns:
        Variable: output of softmax

    Examples:

        .. code-block:: python

             fc = fluid.layers.fc(input=x, size=10)
             softmax = fluid.layers.softmax(input=fc)

    """
1469 1470
    helper = LayerHelper('softmax', **locals())
    dtype = helper.input_dtype()
X
Xin Pan 已提交
1471
    softmax_out = helper.create_variable_for_type_inference(dtype)
1472 1473 1474 1475 1476 1477 1478 1479
    helper.append_op(
        type="softmax",
        inputs={"X": input},
        outputs={"Out": softmax_out},
        attrs={"use_cudnn": use_cudnn})
    return softmax_out


Y
Yu Yang 已提交
1480 1481 1482
def conv2d(input,
           num_filters,
           filter_size,
C
chengduoZH 已提交
1483 1484
           stride=1,
           padding=0,
1485
           dilation=1,
Y
Yu Yang 已提交
1486 1487 1488
           groups=None,
           param_attr=None,
           bias_attr=None,
C
chengduoZH 已提交
1489
           use_cudnn=True,
1490 1491
           act=None,
           name=None):
Y
Yu Yang 已提交
1492
    """
C
chengduoZH 已提交
1493
    The convolution2D layer calculates the output based on the input, filter
T
tensor-tang 已提交
1494 1495
    and strides, paddings, dilations, groups parameters. Input and
    Output are in NCHW format, where N is batch size, C is the number of
1496
    channels, H is the height of the feature, and W is the width of the feature.
T
tensor-tang 已提交
1497 1498 1499 1500 1501 1502 1503
    Filter is in MCHW format, where M is the number of output image channels,
    C is the number of input image channels, H is the height of the filter,
    and W is the width of the filter. If the groups is greater than 1,
    C will equal the number of input image channels divided by the groups.
    Please refer to UFLDL's `convolution
    <http://ufldl.stanford.edu/tutorial/supervised/FeatureExtractionUsingConvolution/>`_
    for more detials.
1504 1505 1506
    If bias attribution and activation type are provided, bias is added to the
    output of the convolution, and the corresponding activation function is
    applied to the final result.
C
chengduoZH 已提交
1507

1508
    For each input :math:`X`, the equation is:
C
refine  
chengduoZH 已提交
1509

C
chengduoZH 已提交
1510 1511
    .. math::

C
refine  
chengduoZH 已提交
1512
        Out = \sigma (W \\ast X + b)
C
chengduoZH 已提交
1513

T
tensor-tang 已提交
1514
    Where:
C
chengduoZH 已提交
1515

1516 1517 1518 1519 1520
    * :math:`X`: Input value, a tensor with NCHW format.
    * :math:`W`: Filter value, a tensor with MCHW format.
    * :math:`\\ast`: Convolution operation.
    * :math:`b`: Bias value, a 2-D tensor with shape [M, 1].
    * :math:`\\sigma`: Activation function.
T
tensor-tang 已提交
1521
    * :math:`Out`: Output value, the shape of :math:`Out` and :math:`X` may be different.
C
chengduoZH 已提交
1522 1523 1524

    Example:

1525 1526
        - Input:

W
weixing02 已提交
1527
          Input shape: :math:`(N, C_{in}, H_{in}, W_{in})`
C
refine  
chengduoZH 已提交
1528

W
weixing02 已提交
1529
          Filter shape: :math:`(C_{out}, C_{in}, H_f, W_f)`
C
refine  
chengduoZH 已提交
1530

1531
        - Output:
T
tensor-tang 已提交
1532

W
weixing02 已提交
1533
          Output shape: :math:`(N, C_{out}, H_{out}, W_{out})`
C
refine  
chengduoZH 已提交
1534

C
chengduoZH 已提交
1535
        Where
1536 1537

        .. math::
C
chengduoZH 已提交
1538

W
weixing02 已提交
1539 1540
            H_{out}&= \\frac{(H_{in} + 2 * paddings[0] - (dilations[0] * (H_f - 1) + 1))}{strides[0]} + 1 \\\\
            W_{out}&= \\frac{(W_{in} + 2 * paddings[1] - (dilations[1] * (W_f - 1) + 1))}{strides[1]} + 1
C
chengduoZH 已提交
1541 1542

    Args:
1543
        input (Variable): The input image with [N, C, H, W] format.
T
tensor-tang 已提交
1544
        num_filters(int): The number of filter. It is as same as the output
1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561
            image channel.
        filter_size (int|tuple|None): The filter size. If filter_size is a tuple,
            it must contain two integers, (filter_size_H, filter_size_W).
            Otherwise, the filter will be a square.
        stride (int|tuple): The stride size. If stride is a tuple, it must
            contain two integers, (stride_H, stride_W). Otherwise, the
            stride_H = stride_W = stride. Default: stride = 1.
        padding (int|tuple): The padding size. If padding is a tuple, it must
            contain two integers, (padding_H, padding_W). Otherwise, the
            padding_H = padding_W = padding. Default: padding = 0.
        dilation (int|tuple): The dilation size. If dilation is a tuple, it must
            contain two integers, (dilation_H, dilation_W). Otherwise, the
            dilation_H = dilation_W = dilation. Default: dilation = 1.
        groups (int): The groups number of the Conv2d Layer. According to grouped
            convolution in Alex Krizhevsky's Deep CNN paper: when group=2,
            the first half of the filters is only connected to the first half
            of the input channels, while the second half of the filters is only
C
chengduo 已提交
1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572
            connected to the second half of the input channels. Default: groups=1.
        param_attr (ParamAttr|None): The parameter attribute for learnable parameters/weights
            of conv2d. If it is set to None or one attribute of ParamAttr, conv2d
            will create ParamAttr as param_attr. If the Initializer of the param_attr
            is not set, the parameter is initialized with :math:`Normal(0.0, std)`,
             and the :math:`std` is :math:`(\\frac{2.0 }{filter\_elem\_num})^{0.5}`. Default: None.
        bias_attr (ParamAttr|bool|None): The parameter attribute for the bias of conv2d.
            If it is set to False, no bias will be added to the output units.
            If it is set to None or one attribute of ParamAttr, conv2d
            will create ParamAttr as bias_attr. If the Initializer of the bias_attr
            is not set, the bias is initialized zero. Default: None.
1573 1574
        use_cudnn (bool): Use cudnn kernel or not, it is valid only when the cudnn
            library is installed. Default: True
C
chengduo 已提交
1575 1576
        act (str): Activation type, if it is set to None, activation is not appended.
            Default: None
1577
        name (str|None): A name for this layer(optional). If set None, the layer
C
chengduo 已提交
1578
            will be named automatically. Default: None
C
chengduoZH 已提交
1579 1580

    Returns:
G
guosheng 已提交
1581
        Variable: The tensor variable storing the convolution and \
C
chengduoZH 已提交
1582 1583
                  non-linearity activation result.

C
refine  
chengduoZH 已提交
1584
    Raises:
1585 1586
        ValueError: If the shapes of input, filter_size, stride, padding and
                    groups mismatch.
C
refine  
chengduoZH 已提交
1587

C
chengduoZH 已提交
1588 1589 1590
    Examples:
        .. code-block:: python

1591 1592
          data = fluid.layers.data(name='data', shape=[3, 32, 32], dtype='float32')
          conv2d = fluid.layers.conv2d(input=data, num_filters=2, filter_size=3, act="relu")
Y
Yu Yang 已提交
1593 1594 1595
    """

    num_channels = input.shape[1]
C
chengduo 已提交
1596
    assert param_attr is not False, "param_attr should not be False here."
1597
    l_type = 'conv2d'
X
xzl 已提交
1598 1599
    if (num_channels == groups and num_filters % num_channels == 0 and
            not use_cudnn):
1600
        l_type = 'depthwise_conv2d'
1601 1602 1603 1604

    helper = LayerHelper(l_type, **locals())
    dtype = helper.input_dtype()

Y
Yu Yang 已提交
1605 1606 1607 1608 1609
    if groups is None:
        num_filter_channels = num_channels
    else:
        if num_channels % groups != 0:
            raise ValueError("num_channels must be divisible by groups.")
M
minqiyang 已提交
1610
        num_filter_channels = num_channels // groups
Y
Yu Yang 已提交
1611

C
chengduoZH 已提交
1612 1613 1614
    filter_size = utils.convert_to_list(filter_size, 2, 'filter_size')
    stride = utils.convert_to_list(stride, 2, 'stride')
    padding = utils.convert_to_list(padding, 2, 'padding')
1615
    dilation = utils.convert_to_list(dilation, 2, 'dilation')
C
chengduoZH 已提交
1616

C
chengduoZH 已提交
1617 1618
    if not isinstance(use_cudnn, bool):
        raise ValueError("use_cudnn should be True or False")
Y
Yu Yang 已提交
1619 1620

    input_shape = input.shape
M
minqiyang 已提交
1621
    filter_shape = [num_filters, int(num_filter_channels)] + filter_size
Y
Yu Yang 已提交
1622 1623

    def _get_default_param_initializer():
C
chengduo 已提交
1624 1625
        filter_elem_num = filter_size[0] * filter_size[1] * num_channels
        std = (2.0 / filter_elem_num)**0.5
Y
Yu Yang 已提交
1626 1627 1628 1629 1630 1631 1632 1633
        return Normal(0.0, std, 0)

    filter_param = helper.create_parameter(
        attr=helper.param_attr,
        shape=filter_shape,
        dtype=dtype,
        default_initializer=_get_default_param_initializer())

X
Xin Pan 已提交
1634
    pre_bias = helper.create_variable_for_type_inference(dtype)
Y
Yu Yang 已提交
1635 1636

    helper.append_op(
1637
        type=l_type,
Y
Yu Yang 已提交
1638 1639 1640 1641 1642
        inputs={
            'Input': input,
            'Filter': filter_param,
        },
        outputs={"Output": pre_bias},
C
chengduoZH 已提交
1643 1644 1645
        attrs={
            'strides': stride,
            'paddings': padding,
1646
            'dilations': dilation,
C
chengduoZH 已提交
1647
            'groups': groups,
1648
            'use_cudnn': use_cudnn,
X
Xin Pan 已提交
1649
            'use_mkldnn': False
C
chengduoZH 已提交
1650
        })
Y
Yu Yang 已提交
1651 1652 1653 1654 1655 1656

    pre_act = helper.append_bias_op(pre_bias, dim_start=1, dim_end=2)

    return helper.append_activation(pre_act)


C
chengduoZH 已提交
1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673
def conv3d(input,
           num_filters,
           filter_size,
           stride=1,
           padding=0,
           dilation=1,
           groups=None,
           param_attr=None,
           bias_attr=None,
           use_cudnn=True,
           act=None,
           name=None):
    """
    **Convlution3D Layer**

    The convolution3D layer calculates the output based on the input, filter
    and strides, paddings, dilations, groups parameters. Input(Input) and
1674 1675 1676 1677 1678 1679
    Output(Output) are in NCDHW format. Where N is batch size C is the number of
    channels, D is the depth of the feature, H is the height of the feature,
    and W is the width of the feature. Convlution3D is similar with Convlution2D
    but adds one dimension(depth). If bias attribution and activation type are
    provided, bias is added to the output of the convolution, and the
    corresponding activation function is applied to the final result.
C
chengduoZH 已提交
1680 1681 1682 1683 1684 1685 1686 1687 1688

    For each input :math:`X`, the equation is:

    .. math::

        Out = \sigma (W \\ast X + b)

    In the above equation:

1689 1690
    * :math:`X`: Input value, a tensor with NCDHW format.
    * :math:`W`: Filter value, a tensor with MCDHW format.
C
chengduoZH 已提交
1691 1692 1693
    * :math:`\\ast`: Convolution operation.
    * :math:`b`: Bias value, a 2-D tensor with shape [M, 1].
    * :math:`\\sigma`: Activation function.
1694
    * :math:`Out`: Output value, the shape of :math:`Out` and :math:`X` may be different.
C
chengduoZH 已提交
1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719

    Example:

        - Input:

          Input shape: :math:`(N, C_{in}, D_{in}, H_{in}, W_{in})`

          Filter shape: :math:`(C_{out}, C_{in}, D_f, H_f, W_f)`

        - Output:
          Output shape: :math:`(N, C_{out}, D_{out}, H_{out}, W_{out})`

        Where

        .. math::

            D_{out}&= \\frac{(D_{in} + 2 * paddings[0] - (dilations[0] * (D_f - 1) + 1))}{strides[0]} + 1 \\\\
            H_{out}&= \\frac{(H_{in} + 2 * paddings[1] - (dilations[1] * (H_f - 1) + 1))}{strides[1]} + 1 \\\\
            W_{out}&= \\frac{(W_{in} + 2 * paddings[2] - (dilations[2] * (W_f - 1) + 1))}{strides[2]} + 1

    Args:
        input (Variable): The input image with [N, C, D, H, W] format.
            num_filters(int): The number of filter. It is as same as the output
            image channel.
        filter_size (int|tuple|None): The filter size. If filter_size is a tuple,
1720
            it must contain three integers, (filter_size_D, filter_size_H, filter_size_W).
C
chengduoZH 已提交
1721 1722
            Otherwise, the filter will be a square.
        stride (int|tuple): The stride size. If stride is a tuple, it must
1723
            contain three integers, (stride_D, stride_H, stride_W). Otherwise, the
C
chengduoZH 已提交
1724 1725
            stride_D = stride_H = stride_W = stride. Default: stride = 1.
        padding (int|tuple): The padding size. If padding is a tuple, it must
1726
            contain three integers, (padding_D, padding_H, padding_W). Otherwise, the
C
chengduoZH 已提交
1727 1728
            padding_D = padding_H = padding_W = padding. Default: padding = 0.
        dilation (int|tuple): The dilation size. If dilation is a tuple, it must
1729
            contain three integers, (dilation_D, dilation_H, dilation_W). Otherwise, the
C
chengduoZH 已提交
1730 1731 1732 1733 1734 1735
            dilation_D = dilation_H = dilation_W = dilation. Default: dilation = 1.
        groups (int): The groups number of the Conv3d Layer. According to grouped
            convolution in Alex Krizhevsky's Deep CNN paper: when group=2,
            the first half of the filters is only connected to the first half
            of the input channels, while the second half of the filters is only
            connected to the second half of the input channels. Default: groups=1
C
chengduo 已提交
1736 1737 1738 1739 1740 1741 1742 1743 1744 1745
        param_attr (ParamAttr|None): The parameter attribute for learnable parameters/weights
            of conv3d. If it is set to None or one attribute of ParamAttr, conv3d
            will create ParamAttr as param_attr. If it is set to None, the parameter
            is initialized with :math:`Normal(0.0, std)`, and the :math:`std` is
            :math:`(\\frac{2.0 }{filter\_elem\_num})^{0.5}`. Default: None.
        bias_attr (ParamAttr|bool|None): The parameter attribute for the bias of conv3d.
            If it is set to False, no bias will be added to the output units.
            If it is set to None or one attribute of ParamAttr, conv3d
            will create ParamAttr as bias_attr. If the Initializer of the bias_attr
            is not set, the bias is initialized zero. Default: None.
C
chengduoZH 已提交
1746 1747
        use_cudnn (bool): Use cudnn kernel or not, it is valid only when the cudnn
            library is installed. Default: True
C
chengduo 已提交
1748 1749
        act (str): Activation type, if it is set to None, activation is not appended.
            Default: None.
C
chengduoZH 已提交
1750
        name (str|None): A name for this layer(optional). If set None, the layer
C
chengduo 已提交
1751
            will be named automatically. Default: None.
C
chengduoZH 已提交
1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763

    Returns:
        Variable: The tensor variable storing the convolution and \
                  non-linearity activation result.

    Raises:
        ValueError: If the shapes of input, filter_size, stride, padding and
                    groups mismatch.

    Examples:
        .. code-block:: python

1764 1765
          data = fluid.layers.data(name='data', shape=[3, 12, 32, 32], dtype='float32')
          conv3d = fluid.layers.conv3d(input=data, num_filters=2, filter_size=3, act="relu")
C
chengduoZH 已提交
1766 1767 1768
    """

    l_type = 'conv3d'
C
chengduo 已提交
1769
    assert param_attr is not False, "param_attr should not be False here."
C
chengduoZH 已提交
1770 1771 1772 1773 1774 1775 1776 1777 1778 1779
    helper = LayerHelper(l_type, **locals())
    dtype = helper.input_dtype()

    num_channels = input.shape[1]

    if groups is None:
        num_filter_channels = num_channels
    else:
        if num_channels % groups != 0:
            raise ValueError("num_channels must be divisible by groups.")
M
minqiyang 已提交
1780
        num_filter_channels = num_channels // groups
C
chengduoZH 已提交
1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793

    filter_size = utils.convert_to_list(filter_size, 3, 'filter_size')
    stride = utils.convert_to_list(stride, 3, 'stride')
    padding = utils.convert_to_list(padding, 3, 'padding')
    dilation = utils.convert_to_list(dilation, 3, 'dilation')

    if not isinstance(use_cudnn, bool):
        raise ValueError("use_cudnn should be True or False")

    input_shape = input.shape
    filter_shape = [num_filters, num_filter_channels] + filter_size

    def _get_default_param_initializer():
C
chengduo 已提交
1794 1795 1796
        filter_elem_num = filter_size[0] * filter_size[1] * filter_size[
            2] * num_channels
        std = (2.0 / filter_elem_num)**0.5
C
chengduoZH 已提交
1797 1798 1799 1800 1801 1802 1803 1804
        return Normal(0.0, std, 0)

    filter_param = helper.create_parameter(
        attr=helper.param_attr,
        shape=filter_shape,
        dtype=dtype,
        default_initializer=_get_default_param_initializer())

X
Xin Pan 已提交
1805
    pre_bias = helper.create_variable_for_type_inference(dtype)
C
chengduoZH 已提交
1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819

    helper.append_op(
        type=l_type,
        inputs={
            'Input': input,
            'Filter': filter_param,
        },
        outputs={"Output": pre_bias},
        attrs={
            'strides': stride,
            'paddings': padding,
            'dilations': dilation,
            'groups': groups,
            'use_cudnn': use_cudnn,
X
Xin Pan 已提交
1820
            'use_mkldnn': False
C
chengduoZH 已提交
1821 1822
        })

1823
    pre_act = helper.append_bias_op(pre_bias, dim_start=1, dim_end=2)
C
chengduoZH 已提交
1824 1825 1826 1827

    return helper.append_activation(pre_act)


J
Jacek Czaja 已提交
1828
def sequence_pool(input, pool_type, is_test=False):
Y
Yu Yang 已提交
1829
    """
Y
yangyaming 已提交
1830 1831 1832
    This function add the operator for sequence pooling.
    It pools features of all time-steps of each instance, and is applied
    on top of the input using pool_type mentioned in the parameters.
L
Luo Tao 已提交
1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843

    It supports four pool_type:

    - average: :math:`Out[i] = \\frac{\sum_i X_i}{N}`
    - sum:     :math:`Out[i] = \sum_jX_{ij}`
    - sqrt:    :math:`Out[i] = \\frac{\sum_jX_{ij}}{\sqrt{len(X_i)}}`
    - max:     :math:`Out[i] = max(X_i)`

    .. code-block:: text

       x is a 1-level LoDTensor:
1844
         x.lod = [[2, 3, 2]]
L
Luo Tao 已提交
1845 1846 1847 1848 1849
         x.data = [1, 3, 2, 4, 6, 5, 1]
         x.dims = [7, 1]

       then output is a Tensor:
         out.dim = [3, 1]
1850
         with condition len(x.lod[-1]) == out.dims[0]
L
Luo Tao 已提交
1851 1852 1853 1854 1855 1856 1857

       for different pool_type:
         average: out.data = [2, 4, 3], where 2=(1+3)/2, 4=(2+4+6)/3, 3=(5+1)/2
         sum    : out.data = [4, 12, 6], where 4=1+3, 12=2+4+6, 6=5+1
         sqrt   : out.data = [2.82, 6.93, 4.24], where 2.82=(1+3)/sqrt(2),
                    6.93=(2+4+6)/sqrt(3), 4.24=(5+1)/sqrt(2)
         max    : out.data = [3, 6, 5], where 3=max(1,3), 6=max(2,4,6), 5=max(5,1)
1858 1859
         last   : out.data = [3, 6, 1], where 3=last(1,3), 6=last(2,4,6), 1=last(5,1)
         first  : out.data = [1, 2, 5], where 1=first(1,3), 2=first(2,4,6), 5=first(5,1)
F
fengjiayi 已提交
1860

L
Luo Tao 已提交
1861 1862
    Args:
        input(variable): The input variable which is a LoDTensor.
Y
yangyaming 已提交
1863
        pool_type (string): The pooling type of sequence_pool.
L
Luo Tao 已提交
1864
            It supports average, sum, sqrt and max.
J
Jacek Czaja 已提交
1865
        is_test(bool, Default False): Used distinguish training from scoring mode.
L
Luo Tao 已提交
1866 1867 1868 1869 1870 1871 1872

    Returns:
        The sequence pooling variable which is a Tensor.

    Examples:

        .. code-block:: python
F
fengjiayi 已提交
1873

Y
yangyaming 已提交
1874
             x = fluid.layers.data(name='x', shape=[7, 1],
L
Luo Tao 已提交
1875 1876 1877 1878 1879
                              dtype='float32', lod_level=1)
             avg_x = fluid.layers.sequence_pool(input=x, pool_type='average')
             sum_x = fluid.layers.sequence_pool(input=x, pool_type='sum')
             sqrt_x = fluid.layers.sequence_pool(input=x, pool_type='sqrt')
             max_x = fluid.layers.sequence_pool(input=x, pool_type='max')
1880 1881
             last_x = fluid.layers.sequence_pool(input=x, pool_type='last')
             first_x = fluid.layers.sequence_pool(input=x, pool_type='first')
Y
Yu Yang 已提交
1882
    """
F
fengjiayi 已提交
1883
    helper = LayerHelper('sequence_pool', **locals())
Y
Yu Yang 已提交
1884
    dtype = helper.input_dtype()
X
Xin Pan 已提交
1885 1886
    pool_out = helper.create_variable_for_type_inference(dtype)
    max_index = helper.create_variable_for_type_inference(dtype)
Y
Yu Yang 已提交
1887 1888 1889 1890 1891 1892

    helper.append_op(
        type="sequence_pool",
        inputs={"X": input},
        outputs={"Out": pool_out,
                 "MaxIndex": max_index},
J
Jacek Czaja 已提交
1893 1894
        attrs={"pooltype": pool_type.upper(),
               "is_test": is_test})
Y
Yu Yang 已提交
1895

Y
yangyaming 已提交
1896 1897 1898 1899 1900
    # when pool_type is max, variable max_index is initialized,
    # so we stop the gradient explicitly here
    if pool_type == 'max':
        max_index.stop_gradient = True

Y
Yu Yang 已提交
1901 1902 1903
    return pool_out


C
add doc  
chengduoZH 已提交
1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922
@templatedoc()
def sequence_concat(input, name=None):
    """
    ${comment}

    Args:
        input(list): List of Variables to be concatenated.
        name(str|None): A name for this layer(optional). If set None, the layer
                       will be named automatically.

    Returns:
        Variable: Output variable of the concatenation.

    Examples:
        .. code-block:: python

           out = fluid.layers.sequence_concat(input=[seq1, seq2, seq3])
    """
    helper = LayerHelper('sequence_concat', **locals())
X
Xin Pan 已提交
1923
    out = helper.create_variable_for_type_inference(dtype=helper.input_dtype())
C
add doc  
chengduoZH 已提交
1924 1925 1926 1927 1928
    helper.append_op(
        type='sequence_concat', inputs={'X': input}, outputs={'Out': [out]})
    return out


F
fengjiayi 已提交
1929
def sequence_first_step(input):
L
Luo Tao 已提交
1930
    """
L
Luo Tao 已提交
1931
    This function gets the first step of sequence.
L
Luo Tao 已提交
1932 1933 1934 1935

    .. code-block:: text

       x is a 1-level LoDTensor:
1936
         x.lod = [[2, 3, 2]]
L
Luo Tao 已提交
1937 1938 1939 1940 1941
         x.data = [1, 3, 2, 4, 6, 5, 1]
         x.dims = [7, 1]

       then output is a Tensor:
         out.dim = [3, 1]
1942
         with condition len(x.lod[-1]) == out.dims[0]
L
Luo Tao 已提交
1943
         out.data = [1, 2, 5], where 1=first(1,3), 2=first(2,4,6), 5=first(5,1)
F
fengjiayi 已提交
1944

L
Luo Tao 已提交
1945 1946 1947 1948 1949 1950 1951 1952 1953
    Args:
        input(variable): The input variable which is a LoDTensor.

    Returns:
        The sequence's first step variable which is a Tensor.

    Examples:

        .. code-block:: python
F
fengjiayi 已提交
1954

Y
yangyaming 已提交
1955
             x = fluid.layers.data(name='x', shape=[7, 1],
L
Luo Tao 已提交
1956 1957 1958
                              dtype='float32', lod_level=1)
             x_first_step = fluid.layers.sequence_first_step(input=x)
    """
1959 1960 1961
    return sequence_pool(input=input, pool_type="first")


F
fengjiayi 已提交
1962
def sequence_last_step(input):
L
Luo Tao 已提交
1963
    """
L
Luo Tao 已提交
1964
    This function gets the last step of sequence.
L
Luo Tao 已提交
1965 1966 1967 1968

    .. code-block:: text

       x is a 1-level LoDTensor:
1969
         x.lod = [[2, 3, 2]]
L
Luo Tao 已提交
1970 1971 1972 1973 1974
         x.data = [1, 3, 2, 4, 6, 5, 1]
         x.dims = [7, 1]

       then output is a Tensor:
         out.dim = [3, 1]
1975
         with condition len(x.lod[-1]) == out.dims[0]
L
Luo Tao 已提交
1976
         out.data = [3, 6, 1], where 3=last(1,3), 6=last(2,4,6), 1=last(5,1)
F
fengjiayi 已提交
1977

L
Luo Tao 已提交
1978 1979 1980 1981 1982 1983 1984 1985 1986
    Args:
        input(variable): The input variable which is a LoDTensor.

    Returns:
        The sequence's last step variable which is a Tensor.

    Examples:

        .. code-block:: python
F
fengjiayi 已提交
1987

Y
yangyaming 已提交
1988
             x = fluid.layers.data(name='x', shape=[7, 1],
L
Luo Tao 已提交
1989 1990 1991
                              dtype='float32', lod_level=1)
             x_last_step = fluid.layers.sequence_last_step(input=x)
    """
1992 1993 1994
    return sequence_pool(input=input, pool_type="last")


Y
Yibing Liu 已提交
1995 1996 1997 1998
def sequence_slice(input, offset, length, name=None):
    """
    **Sequence Slice Layer**

1999
    The layer crops a subsequence from given sequence with given start
Y
Yibing Liu 已提交
2000 2001 2002 2003 2004
    offset and subsequence length.

    It only supports sequence data (LoDTensor with lod_level equal to 1).

    .. code-block:: text
2005

Y
Yibing Liu 已提交
2006 2007
	- Case:

2008
            Given the input Variable **input**:
2009

2010 2011 2012
                input.data = [[a1, a2], [b1, b2], [c1, c2], [d1, d2], [e1, e2]],
                input.lod = [[3, 2]],
                input.dims = (5, 2),
Y
Yibing Liu 已提交
2013

2014
            with offset.data = [[0], [1]] and length.data = [[2], [1]],
Y
Yibing Liu 已提交
2015

2016
            the output Variable will be
2017

2018 2019 2020
                out.data = [[a1, a2], [b1, b2], [e1, e2]],
                out.lod = [[2, 1]],
                out.dims = (3, 2).
2021 2022

    NOTE: The first dimension size of **input**, **offset** and **length**
2023
          should be equal. The **offset** should start from 0.
2024

Y
Yibing Liu 已提交
2025
    Args:
2026
        input(Variable): The input Variable which consists of the complete
Y
Yibing Liu 已提交
2027
                         sequences.
Y
Yibing Liu 已提交
2028 2029 2030 2031 2032 2033
        offset(Variable): The offset to slice each sequence.
        length(Variable): The length of each subsequence.
        name(str|None): A name for this layer(optional). If set None, the
                        layer will be named automatically.

    Returns:
Y
Yibing Liu 已提交
2034
        Variable: The output subsequences.
Y
Yibing Liu 已提交
2035 2036 2037 2038 2039 2040 2041 2042 2043 2044

    Examples:

        .. code-block:: python

             import numpy as np
             seqs = fluid.layers.data(name='x', shape=[10, 5],
                              dtype='float32', lod_level=1)
             offset = fluid.layers.assign(input=np.array([[0, 1]]).astype("int32"))
             length = fluid.layers.assign(input=np.array([[2, 1]]).astype("int32"))
2045
             subseqs = fluid.layers.sequence_slice(input=seqs, offset=offset,
Y
Yibing Liu 已提交
2046 2047 2048 2049
                                                   length=length)
    """
    helper = LayerHelper("sequence_slice", **locals())
    dtype = helper.input_dtype()
X
Xin Pan 已提交
2050
    out = helper.create_variable_for_type_inference(dtype)
Y
Yibing Liu 已提交
2051 2052 2053 2054 2055 2056 2057 2058 2059 2060 2061 2062 2063 2064

    offset.stop_gradient = True
    length.stop_gradient = True

    helper.append_op(
        type="sequence_slice",
        inputs={"X": input,
                "Offset": offset,
                "Length": length},
        outputs={"Out": out})

    return out


F
fengjiayi 已提交
2065
@templatedoc()
Y
Yu Yang 已提交
2066
def pool2d(input,
C
chengduoZH 已提交
2067 2068
           pool_size=-1,
           pool_type="max",
C
chengduoZH 已提交
2069 2070
           pool_stride=1,
           pool_padding=0,
C
caoying03 已提交
2071
           global_pooling=False,
C
chengduoZH 已提交
2072
           use_cudnn=True,
2073
           ceil_mode=False,
C
caoying03 已提交
2074
           name=None):
Y
Yu Yang 已提交
2075
    """
F
fengjiayi 已提交
2076
    ${comment}
2077 2078

    Args:
2079 2080 2081
        input (Variable): The input tensor of pooling operator. The format of
                          input tensor is NCHW, where N is batch size, C is
                          the number of channels, H is the height of the
F
fengjiayi 已提交
2082
                          feature, and W is the width of the feature.
2083
        pool_size (int): The side length of pooling windows. All pooling
F
fengjiayi 已提交
2084
                         windows are squares with pool_size on a side.
F
fengjiayi 已提交
2085
        pool_type: ${pooling_type_comment}
2086 2087
        pool_stride (int): stride of the pooling layer.
        pool_padding (int): padding size.
F
fengjiayi 已提交
2088 2089 2090
        global_pooling: ${global_pooling_comment}
        use_cudnn: ${use_cudnn_comment}
        ceil_mode: ${ceil_mode_comment}
2091
        name (str|None): A name for this layer(optional). If set None, the
F
fengjiayi 已提交
2092 2093
                        layer will be named automatically.

2094
    Returns:
F
fengjiayi 已提交
2095
        Variable: The pooling result.
F
fengjiayi 已提交
2096 2097 2098 2099 2100 2101 2102 2103 2104 2105 2106 2107 2108

    Raises:
        ValueError: If 'pool_type' is not "max" nor "avg"
        ValueError: If 'global_pooling' is False and 'pool_size' is -1
        ValueError: If 'use_cudnn' is not a bool value.

    Examples:

        .. code-block:: python

          data = fluid.layers.data(
              name='data', shape=[3, 32, 32], dtype='float32')
          conv2d = fluid.layers.pool2d(
2109 2110 2111 2112
                            input=data,
                            pool_size=2,
                            pool_type='max',
                            pool_stride=1,
F
fengjiayi 已提交
2113
                            global_pooling=False)
Y
Yu Yang 已提交
2114 2115 2116 2117 2118
    """
    if pool_type not in ["max", "avg"]:
        raise ValueError(
            "Unknown pool_type: '%s'. It can only be 'max' or 'avg'.",
            str(pool_type))
C
chengduoZH 已提交
2119

C
chengduoZH 已提交
2120 2121 2122 2123 2124
    if global_pooling is False and pool_size == -1:
        raise ValueError(
            "When the global_pooling is False, pool_size must be passed "
            "and be a valid value. Received pool_size: " + str(pool_size))

C
chengduoZH 已提交
2125 2126 2127 2128
    pool_size = utils.convert_to_list(pool_size, 2, 'pool_size')
    pool_padding = utils.convert_to_list(pool_padding, 2, 'pool_padding')
    pool_stride = utils.convert_to_list(pool_stride, 2, 'pool_stride')

C
chengduoZH 已提交
2129 2130
    if not isinstance(use_cudnn, bool):
        raise ValueError("use_cudnn should be True or False")
Y
Yu Yang 已提交
2131

C
Add doc  
chengduoZH 已提交
2132
    l_type = 'pool2d'
2133 2134

    helper = LayerHelper(l_type, **locals())
Y
Yu Yang 已提交
2135
    dtype = helper.input_dtype()
X
Xin Pan 已提交
2136
    pool_out = helper.create_variable_for_type_inference(dtype)
Y
Yu Yang 已提交
2137 2138

    helper.append_op(
2139 2140 2141 2142 2143 2144 2145 2146 2147 2148 2149
        type=l_type,
        inputs={"X": input},
        outputs={"Out": pool_out},
        attrs={
            "pooling_type": pool_type,
            "ksize": pool_size,
            "global_pooling": global_pooling,
            "strides": pool_stride,
            "paddings": pool_padding,
            "use_cudnn": use_cudnn,
            "ceil_mode": ceil_mode,
X
Xin Pan 已提交
2150
            "use_mkldnn": False
2151 2152 2153 2154 2155 2156 2157 2158 2159 2160 2161 2162 2163 2164 2165 2166
        })

    return pool_out


def pool3d(input,
           pool_size=-1,
           pool_type="max",
           pool_stride=1,
           pool_padding=0,
           global_pooling=False,
           use_cudnn=True,
           ceil_mode=False,
           name=None):
    """
    This function adds the operator for pooling in 3-dimensions, using the
Y
Yu Yang 已提交
2167
    pooling configurations mentioned in input parameters.
2168 2169 2170 2171 2172 2173 2174 2175 2176 2177 2178 2179

    Args:
        input (Variable): ${input_comment}
        pool_size (int): ${ksize_comment}
        pool_type (str): ${pooling_type_comment}
        pool_stride (int): stride of the pooling layer.
        pool_padding (int): padding size.
        global_pooling (bool): ${global_pooling_comment}
        use_cudnn (bool): ${use_cudnn_comment}
        ceil_mode (bool): ${ceil_mode_comment}
        name (str): A name for this layer(optional). If set None, the layer
            will be named automatically.
2180

2181
    Returns:
2182
        Variable: output of pool3d layer.
Y
Yu Yang 已提交
2183 2184 2185 2186 2187
    """
    if pool_type not in ["max", "avg"]:
        raise ValueError(
            "Unknown pool_type: '%s'. It can only be 'max' or 'avg'.",
            str(pool_type))
C
chengduoZH 已提交
2188

C
chengduoZH 已提交
2189 2190 2191 2192 2193
    if global_pooling is False and pool_size == -1:
        raise ValueError(
            "When the global_pooling is False, pool_size must be passed "
            "and be a valid value. Received pool_size: " + str(pool_size))

2194 2195 2196
    pool_size = utils.convert_to_list(pool_size, 3, 'pool_size')
    pool_padding = utils.convert_to_list(pool_padding, 3, 'pool_padding')
    pool_stride = utils.convert_to_list(pool_stride, 3, 'pool_stride')
C
chengduoZH 已提交
2197

C
chengduoZH 已提交
2198 2199
    if not isinstance(use_cudnn, bool):
        raise ValueError("use_cudnn should be True or False")
Y
Yu Yang 已提交
2200

2201 2202
    l_type = "pool3d"
    helper = LayerHelper(l_type, **locals())
Y
Yu Yang 已提交
2203
    dtype = helper.input_dtype()
X
Xin Pan 已提交
2204
    pool_out = helper.create_variable_for_type_inference(dtype)
Y
Yu Yang 已提交
2205 2206

    helper.append_op(
2207
        type=l_type,
Y
Yu Yang 已提交
2208 2209 2210 2211 2212 2213 2214
        inputs={"X": input},
        outputs={"Out": pool_out},
        attrs={
            "pooling_type": pool_type,
            "ksize": pool_size,
            "global_pooling": global_pooling,
            "strides": pool_stride,
C
chengduoZH 已提交
2215
            "paddings": pool_padding,
2216
            "use_cudnn": use_cudnn,
2217
            "ceil_mode": ceil_mode,
X
Xin Pan 已提交
2218
            "use_mkldnn": False
Y
Yu Yang 已提交
2219 2220 2221 2222 2223 2224 2225 2226 2227 2228 2229 2230
        })

    return pool_out


def batch_norm(input,
               act=None,
               is_test=False,
               momentum=0.9,
               epsilon=1e-05,
               param_attr=None,
               bias_attr=None,
C
caoying03 已提交
2231
               data_layout='NCHW',
Y
Yang Yang 已提交
2232
               in_place=False,
2233 2234
               name=None,
               moving_mean_name=None,
W
wanghaoshuang 已提交
2235
               moving_variance_name=None,
2236 2237
               do_model_average_for_mean_and_var=False,
               fuse_with_relu=False):
Y
Yu Yang 已提交
2238
    """
Q
qiaolongfei 已提交
2239 2240 2241 2242
    **Batch Normalization Layer**

    Can be used as a normalizer function for conv2d and fully_connected operations.
    The required data format for this layer is one of the following:
Q
qiaolongfei 已提交
2243

Q
qiaolongfei 已提交
2244
    1. NHWC `[batch, in_height, in_width, in_channels]`
Q
qiaolongfei 已提交
2245

Q
qiaolongfei 已提交
2246 2247
    2. NCHW `[batch, in_channels, in_height, in_width]`

Q
qiaolongfei 已提交
2248 2249 2250
    Refer to `Batch Normalization: Accelerating Deep Network Training by Reducing
    Internal Covariate Shift <https://arxiv.org/pdf/1502.03167.pdf>`_
    for more details.
Q
qiaolongfei 已提交
2251 2252 2253 2254 2255 2256 2257 2258 2259 2260 2261 2262

    :math:`input` is the input features over a mini-batch.

    ..  math::

        \\mu_{\\beta} &\\gets \\frac{1}{m} \\sum_{i=1}^{m} x_i \\qquad &//\\
        \ mini-batch\ mean \\\\
        \\sigma_{\\beta}^{2} &\\gets \\frac{1}{m} \\sum_{i=1}^{m}(x_i - \\
        \\mu_{\\beta})^2 \\qquad &//\ mini-batch\ variance \\\\
        \\hat{x_i} &\\gets \\frac{x_i - \\mu_\\beta} {\\sqrt{\\
        \\sigma_{\\beta}^{2} + \\epsilon}} \\qquad &//\ normalize \\\\
        y_i &\\gets \\gamma \\hat{x_i} + \\beta \\qquad &//\ scale\ and\ shift
2263 2264

    Args:
Q
qiaolongfei 已提交
2265
        input(variable): The input variable which is a LoDTensor.
Q
qiaolongfei 已提交
2266 2267 2268 2269
        act(string, Default None): Activation type, linear|relu|prelu|...
        is_test(bool, Default False): Used for training or training.
        momentum(float, Default 0.9):
        epsilon(float, Default 1e-05):
C
chengduo 已提交
2270 2271 2272 2273 2274 2275 2276 2277
        param_attr(ParamAttr|None): The parameter attribute for Parameter `scale`
             of batch_norm. If it is set to None or one attribute of ParamAttr, batch_norm
             will create ParamAttr as param_attr. If the Initializer of the param_attr
             is not set, the parameter is initialized with Xavier. Default: None.
        bias_attr(ParamAttr|None): The parameter attribute for the bias of batch_norm.
             If it is set to None or one attribute of ParamAttr, batch_norm
             will create ParamAttr as bias_attr. If the Initializer of the bias_attr
             is not set, the bias is initialized zero. Default: None.
Q
qiaolongfei 已提交
2278
        data_layout(string, default NCHW): NCHW|NHWC
2279
        in_place(bool, Default False): Make the input and output of batch norm reuse memory.
Q
qiaolongfei 已提交
2280 2281 2282 2283
        name(string, Default None): A name for this layer(optional). If set None, the layer
            will be named automatically.
        moving_mean_name(string, Default None): The name of moving_mean which store the global Mean.
        moving_variance_name(string, Default None): The name of the moving_variance which store the global Variance.
Q
qiaolongfei 已提交
2284
        do_model_average_for_mean_and_var(bool, Default False): Do model average for mean and variance or not.
2285
        fuse_with_relu (bool): if True, this OP performs relu after batch norm.
2286 2287

    Returns:
Q
qiaolongfei 已提交
2288
        Variable: A tensor variable which is the result after applying batch normalization on the input.
Q
qiaolongfei 已提交
2289 2290 2291 2292 2293 2294 2295

    Examples:

        .. code-block:: python

            hidden1 = fluid.layers.fc(input=x, size=200, param_attr='fc1.w')
            hidden2 = fluid.layers.batch_norm(input=hidden1)
Y
Yu Yang 已提交
2296
    """
C
chengduo 已提交
2297
    assert bias_attr is not False, "bias_attr should not be False in batch_norm."
Y
Yu Yang 已提交
2298 2299 2300 2301 2302 2303 2304 2305 2306 2307 2308 2309 2310 2311 2312 2313 2314 2315 2316 2317 2318 2319
    helper = LayerHelper('batch_norm', **locals())
    dtype = helper.input_dtype()

    input_shape = input.shape
    if data_layout == 'NCHW':
        channel_num = input_shape[1]
    else:
        if data_layout == 'NHWC':
            channel_num = input_shape[-1]
        else:
            raise ValueError("unsupported data layout:" + data_layout)

    param_shape = [channel_num]

    # create parameter
    scale = helper.create_parameter(
        attr=helper.param_attr,
        shape=param_shape,
        dtype=dtype,
        default_initializer=Constant(1.0))

    bias = helper.create_parameter(
2320
        attr=helper.bias_attr, shape=param_shape, dtype=dtype, is_bias=True)
Y
Yu Yang 已提交
2321

2322 2323
    mean = helper.create_parameter(
        attr=ParamAttr(
W
wanghaoshuang 已提交
2324 2325 2326
            name=moving_mean_name,
            initializer=Constant(0.0),
            trainable=False,
W
wanghaoshuang 已提交
2327
            do_model_average=do_model_average_for_mean_and_var),
Q
QI JUN 已提交
2328
        shape=param_shape,
2329 2330 2331 2332 2333 2334 2335
        dtype=input.dtype)
    mean.stop_gradient = True

    variance = helper.create_parameter(
        attr=ParamAttr(
            name=moving_variance_name,
            initializer=Constant(1.0),
W
wanghaoshuang 已提交
2336
            trainable=False,
W
wanghaoshuang 已提交
2337
            do_model_average=do_model_average_for_mean_and_var),
Q
QI JUN 已提交
2338
        shape=param_shape,
2339 2340
        dtype=input.dtype)
    variance.stop_gradient = True
Y
Yu Yang 已提交
2341 2342 2343 2344 2345 2346

    # create output
    # mean and mean_out share the same memory
    mean_out = mean
    # variance and variance out share the same memory
    variance_out = variance
X
Xin Pan 已提交
2347 2348 2349 2350
    saved_mean = helper.create_variable_for_type_inference(
        dtype=dtype, stop_gradient=True)
    saved_variance = helper.create_variable_for_type_inference(
        dtype=dtype, stop_gradient=True)
Y
Yu Yang 已提交
2351

X
Xin Pan 已提交
2352 2353
    batch_norm_out = input if in_place else helper.create_variable_for_type_inference(
        dtype)
Y
Yu Yang 已提交
2354 2355 2356 2357 2358 2359 2360 2361 2362 2363 2364 2365 2366 2367 2368 2369 2370

    helper.append_op(
        type="batch_norm",
        inputs={
            "X": input,
            "Scale": scale,
            "Bias": bias,
            "Mean": mean,
            "Variance": variance
        },
        outputs={
            "Y": batch_norm_out,
            "MeanOut": mean_out,
            "VarianceOut": variance_out,
            "SavedMean": saved_mean,
            "SavedVariance": saved_variance
        },
2371 2372 2373 2374
        attrs={
            "momentum": momentum,
            "epsilon": epsilon,
            "is_test": is_test,
X
Xin Pan 已提交
2375
            "use_mkldnn": False,
2376
            "fuse_with_relu": fuse_with_relu
2377
        })
Y
Yu Yang 已提交
2378 2379 2380 2381

    return helper.append_activation(batch_norm_out)


Y
yuyang18 已提交
2382
@templatedoc()
G
guosheng 已提交
2383 2384 2385 2386 2387 2388 2389 2390 2391 2392
def layer_norm(input,
               scale=True,
               shift=True,
               begin_norm_axis=1,
               epsilon=1e-05,
               param_attr=None,
               bias_attr=None,
               act=None,
               name=None):
    """
Y
yuyang18 已提交
2393
    ${comment}
G
guosheng 已提交
2394 2395 2396

    The formula is as follows:

Y
yuyang18 已提交
2397
    ..  math::
G
guosheng 已提交
2398 2399 2400 2401 2402 2403 2404

        \\mu & = \\frac{1}{H}\\sum_{i=1}^{H} a_i

        \\sigma & = \\sqrt{\\frac{1}{H}\sum_{i=1}^{H}(a_i - \\mu)^2}

        h & = f(\\frac{g}{\\sigma}(a - \\mu) + b)

Y
yuyang18 已提交
2405 2406 2407 2408 2409 2410 2411 2412
    * :math:`a`: the vector representation of the summed inputs to the neurons
    in that layer.

    * :math:`H`: the number of hidden units in a layers

    * :math:`g`: the trainable scale parameter.

    * :math:`b`: the trainable bias parameter.
Y
yuyang18 已提交
2413

G
guosheng 已提交
2414 2415
    Args:
        input(Variable): The input tensor variable.
2416
        scale(bool): Whether to learn the adaptive gain :math:`g` after
S
sneaxiy 已提交
2417
            normalization. Default True.
2418
        shift(bool): Whether to learn the adaptive bias :math:`b` after
S
sneaxiy 已提交
2419 2420
            normalization. Default True.
        begin_norm_axis(int): The normalization will be performed along
G
guosheng 已提交
2421
            dimensions from :attr:`begin_norm_axis` to :attr:`rank(input)`.
S
sneaxiy 已提交
2422
            Default 1.
2423
        epsilon(float): The small value added to the variance to prevent
S
sneaxiy 已提交
2424
            division by zero. Default 1e-05.
G
guosheng 已提交
2425
        param_attr(ParamAttr|None): The parameter attribute for the learnable
S
sneaxiy 已提交
2426 2427
            gain :math:`g`. If :attr:`scale` is False, :attr:`param_attr` is
            omitted. If :attr:`scale` is True and :attr:`param_attr` is None,
2428 2429
            a default :code:`ParamAttr` would be added as scale. The
            :attr:`param_attr` is initialized as 1 if it is added. Default None.
G
guosheng 已提交
2430
        bias_attr(ParamAttr|None): The parameter attribute for the learnable
S
sneaxiy 已提交
2431 2432
            bias :math:`b`. If :attr:`shift` is False, :attr:`bias_attr` is
            omitted. If :attr:`shift` is True and :attr:`param_attr` is None,
2433
            a default :code:`ParamAttr` would be added as bias. The
S
sneaxiy 已提交
2434
            :attr:`bias_attr` is initialized as 0 if it is added. Default None.
G
guosheng 已提交
2435
        act(str): Activation to be applied to the output of layer normalizaiton.
S
sneaxiy 已提交
2436 2437 2438
                  Default None.
        name(str): The name of this layer. It is optional. Default None, and a
                   unique name would be generated automatically.
G
guosheng 已提交
2439 2440

    Returns:
Y
yuyang18 已提交
2441
        ${y_comment}
G
guosheng 已提交
2442 2443 2444

    Examples:

Y
yuyang18 已提交
2445 2446 2447
        >>> data = fluid.layers.data(name='data', shape=[3, 32, 32],
        >>>                          dtype='float32')
        >>> x = fluid.layers.layer_norm(input=data, begin_norm_axis=1)
G
guosheng 已提交
2448 2449 2450 2451 2452 2453 2454 2455 2456 2457 2458 2459 2460 2461 2462
    """
    helper = LayerHelper('layer_norm', **locals())
    dtype = helper.input_dtype()

    # create intput and parameters
    inputs = {'X': input}
    input_shape = input.shape
    param_shape = [reduce(lambda x, y: x * y, input_shape[begin_norm_axis:])]
    if scale:
        scale = helper.create_parameter(
            attr=helper.param_attr,
            shape=param_shape,
            dtype=dtype,
            default_initializer=Constant(1.0))
        inputs['Scale'] = scale
G
guosheng 已提交
2463
    if shift:
G
guosheng 已提交
2464 2465 2466 2467 2468 2469
        assert bias_attr is not False
        bias = helper.create_parameter(
            attr=helper.bias_attr, shape=param_shape, dtype=dtype, is_bias=True)
        inputs['Bias'] = bias

    # create output
X
Xin Pan 已提交
2470 2471 2472 2473 2474
    mean_out = helper.create_variable_for_type_inference(
        dtype=dtype, stop_gradient=True)
    variance_out = helper.create_variable_for_type_inference(
        dtype=dtype, stop_gradient=True)
    layer_norm_out = helper.create_variable_for_type_inference(dtype)
G
guosheng 已提交
2475 2476 2477 2478 2479 2480 2481 2482 2483 2484 2485 2486 2487 2488 2489

    helper.append_op(
        type="layer_norm",
        inputs=inputs,
        outputs={
            "Y": layer_norm_out,
            "Mean": mean_out,
            "Variance": variance_out,
        },
        attrs={"epsilon": epsilon,
               "begin_norm_axis": begin_norm_axis})

    return helper.append_activation(layer_norm_out)


Y
Yu Yang 已提交
2490 2491 2492 2493
def conv2d_transpose(input,
                     num_filters,
                     output_size=None,
                     filter_size=None,
C
chengduoZH 已提交
2494 2495 2496
                     padding=0,
                     stride=1,
                     dilation=1,
2497
                     groups=None,
C
caoying03 已提交
2498
                     param_attr=None,
2499
                     bias_attr=None,
C
chengduoZH 已提交
2500
                     use_cudnn=True,
2501
                     act=None,
C
caoying03 已提交
2502
                     name=None):
Y
Yu Yang 已提交
2503
    """
2504 2505 2506 2507 2508 2509 2510 2511
    **Convlution2D transpose layer**

    The convolution2D transpose layer calculates the output based on the input,
    filter, and dilations, strides, paddings. Input(Input) and output(Output)
    are in NCHW format. Where N is batch size, C is the number of channels,
    H is the height of the feature, and W is the width of the feature.
    Parameters(dilations, strides, paddings) are two elements. These two elements
    represent height and width, respectively. The details of convolution transpose
2512 2513
    layer, please refer to the following explanation and references
    `therein <http://www.matthewzeiler.com/wp-content/uploads/2017/07/cvpr2010.pdf>`_.
2514 2515 2516
    If bias attribution and activation type are provided, bias is added to
    the output of the convolution, and the corresponding activation function
    is applied to the final result.
2517 2518 2519 2520 2521

    For each input :math:`X`, the equation is:

    .. math::

2522
        Out = \sigma (W \\ast X + b)
2523

2524
    Where:
2525 2526 2527

    * :math:`X`: Input value, a tensor with NCHW format.
    * :math:`W`: Filter value, a tensor with MCHW format.
2528 2529 2530 2531
    * :math:`\\ast`: Convolution operation.
    * :math:`b`: Bias value, a 2-D tensor with shape [M, 1].
    * :math:`\\sigma`: Activation function.
    * :math:`Out`: Output value, the shape of :math:`Out` and :math:`X` may be different.
Y
Yu Yang 已提交
2532

2533 2534 2535 2536
    Example:

        - Input:

2537
          Input shape: :math:`(N, C_{in}, H_{in}, W_{in})`
2538

2539
          Filter shape: :math:`(C_{in}, C_{out}, H_f, W_f)`
2540 2541 2542

        - Output:

2543
          Output shape: :math:`(N, C_{out}, H_{out}, W_{out})`
2544 2545

        Where
Y
Yu Yang 已提交
2546

2547 2548
        .. math::

2549 2550 2551 2552
           H^\prime_{out} &= (H_{in} - 1) * strides[0] - 2 * paddings[0] + dilations[0] * (H_f - 1) + 1 \\\\
           W^\prime_{out} &= (W_{in} - 1) * strides[1] - 2 * paddings[1] + dilations[1] * (W_f - 1) + 1 \\\\
           H_{out} \in [ H^\prime_{out}, H^\prime_{out} + strides[0] ) \\\\
           W_{out} \in [ W^\prime_{out}, W^\prime_{out} + strides[1] )
Y
Yu Yang 已提交
2553 2554

    Args:
2555 2556 2557 2558
        input(Variable): The input image with [N, C, H, W] format.
        num_filters(int): The number of the filter. It is as same as the output
            image channel.
        output_size(int|tuple|None): The output image size. If output size is a
2559 2560 2561 2562
            tuple, it must contain two integers, (image_H, image_W). None if use
            filter_size, padding, and stride to calculate output_size.
            if output_size and filter_size are specified at the same time, They
            should follow the formula above.
2563 2564 2565 2566 2567 2568 2569 2570 2571 2572 2573 2574 2575 2576 2577 2578 2579 2580
        filter_size(int|tuple|None): The filter size. If filter_size is a tuple,
            it must contain two integers, (filter_size_H, filter_size_W).
            Otherwise, the filter will be a square. None if use output size to
            calculate filter_size.
        padding(int|tuple): The padding size. If padding is a tuple, it must
            contain two integers, (padding_H, padding_W). Otherwise, the
            padding_H = padding_W = padding. Default: padding = 0.
        stride(int|tuple): The stride size. If stride is a tuple, it must
            contain two integers, (stride_H, stride_W). Otherwise, the
            stride_H = stride_W = stride. Default: stride = 1.
        dilation(int|tuple): The dilation size. If dilation is a tuple, it must
            contain two integers, (dilation_H, dilation_W). Otherwise, the
            dilation_H = dilation_W = dilation. Default: dilation = 1.
        groups(int): The groups number of the Conv2d transpose layer. Inspired by
            grouped convolution in Alex Krizhevsky's Deep CNN paper, in which
            when group=2, the first half of the filters is only connected to the
            first half of the input channels, while the second half of the
            filters is only connected to the second half of the input channels.
C
chengduo 已提交
2581 2582 2583 2584 2585 2586 2587 2588 2589 2590
            Default: groups = 1.
        param_attr (ParamAttr|None): The parameter attribute for learnable parameters/weights
            of conv2d_transpose. If it is set to None or one attribute of ParamAttr, conv2d_transpose
            will create ParamAttr as param_attr. If the Initializer of the param_attr
            is not set, the parameter is initialized with Xavier. Default: None.
        bias_attr (ParamAttr|bool|None): The parameter attribute for the bias of conv2d_transpose.
            If it is set to False, no bias will be added to the output units.
            If it is set to None or one attribute of ParamAttr, conv2d_transpose
            will create ParamAttr as bias_attr. If the Initializer of the bias_attr
            is not set, the bias is initialized zero. Default: None.
2591
        use_cudnn(bool): Use cudnn kernel or not, it is valid only when the cudnn
C
chengduo 已提交
2592 2593 2594
            library is installed. Default: True.
        act (str): Activation type, if it is set to None, activation is not appended.
            Default: None.
2595
        name(str|None): A name for this layer(optional). If set None, the layer
C
chengduo 已提交
2596
            will be named automatically. Default: True.
Y
Yu Yang 已提交
2597 2598

    Returns:
2599
        Variable: The tensor variable storing the convolution transpose result.
2600 2601

    Raises:
2602 2603
        ValueError: If the shapes of input, filter_size, stride, padding and
                    groups mismatch.
2604 2605 2606 2607

    Examples:
       .. code-block:: python

2608 2609
          data = fluid.layers.data(name='data', shape=[3, 32, 32], dtype='float32')
          conv2d_transpose = fluid.layers.conv2d_transpose(input=data, num_filters=2, filter_size=3)
Y
Yu Yang 已提交
2610
    """
C
chengduo 已提交
2611
    assert param_attr is not False, "param_attr should not be False in conv2d_transpose."
2612 2613 2614 2615 2616 2617 2618 2619
    input_channel = input.shape[1]

    op_type = 'conv2d_transpose'
    if (input_channel == groups and num_filters == input_channel and
            not use_cudnn):
        op_type = 'depthwise_conv2d_transpose'

    helper = LayerHelper(op_type, **locals())
Y
Yu Yang 已提交
2620 2621 2622
    if not isinstance(input, Variable):
        raise TypeError("Input of conv2d_transpose must be Variable")

C
chengduoZH 已提交
2623 2624 2625
    padding = utils.convert_to_list(padding, 2, 'padding')
    stride = utils.convert_to_list(stride, 2, 'stride')
    dilation = utils.convert_to_list(dilation, 2, 'dilation')
G
guosheng 已提交
2626

C
chengduoZH 已提交
2627 2628
    if not isinstance(use_cudnn, bool):
        raise ValueError("use_cudnn should be True or False")
G
guosheng 已提交
2629

Y
Yu Yang 已提交
2630 2631 2632 2633 2634
    if filter_size is None:
        if output_size is None:
            raise ValueError("output_size must be set when filter_size is None")
        if isinstance(output_size, int):
            output_size = [output_size, output_size]
G
guosheng 已提交
2635

Y
Yu Yang 已提交
2636 2637
        h_in = input.shape[2]
        w_in = input.shape[3]
G
guosheng 已提交
2638

C
chengduoZH 已提交
2639
        filter_size_h = (output_size[0] - (h_in - 1) * stride[0] + 2 *
M
minqiyang 已提交
2640
                         padding[0] - 1) // dilation[0] + 1
C
chengduoZH 已提交
2641
        filter_size_w = (output_size[1] - (w_in - 1) * stride[1] + 2 *
M
minqiyang 已提交
2642
                         padding[1] - 1) // dilation[1] + 1
Y
Yu Yang 已提交
2643
        filter_size = [filter_size_h, filter_size_w]
C
chengduoZH 已提交
2644 2645 2646
    else:
        filter_size = utils.convert_to_list(filter_size, 2,
                                            'conv2d_transpose.filter_size')
C
chengduo 已提交
2647

2648 2649 2650 2651 2652 2653 2654
    if output_size is None:
        output_size = []
    elif isinstance(output_size, list) or isinstance(output_size, int):
        output_size = utils.convert_to_list(output_size, 2, 'output_size')
    else:
        raise ValueError("output_size should be list or int")
    padding = utils.convert_to_list(padding, 2, 'padding')
2655
    groups = 1 if groups is None else groups
M
minqiyang 已提交
2656
    filter_shape = [input_channel, num_filters // groups] + filter_size
C
chengduo 已提交
2657

Y
Yu Yang 已提交
2658 2659 2660
    img_filter = helper.create_parameter(
        dtype=input.dtype, shape=filter_shape, attr=helper.param_attr)

X
Xin Pan 已提交
2661
    pre_bias = helper.create_variable_for_type_inference(dtype=input.dtype)
Y
Yu Yang 已提交
2662
    helper.append_op(
2663
        type=op_type,
Y
Yu Yang 已提交
2664 2665
        inputs={'Input': [input],
                'Filter': [img_filter]},
2666
        outputs={'Output': pre_bias},
C
chengduoZH 已提交
2667
        attrs={
2668
            'output_size': output_size,
2669 2670 2671 2672 2673
            'strides': stride,
            'paddings': padding,
            'dilations': dilation,
            'groups': groups,
            'use_cudnn': use_cudnn
Y
Yu Yang 已提交
2674 2675
        })

2676 2677 2678
    pre_act = helper.append_bias_op(pre_bias, dim_start=1, dim_end=2)
    out = helper.append_activation(pre_act)
    return out
Y
Yu Yang 已提交
2679 2680


2681
def conv3d_transpose(input,
Y
Yu Yang 已提交
2682 2683 2684
                     num_filters,
                     output_size=None,
                     filter_size=None,
C
chengduoZH 已提交
2685 2686 2687
                     padding=0,
                     stride=1,
                     dilation=1,
2688
                     groups=None,
C
caoying03 已提交
2689
                     param_attr=None,
2690
                     bias_attr=None,
C
chengduoZH 已提交
2691
                     use_cudnn=True,
2692
                     act=None,
C
caoying03 已提交
2693
                     name=None):
Y
Yu Yang 已提交
2694
    """
2695
    **Convlution3D transpose layer**
2696

2697
    The convolution3D transpose layer calculates the output based on the input,
2698
    filter, and dilations, strides, paddings. Input(Input) and output(Output)
2699 2700 2701 2702 2703 2704
    are in NCDHW format. Where N is batch size, C is the number of channels,
    D is the depth of the feature, H is the height of the feature, and W
    is the width of the feature. Parameters(dilations, strides, paddings) are
    two elements. These two elements represent height and width, respectively.
    The details of convolution transpose layer, please refer to the following
    explanation and references `therein <http://www.matthewzeiler.com/wp-content/uploads/2017/07/cvpr2010.pdf>`_.
2705 2706 2707
    If bias attribution and activation type are provided, bias is added to
    the output of the convolution, and the corresponding activation function
    is applied to the final result.
2708 2709 2710 2711 2712

    For each input :math:`X`, the equation is:

    .. math::

2713
        Out = \sigma (W \\ast X + b)
2714 2715 2716

    In the above equation:

2717 2718
    * :math:`X`: Input value, a tensor with NCDHW format.
    * :math:`W`: Filter value, a tensor with MCDHW format.
2719 2720 2721 2722
    * :math:`\\ast`: Convolution operation.
    * :math:`b`: Bias value, a 2-D tensor with shape [M, 1].
    * :math:`\\sigma`: Activation function.
    * :math:`Out`: Output value, the shape of :math:`Out` and :math:`X` may be different.
Y
Yu Yang 已提交
2723

2724 2725 2726 2727
    Example:

        - Input:

2728
          Input shape: :math:`(N, C_{in}, D_{in}, H_{in}, W_{in})`
2729

2730
          Filter shape: :math:`(C_{in}, C_{out}, D_f, H_f, W_f)`
2731 2732 2733

        - Output:

2734
          Output shape: :math:`(N, C_{out}, D_{out}, H_{out}, W_{out})`
2735 2736

        Where
Y
Yu Yang 已提交
2737

2738 2739
        .. math::

2740 2741 2742
           D_{out} &= (D_{in} - 1) * strides[0] - 2 * paddings[0] + dilations[0] * (D_f - 1) + 1 \\\\
           H_{out} &= (H_{in} - 1) * strides[1] - 2 * paddings[1] + dilations[1] * (H_f - 1) + 1 \\\\
           W_{out} &= (W_{in} - 1) * strides[2] - 2 * paddings[2] + dilations[2] * (W_f - 1) + 1
Y
Yu Yang 已提交
2743 2744

    Args:
2745
        input(Variable): The input image with [N, C, D, H, W] format.
2746 2747 2748
        num_filters(int): The number of the filter. It is as same as the output
            image channel.
        output_size(int|tuple|None): The output image size. If output size is a
2749
            tuple, it must contain three integers, (image_D, image_H, image_W). This
2750 2751
            parameter only works when filter_size is None.
        filter_size(int|tuple|None): The filter size. If filter_size is a tuple,
2752
            it must contain three integers, (filter_size_D, filter_size_H, filter_size_W).
2753 2754 2755
            Otherwise, the filter will be a square. None if use output size to
            calculate filter_size.
        padding(int|tuple): The padding size. If padding is a tuple, it must
2756 2757
            contain three integers, (padding_D, padding_H, padding_W). Otherwise, the
            padding_D = padding_H = padding_W = padding. Default: padding = 0.
2758
        stride(int|tuple): The stride size. If stride is a tuple, it must
2759 2760
            contain three integers, (stride_D, stride_H, stride_W). Otherwise, the
            stride_D = stride_H = stride_W = stride. Default: stride = 1.
2761
        dilation(int|tuple): The dilation size. If dilation is a tuple, it must
2762 2763 2764
            contain three integers, (dilation_D, dilation_H, dilation_W). Otherwise, the
            dilation_D = dilation_H = dilation_W = dilation. Default: dilation = 1.
        groups(int): The groups number of the Conv3d transpose layer. Inspired by
2765 2766 2767 2768 2769
            grouped convolution in Alex Krizhevsky's Deep CNN paper, in which
            when group=2, the first half of the filters is only connected to the
            first half of the input channels, while the second half of the
            filters is only connected to the second half of the input channels.
            Default: groups=1
C
chengduo 已提交
2770 2771 2772 2773 2774 2775 2776 2777 2778
        param_attr (ParamAttr|None): The parameter attribute for learnable parameters/weights
            of conv3d_transpose. If it is set to None or one attribute of ParamAttr, conv3d_transpose
            will create ParamAttr as param_attr. If the Initializer of the param_attr
            is not set, the parameter is initialized with Xavier. Default: None.
        bias_attr (ParamAttr|bool|None): The parameter attribute for the bias of conv3d_transpose.
            If it is set to False, no bias will be added to the output units.
            If it is set to None or one attribute of ParamAttr, conv3d_transpose
            will create ParamAttr as bias_attr. If the Initializer of the bias_attr
            is not set, the bias is initialized zero. Default: None.
2779 2780
        use_cudnn(bool): Use cudnn kernel or not, it is valid only when the cudnn
            library is installed. Default: True
C
chengduo 已提交
2781 2782
        act (str): Activation type, if it is set to None, activation is not appended.
            Default: None.
2783 2784
        name(str|None): A name for this layer(optional). If set None, the layer
            will be named automatically.
Y
Yu Yang 已提交
2785 2786

    Returns:
2787
        Variable: The tensor variable storing the convolution transpose result.
2788 2789

    Raises:
2790 2791
        ValueError: If the shapes of input, filter_size, stride, padding and
                    groups mismatch.
2792 2793 2794 2795

    Examples:
       .. code-block:: python

2796 2797
          data = fluid.layers.data(name='data', shape=[3, 12, 32, 32], dtype='float32')
          conv3d_transpose = fluid.layers.conv3d_transpose(input=data, num_filters=2, filter_size=3)
Y
Yu Yang 已提交
2798
    """
C
chengduo 已提交
2799
    assert param_attr is not False, "param_attr should not be False in conv3d_transpose."
2800 2801
    l_type = "conv3d_transpose"
    helper = LayerHelper(l_type, **locals())
Y
Yu Yang 已提交
2802
    if not isinstance(input, Variable):
2803
        raise TypeError("Input of conv3d_transpose must be Variable")
Y
Yu Yang 已提交
2804 2805
    input_channel = input.shape[1]

2806 2807 2808
    padding = utils.convert_to_list(padding, 3, 'padding')
    stride = utils.convert_to_list(stride, 3, 'stride')
    dilation = utils.convert_to_list(dilation, 3, 'dilation')
C
chengduoZH 已提交
2809

C
chengduoZH 已提交
2810 2811 2812
    if not isinstance(use_cudnn, bool):
        raise ValueError("use_cudnn should be True or False")

Y
Yu Yang 已提交
2813 2814 2815 2816 2817 2818
    if filter_size is None:
        if output_size is None:
            raise ValueError("output_size must be set when filter_size is None")
        if isinstance(output_size, int):
            output_size = [output_size, output_size]

2819 2820 2821
        d_in = input.shape[2]
        h_in = input.shape[3]
        w_in = input.shape[4]
C
chengduoZH 已提交
2822

2823
        filter_size_d = (output_size[0] - (d_in - 1) * stride[0] + 2 *
M
minqiyang 已提交
2824
                         padding[0] - 1) // dilation[0] + 1
2825
        filter_size_h = (output_size[1] - (h_in - 1) * stride[1] + 2 *
M
minqiyang 已提交
2826
                         padding[1] - 1) // dilation[1] + 1
2827
        filter_size_w = (output_size[2] - (w_in - 1) * stride[2] + 2 *
M
minqiyang 已提交
2828
                         padding[2] - 1) // dilation[2] + 1
2829
        filter_size = [filter_size_d, filter_size_h, filter_size_w]
C
chengduoZH 已提交
2830
    else:
2831 2832
        filter_size = utils.convert_to_list(filter_size, 3,
                                            'conv3d_transpose.filter_size')
Y
Yu Yang 已提交
2833

2834
    groups = 1 if groups is None else groups
M
minqiyang 已提交
2835
    filter_shape = [input_channel, num_filters // groups] + filter_size
Y
Yu Yang 已提交
2836 2837 2838
    img_filter = helper.create_parameter(
        dtype=input.dtype, shape=filter_shape, attr=helper.param_attr)

X
Xin Pan 已提交
2839
    pre_bias = helper.create_variable_for_type_inference(dtype=input.dtype)
Y
Yu Yang 已提交
2840
    helper.append_op(
2841
        type=l_type,
Y
Yu Yang 已提交
2842 2843
        inputs={'Input': [input],
                'Filter': [img_filter]},
2844
        outputs={'Output': pre_bias},
C
chengduoZH 已提交
2845 2846 2847 2848
        attrs={
            'strides': stride,
            'paddings': padding,
            'dilations': dilation,
2849
            'groups': groups,
C
chengduoZH 已提交
2850 2851
            'use_cudnn': use_cudnn
        })
Y
Yu Yang 已提交
2852

2853 2854
    pre_act = helper.append_bias_op(pre_bias, dim_start=1, dim_end=2)
    out = helper.append_activation(pre_act)
Y
Yu Yang 已提交
2855
    return out
Y
yangyaming 已提交
2856 2857


Y
yangyaming 已提交
2858
def sequence_expand(x, y, ref_level=-1, name=None):
2859
    """Sequence Expand Layer. This layer will expand the input variable **x**
Y
yangyaming 已提交
2860 2861 2862 2863
    according to specified level lod of **y**. Please note that lod level of
    **x** is at most 1 and rank of **x** is at least 2. When rank of **x**
    is greater than 2, then it would be viewed as a 2-D tensor.
    Following examples will explain how sequence_expand works:
2864 2865 2866 2867 2868

    .. code-block:: text

        * Case 1
            x is a LoDTensor:
2869
                x.lod  = [[2,        2]]
Y
yangyaming 已提交
2870
                x.data = [[a], [b], [c], [d]]
2871 2872 2873
                x.dims = [4, 1]

            y is a LoDTensor:
2874 2875
                y.lod = [[2,    2],
                         [3, 3, 1, 1]]
2876

Y
yangyaming 已提交
2877
            ref_level: 0
2878

Y
yangyaming 已提交
2879
            then output is a 1-level LoDTensor:
2880
                out.lod =  [[2,        2,        2,        2]]
Y
yangyaming 已提交
2881
                out.data = [[a], [b], [a], [b], [c], [d], [c], [d]]
2882 2883 2884 2885
                out.dims = [8, 1]

        * Case 2
            x is a Tensor:
Y
yangyaming 已提交
2886
                x.data = [[a], [b], [c]]
2887 2888 2889
                x.dims = [3, 1]

            y is a LoDTensor:
2890
                y.lod = [[2, 0, 3]]
2891

Y
yangyaming 已提交
2892
            ref_level: -1
2893

Y
yangyaming 已提交
2894 2895 2896
            then output is a Tensor:
                out.data = [[a], [a], [c], [c], [c]]
                out.dims = [5, 1]
2897 2898 2899
    Args:
        x (Variable): The input variable which is a Tensor or LoDTensor.
        y (Variable): The input variable which is a LoDTensor.
Y
yangyaming 已提交
2900 2901
        ref_level (int): Lod level of `y` to be referred by `x`. If set to -1,
                         refer the last level of lod.
C
caoying03 已提交
2902
        name(str|None): A name for this layer(optional). If set None, the layer
Y
yangyaming 已提交
2903
                        will be named automatically.
2904 2905 2906 2907 2908 2909 2910 2911 2912 2913

    Returns:
        Variable: The expanded variable which is a LoDTensor.

    Examples:
        .. code-block:: python

            x = fluid.layers.data(name='x', shape=[10], dtype='float32')
            y = fluid.layers.data(name='y', shape=[10, 20],
                             dtype='float32', lod_level=1)
Y
yangyaming 已提交
2914
            out = layers.sequence_expand(x=x, y=y, ref_level=0)
2915
    """
Y
yangyaming 已提交
2916
    helper = LayerHelper('sequence_expand', input=x, **locals())
2917
    dtype = helper.input_dtype()
X
Xin Pan 已提交
2918
    tmp = helper.create_variable_for_type_inference(dtype)
2919
    helper.append_op(
Y
yangyaming 已提交
2920 2921 2922 2923 2924
        type='sequence_expand',
        inputs={'X': x,
                'Y': y},
        outputs={'Out': tmp},
        attrs={'ref_level': ref_level})
2925
    return tmp
2926 2927


C
chengduo 已提交
2928 2929 2930 2931 2932 2933 2934 2935 2936 2937 2938 2939 2940 2941 2942 2943 2944 2945 2946 2947 2948 2949 2950 2951 2952 2953 2954 2955 2956 2957 2958 2959 2960 2961 2962 2963 2964 2965 2966 2967 2968 2969 2970 2971 2972 2973 2974 2975 2976 2977 2978 2979 2980 2981 2982 2983
def sequence_expand_as(x, y, name=None):
    """Sequence Expand As Layer. This layer will expand the input variable **x**
    according to the zeroth level lod of **y**. Current implementation requires
    the level number of Input(Y)'s lod must be 1, and the first dimension of
    Input(X) should be equal to the size of Input(Y)'s zeroth level lod, and
    lod of Input(X) is not considered.

    Following examples will explain how sequence_expand_as works:

    .. code-block:: text

        * Case 1:

            Given a 1-level LoDTensor input(X)
                X.data = [[a], [b], [c], [d]]
                X.dims = [4, 1]
            and input(Y)
                Y.lod = [[0, 3, 6, 7, 8]]
            ref_level: 0
            then we get 1-level LoDTensor
                Out.lod =  [[0,            3,              6,  7,  8]]
                Out.data = [[a], [a], [a], [b], [b], [b], [c], [d]]
                Out.dims = [8, 1]

        * Case 2:

            Given a common Tensor input(X)
                X.data = [[a, b], [c, d], [e, f]]
                X.dims = [3, 2]
            and input(Y)
                Y.lod = [[0, 2, 3, 6]]
            ref_level: 0
            then we get a common LoDTensor
                Out.lod =  [[0,             2,     3,                    6]]
                Out.data = [[a, b], [a, b] [c, d], [e, f], [e, f], [e, f]]
                Out.dims = [6, 2]

    Args:
        x (Variable): The input variable which is a Tensor or LoDTensor.
        y (Variable): The input variable which is a LoDTensor.
        name(str|None): A name for this layer(optional). If set None, the layer
                        will be named automatically.

    Returns:
        Variable: The expanded variable which is a LoDTensor.

    Examples:
        .. code-block:: python

            x = fluid.layers.data(name='x', shape=[10], dtype='float32')
            y = fluid.layers.data(name='y', shape=[10, 20],
                             dtype='float32', lod_level=1)
            out = layers.sequence_expand_as(x=x, y=y)
    """
    helper = LayerHelper('sequence_expand_as', input=x, **locals())
    dtype = helper.input_dtype()
X
Xin Pan 已提交
2984
    tmp = helper.create_variable_for_type_inference(dtype)
C
chengduo 已提交
2985 2986 2987 2988 2989 2990 2991 2992
    helper.append_op(
        type='sequence_expand_as',
        inputs={'X': x,
                'Y': y},
        outputs={'Out': tmp})
    return tmp


F
fengjiayi 已提交
2993
@templatedoc()
2994
def sequence_pad(x, pad_value, maxlen=None, name=None):
F
fengjiayi 已提交
2995 2996 2997 2998 2999
    """
    ${comment}

    Args:
        x(Variable): Input variable which should contain lod information.
M
minqiyang 已提交
3000 3001 3002
        pad_value(Variable): The Variable that holds values that will be fill
            into padded steps. It can be a scalar or a tensor whose shape
            equals to time steps in sequences. If it's a scalar, it will be
F
fengjiayi 已提交
3003
            automatically broadcasted to the shape of time step.
M
minqiyang 已提交
3004 3005 3006 3007
        maxlen(int, default None): The length of padded sequences. It can be
            None or any positive int. When it is None, all sequences will be
            padded up to the length of the longest one among them; when it a
            certain positive value, it must be greater than the length of the
3008 3009 3010
            longest original sequence.
        name(str|None): A name for this layer(optional). If set None, the layer
            will be named automatically.
M
minqiyang 已提交
3011

F
fengjiayi 已提交
3012
    Returns:
M
minqiyang 已提交
3013
        Variable: The padded sequence batch and the original lengths before
3014
                  padding. All sequences has the same length.
M
minqiyang 已提交
3015

F
fengjiayi 已提交
3016 3017 3018 3019 3020 3021 3022
    Examples:
        .. code-block:: python

            import numpy

            x = fluid.layers.data(name='y', shape=[10, 5],
                             dtype='float32', lod_level=1)
G
gmcather 已提交
3023 3024
            pad_value = fluid.layers.assign(
                input=numpy.array([0], dtype=numpy.float32))
F
fengjiayi 已提交
3025 3026 3027 3028 3029
            out = fluid.layers.sequence_pad(x=x, pad_value=pad_value)
    """

    helper = LayerHelper('sequence_pad', input=x, **locals())
    dtype = helper.input_dtype()
X
Xin Pan 已提交
3030 3031
    out = helper.create_variable_for_type_inference(dtype)
    length = helper.create_variable_for_type_inference(dtype)
3032 3033 3034 3035

    pad_value.stop_gradient = True
    length.stop_gradient = True

F
fengjiayi 已提交
3036 3037 3038 3039 3040 3041
    if maxlen is None:
        maxlen = -1
    helper.append_op(
        type='sequence_pad',
        inputs={'X': x,
                'PadValue': pad_value},
3042 3043
        outputs={'Out': out,
                 'Length': length},
F
fengjiayi 已提交
3044
        attrs={'padded_length': maxlen})
3045
    return out, length
F
fengjiayi 已提交
3046 3047


3048
def sequence_unpad(x, length, name=None):
Y
Yibing Liu 已提交
3049
    """
3050
    **Sequence Unpad Layer**
Y
Yibing Liu 已提交
3051

3052 3053
    This layer removes the padding data in the input sequences and convert
    them into sequences with actual length as output, identitied by lod
Y
Yibing Liu 已提交
3054 3055 3056 3057 3058 3059 3060 3061 3062
    information.

    .. code-block:: text

	Example:

	Given input Variable **x**:
	    x.data = [[ 1.0,  2.0,  3.0,  4.0,  5.0],
		      [ 6.0,  7.0,  8.0,  9.0, 10.0],
3063 3064 3065
		      [11.0, 12.0, 13.0, 14.0, 15.0]],

	in which there are 3 sequences padded to length 5, and the acutal length
3066
	specified by input Variable **length**:
Y
Yibing Liu 已提交
3067 3068 3069 3070 3071 3072

	    length.data = [[2], [3], [4]],

	after unpadding, the output Variable will be:

	    out.data = [[1.0, 2.0, 6.0, 7.0, 8.0, 11.0, 12.0, 13.0, 14.0]]
3073
	    out.lod = [[2, 3, 4]]
Y
Yibing Liu 已提交
3074 3075 3076 3077 3078 3079

    Args:
        x(Variable): Input Variable which contains the padded sequences with
            equal length.
        length(Variable): The Variable that specifies the actual ength of
            sequences after unpadding.
3080 3081
        name(str|None): A name for this layer(optional). If set None, the layer
            will be named automatically.
Y
Yibing Liu 已提交
3082 3083 3084 3085 3086 3087 3088 3089 3090 3091 3092 3093 3094 3095

    Returns:
        Variable: The Variable contains the unpadded sequences.

    Examples:
        .. code-block:: python

            x = fluid.layers.data(name='x', shape=[10, 5], dtype='float32')
            len = fluid.layers.data(name='length', shape=[1], dtype='int64')
            out = fluid.layers.sequence_unpad(x=x, length=len)
    """

    helper = LayerHelper('sequence_unpad', input=x, **locals())
    dtype = helper.input_dtype()
X
Xin Pan 已提交
3096
    out = helper.create_variable_for_type_inference(dtype)
Y
Yibing Liu 已提交
3097 3098 3099 3100 3101 3102 3103 3104 3105 3106 3107

    length.stop_gradient = True

    helper.append_op(
        type='sequence_unpad',
        inputs={'X': x,
                'Length': length},
        outputs={'Out': out})
    return out


3108 3109 3110 3111 3112 3113 3114 3115 3116
def beam_search(pre_ids,
                pre_scores,
                ids,
                scores,
                beam_size,
                end_id,
                level=0,
                name=None):
    """
3117 3118
    Beam search is a classical algorithm for selecting candidate words in a
    machine translation task.
Y
Yan Chunwei 已提交
3119 3120 3121

    Refer to `Beam search <https://en.wikipedia.org/wiki/Beam_search>`_
    for more details.
M
minqiyang 已提交
3122 3123

    This layer does the search in beams for one time step. Specifically, it
3124 3125 3126 3127 3128 3129
    selects the top-K candidate word ids of current step from :attr:`ids`
    according to their :attr:`scores` for all source sentences, where K is
    :attr:`beam_size` and :attr:`ids, scores` are predicted results from the
    computation cell. Additionally, :attr:`pre_ids` and :attr:`pre_scores` are
    the output of beam_search at previous step, they are needed for special use
    to handle ended candidate translations.
M
minqiyang 已提交
3130

3131 3132 3133 3134 3135 3136 3137 3138
    Note that the :attr:`scores` passed in should be accumulated scores, and
    length penalty should be done with extra operators before calculating the
    accumulated scores if needed, also suggest finding top-K before it and
    using the top-K candidates following.

    Please see the following demo for a fully beam search usage example:

        fluid/tests/book/test_machine_translation.py
Y
Yan Chunwei 已提交
3139

3140
    Args:
3141 3142 3143 3144 3145 3146 3147 3148 3149 3150 3151 3152 3153 3154 3155 3156 3157 3158 3159 3160 3161 3162 3163 3164 3165
        pre_ids(Variable): The LodTensor variable which is the output of
            beam_search at previous step. It should be a LodTensor with shape
            :math:`(batch_size, 1)` and lod
            :math:`[[0, 1, ... , batch_size], [0, 1, ..., batch_size]]` at the
            first step.
        pre_scores(Variable): The LodTensor variable which is the output of
            beam_search at previous step.
        ids(Variable): The LodTensor variable containing the candidates ids.
            Its shape should be :math:`(batch_size \\times beam_size, K)`,
            where :math:`K` supposed to be :attr:`beam_size`.
        scores(Variable): The LodTensor variable containing the accumulated
            scores corresponding to :attr:`ids` and its shape is the same as
            the shape of :attr:`ids`.
        beam_size(int): The beam width used in beam search.
        end_id(int): The id of end token.
        level(int, default 0): It can be ignored and mustn't change currently.
            It means the source level of lod, which is explained as following.
            The lod level of :attr:`ids` should be 2. The first level is source
            level which describes how many prefixes (branchs) for each source
            sentece (beam), and the second level is sentence level which
            describes how these candidates belong to the prefix. The paths
            linking prefixes and selected candidates are organized and reserved
            in lod.
        name(str|None): A name for this layer(optional). If set None, the layer
                        will be named automatically.
F
fengjiayi 已提交
3166

3167
    Returns:
3168 3169
        Variable: The LodTensor pair containing the selected ids and the \
            corresponding scores.
Y
Yan Chunwei 已提交
3170 3171 3172 3173

    Examples:
        .. code-block:: python

3174 3175 3176 3177 3178 3179 3180 3181 3182 3183 3184 3185 3186 3187 3188 3189 3190
            # Suppose `probs` contains predicted results from the computation
            # cell and `pre_ids` and `pre_scores` is the output of beam_search
            # at previous step.
            topk_scores, topk_indices = layers.topk(probs, k=beam_size)
            accu_scores = layers.elementwise_add(
                x=layers.log(x=topk_scores)),
                y=layers.reshape(
                    pre_scores, shape=[-1]),
                axis=0)
            selected_ids, selected_scores = layers.beam_search(
                pre_ids=pre_ids,
                pre_scores=pre_scores,
                ids=topk_indices,
                scores=accu_scores,
                beam_size=beam_size,
                end_id=end_id)
    """
Q
Qiao Longfei 已提交
3191 3192 3193 3194
    helper = LayerHelper('beam_search', **locals())
    score_type = scores.dtype
    id_type = ids.dtype

X
Xin Pan 已提交
3195 3196 3197
    selected_scores = helper.create_variable_for_type_inference(
        dtype=score_type)
    selected_ids = helper.create_variable_for_type_inference(dtype=id_type)
Q
Qiao Longfei 已提交
3198 3199 3200 3201 3202

    helper.append_op(
        type='beam_search',
        inputs={
            'pre_ids': pre_ids,
3203
            'pre_scores': pre_scores,
Q
Qiao Longfei 已提交
3204 3205 3206 3207 3208 3209 3210 3211 3212 3213 3214 3215 3216 3217 3218 3219 3220
            'ids': ids,
            'scores': scores,
        },
        outputs={
            'selected_ids': selected_ids,
            'selected_scores': selected_scores,
        },
        attrs={
            # TODO(ChunweiYan) to assure other value support
            'level': level,
            'beam_size': beam_size,
            'end_id': end_id,
        })

    return selected_ids, selected_scores


3221 3222 3223 3224 3225 3226 3227
def beam_search_decode(ids, scores, beam_size, end_id, name=None):
    """
    Beam Search Decode Layer. This layer constructs the full hypotheses for
    each source sentence by walking back along the LoDTensorArray :attr:`ids`
    whose lods can be used to restore the path in the beam search tree.
    Please see the following demo for a fully beam search usage example:
        fluid/tests/book/test_machine_translation.py
G
guosheng 已提交
3228

3229 3230 3231 3232 3233 3234 3235 3236 3237
    Args:
        ids(Variable): The LodTensorArray variable containing the selected ids
            of all steps.
        scores(Variable): The LodTensorArray variable containing the selected
            scores of all steps.
        beam_size(int): The beam width used in beam search.
        end_id(int): The id of end token.
        name(str|None): A name for this layer(optional). If set None, the layer
                        will be named automatically.
G
guosheng 已提交
3238

3239 3240 3241 3242 3243 3244
    Returns:
        Variable: The LodTensor pair containing the generated id sequences \
            and the corresponding scores. The shapes and lods of the two \
            LodTensor are same. The lod level is 2 and the two levels \
            separately indicate how many hypotheses each source sentence has \
            and how many ids each hypothesis has.
G
guosheng 已提交
3245

3246 3247 3248 3249 3250 3251 3252 3253
    Examples:
        .. code-block:: python
            # Suppose `ids` and `scores` are LodTensorArray variables reserving
            # the selected ids and scores of all steps
            finished_ids, finished_scores = layers.beam_search_decode(
                ids, scores, beam_size=5, end_id=0)
    """
    helper = LayerHelper('beam_search_decode', **locals())
X
Xin Pan 已提交
3254 3255
    sentence_ids = helper.create_variable_for_type_inference(dtype=ids.dtype)
    sentence_scores = helper.create_variable_for_type_inference(dtype=ids.dtype)
3256 3257 3258 3259 3260 3261 3262 3263 3264 3265 3266 3267 3268 3269 3270

    helper.append_op(
        type="beam_search_decode",
        inputs={"Ids": ids,
                "Scores": scores},
        outputs={
            "SentenceIds": sentence_ids,
            "SentenceScores": sentence_scores
        },
        attrs={"beam_size": beam_size,
               "end_id": end_id})

    return sentence_ids, sentence_scores


Y
yangyaming 已提交
3271 3272 3273 3274
def lstm_unit(x_t,
              hidden_t_prev,
              cell_t_prev,
              forget_bias=0.0,
Y
yangyaming 已提交
3275
              param_attr=None,
C
caoying03 已提交
3276 3277
              bias_attr=None,
              name=None):
Y
yangyaming 已提交
3278 3279 3280 3281
    """Lstm unit layer. The equation of a lstm step is:

        .. math::

3282
            i_t & = \sigma(W_{x_i}x_{t} + W_{h_i}h_{t-1} + b_i)
Y
yangyaming 已提交
3283

3284
            f_t & = \sigma(W_{x_f}x_{t} + W_{h_f}h_{t-1} + b_f)
Y
yangyaming 已提交
3285

3286
            c_t & = f_tc_{t-1} + i_t tanh (W_{x_c}x_t + W_{h_c}h_{t-1} + b_c)
Y
yangyaming 已提交
3287

3288
            o_t & = \sigma(W_{x_o}x_{t} + W_{h_o}h_{t-1} + b_o)
Y
yangyaming 已提交
3289 3290 3291

            h_t & = o_t tanh(c_t)

3292 3293 3294 3295 3296 3297
    The inputs of lstm unit include :math:`x_t`, :math:`h_{t-1}` and
    :math:`c_{t-1}`. The 2nd dimensions of :math:`h_{t-1}` and :math:`c_{t-1}`
    should be same. The implementation separates the linear transformation and
    non-linear transformation apart. Here, we take :math:`i_t` as an example.
    The linear transformation is applied by calling a `fc` layer and the
    equation is:
Y
yangyaming 已提交
3298 3299 3300

        .. math::

3301
            L_{i_t} = W_{x_i}x_{t} + W_{h_i}h_{t-1} + b_i
Y
yangyaming 已提交
3302 3303 3304 3305 3306 3307 3308 3309

    The non-linear transformation is applied by calling `lstm_unit_op` and the
    equation is:

        .. math::

            i_t = \sigma(L_{i_t})

Y
yangyaming 已提交
3310
    This layer has two outputs including :math:`h_t` and :math:`o_t`.
Y
yangyaming 已提交
3311 3312

    Args:
Y
yangyaming 已提交
3313 3314 3315 3316 3317 3318
        x_t (Variable): The input value of current step, a 2-D tensor with shape
            M x N, M for batch size and N for input size.
        hidden_t_prev (Variable): The hidden value of lstm unit, a 2-D tensor
            with shape M x S, M for batch size and S for size of lstm unit.
        cell_t_prev (Variable): The cell value of lstm unit, a 2-D tensor with
            shape M x S, M for batch size and S for size of lstm unit.
Y
yangyaming 已提交
3319
        forget_bias (float): The forget bias of lstm unit.
C
chengduo 已提交
3320 3321 3322 3323 3324 3325 3326 3327 3328 3329 3330 3331
        param_attr(ParamAttr|None): The parameter attribute for the learnable
                               hidden-hidden weights.
                               If it is set to None or one attribute of ParamAttr,
                               lstm_unit will create ParamAttr as param_attr.
                               If the Initializer of the param_attr is not set, the
                               parameter is initialized with Xavier. Default: None.
        bias_attr (ParamAttr|None): The bias attribute for the learnable bias
                              weights. If it is set to False, no bias will be added
                              to the output units. If it is set to None or one attribute of ParamAttr,
                              lstm_unit will create ParamAttr as bias_attr.
                              If the Initializer of the bias_attr is not set,
                              the bias is initialized zero. Default: None.
C
caoying03 已提交
3332 3333
        name(str|None): A name for this layer(optional). If set None, the layer
                       will be named automatically.
Y
yangyaming 已提交
3334 3335

    Returns:
Y
yangyaming 已提交
3336
        tuple: The hidden value and cell value of lstm unit.
Y
yangyaming 已提交
3337 3338

    Raises:
3339 3340 3341 3342
        ValueError: The ranks of **x_t**, **hidden_t_prev** and **cell_t_prev**
                    not be 2 or the 1st dimensions of **x_t**, **hidden_t_prev**
                    and **cell_t_prev** not be the same or the 2nd dimensions of
                    **hidden_t_prev** and **cell_t_prev** not be the same.
Y
yangyaming 已提交
3343 3344 3345 3346 3347 3348

    Examples:

        .. code-block:: python

             x_t = fluid.layers.fc(input=x_t_data, size=10)
3349
             prev_hidden = fluid.layers.fc(input=prev_hidden_data, size=30)
Y
yangyaming 已提交
3350
             prev_cell = fluid.layers.fc(input=prev_cell_data, size=30)
Y
yangyaming 已提交
3351
             hidden_value, cell_value = fluid.layers.lstm_unit(x_t=x_t,
Y
yangyaming 已提交
3352 3353 3354 3355 3356 3357 3358 3359 3360 3361 3362 3363 3364 3365 3366 3367
                                                    hidden_t_prev=prev_hidden,
                                                    cell_t_prev=prev_cell)
    """
    helper = LayerHelper('lstm_unit', **locals())

    if len(x_t.shape) != 2:
        raise ValueError("Rank of x_t must be 2.")

    if len(hidden_t_prev.shape) != 2:
        raise ValueError("Rank of hidden_t_prev must be 2.")

    if len(cell_t_prev.shape) != 2:
        raise ValueError("Rank of cell_t_prev must be 2.")

    if x_t.shape[0] != hidden_t_prev.shape[0] or x_t.shape[
            0] != cell_t_prev.shape[0]:
Y
yangyaming 已提交
3368
        raise ValueError("The 1st dimensions of x_t, hidden_t_prev and "
3369 3370 3371 3372
                         "cell_t_prev must be the same.")

    if hidden_t_prev.shape[1] != cell_t_prev.shape[1]:
        raise ValueError("The 2nd dimensions of hidden_t_prev and "
Y
yangyaming 已提交
3373 3374
                         "cell_t_prev must be the same.")

Y
yangyaming 已提交
3375 3376 3377
    if bias_attr is None:
        bias_attr = ParamAttr()

Y
yangyaming 已提交
3378
    size = cell_t_prev.shape[1]
3379
    concat_out = concat(input=[x_t, hidden_t_prev], axis=1)
Y
yangyaming 已提交
3380 3381
    fc_out = fc(input=concat_out,
                size=4 * size,
Y
yangyaming 已提交
3382
                param_attr=param_attr,
3383
                bias_attr=bias_attr)
Y
yangyaming 已提交
3384
    dtype = x_t.dtype
X
Xin Pan 已提交
3385 3386
    c = helper.create_variable_for_type_inference(dtype)
    h = helper.create_variable_for_type_inference(dtype)
Y
yangyaming 已提交
3387 3388 3389 3390 3391 3392 3393 3394 3395

    helper.append_op(
        type='lstm_unit',
        inputs={"X": fc_out,
                "C_prev": cell_t_prev},
        outputs={"C": c,
                 "H": h},
        attrs={"forget_bias": forget_bias})

Y
yangyaming 已提交
3396
    return h, c
G
guosheng 已提交
3397 3398


C
caoying03 已提交
3399
def reduce_sum(input, dim=None, keep_dim=False, name=None):
G
guosheng 已提交
3400
    """
Y
yangyaming 已提交
3401
    Computes the sum of tensor elements over the given dimension.
G
guosheng 已提交
3402 3403 3404

    Args:
        input (Variable): The input variable which is a Tensor or LoDTensor.
W
whs 已提交
3405
        dim (list|int|None): The dimensions along which the sum is performed. If
Y
yangyaming 已提交
3406 3407
            :attr:`None`, sum all elements of :attr:`input` and return a
            Tensor variable with a single element, otherwise must be in the
W
whs 已提交
3408 3409
            range :math:`[-rank(input), rank(input))`. If :math:`dim[i] < 0`,
            the dimension to reduce is :math:`rank + dim[i]`.
3410
        keep_dim (bool|False): Whether to reserve the reduced dimension in the
Y
yangyaming 已提交
3411
            output Tensor. The result tensor will have one fewer dimension
G
guosheng 已提交
3412
            than the :attr:`input` unless :attr:`keep_dim` is true.
C
caoying03 已提交
3413 3414
        name(str|None): A name for this layer(optional). If set None, the layer
                       will be named automatically.
G
guosheng 已提交
3415 3416 3417

    Returns:
        Variable: The reduced Tensor variable.
F
fengjiayi 已提交
3418

G
guosheng 已提交
3419 3420 3421 3422 3423 3424
    Examples:
        .. code-block:: python

            # x is a Tensor variable with following elements:
            #    [[0.2, 0.3, 0.5, 0.9]
            #     [0.1, 0.2, 0.6, 0.7]]
Q
qiaolongfei 已提交
3425
            # Each example is followed by the corresponding output tensor.
G
guosheng 已提交
3426 3427 3428 3429
            fluid.layers.reduce_sum(x)  # [3.5]
            fluid.layers.reduce_sum(x, dim=0)  # [0.3, 0.5, 1.1, 1.6]
            fluid.layers.reduce_sum(x, dim=-1)  # [1.9, 1.6]
            fluid.layers.reduce_sum(x, dim=1, keep_dim=True)  # [[1.9], [1.6]]
W
whs 已提交
3430 3431 3432 3433

            # x is a Tensor variable with shape [2, 2, 2] and elements as below:
            #      [[[1, 2], [3, 4]],
            #      [[5, 6], [7, 8]]]
Q
qiaolongfei 已提交
3434
            # Each example is followed by the corresponding output tensor.
W
whs 已提交
3435 3436 3437
            fluid.layers.reduce_sum(x, dim=[1, 2]) # [10, 26]
            fluid.layers.reduce_sum(x, dim=[0, 1]) # [16, 20]

G
guosheng 已提交
3438 3439
    """
    helper = LayerHelper('reduce_sum', **locals())
X
Xin Pan 已提交
3440
    out = helper.create_variable_for_type_inference(dtype=helper.input_dtype())
W
whs 已提交
3441 3442
    if dim is not None and not isinstance(dim, list):
        dim = [dim]
G
guosheng 已提交
3443 3444 3445 3446 3447
    helper.append_op(
        type='reduce_sum',
        inputs={'X': input},
        outputs={'Out': out},
        attrs={
W
whs 已提交
3448
            'dim': dim if dim != None else [0],
G
guosheng 已提交
3449 3450 3451 3452
            'keep_dim': keep_dim,
            'reduce_all': True if dim == None else False
        })
    return out
G
guosheng 已提交
3453 3454


C
caoying03 已提交
3455
def reduce_mean(input, dim=None, keep_dim=False, name=None):
G
guosheng 已提交
3456
    """
Y
Yibing Liu 已提交
3457
    Computes the mean of the input tensor's elements along the given dimension.
G
guosheng 已提交
3458 3459 3460

    Args:
        input (Variable): The input variable which is a Tensor or LoDTensor.
Y
Yibing Liu 已提交
3461 3462 3463
        dim (list|int|None): The dimension along which the mean is computed. If
            `None`, compute the mean over all elements of :attr:`input`
            and return a variable with a single element, otherwise it
Y
yangyaming 已提交
3464
            must be in the range :math:`[-rank(input), rank(input))`. If
3465
            :math:`dim[i] < 0`, the dimension to reduce is
Y
Yibing Liu 已提交
3466
            :math:`rank(input) + dim[i]`.
Y
yangyaming 已提交
3467 3468
        keep_dim (bool): Whether to reserve the reduced dimension in the
            output Tensor. The result tensor will have one fewer dimension
G
guosheng 已提交
3469
            than the :attr:`input` unless :attr:`keep_dim` is true.
Y
Yibing Liu 已提交
3470
        name(str|None): A name for this layer(optional). If set `None`, the layer
C
caoying03 已提交
3471
                       will be named automatically.
G
guosheng 已提交
3472 3473

    Returns:
Y
Yibing Liu 已提交
3474
        Variable: The reduced mean Variable.
F
fengjiayi 已提交
3475

G
guosheng 已提交
3476 3477 3478 3479 3480 3481 3482 3483 3484 3485
    Examples:
        .. code-block:: python

            # x is a Tensor variable with following elements:
            #    [[0.2, 0.3, 0.5, 0.9]
            #     [0.1, 0.2, 0.6, 0.7]]
            # Each example is followed by the correspending output tensor.
            fluid.layers.reduce_mean(x)  # [0.4375]
            fluid.layers.reduce_mean(x, dim=0)  # [0.15, 0.25, 0.55, 0.8]
            fluid.layers.reduce_mean(x, dim=-1)  # [0.475, 0.4]
F
stash  
fengjiayi 已提交
3486 3487
            fluid.layers.reduce_mean(
                x, dim=1, keep_dim=True)  # [[0.475], [0.4]]
W
whs 已提交
3488 3489 3490 3491 3492 3493 3494

            # x is a Tensor variable with shape [2, 2, 2] and elements as below:
            #      [[[1.0, 2.0], [3.0, 4.0]],
            #      [[5.0, 6.0], [7.0, 8.0]]]
            # Each example is followed by the correspending output tensor.
            fluid.layers.reduce_mean(x, dim=[1, 2]) # [2.5, 6.5]
            fluid.layers.reduce_mean(x, dim=[0, 1]) # [4.0, 5.0]
G
guosheng 已提交
3495 3496
    """
    helper = LayerHelper('reduce_mean', **locals())
X
Xin Pan 已提交
3497
    out = helper.create_variable_for_type_inference(dtype=helper.input_dtype())
W
whs 已提交
3498 3499
    if dim is not None and not isinstance(dim, list):
        dim = [dim]
G
guosheng 已提交
3500 3501 3502 3503 3504
    helper.append_op(
        type='reduce_mean',
        inputs={'X': input},
        outputs={'Out': out},
        attrs={
W
whs 已提交
3505
            'dim': dim if dim != None else [0],
G
guosheng 已提交
3506 3507 3508 3509
            'keep_dim': keep_dim,
            'reduce_all': True if dim == None else False
        })
    return out
3510 3511


C
caoying03 已提交
3512
def reduce_max(input, dim=None, keep_dim=False, name=None):
3513
    """
Y
yangyaming 已提交
3514
    Computes the maximum of tensor elements over the given dimension.
3515 3516 3517

    Args:
        input (Variable): The input variable which is a Tensor or LoDTensor.
W
whs 已提交
3518
        dim (list|int|None): The dimension along which the maximum is computed.
Y
yangyaming 已提交
3519 3520 3521
            If :attr:`None`, compute the maximum over all elements of
            :attr:`input` and return a Tensor variable with a single element,
            otherwise must be in the range :math:`[-rank(input), rank(input))`.
W
whs 已提交
3522
            If :math:`dim[i] < 0`, the dimension to reduce is :math:`rank + dim[i]`.
Y
yangyaming 已提交
3523 3524
        keep_dim (bool): Whether to reserve the reduced dimension in the
            output Tensor. The result tensor will have one fewer dimension
3525
            than the :attr:`input` unless :attr:`keep_dim` is true.
C
caoying03 已提交
3526 3527
        name(str|None): A name for this layer(optional). If set None, the layer
                       will be named automatically.
3528 3529 3530

    Returns:
        Variable: The reduced Tensor variable.
Y
yangyaming 已提交
3531

3532 3533 3534 3535 3536 3537 3538 3539 3540 3541 3542
    Examples:
        .. code-block:: python

            # x is a Tensor variable with following elements:
            #    [[0.2, 0.3, 0.5, 0.9]
            #     [0.1, 0.2, 0.6, 0.7]]
            # Each example is followed by the correspending output tensor.
            fluid.layers.reduce_max(x)  # [0.9]
            fluid.layers.reduce_max(x, dim=0)  # [0.2, 0.3, 0.6, 0.9]
            fluid.layers.reduce_max(x, dim=-1)  # [0.9, 0.7]
            fluid.layers.reduce_max(x, dim=1, keep_dim=True)  # [[0.9], [0.7]]
W
whs 已提交
3543 3544 3545 3546 3547 3548 3549

            # x is a Tensor variable with shape [2, 2, 2] and elements as below:
            #      [[[1.0, 2.0], [3.0, 4.0]],
            #      [[5.0, 6.0], [7.0, 8.0]]]
            # Each example is followed by the correspending output tensor.
            fluid.layers.reduce_max(x, dim=[1, 2]) # [4.0, 8.0]
            fluid.layers.reduce_max(x, dim=[0, 1]) # [7.0, 8.0]
3550 3551
    """
    helper = LayerHelper('reduce_max', **locals())
X
Xin Pan 已提交
3552
    out = helper.create_variable_for_type_inference(dtype=helper.input_dtype())
W
whs 已提交
3553 3554
    if dim is not None and not isinstance(dim, list):
        dim = [dim]
3555 3556 3557 3558 3559
    helper.append_op(
        type='reduce_max',
        inputs={'X': input},
        outputs={'Out': out},
        attrs={
W
whs 已提交
3560
            'dim': dim if dim != None else [0],
3561 3562 3563 3564 3565 3566
            'keep_dim': keep_dim,
            'reduce_all': True if dim == None else False
        })
    return out


C
caoying03 已提交
3567
def reduce_min(input, dim=None, keep_dim=False, name=None):
3568
    """
Y
yangyaming 已提交
3569
    Computes the minimum of tensor elements over the given dimension.
3570 3571 3572

    Args:
        input (Variable): The input variable which is a Tensor or LoDTensor.
W
whs 已提交
3573
        dim (list|int|None): The dimensions along which the minimum is computed.
Y
yangyaming 已提交
3574 3575 3576
            If :attr:`None`, compute the minimum over all elements of
            :attr:`input` and return a Tensor variable with a single element,
            otherwise must be in the range :math:`[-rank(input), rank(input))`.
W
whs 已提交
3577
            If :math:`dim[i] < 0`, the dimension to reduce is :math:`rank + dim[i]`.
Y
yangyaming 已提交
3578 3579
        keep_dim (bool): Whether to reserve the reduced dimension in the
            output Tensor. The result tensor will have one fewer dimension
3580
            than the :attr:`input` unless :attr:`keep_dim` is true.
C
caoying03 已提交
3581 3582
        name(str|None): A name for this layer(optional). If set None, the layer
                       will be named automatically.
3583 3584 3585

    Returns:
        Variable: The reduced Tensor variable.
Y
yangyaming 已提交
3586

3587 3588 3589 3590 3591 3592 3593 3594 3595 3596 3597
    Examples:
        .. code-block:: python

            # x is a Tensor variable with following elements:
            #    [[0.2, 0.3, 0.5, 0.9]
            #     [0.1, 0.2, 0.6, 0.7]]
            # Each example is followed by the correspending output tensor.
            fluid.layers.reduce_min(x)  # [0.1]
            fluid.layers.reduce_min(x, dim=0)  # [0.1, 0.2, 0.5, 0.7]
            fluid.layers.reduce_min(x, dim=-1)  # [0.2, 0.1]
            fluid.layers.reduce_min(x, dim=1, keep_dim=True)  # [[0.2], [0.1]]
W
whs 已提交
3598 3599 3600 3601 3602 3603 3604

            # x is a Tensor variable with shape [2, 2, 2] and elements as below:
            #      [[[1.0, 2.0], [3.0, 4.0]],
            #      [[5.0, 6.0], [7.0, 8.0]]]
            # Each example is followed by the correspending output tensor.
            fluid.layers.reduce_min(x, dim=[1, 2]) # [1.0, 5.0]
            fluid.layers.reduce_min(x, dim=[0, 1]) # [1.0, 2.0]
3605 3606
    """
    helper = LayerHelper('reduce_min', **locals())
X
Xin Pan 已提交
3607
    out = helper.create_variable_for_type_inference(dtype=helper.input_dtype())
W
whs 已提交
3608 3609
    if dim is not None and not isinstance(dim, list):
        dim = [dim]
3610 3611 3612 3613 3614
    helper.append_op(
        type='reduce_min',
        inputs={'X': input},
        outputs={'Out': out},
        attrs={
W
whs 已提交
3615
            'dim': dim if dim != None else [0],
3616 3617 3618 3619
            'keep_dim': keep_dim,
            'reduce_all': True if dim == None else False
        })
    return out
G
guosheng 已提交
3620 3621


3622 3623 3624 3625 3626 3627
def reduce_prod(input, dim=None, keep_dim=False, name=None):
    """
    Computes the product of tensor elements over the given dimension.

    Args:
        input (Variable): The input variable which is a Tensor or LoDTensor.
W
whs 已提交
3628
        dim (list|int|None): The dimensions along which the product is performed. If
3629 3630
            :attr:`None`, multipy all elements of :attr:`input` and return a
            Tensor variable with a single element, otherwise must be in the
W
whs 已提交
3631 3632
            range :math:`[-rank(input), rank(input))`. If :math:`dim[i] < 0`,
            the dimension to reduce is :math:`rank + dim[i]`.
3633 3634 3635
        keep_dim (bool|False): Whether to reserve the reduced dimension in the
            output Tensor. The result tensor will have one fewer dimension
            than the :attr:`input` unless :attr:`keep_dim` is true.
Y
yangyaming 已提交
3636
        name(str|None): A name for this layer(optional). If set None, the
Z
zhouhanqing 已提交
3637
            layer will be named automatically.
3638 3639 3640 3641 3642 3643 3644 3645 3646 3647 3648 3649 3650 3651

    Returns:
        Variable: The reduced Tensor variable.

    Examples:
        .. code-block:: python

            # x is a Tensor variable with following elements:
            #    [[0.2, 0.3, 0.5, 0.9]
            #     [0.1, 0.2, 0.6, 0.7]]
            # Each example is followed by the correspending output tensor.
            fluid.layers.reduce_prod(x)  # [0.0002268]
            fluid.layers.reduce_prod(x, dim=0)  # [0.02, 0.06, 0.3, 0.63]
            fluid.layers.reduce_prod(x, dim=-1)  # [0.027, 0.0084]
Y
yangyaming 已提交
3652
            fluid.layers.reduce_prod(x, dim=1,
Z
zhouhanqing 已提交
3653
                                     keep_dim=True)  # [[0.027], [0.0084]]
W
whs 已提交
3654 3655 3656 3657 3658 3659 3660

            # x is a Tensor variable with shape [2, 2, 2] and elements as below:
            #      [[[1.0, 2.0], [3.0, 4.0]],
            #      [[5.0, 6.0], [7.0, 8.0]]]
            # Each example is followed by the correspending output tensor.
            fluid.layers.reduce_prod(x, dim=[1, 2]) # [24.0, 1680.0]
            fluid.layers.reduce_prod(x, dim=[0, 1]) # [105.0, 384.0]
3661 3662
    """
    helper = LayerHelper('reduce_prod', **locals())
X
Xin Pan 已提交
3663
    out = helper.create_variable_for_type_inference(dtype=helper.input_dtype())
W
whs 已提交
3664 3665
    if dim is not None and not isinstance(dim, list):
        dim = [dim]
3666 3667 3668 3669 3670
    helper.append_op(
        type='reduce_prod',
        inputs={'X': input},
        outputs={'Out': out},
        attrs={
W
whs 已提交
3671
            'dim': dim if dim != None else [0],
3672 3673 3674 3675 3676 3677
            'keep_dim': keep_dim,
            'reduce_all': True if dim == None else False
        })
    return out


C
caoying03 已提交
3678
def split(input, num_or_sections, dim=-1, name=None):
G
guosheng 已提交
3679
    """
C
caoying03 已提交
3680
    Split the input tensor into multiple sub-tensors.
G
guosheng 已提交
3681 3682 3683

    Args:
        input (Variable): The input variable which is a Tensor or LoDTensor.
C
caoying03 已提交
3684 3685 3686 3687 3688
        num_or_sections (int|list): If :attr:`num_or_sections` is an integer,
            then the integer indicates the number of equal sized sub-tensors
            that the tensor will be divided into. If :attr:`num_or_sections`
            is a list of integers, the length of list indicates the number of
            sub-tensors and the integers indicate the sizes of sub-tensors'
G
guosheng 已提交
3689
            :attr:`dim` dimension orderly.
C
caoying03 已提交
3690
        dim (int): The dimension along which to split. If :math:`dim < 0`, the
G
guosheng 已提交
3691
            dimension to split along is :math:`rank(input) + dim`.
C
caoying03 已提交
3692 3693
        name(str|None): A name for this layer(optional). If set None, the layer
                       will be named automatically.
G
guosheng 已提交
3694 3695

    Returns:
D
dzhwinter 已提交
3696
        list(Variable): The list of segmented tensor variables.
G
guosheng 已提交
3697 3698 3699 3700 3701 3702 3703 3704 3705

    Examples:
        .. code-block:: python

            # x is a Tensor variable with shape [3, 9, 5]:
            x0, x1, x2 = fluid.layers.split(x, num_or_sections=3, dim=1)
            x0.shape  # [3, 3, 5]
            x1.shape  # [3, 3, 5]
            x2.shape  # [3, 3, 5]
F
stash  
fengjiayi 已提交
3706 3707
            x0, x1, x2 = fluid.layers.split(
                x, num_or_sections=[2, 3, 4], dim=1)
G
guosheng 已提交
3708 3709 3710 3711 3712 3713 3714 3715 3716 3717 3718 3719 3720 3721 3722
            x0.shape  # [3, 2, 5]
            x1.shape  # [3, 3, 5]
            x2.shape  # [3, 4, 5]
    """
    helper = LayerHelper('split', **locals())
    input_shape = input.shape
    dim = (len(input_shape) + dim) if dim < 0 else dim
    if isinstance(num_or_sections, int):
        assert num_or_sections > 1, 'num_or_sections must be more than 1.'
        num = num_or_sections
    else:
        assert len(num_or_sections) < input_shape[
            dim], 'len(num_or_sections) must not be more than input.shape[dim].'
        num = len(num_or_sections)
    outs = [
X
Xin Pan 已提交
3723
        helper.create_variable_for_type_inference(dtype=helper.input_dtype())
G
guosheng 已提交
3724 3725 3726 3727 3728 3729 3730 3731 3732 3733 3734 3735 3736
        for i in range(num)
    ]
    helper.append_op(
        type='split',
        inputs={'X': input},
        outputs={'Out': outs},
        attrs={
            'num': num_or_sections if isinstance(num_or_sections, int) else 0,
            'sections': num_or_sections
            if isinstance(num_or_sections, list) else [],
            'axis': dim
        })
    return outs
C
caoying03 已提交
3737 3738 3739 3740 3741 3742 3743 3744 3745


def l2_normalize(x, axis, epsilon=1e-12, name=None):
    """
    **L2 normalize Layer**

    The l2 normalize layer normalizes `x` along dimension `axis` using an L2
    norm. For a 1-D tensor (`dim` is fixed to 0), this layer computes

3746
    .. math::
3747 3748

        y = \\frac{x}{ \sqrt{\sum {x^2} + epsion }}
C
caoying03 已提交
3749 3750 3751 3752 3753

    For `x` with more dimensions, this layer independently normalizes each 1-D
    slice along dimension `axis`.

    Args:
3754
        x(Variable|list): The input tensor to l2_normalize layer.
3755
        axis(int): The axis on which to apply normalization. If `axis < 0`, \
3756 3757
            the dimension to normalization is rank(X) + axis. -1 is the
            last dimension.
3758
        epsilon(float): The epsilon value is used to avoid division by zero, \
3759
            the defalut value is 1e-10.
3760
        name(str|None): A name for this layer(optional). If set None, the layer \
3761
            will be named automatically.
C
caoying03 已提交
3762 3763

    Returns:
3764
        Variable: The output tensor variable is the same shape with `x`.
C
caoying03 已提交
3765 3766

    Examples:
3767

C
caoying03 已提交
3768 3769
        .. code-block:: python

3770 3771 3772 3773
            data = fluid.layers.data(name="data",
                                     shape=(3, 17, 13),
                                     dtype="float32")
            normed = fluid.layers.l2_normalize(x=data, axis=1)
C
caoying03 已提交
3774 3775
    """

F
fengjiayi 已提交
3776 3777
    if len(x.shape) == 1:
        axis = 0
C
caoying03 已提交
3778 3779
    helper = LayerHelper("l2_normalize", **locals())

X
Xin Pan 已提交
3780 3781
    out = helper.create_variable_for_type_inference(dtype=x.dtype)
    norm = helper.create_variable_for_type_inference(dtype=x.dtype)
C
caoying03 已提交
3782
    helper.append_op(
3783 3784 3785 3786
        type="norm",
        inputs={"X": x},
        outputs={"Out": out,
                 "Norm": norm},
C
caoying03 已提交
3787
        attrs={
3788 3789
            "axis": 1 if axis is None else axis,
            "epsilon": epsilon,
C
caoying03 已提交
3790 3791
        })
    return out
3792 3793


S
sneaxiy 已提交
3794
def matmul(x, y, transpose_x=False, transpose_y=False, alpha=1.0, name=None):
G
guosheng 已提交
3795
    """
Y
ying 已提交
3796 3797 3798 3799
    Applies matrix multiplication to two tensors.

    Currently, the input tensors' rank can be any, but when the rank of any
    inputs is bigger than 3, this two inputs' rank should be equal.
G
guosheng 已提交
3800

C
chengduoZH 已提交
3801
    The actual behavior depends on the shapes of :math:`x`, :math:`y` and the
3802
    flag values of :attr:`transpose_x`, :attr:`transpose_y`. Specifically:
G
guosheng 已提交
3803

3804 3805 3806 3807 3808
    - If a transpose flag is specified, the last two dimensions of the tensor
      are transposed. If the tensor is rank-1 of shape :math:`[D]`, then for
      :math:`x` it is treated as :math:`[1, D]` in nontransposed form and as
      :math:`[D, 1]` in transposed form, whereas for :math:`y` it is the
      opposite: It is treated as :math:`[D, 1]` in nontransposed form and as
3809
      :math:`[1, D]` in transposed form.
G
guosheng 已提交
3810

C
chengduoZH 已提交
3811
    - After transpose, the two tensors are 2-D or n-D and matrix multiplication
3812
      performs in the following way.
G
guosheng 已提交
3813

3814
      - If both are 2-D, they are multiplied like conventional matrices.
C
chengduoZH 已提交
3815
      - If either is n-D, it is treated as a stack of matrices residing in the
Y
ying 已提交
3816
        last two dimensions and a batched matrix multiply supporting broadcast
3817
        applies on the two tensors.
G
guosheng 已提交
3818

Y
ying 已提交
3819 3820
    Also note that if the raw tensor :math:`x` or :math:`y` is rank-1 and
    nontransposed, the prepended or appended dimension :math:`1` will be
C
chengduoZH 已提交
3821
    removed after matrix multiplication.
G
guosheng 已提交
3822 3823 3824

    Args:
        x (Variable): The input variable which is a Tensor or LoDTensor.
3825 3826 3827
        y (Variable): The input variable which is a Tensor or LoDTensor.
        transpose_x (bool): Whether to transpose :math:`x` before multiplication.
        transpose_y (bool): Whether to transpose :math:`y` before multiplication.
S
sneaxiy 已提交
3828
        alpha (float): The scale of output. Default 1.0.
3829
        name(str|None): A name for this layer(optional). If set None, the layer
3830
            will be named automatically.
G
guosheng 已提交
3831 3832

    Returns:
3833
        Variable: The product Tensor variable.
G
guosheng 已提交
3834

G
guosheng 已提交
3835 3836 3837
    Examples:
        .. code-block:: python

3838
            # Examples to clarify shapes of the inputs and output
C
chengduoZH 已提交
3839 3840
            # x: [B, ..., M, K], y: [B, ..., K, N]
            fluid.layers.matmul(x, y)  # out: [B, ..., M, N]
Y
ying 已提交
3841

3842 3843
            # x: [B, M, K], y: [B, K, N]
            fluid.layers.matmul(x, y)  # out: [B, M, N]
Y
ying 已提交
3844

3845 3846
            # x: [B, M, K], y: [K, N]
            fluid.layers.matmul(x, y)  # out: [B, M, N]
Y
ying 已提交
3847

3848 3849
            # x: [M, K], y: [K, N]
            fluid.layers.matmul(x, y)  # out: [M, N]
Y
ying 已提交
3850 3851 3852 3853

            # x: [B, M, K], y: [K]
            fluid.layers.matmul(x, y)  # out: [B, M]

3854 3855
            # x: [K], y: [K]
            fluid.layers.matmul(x, y)  # out: [1]
3856

Y
ying 已提交
3857
            # x: [M], y: [N]
3858
            fluid.layers.matmul(x, y, True, True)  # out: [M, N]
G
guosheng 已提交
3859
    """
Y
ying 已提交
3860 3861 3862 3863 3864 3865 3866 3867 3868 3869 3870 3871

    def __check_input(x, y):
        if len(y.shape) > len(x.shape):
            raise ValueError(
                "Invalid inputs for matmul. "
                "x's rank should be always greater than or equal to y'rank.")

        x_shape = list(x.shape)
        y_shape = list(y.shape)
        if len(x_shape) == 1:
            x_shape = [1] + x_shape
        if len(y_shape) == 1:
Y
ying 已提交
3872
            y_shape = y_shape + [1]
Y
ying 已提交
3873 3874 3875 3876 3877 3878 3879 3880 3881 3882 3883 3884 3885 3886 3887 3888

        # check the inner 2 dimensions
        if transpose_x:
            x_shape[-2], x_shape[-1] = x_shape[-1], x_shape[-2]
        if transpose_y:
            y_shape[-2], y_shape[-1] = y_shape[-1], y_shape[-2]
        if x_shape[-1] != y_shape[-2]:
            raise ValueError("Invalid inputs for matmul.")

        if len(y_shape) > 2:
            for i, dim_x in enumerate(x_shape[:-2]):
                if dim_x != y_shape[i]:
                    raise ValueError("Invalid inputs for matmul.")

    __check_input(x, y)

3889
    helper = LayerHelper('matmul', **locals())
X
Xin Pan 已提交
3890
    out = helper.create_variable_for_type_inference(dtype=x.dtype)
G
guosheng 已提交
3891
    helper.append_op(
3892 3893 3894 3895
        type='matmul',
        inputs={'X': x,
                'Y': y},
        outputs={'Out': out},
S
sneaxiy 已提交
3896 3897 3898
        attrs={
            'transpose_X': transpose_x,
            'transpose_Y': transpose_y,
S
sneaxiy 已提交
3899
            'alpha': float(alpha),
S
sneaxiy 已提交
3900
        })
3901
    return out
3902 3903


3904
def topk(input, k, name=None):
Q
qingqing01 已提交
3905 3906 3907 3908
    """
    This operator is used to find values and indices of the k largest entries
    for the last dimension.

F
fengjiayi 已提交
3909
    If the input is a vector (1-D Tensor), finds the k largest entries in the vector
Q
qingqing01 已提交
3910 3911 3912 3913 3914 3915
    and outputs their values and indices as vectors. Thus values[j] is the j-th
    largest entry in input, and its index is indices[j].

    If the input is a Tensor with higher rank, this operator computes the top k
    entries along the last dimension.

F
fengjiayi 已提交
3916 3917 3918 3919 3920 3921 3922 3923 3924 3925 3926 3927 3928 3929 3930 3931 3932 3933 3934 3935 3936
    For example:

    .. code-block:: text

        If:
            input = [[5, 4, 2, 3],
                     [9, 7, 10, 25],
                     [6, 2, 10, 1]]
            k = 2

        Then:
            The first output:
            values = [[5, 4],
                      [10, 25],
                      [6, 10]]

            The second output:
            indices = [[0, 1],
                       [2, 3],
                       [0, 2]]

Q
qingqing01 已提交
3937 3938 3939
    Args:
        input(Variable): The input variable which can be a vector or Tensor with
            higher rank.
3940
        k(int):  The number of top elements to look for along the last dimension
F
fengjiayi 已提交
3941
                 of input.
3942
        name(str|None): A name for this layer(optional). If set None, the layer
3943
                       will be named automatically.
F
fengjiayi 已提交
3944
                       Default: None
Q
qingqing01 已提交
3945 3946

    Returns:
3947 3948 3949
        Tuple[Variable]: A tuple with two elements. Each element is a Variable.
        The first one is k largest elements along each last
        dimensional slice. The second one is indices of values
F
fengjiayi 已提交
3950
        within the last dimension of input.
Q
qingqing01 已提交
3951

F
fengjiayi 已提交
3952 3953
    Raises:
        ValueError: If k < 1 or k is not less than the last dimension of input
Q
qingqing01 已提交
3954 3955 3956 3957 3958 3959 3960

    Examples:
        .. code-block:: python

            top5_values, top5_indices = layers.topk(input, k=5)
    """
    helper = LayerHelper("top_k", **locals())
X
Xin Pan 已提交
3961 3962
    values = helper.create_variable_for_type_inference(dtype=input.dtype)
    indices = helper.create_variable_for_type_inference(dtype="int64")
Q
qingqing01 已提交
3963 3964 3965 3966 3967 3968 3969 3970 3971 3972 3973
    helper.append_op(
        type="top_k",
        inputs={"X": [input]},
        outputs={"Out": [values],
                 "Indices": [indices]},
        attrs={"k": k})
    values.stop_gradient = True
    indices.stop_gradient = True
    return values, indices


3974
def edit_distance(input, label, normalized=True, ignored_tokens=None):
3975
    """
Y
ying 已提交
3976 3977 3978 3979 3980 3981 3982 3983 3984
    EditDistance operator computes the edit distances between a batch of
    hypothesis strings and their references. Edit distance, also called
    Levenshtein distance, measures how dissimilar two strings are by counting
    the minimum number of operations to transform one string into anthor.
    Here the operations include insertion, deletion, and substitution.

    For example, given hypothesis string A = "kitten" and reference
    B = "sitting", the edit distance is 3 for A will be transformed into B
    at least after two substitutions and one insertion:
W
wanghaoshuang 已提交
3985

Y
ying 已提交
3986
    "kitten" -> "sitten" -> "sittin" -> "sitting"
W
wanghaoshuang 已提交
3987

3988
    The input is a LoDTensor consisting of all the hypothesis strings with
Y
ying 已提交
3989 3990
    the total number denoted by `batch_size`, and the separation is specified
    by the LoD information. And the `batch_size` reference strings are arranged
3991
    in order in the same way in the input LoDTensor.
W
wanghaoshuang 已提交
3992

3993
    The output contains the `batch_size` results and each stands for the edit
Y
ying 已提交
3994 3995
    distance for a pair of strings respectively. If Attr(normalized) is true,
    the edit distance will be divided by the length of reference string.
W
wanghaoshuang 已提交
3996

3997 3998 3999
    Args:
        input(Variable): The indices for hypothesis strings.
        label(Variable): The indices for reference strings.
4000
        normalized(bool, default True): Indicated whether to normalize the edit distance by
Y
ying 已提交
4001
                          the length of reference string.
4002
        ignored_tokens(list<int>, default None): Tokens that should be removed before
Y
ying 已提交
4003
                                     calculating edit distance.
4004
        name (str): The name of this layer. It is optional.
4005

W
wanghaoshuang 已提交
4006
    Returns:
W
wanghaoshuang 已提交
4007
        Variable: sequence-to-sequence edit distance in shape [batch_size, 1].
W
wanghaoshuang 已提交
4008 4009 4010 4011 4012

    Examples:
        .. code-block:: python

            x = fluid.layers.data(name='x', shape=[8], dtype='float32')
4013
            y = fluid.layers.data(name='y', shape=[7], dtype='float32')
4014
            cost = fluid.layers.edit_distance(input=x,label=y)
4015
    """
4016
    helper = LayerHelper("edit_distance", **locals())
4017

4018
    # remove some tokens from input and labels
W
wanghaoshuang 已提交
4019
    if ignored_tokens is not None and len(ignored_tokens) > 0:
X
Xin Pan 已提交
4020 4021
        erased_input = helper.create_variable_for_type_inference(dtype="int64")
        erased_label = helper.create_variable_for_type_inference(dtype="int64")
4022 4023 4024 4025 4026

        helper.append_op(
            type="sequence_erase",
            inputs={"X": [input]},
            outputs={"Out": [erased_input]},
W
wanghaoshuang 已提交
4027
            attrs={"tokens": ignored_tokens})
4028 4029 4030 4031 4032
        input = erased_input

        helper.append_op(
            type="sequence_erase",
            inputs={"X": [label]},
W
whs 已提交
4033
            outputs={"Out": [erased_label]},
W
wanghaoshuang 已提交
4034
            attrs={"tokens": ignored_tokens})
4035 4036
        label = erased_label

4037
    # edit distance op
X
Xin Pan 已提交
4038 4039
    edit_distance_out = helper.create_variable_for_type_inference(dtype="int64")
    sequence_num = helper.create_variable_for_type_inference(dtype="int64")
4040 4041 4042 4043
    helper.append_op(
        type="edit_distance",
        inputs={"Hyps": [input],
                "Refs": [label]},
4044 4045
        outputs={"Out": [edit_distance_out],
                 "SequenceNum": [sequence_num]},
4046 4047
        attrs={"normalized": normalized})

4048
    return edit_distance_out, sequence_num
4049 4050 4051 4052 4053


def ctc_greedy_decoder(input, blank, name=None):
    """
    This op is used to decode sequences by greedy policy by below steps:
Y
yi.wu 已提交
4054

Y
ying 已提交
4055 4056 4057 4058
    1. Get the indexes of max value for each row in input. a.k.a.
       numpy.argmax(input, axis=0).
    2. For each sequence in result of step1, merge repeated tokens between two
       blanks and delete all blanks.
4059 4060 4061 4062 4063 4064 4065 4066 4067 4068 4069 4070 4071 4072 4073 4074 4075

    A simple example as below:

    .. code-block:: text

        Given:

        input.data = [[0.6, 0.1, 0.3, 0.1],
                      [0.3, 0.2, 0.4, 0.1],
                      [0.1, 0.5, 0.1, 0.3],
                      [0.5, 0.1, 0.3, 0.1],

                      [0.5, 0.1, 0.3, 0.1],
                      [0.2, 0.2, 0.2, 0.4],
                      [0.2, 0.2, 0.1, 0.5],
                      [0.5, 0.1, 0.3, 0.1]]

4076
        input.lod = [[4, 4]]
4077 4078 4079 4080 4081 4082 4083

        Then:

        output.data = [[2],
                       [1],
                       [3]]

4084
        output.lod = [[2, 1]]
4085 4086 4087

    Args:

Y
ying 已提交
4088 4089 4090 4091 4092 4093 4094 4095 4096
        input(Variable): (LoDTensor<float>), the probabilities of
                         variable-length sequences, which is a 2-D Tensor with
                         LoD information. It's shape is [Lp, num_classes + 1],
                         where Lp is the sum of all input sequences' length and
                         num_classes is the true number of classes. (not
                         including the blank label).
        blank(int): the blank label index of Connectionist Temporal
                    Classification (CTC) loss, which is in thehalf-opened
                    interval [0, num_classes + 1).
4097
        name (str): The name of this layer. It is optional.
4098 4099

    Returns:
4100
        Variable: CTC greedy decode result. If all the sequences in result were
4101
        empty, the result LoDTensor will be [-1] with LoD [[]] and dims [1, 1].
4102 4103 4104 4105 4106

    Examples:
        .. code-block:: python

            x = fluid.layers.data(name='x', shape=[8], dtype='float32')
W
wanghaoshuang 已提交
4107

4108
            cost = fluid.layers.ctc_greedy_decoder(input=x, blank=0)
W
wanghaoshuang 已提交
4109
    """
4110
    helper = LayerHelper("ctc_greedy_decoder", **locals())
Q
qingqing01 已提交
4111
    _, topk_indices = topk(input, k=1)
4112 4113

    # ctc align op
X
Xin Pan 已提交
4114
    ctc_out = helper.create_variable_for_type_inference(dtype="int64")
4115 4116 4117
    helper.append_op(
        type="ctc_align",
        inputs={"Input": [topk_indices]},
W
wanghaoshuang 已提交
4118
        outputs={"Output": [ctc_out]},
4119 4120
        attrs={"merge_repeated": True,
               "blank": blank})
4121
    return ctc_out
4122 4123


F
fengjiayi 已提交
4124
def warpctc(input, label, blank=0, norm_by_times=False):
W
wanghaoshuang 已提交
4125
    """
4126 4127
    An operator integrating the open source Warp-CTC library
    (https://github.com/baidu-research/warp-ctc)
W
wanghaoshuang 已提交
4128
    to compute Connectionist Temporal Classification (CTC) loss.
4129 4130
    It can be aliased as softmax with CTC, since a native softmax activation is
    interated to the Warp-CTC library, to to normlize values for each row of the
W
wanghaoshuang 已提交
4131 4132 4133
    input tensor.

    Args:
4134
       input (Variable): The unscaled probabilities of variable-length sequences,
W
wanghaoshuang 已提交
4135 4136 4137 4138
         which is a 2-D Tensor with LoD information.
         It's shape is [Lp, num_classes + 1], where Lp is the sum of all input
         sequences' length and num_classes is the true number of classes.
         (not including the blank label).
4139
       label (Variable): The ground truth of variable-length sequence,
4140 4141 4142
         which is a 2-D Tensor with LoD information. It is of the shape [Lg, 1],
         where Lg is th sum of all labels' length.
       blank (int, default 0): The blank label index of Connectionist
W
wanghaoshuang 已提交
4143 4144
         Temporal Classification (CTC) loss, which is in the
         half-opened interval [0, num_classes + 1).
4145 4146 4147
       norm_by_times(bool, default false): Whether to normalize the gradients
         by the number of time-step, which is also the sequence's length.
         There is no need to normalize the gradients if warpctc layer was
4148
         follewed by a mean_op.
W
wanghaoshuang 已提交
4149 4150

    Returns:
4151 4152
        Variable: The Connectionist Temporal Classification (CTC) loss,
        which is a 2-D Tensor of the shape [batch_size, 1].
W
wanghaoshuang 已提交
4153 4154

    Examples:
4155

W
wanghaoshuang 已提交
4156
        .. code-block:: python
4157

4158 4159 4160
            label = fluid.layers.data(shape=[11, 8], dtype='float32', lod_level=1)
            predict = fluid.layers.data(shape=[11, 1], dtype='float32')
            cost = fluid.layers.warpctc(input=predict, label=label)
W
wanghaoshuang 已提交
4161 4162

    """
F
fengjiayi 已提交
4163
    helper = LayerHelper('warpctc', **locals())
X
Xin Pan 已提交
4164 4165
    loss_out = helper.create_variable_for_type_inference(dtype=input.dtype)
    grad_out = helper.create_variable_for_type_inference(dtype=input.dtype)
W
wanghaoshuang 已提交
4166 4167 4168 4169 4170 4171 4172 4173 4174
    helper.append_op(
        type='warpctc',
        inputs={'Logits': [input],
                'Label': [label]},
        outputs={'WarpCTCGrad': [grad_out],
                 'Loss': [loss_out]},
        attrs={'blank': blank,
               'norm_by_times': norm_by_times})
    return loss_out
4175 4176 4177 4178 4179 4180 4181 4182 4183 4184 4185 4186 4187 4188 4189


def sequence_reshape(input, new_dim):
    """
    **Sequence Reshape Layer**

    This layer will rearrange the input sequences. The new dimension is set by
    user. Length of each sequence is computed according to original length,
    original dimension and new dimension. The following example will help to
    illustrate the function of this layer:

    .. code-block:: text

        x is a LoDTensor:
            x.lod  = [[0, 2, 6]]
4190 4191 4192
            x.data = [[1,  2], [3,  4],
                      [5,  6], [7,  8],
                      [9, 10], [11, 12]]
4193 4194 4195 4196 4197
            x.dims = [6, 2]

        set new_dim = 4

        then out is a LoDTensor:
4198

4199
            out.lod  = [[0, 1, 3]]
4200 4201 4202 4203

            out.data = [[1,  2,  3,  4],
                        [5,  6,  7,  8],
                        [9, 10, 11, 12]]
4204 4205 4206 4207 4208 4209 4210
            out.dims = [3, 4]

    Currently, only 1-level LoDTensor is supported and please make sure
    (original length * original dimension) can be divided by new dimension with
    no remainder for each sequence.

    Args:
4211 4212 4213

       input (Variable): A 2-D LoDTensor with shape being [N, M] where M for dimension.
       new_dim (int): New dimension that the input LoDTensor is reshaped to.
4214 4215

    Returns:
4216

4217 4218 4219 4220 4221
        Variable: Reshaped LoDTensor according to new dimension.

    Examples:
        .. code-block:: python

4222
            x = fluid.layers.data(shape=[5, 20], dtype='float32', lod_level=1)
4223
            x_reshaped = fluid.layers.sequence_reshape(input=x, new_dim=10)
4224 4225
    """
    helper = LayerHelper('sequence_reshape', **locals())
X
Xin Pan 已提交
4226
    out = helper.create_variable_for_type_inference(helper.input_dtype())
4227 4228 4229 4230 4231 4232
    helper.append_op(
        type='sequence_reshape',
        inputs={'X': [input]},
        outputs={'Out': [out]},
        attrs={'new_dim': new_dim})
    return out
Y
ying 已提交
4233 4234


4235 4236 4237 4238
# FIXME(wuyi): let docstring_checker.py understand @autodoc.
# For now, the comments in c++ use types like Tensor, but in python side
# the type is often "Variable", and arguments may vary.
@templatedoc(op_type="nce")
Y
Yang Yu 已提交
4239 4240 4241 4242 4243 4244
def nce(input,
        label,
        num_total_classes,
        sample_weight=None,
        param_attr=None,
        bias_attr=None,
C
chengduo 已提交
4245 4246
        num_neg_samples=None,
        name=None):
4247 4248 4249 4250 4251 4252 4253
    """
    ${comment}

    Args:
        input (Variable): input variable.
        label (Variable): label.
        num_total_classes (int):${num_total_classes_comment}
4254 4255
        sample_weight (Variable|None): A Variable of shape [batch_size, 1]
            storing a weight for each sample. The default weight for each
4256
            sample is 1.0.
C
chengduo 已提交
4257 4258 4259 4260 4261 4262 4263 4264 4265
        param_attr (ParamAttr|None): The parameter attribute for learnable parameters/weights
             of nce. If it is set to None or one attribute of ParamAttr, nce
             will create ParamAttr as param_attr. If the Initializer of the param_attr
             is not set, the parameter is initialized with Xavier. Default: None.
        bias_attr (ParamAttr|bool|None): The parameter attribute for the bias of nce.
             If it is set to False, no bias will be added to the output units.
             If it is set to None or one attribute of ParamAttr, nce
             will create ParamAttr as bias_attr. If the Initializer of the bias_attr
             is not set, the bias is initialized zero. Default: None.
4266
        num_neg_samples (int): ${num_neg_samples_comment}
C
chengduo 已提交
4267 4268
        name (str|None): A name for this layer(optional). If set None, the layer
             will be named automatically. Default: None.
F
fengjiayi 已提交
4269

4270
    Returns:
Y
Yibing Liu 已提交
4271 4272 4273 4274 4275 4276 4277 4278 4279 4280 4281 4282 4283 4284 4285 4286 4287 4288 4289 4290 4291 4292 4293 4294 4295 4296 4297
        Variable: The output nce loss.

    Examples:
        .. code-block:: python

            window_size = 5
            words = []
            for i in xrange(window_size):
                words.append(layers.data(
                    name='word_{0}'.format(i), shape=[1], dtype='int64'))

            dict_size = 10000
            label_word = int(window_size / 2) + 1

            embs = []
            for i in xrange(window_size):
                if i == label_word:
                    continue

                emb = layers.embedding(input=words[i], size=[dict_size, 32],
                                       param_attr='emb.w', is_sparse=True)
                embs.append(emb)

            embs = layers.concat(input=embs, axis=1)
            loss = layers.nce(input=embs, label=words[label_word],
                          num_total_classes=dict_size, param_attr='nce.w',
                          bias_attr='nce.b')
4298
    """
Y
Yang Yu 已提交
4299 4300 4301
    helper = LayerHelper('nce', **locals())
    assert isinstance(input, Variable)
    assert isinstance(label, Variable)
C
chengduo 已提交
4302 4303

    dim = input.shape[1]
Y
Yang Yu 已提交
4304 4305 4306 4307 4308 4309
    num_true_class = label.shape[1]
    w = helper.create_parameter(
        attr=helper.param_attr,
        shape=[num_total_classes, dim],
        is_bias=False,
        dtype=input.dtype)
C
chengduo 已提交
4310 4311 4312 4313 4314 4315 4316 4317 4318 4319 4320 4321 4322
    inputs = {
        'Input': input,
        'Label': label,
        'Weight': w,
        'SampleWeight': sample_weight if sample_weight is not None else []
    }
    if helper.bias_attr:
        b = helper.create_parameter(
            attr=helper.bias_attr,
            shape=[num_total_classes, 1],
            is_bias=True,
            dtype=input.dtype)
        inputs['Bias'] = b
X
Xin Pan 已提交
4323 4324 4325
    cost = helper.create_variable_for_type_inference(dtype=input.dtype)
    sample_logits = helper.create_variable_for_type_inference(dtype=input.dtype)
    sample_labels = helper.create_variable_for_type_inference(dtype=label.dtype)
Y
Yang Yu 已提交
4326

Y
Yang Yu 已提交
4327 4328 4329 4330 4331 4332 4333 4334 4335
    if num_neg_samples is None:
        num_neg_samples = 10
    else:
        num_neg_samples = int(num_neg_samples)

    attrs = {
        'num_total_classes': int(num_total_classes),
        'num_neg_samples': num_neg_samples
    }
Y
Yang Yu 已提交
4336 4337 4338

    helper.append_op(
        type='nce',
C
chengduo 已提交
4339
        inputs=inputs,
Y
Yang Yu 已提交
4340 4341 4342 4343 4344 4345
        outputs={
            'Cost': cost,
            'SampleLogits': sample_logits,
            'SampleLabels': sample_labels
        },
        attrs=attrs)
Y
Yang Yu 已提交
4346
    return cost / (num_neg_samples + 1)
4347 4348


C
chengduo 已提交
4349 4350 4351
def hsigmoid(input,
             label,
             num_classes,
4352 4353
             ptabl=None,
             pcode=None,
C
chengduo 已提交
4354 4355 4356
             param_attr=None,
             bias_attr=None,
             name=None):
W
weixing02 已提交
4357 4358
    """
    The hierarchical sigmoid operator is used to accelerate the training
M
minqiyang 已提交
4359
    process of language model. This operator organizes the classes into a
G
guosheng 已提交
4360 4361 4362 4363 4364 4365 4366 4367 4368
    complete binary tree, each leaf node represents a class(a word) and each
    internal node acts as a binary classifier. For each word there's a unique
    path from root to it's leaf node, hsigmoid calculate the cost for each
    internal node on the path, and sum them to get a total cost. hsigmoid can
    achive a acceleration from :math:`O(N)` to :math:`O(logN)`, where :math:`N`
    represents the size of word dict.

    Refer to `Hierarchical Probabilistic Neural Network Language Model
    <http://www.iro.umontreal.ca/~lisa/pointeurs/hierarchical-nnlm-aistats05.pdf>`_
M
minqiyang 已提交
4369

W
weixing02 已提交
4370
    Args:
M
minqiyang 已提交
4371
        input (Variable): The input tensor variable with shape
G
guosheng 已提交
4372 4373 4374 4375 4376
            :math:`[N \\times D]`, where :math:`N` is the size of mini-batch,
            and :math:`D` is the feature size.
        label (Variable): The tensor variable contains labels of training data.
            It's a tensor with shape is :math:`[N \\times 1]`.
        num_classes: (int), The number of classes, must not be less than 2.
4377 4378 4379 4380 4381 4382
        ptable: (Variable|None) this variable can store each batch of samples' path to root, 
            it should be in leaf -> root order
            ptable should have the same shape with pcode, and for each sample i ptable[i] indicates a np.array like 
            structure and each element in this array is indexes in parent nodes' Weight Matrix. 
        pcode:  (Variable|None) this variable can store each batch of samples' code, 
            each code consist with every code of parent nodes. it should be in leaf -> root order
C
chengduo 已提交
4383 4384 4385 4386 4387 4388 4389 4390 4391 4392 4393
        param_attr (ParamAttr|None): The parameter attribute for learnable parameters/weights
             of hsigmoid. If it is set to None or one attribute of ParamAttr, hsigmoid
             will create ParamAttr as param_attr. If the Initializer of the param_attr
             is not set, the parameter is initialized with Xavier. Default: None.
        bias_attr (ParamAttr|bool|None): The parameter attribute for the bias of hsigmoid.
             If it is set to False, no bias will be added to the output units.
             If it is set to None or one attribute of ParamAttr, hsigmoid
             will create ParamAttr as bias_attr. If the Initializer of the bias_attr
             is not set, the bias is initialized zero. Default: None.
        name (str|None): A name for this layer(optional). If set None, the layer
             will be named automatically. Default: None.
W
weixing02 已提交
4394 4395 4396 4397 4398 4399 4400 4401

    Returns:
        Out: (Tensor) The cost of hierarchical sigmoid operator. the shape is [N, 1]

    Examples:

        .. code-block:: python

G
guosheng 已提交
4402 4403 4404
            x = fluid.layers.data(name='x', shape=[2], dtype='float32')
            y = fluid.layers.data(name='y', shape=[1], dtype='int64')
            out = fluid.layers.hsigmoid(input=x, label=y, num_classes=6)
W
weixing02 已提交
4405 4406 4407 4408
    """

    helper = LayerHelper('hierarchical_sigmoid', **locals())
    dtype = helper.input_dtype()
X
Xin Pan 已提交
4409 4410
    out = helper.create_variable_for_type_inference(dtype)
    pre_out = helper.create_variable_for_type_inference(dtype)
W
weixing02 已提交
4411 4412
    dim = input.shape[1]
    if num_classes < 2:
G
guosheng 已提交
4413
        raise ValueError("num_classes must not be less than 2.")
4414 4415 4416 4417 4418 4419 4420
    if (ptable is not None) and (pcode is None):
        raise ValueError("pcode should not be None when ptable has been set")
    elif (ptable is None) and (pcode is not None):
        raise ValueError("ptable should not be None when pcode has been set")
    else:
        pass

W
weixing02 已提交
4421 4422 4423 4424 4425
    weights = helper.create_parameter(
        attr=helper.param_attr,
        shape=[num_classes - 1, dim],
        is_bias=False,
        dtype=input.dtype)
4426 4427 4428 4429 4430 4431 4432
    inputs = {
        "X": input,
        "W": weights,
        "PTable": ptable,
        "PCode": pcode,
        "Label": label
    }
W
weixing02 已提交
4433 4434 4435 4436 4437 4438 4439
    if helper.bias_attr:
        bias = helper.create_parameter(
            attr=helper.bias_attr,
            shape=[1, num_classes - 1],
            is_bias=True,
            dtype=input.dtype)
        inputs['Bias'] = bias
W
weixing02 已提交
4440 4441
    helper.append_op(
        type="hierarchical_sigmoid",
W
weixing02 已提交
4442
        inputs=inputs,
W
weixing02 已提交
4443 4444 4445 4446 4447 4448
        outputs={"Out": out,
                 "PreOut": pre_out},
        attrs={"num_classes": num_classes})
    return out


Y
fix ci.  
ying 已提交
4449
def transpose(x, perm, name=None):
Y
ying 已提交
4450 4451 4452 4453 4454 4455 4456
    """
    Permute the dimensions of `input` according to `perm`.

    The `i`-th dimension  of the returned tensor will correspond to the
    perm[i]-th dimension of `input`.

    Args:
4457 4458 4459
        x (Variable): The input Tensor.
        perm (list): A permutation of the dimensions of `input`.
        name (str): The name of this layer. It is optional.
Y
ying 已提交
4460 4461 4462 4463 4464 4465 4466 4467

    Returns:
        Variable: A transposed Tensor.

    Examples:
        .. code-block:: python

            x = fluid.layers.data(name='x', shape=[5, 10, 15], dtype='float32')
Y
fix ci.  
ying 已提交
4468
            x_transposed = layers.transpose(x, perm=[1, 0, 2])
Y
ying 已提交
4469 4470
    """

Y
fix ci.  
ying 已提交
4471
    if len(perm) != len(x.shape):
Y
ying 已提交
4472 4473 4474
        raise ValueError(
            "Input(perm) is the permutation of dimensions of Input(input). "
            "It's length shoud be equal to Input(input)'s rank.")
Y
ying 已提交
4475 4476 4477 4478 4479 4480
    for idx, dim in enumerate(perm):
        if dim >= len(x.shape):
            raise ValueError(
                "Each element in perm should be less than x's rank. "
                "%d-th element in perm is %d which accesses x's rank %d." %
                (idx, perm[idx], len(x.shape)))
Y
ying 已提交
4481 4482

    helper = LayerHelper('transpose', **locals())
X
Xin Pan 已提交
4483 4484
    out = helper.create_variable_for_type_inference(x.dtype)
    x_shape = helper.create_variable_for_type_inference(x.dtype)
Y
ying 已提交
4485
    helper.append_op(
4486
        type='transpose2',
Y
fix ci.  
ying 已提交
4487
        inputs={'X': [x]},
4488 4489
        outputs={'Out': [out],
                 'XShape': [x_shape]},
Y
ying 已提交
4490 4491
        attrs={'axis': perm})
    return out
4492 4493


4494 4495 4496 4497 4498 4499 4500
def im2sequence(input,
                filter_size=1,
                stride=1,
                padding=0,
                input_image_size=None,
                out_stride=1,
                name=None):
4501
    """
4502 4503 4504 4505 4506 4507 4508
    Extracts image patches from the input tensor to form a tensor of shape
    {input.batch_size * output_height * output_width, filter_size_H *
    filter_size_W * input.channels} which is similar with im2col.
    This op use filter / kernel to scan images and convert these images to
    sequences. After expanding, the number of time step are
    output_height * output_width for an image, in which output_height and
    output_width are calculated by below equation:
4509 4510 4511 4512 4513 4514 4515 4516 4517 4518

    .. math::

        output\_size = 1 + \
            (2 * padding + img\_size - block\_size + stride - 1) / stride

    And the dimension of each time step is block_y * block_x * input.channels.

    Args:
        input (Variable): The input should be a tensor in NCHW format.
W
wanghaoshuang 已提交
4519 4520 4521 4522 4523 4524 4525 4526 4527 4528 4529 4530 4531 4532 4533 4534 4535 4536

        filter_size(int|tuple|None): The filter size. If filter_size is a tuple,
            it must contain two integers, (filter_size_H, filter_size_W).
            Otherwise, the filter will be a square.

        stride(int|tuple): The stride size. If stride is a tuple, it must
            contain two integers, (stride_H, stride_W). Otherwise, the
            stride_H = stride_W = stride. Default: stride = 1.

        padding(int|tuple): The padding size. If padding is a tuple, it can
            contain two integers like (padding_H, padding_W) which means
            padding_up = padding_down = padding_H and
            padding_left = padding_right = padding_W. Or it can use
            (padding_up, padding_left, padding_down, padding_right) to indicate
            paddings of four direction. Otherwise, a scalar padding means
            padding_up = padding_down = padding_left = padding_right = padding
            Default: padding = 0.

4537 4538 4539 4540 4541 4542 4543 4544 4545
        input_image_size(Variable): the input contains image real size.It's dim
            is [batchsize, 2]. It is dispensable.It is just for batch inference.

        out_stride(int|tuple): The scaling of image through CNN. It is
            dispensable. It is valid only when input_image_size is not null.
            If out_stride is tuple,  it must contain two intergers,
            (out_stride_H, out_stride_W). Otherwise,
            the out_stride_H = out_stride_W = out_stride.

4546 4547 4548
        name (int): The name of this layer. It is optional.

    Returns:
W
wanghaoshuang 已提交
4549 4550 4551 4552 4553
        output: The output is a LoDTensor with shape
        {input.batch_size * output_height * output_width,
        filter_size_H * filter_size_W * input.channels}.
        If we regard output as a matrix, each row of this matrix is
        a step of a sequence.
4554 4555 4556 4557 4558 4559 4560 4561 4562 4563 4564 4565 4566 4567 4568 4569 4570 4571 4572 4573 4574 4575 4576 4577 4578 4579 4580

    Examples:

        .. code-block:: text

            Given:

            x = [[[[ 6.  2.  1.]
                   [ 8.  3.  5.]
                   [ 0.  2.  6.]]

                  [[ 2.  4.  4.]
                   [ 6.  3.  0.]
                   [ 6.  4.  7.]]]

                 [[[ 6.  7.  1.]
                   [ 5.  7.  9.]
                   [ 2.  4.  8.]]

                  [[ 1.  2.  1.]
                   [ 1.  3.  5.]
                   [ 9.  0.  8.]]]]

            x.dims = {2, 2, 3, 3}

            And:

W
wanghaoshuang 已提交
4581 4582 4583
            filter = [2, 2]
            stride = [1, 1]
            padding = [0, 0]
4584 4585 4586 4587 4588 4589 4590 4591 4592 4593 4594 4595

            Then:

            output.data = [[ 6.  2.  8.  3.  2.  4.  6.  3.]
                           [ 2.  1.  3.  5.  4.  4.  3.  0.]
                           [ 8.  3.  0.  2.  6.  3.  6.  4.]
                           [ 3.  5.  2.  6.  3.  0.  4.  7.]
                           [ 6.  7.  5.  7.  1.  2.  1.  3.]
                           [ 7.  1.  7.  9.  2.  1.  3.  5.]
                           [ 5.  7.  2.  4.  1.  3.  9.  0.]
                           [ 7.  9.  4.  8.  3.  5.  0.  8.]]

4596
            output.dims = {8, 8}
4597

4598
            output.lod = [[4, 4]]
4599

D
dzhwinter 已提交
4600
     Examples:
4601 4602 4603

        .. code-block:: python

4604 4605
            output = fluid.layers.im2sequence(
                input=layer, stride=[1, 1], filter_size=[2, 2])
4606 4607

    """
W
wanghaoshuang 已提交
4608 4609 4610 4611 4612 4613 4614 4615 4616 4617

    if isinstance(filter_size, int):
        filter_size = [filter_size, filter_size]
    if isinstance(stride, int):
        stride = [stride, stride]
    if isinstance(padding, int):
        padding = [padding, padding]
    if len(padding) == 2:
        padding.append(padding[0])
        padding.append(padding[1])
4618 4619 4620 4621 4622 4623 4624
    inputs = {"X": input}
    attrs = {"kernels": filter_size, "strides": stride, "padding": padding}
    if input_image_size:
        if isinstance(out_stride, int):
            out_stride = [out_stride, out_stride]
        inputs["Y"] = input_image_size
        attrs["out_stride"] = out_stride
4625
    helper = LayerHelper('im2sequence', **locals())
X
Xin Pan 已提交
4626
    out = helper.create_variable_for_type_inference(dtype=helper.input_dtype())
4627
    helper.append_op(
4628
        type='im2sequence', inputs=inputs, outputs={'Out': out}, attrs=attrs)
4629
    return out
4630 4631


Y
yuyang18 已提交
4632
@templatedoc()
4633
def row_conv(input, future_context_size, param_attr=None, act=None):
Y
yuyang18 已提交
4634 4635
    """
    ${comment}
4636 4637

    Args:
Y
yuyang18 已提交
4638
        input (${x_type}): ${x_comment}.
Y
yangyaming 已提交
4639 4640
        future_context_size (int): Future context size. Please note, the shape
            of convolution kernel is [future_context_size + 1, D].
4641 4642 4643 4644 4645
        param_attr (ParamAttr): Attributes of parameters, including
            name, initializer etc.
        act (str): Non-linear activation to be applied to output variable.

    Returns:
Y
yuyang18 已提交
4646
        ${out_comment}.
4647 4648

    Examples:
Y
yuyang18 已提交
4649 4650 4651 4652
        >>> import paddle.fluid as fluid
        >>> x = fluid.layers.data(name='x', shape=[16],
        >>>                        dtype='float32', lod_level=1)
        >>> out = fluid.layers.row_conv(input=x, future_context_size=2)
4653 4654 4655 4656 4657 4658
    """
    helper = LayerHelper('row_conv', **locals())
    dtype = helper.input_dtype()
    filter_shape = [future_context_size + 1, input.shape[1]]
    filter_param = helper.create_parameter(
        attr=helper.param_attr, shape=filter_shape, dtype=dtype)
X
Xin Pan 已提交
4659
    out = helper.create_variable_for_type_inference(dtype)
4660 4661 4662 4663 4664
    helper.append_op(
        type='row_conv',
        inputs={'X': [input],
                'Filter': [filter_param]},
        outputs={'Out': [out]})
Y
yangyaming 已提交
4665
    return helper.append_activation(out)
4666 4667


Y
yuyang18 已提交
4668
@templatedoc()
4669 4670
def multiplex(inputs, index):
    """
Y
yuyang18 已提交
4671 4672 4673 4674 4675 4676 4677
    ${comment}

    >>> import paddle.fluid as fluid
    >>> x1 = fluid.layers.data(name='x1', shape=[4], dtype='float32')
    >>> x2 = fluid.layers.data(name='x2', shape=[4], dtype='float32')
    >>> index = fluid.layers.data(name='index', shape=[1], dtype='int32')
    >>> out = fluid.layers.multiplex(inputs=[x1, x2], index=index)
4678 4679

    Args:
Y
yuyang18 已提交
4680 4681
       inputs (list): ${x_comment}.
       index (${ids_type}): ${ids_comment}.
4682 4683

    Returns:
Y
yuyang18 已提交
4684
        ${out_comment}.
4685 4686
    """
    helper = LayerHelper('multiplex', **locals())
Y
yangyaming 已提交
4687 4688 4689 4690 4691

    if not isinstance(inputs, list) and len(inputs) < 2:
        raise ValueError("inputs should be a list object and contains at least "
                         "2 elements.")

X
Xin Pan 已提交
4692
    out = helper.create_variable_for_type_inference(inputs[0].dtype)
4693 4694 4695 4696 4697 4698
    helper.append_op(
        type='multiplex',
        inputs={'X': inputs,
                'Ids': index},
        outputs={'Out': [out]})
    return out
4699 4700


4701 4702 4703 4704
def softmax_with_cross_entropy(logits,
                               label,
                               soft_label=False,
                               ignore_index=-100):
4705 4706
    """
    **Softmax With Cross Entropy Operator.**
4707

4708 4709 4710 4711
    Cross entropy loss with softmax is used as the output layer extensively. This
    operator computes the softmax normalized values for each row of the input
    tensor, after which cross-entropy loss is computed. This provides a more
    numerically stable gradient.
4712

4713 4714 4715
    Because this operator performs a softmax on logits internally, it expects
    unscaled logits. This operator should not be used with the output of
    softmax operator since that would produce incorrect results.
4716

4717 4718 4719
    When the attribute soft_label is set false, this operators expects mutually
    exclusive hard labels, each sample in a batch is in exactly one class with a
    probability of 1.0. Each sample in the batch will have a single label.
4720

4721
    The equation is as follows:
4722

4723
    1) Hard label (one-hot label, so every sample has exactly one class)
4724

4725 4726 4727 4728
    .. math::

        loss_j =  -\\text{logit}_{label_j} +
        \\log\\left(\\sum_{i=0}^{K}\\exp(\\text{logit}_i)\\right), j = 1,..., K
4729

4730 4731 4732
    2) Soft label (each sample can have a distribution over all classes)

    .. math::
4733

4734 4735 4736 4737 4738 4739 4740 4741 4742 4743 4744 4745
        loss_j =  -\\sum_{i=0}^{K}\\text{label}_i
        \\left(\\text{logit}_i - \\log\\left(\\sum_{i=0}^{K}
        \\exp(\\text{logit}_i)\\right)\\right), j = 1,...,K

    Args:
        logits (Variable): The unscaled log probabilities, which is a 2-D tensor
            with shape [N x K]. N is the batch_size, and K is the class number.
        label (Variable): The ground truth which is a 2-D tensor. If soft_label
            is set to false, Label is a Tensor<int64> with shape [N x 1]. If
            soft_label is set to true, Label is a Tensor<float/double> with
        soft_label (bool): A flag to indicate whether to interpretate the given
            labels as soft labels. By default, `soft_label` is set to False.
M
minqiyang 已提交
4746 4747
        ignore_index (int): Specifies a target value that is ignored and does
                            not contribute to the input gradient. Only valid
4748 4749
                            if soft_label is set to False. Default: -100

4750 4751 4752 4753 4754 4755 4756 4757 4758
    Returns:
        Variable: The cross entropy loss is a 2-D tensor with shape [N x 1].

    Examples:
        .. code-block:: python

            data = fluid.layers.data(name='data', shape=[128], dtype='float32')
            label = fluid.layers.data(name='label', shape=[1], dtype='int64')
            fc = fluid.layers.fc(input=data, size=100)
F
stash  
fengjiayi 已提交
4759 4760
            out = fluid.layers.softmax_with_cross_entropy(
                logits=fc, label=label)
4761 4762
    """
    helper = LayerHelper('softmax_with_cross_entropy', **locals())
X
Xin Pan 已提交
4763 4764
    softmax = helper.create_variable_for_type_inference(dtype=logits.dtype)
    loss = helper.create_variable_for_type_inference(dtype=logits.dtype)
4765 4766 4767 4768 4769 4770
    helper.append_op(
        type='softmax_with_cross_entropy',
        inputs={'Logits': logits,
                'Label': label},
        outputs={'Softmax': softmax,
                 'Loss': loss},
4771 4772
        attrs={'soft_label': soft_label,
               'ignore_index': ignore_index})
4773 4774 4775 4776 4777
    return loss


def smooth_l1(x, y, inside_weight=None, outside_weight=None, sigma=None):
    """
Y
Yibing Liu 已提交
4778 4779
    This layer computes the smooth L1 loss for Variable :attr:`x` and :attr:`y`.
    It takes the first dimension of :attr:`x` and :attr:`y` as batch size.
Q
qingqing01 已提交
4780
    For each instance, it computes the smooth L1 loss element by element first
4781
    and then sums all the losses. So the shape of ouput Variable is
4782
    [batch_size, 1].
4783

4784 4785
    Args:
        x (Variable): A tensor with rank at least 2. The input value of smooth
Q
qingqing01 已提交
4786
            L1 loss op with shape [batch_size, dim1, ..., dimN].
4787
        y (Variable): A tensor with rank at least 2. The target value of smooth
Y
Yibing Liu 已提交
4788
            L1 loss op with same shape as :attr:`x`.
4789
        inside_weight (Variable|None):  A tensor with rank at least 2. This
4790 4791
            input is optional and should have same shape with :attr:`x`. If
            provided, the result of (:attr:`x` - :attr:`y`) will be multiplied
Y
Yibing Liu 已提交
4792
            by this tensor element by element.
4793
        outside_weight (Variable|None): A tensor with rank at least 2. This
4794 4795
            input is optional and should have same shape with :attr:`x`. If
            provided, the out smooth L1 loss will be multiplied by this tensor
Y
Yibing Liu 已提交
4796
            element by element.
4797
        sigma (float|None): Hyper parameter of smooth L1 loss layer. A float
4798 4799
           scalar with default value 1.0.

4800
    Returns:
4801
        Variable: The output smooth L1 loss with shape [batch_size, 1].
4802 4803 4804 4805 4806

    Examples:
        .. code-block:: python

            data = fluid.layers.data(name='data', shape=[128], dtype='float32')
F
stash  
fengjiayi 已提交
4807 4808
            label = fluid.layers.data(
                name='label', shape=[100], dtype='float32')
4809
            fc = fluid.layers.fc(input=data, size=100)
F
fengjiayi 已提交
4810
            out = fluid.layers.smooth_l1(x=fc, y=label)
4811
    """
4812

4813
    helper = LayerHelper('smooth_l1_loss', **locals())
X
Xin Pan 已提交
4814 4815
    diff = helper.create_variable_for_type_inference(dtype=x.dtype)
    loss = helper.create_variable_for_type_inference(dtype=x.dtype)
4816 4817 4818 4819 4820 4821 4822 4823 4824 4825 4826 4827
    helper.append_op(
        type='smooth_l1_loss',
        inputs={
            'X': x,
            'Y': y,
            'InsideWeight': inside_weight,
            'OutsideWeight': outside_weight
        },
        outputs={'Diff': diff,
                 'Out': loss},
        attrs={'sigma': sigma})
    return loss
4828 4829 4830 4831


def one_hot(input, depth):
    """
Y
Yibing Liu 已提交
4832
    This layer creates the one-hot representations for input indices.
4833 4834

    Args:
Y
Yibing Liu 已提交
4835 4836
        input(Variable): Input indices, last dimension must be 1.
        depth(scalar): An interger defining the depth of the one-hot dimension.
4837 4838

    Returns:
Y
Yibing Liu 已提交
4839
        Variable: The one-hot representations of input.
4840 4841

    Examples:
C
caoying03 已提交
4842
        .. code-block:: python
4843

Y
Yibing Liu 已提交
4844 4845
            label = layers.data(name="label", shape=[1], dtype="float32")
            one_hot_label = layers.one_hot(input=label, depth=10)
4846 4847
    """
    helper = LayerHelper("one_hot", **locals())
X
Xin Pan 已提交
4848
    one_hot_out = helper.create_variable_for_type_inference(dtype='float32')
4849 4850 4851 4852 4853 4854
    helper.append_op(
        type="one_hot",
        inputs={'X': input},
        attrs={'depth': depth},
        outputs={'Out': one_hot_out})
    return one_hot_out
Y
Yu Yang 已提交
4855 4856


Y
Yu Yang 已提交
4857
def autoincreased_step_counter(counter_name=None, begin=1, step=1):
Y
Yu Yang 已提交
4858
    """
Y
yi.wu 已提交
4859 4860 4861
    Create an auto-increase variable
    which will be automatically increased by 1 every mini-batch
    Return the run counter of the main program, default is started from 1.
Y
Yu Yang 已提交
4862 4863 4864 4865 4866 4867

    Args:
        counter_name(str): The counter name, default is '@STEP_COUNTER@'.
        begin(int): The first value of this counter.
        step(int): The increment step between each execution.

4868 4869
    Returns:
        Variable: The global run counter.
Y
yi.wu 已提交
4870 4871 4872 4873 4874 4875

    Examples:
        .. code-block:: python

           global_step = fluid.layers.autoincreased_step_counter(
               counter_name='@LR_DECAY_COUNTER@', begin=begin, step=1)
Y
Yu Yang 已提交
4876 4877
    """
    helper = LayerHelper('global_step_counter')
Y
Yu Yang 已提交
4878 4879
    if counter_name is None:
        counter_name = '@STEP_COUNTER@'
Y
Yu Yang 已提交
4880 4881 4882 4883 4884
    counter, is_new_var = helper.create_or_get_global_variable(
        name=counter_name, dtype='int64', shape=[1], persistable=True)
    if is_new_var:
        helper.set_variable_initializer(
            counter, initializer=Constant(
Y
Yu Yang 已提交
4885
                value=begin - 1, force_cpu=True))
W
Wu Yi 已提交
4886
        helper.main_program.global_block()._prepend_op(
Y
Yu Yang 已提交
4887 4888
            type='increment',
            inputs={'X': [counter]},
Y
Yu Yang 已提交
4889 4890
            outputs={'Out': [counter]},
            attrs={'step': float(step)})
Y
Yu Yang 已提交
4891 4892 4893
        counter.stop_gradient = True

    return counter
Y
yangyaming 已提交
4894 4895


4896
def reshape(x, shape, actual_shape=None, act=None, inplace=False, name=None):
C
caoying03 已提交
4897
    """
C
caoying03 已提交
4898 4899
    Gives a new shape to the input Tensor without changing its data.

4900 4901 4902 4903 4904
    The target shape can be given by :attr:`shape` or :attr:`actual_shape`.
    :attr:`shape` is a list of integer while :attr:`actual_shape` is a tensor
    variable. :attr:`actual_shape` has a higher priority than :attr:`shape`
    if it is provided, while :attr:`shape` still should be set correctly to
    gurantee shape inference in compile-time.
C
caoying03 已提交
4905

4906
    Some tricks exist when specifying the target shape.
C
caoying03 已提交
4907

4908 4909 4910 4911
    1. -1 means the value of this dimension is inferred from the total element
    number of x and remaining dimensions. Thus one and only one dimension can
    be set -1.

4912
    2. 0 means the actual dimension value is going to be copied from the
4913 4914 4915 4916
    corresponding dimension of x. The indice of 0s in shape can not exceed
    Rank(X).

    Here are some examples to explain it.
C
caoying03 已提交
4917 4918

    1. Given a 3-D tensor x with a shape [2, 4, 6], and the target shape
W
wanghaoshuang 已提交
4919
    is [6, 8], the reshape operator will transform x into a 2-D tensor with
4920
    shape [6, 8] and leaving x's data unchanged.
C
caoying03 已提交
4921

4922
    2. Given a 3-D tensor x with a shape [2, 4, 6], and the target shape
4923 4924
    specified is [2, 3, -1, 2], the reshape operator will transform x into a
    4-D tensor with shape [2, 3, 4, 2] and leaving x's data unchanged. In this
W
wanghaoshuang 已提交
4925 4926
    case, one dimension of the target shape is set to -1, the value of this
    dimension is inferred from the total element number of x and remaining
4927
    dimensions.
C
caoying03 已提交
4928

4929
    3. Given a 3-D tensor x with a shape [2, 4, 6], and the target shape
4930 4931 4932 4933
    is [-1, 0, 3, 2], the reshape operator will transform x into a 4-D tensor
    with shape [2, 4, 3, 2] and leaving x's data unchanged. In this case,
    besides -1, 0 means the actual dimension value is going to be copied from
    the corresponding dimension of x.
C
caoying03 已提交
4934 4935

    Args:
4936
        x(variable): The input tensor.
C
caoying03 已提交
4937 4938
        shape(list): The new shape. At most one dimension of the new shape can
                     be -1.
4939 4940 4941 4942 4943
        actual_shape(variable): An optional input. If provided, reshape
                                according to this given shape rather than
                                :attr:`shape` specifying shape. That is to
                                say :attr:`actual_shape` has a higher priority
                                than :attr:`shape`.
4944 4945
        act (str): The non-linear activation to be applied to the reshaped tensor
                   variable.
4946 4947 4948 4949 4950 4951 4952
        inplace(bool): Must use :attr:`False` if :attr:`x` is used in multiple
                       operators. If this flag is set :attr:`True`, reuse input
                       :attr:`x` to reshape, which will change the shape of
                       tensor variable :attr:`x` and might cause errors when
                       :attr:`x` is used in multiple operators. If :attr:`False`,
                       preserve the shape :attr:`x` and create a new output tensor
                       variable whose data is copied from input x but reshaped.
4953
        name (str): The name of this layer. It is optional.
C
caoying03 已提交
4954

4955
    Returns:
G
guosheng 已提交
4956 4957 4958 4959
        Variable: The reshaped tensor variable if :attr:`act` is None. It is a \
                  new tensor variable if :attr:`inplace` is :attr:`False`, \
                  otherwise it is :attr:`x`. If :attr:`act` is not None, return \
                  the activated tensor variable.
C
caoying03 已提交
4960

X
Xin Pan 已提交
4961 4962 4963
    Raises:
        TypeError: if actual_shape is neither Variable nor None.

C
caoying03 已提交
4964 4965
    Examples:
        .. code-block:: python
G
guosheng 已提交
4966

4967
            data = fluid.layers.data(
4968
                name='data', shape=[2, 4, 6], dtype='float32')
C
caoying03 已提交
4969
            reshaped = fluid.layers.reshape(
G
guosheng 已提交
4970
                x=data, shape=[-1, 0, 3, 2], inplace=True)
C
caoying03 已提交
4971 4972 4973
    """

    if not (isinstance(shape, list) or isinstance(shape, tuple)):
L
luotao1 已提交
4974
        raise ValueError("Input shape must be a python list or tuple.")
X
Xin Pan 已提交
4975 4976 4977 4978 4979
    inputs = {"X": x}
    if isinstance(actual_shape, Variable):
        inputs["Shape"] = actual_shape
    elif actual_shape is not None:
        raise TypeError("actual_shape should either be Variable or None")
C
caoying03 已提交
4980

4981 4982 4983 4984 4985 4986 4987 4988 4989 4990 4991 4992 4993 4994 4995
    # Validate the shape
    unk_dim_idx = -1
    for dim_idx, dim_size in enumerate(shape):
        if dim_size == -1:
            assert unk_dim_idx == -1, (
                "Only one dimension in shape can be unknown.")
            unk_dim_idx = dim_idx
        elif dim_size == 0:
            assert dim_idx < len(x.shape), (
                "The indice of 0s in shape can not exceed Rank(X).")
        else:
            assert dim_size > 0, (
                "Each dimension size given in shape must not be negtive "
                "except one unknown dimension.")

4996
    helper = LayerHelper("reshape2", **locals())
4997 4998
    out = x if inplace else helper.create_variable_for_type_inference(
        dtype=x.dtype)
X
Xin Pan 已提交
4999
    x_shape = helper.create_variable_for_type_inference(dtype=x.dtype)
C
caoying03 已提交
5000
    helper.append_op(
5001
        type="reshape2",
X
Xin Pan 已提交
5002
        inputs=inputs,
D
dzhwinter 已提交
5003
        attrs={"shape": shape},
5004 5005
        outputs={"Out": out,
                 "XShape": x_shape})
C
caoying03 已提交
5006

D
dzhwinter 已提交
5007
    return helper.append_activation(out)
5008

5009

5010
def squeeze(input, axes, name=None):
Y
Yibing Liu 已提交
5011
    """
M
minqiyang 已提交
5012 5013 5014
    Remove single-dimensional entries from the shape of a tensor. Takes a
    parameter axes with a list of axes to squeeze. If axes is not provided, all
    the single dimensions will be removed from the shape. If an axis is
Y
Yibing Liu 已提交
5015
    selected with shape entry not equal to one, an error is raised.
M
minqiyang 已提交
5016

Y
Yibing Liu 已提交
5017 5018
    Examples:
    Case 1:
M
minqiyang 已提交
5019
      Given
Y
Yibing Liu 已提交
5020 5021 5022 5023 5024 5025 5026 5027
        X.shape = (1, 3, 1, 5)
      and
        axes = [0]
      we get:
        Out.shape = (3, 1, 5)
      Case 2:
        Given
          X.shape = (1, 3, 1, 5)
M
minqiyang 已提交
5028
        and
Y
Yibing Liu 已提交
5029 5030 5031
          axes = []
        we get:
          Out.shape = (3, 5)
M
minqiyang 已提交
5032

Y
Yibing Liu 已提交
5033
    Args:
5034
        input (Variable): The input variable to be squeezed.
Y
Yibing Liu 已提交
5035
        axes (list): List of integers, indicating the dimensions to be squeezed.
5036
        name (str|None): Name for this layer.
Y
Yibing Liu 已提交
5037 5038 5039 5040 5041 5042 5043 5044

    Returns:
        Variable: Output squeezed variable.

    Examples:
        .. code-block:: python

            x = layers.data(name='x', shape=[5, 1, 10])
5045
            y = layers.sequeeze(input=x, axes=[1])
Y
Yibing Liu 已提交
5046 5047
    """
    helper = LayerHelper("squeeze", **locals())
X
Xin Pan 已提交
5048 5049
    out = helper.create_variable_for_type_inference(dtype=input.dtype)
    x_shape = helper.create_variable_for_type_inference(dtype=input.dtype)
Y
Yibing Liu 已提交
5050
    helper.append_op(
5051
        type="squeeze2",
5052
        inputs={"X": input},
Y
Yibing Liu 已提交
5053
        attrs={"axes": axes},
5054 5055
        outputs={"Out": out,
                 "XShape": x_shape})
Y
Yibing Liu 已提交
5056

5057 5058 5059
    return out


5060
def unsqueeze(input, axes, name=None):
Y
Yibing Liu 已提交
5061
    """
M
minqiyang 已提交
5062 5063 5064
    Insert single-dimensional entries to the shape of a tensor. Takes one
    required argument axes, a list of dimensions that will be inserted.
    Dimension indices in axes are as seen in the output tensor.
Y
Yibing Liu 已提交
5065

M
minqiyang 已提交
5066 5067
    For example:
      Given a tensor such that tensor with shape [3, 4, 5],
Y
Yibing Liu 已提交
5068
      then Unsqueezed tensor with axes=[0, 4] has shape [1, 3, 4, 5, 1].
M
minqiyang 已提交
5069

Y
Yibing Liu 已提交
5070
    Args:
5071
        input (Variable): The input variable to be unsqueezed.
Y
Yibing Liu 已提交
5072
        axes (list): List of integers, indicating the dimensions to be inserted.
5073
        name (str|None): Name for this layer.
Y
Yibing Liu 已提交
5074 5075 5076 5077 5078 5079 5080 5081

    Returns:
        Variable: Output unsqueezed variable.

    Examples:
        .. code-block:: python

            x = layers.data(name='x', shape=[5, 10])
5082
            y = layers.unsequeeze(input=x, axes=[1])
Y
Yibing Liu 已提交
5083 5084
    """
    helper = LayerHelper("unsqueeze", **locals())
X
Xin Pan 已提交
5085 5086
    out = helper.create_variable_for_type_inference(dtype=input.dtype)
    x_shape = helper.create_variable_for_type_inference(dtype=input.dtype)
Y
Yibing Liu 已提交
5087
    helper.append_op(
5088
        type="unsqueeze2",
5089
        inputs={"X": input},
Y
Yibing Liu 已提交
5090
        attrs={"axes": axes},
5091 5092
        outputs={"Out": out,
                 "XShape": x_shape})
Y
Yibing Liu 已提交
5093

5094 5095
    return out

5096

Y
yangyaming 已提交
5097
def lod_reset(x, y=None, target_lod=None):
Y
yangyaming 已提交
5098
    """
Y
Yibing Liu 已提交
5099
    Set LoD of :attr:`x` to a new one specified by :attr:`y` or
5100 5101 5102 5103
    :attr:`target_lod`. When :attr:`y` provided, :attr:`y.lod` would be
    considered as target LoD first, otherwise :attr:`y.data` would be
    considered as target LoD. If :attr:`y` is not provided, target LoD should
    be specified by :attr:`target_lod`. If target LoD is specified by
Y
Yibing Liu 已提交
5104
    :attr:`Y.data` or :attr:`target_lod`, only one level LoD is supported.
Y
yangyaming 已提交
5105 5106 5107 5108 5109 5110

    .. code-block:: text

        * Example 1:

            Given a 1-level LoDTensor x:
5111
                x.lod =  [[ 2,           3,                   1 ]]
Y
yangyaming 已提交
5112 5113 5114
                x.data = [[1.0], [2.0], [3.0], [4.0], [5.0], [6.0]]
                x.dims = [6, 1]

5115
            target_lod: [4, 2]
Y
yangyaming 已提交
5116 5117

            then we get a 1-level LoDTensor:
5118
                out.lod =  [[4,                          2]]
Y
yangyaming 已提交
5119 5120 5121 5122 5123 5124
                out.data = [[1.0], [2.0], [3.0], [4.0], [5.0], [6.0]]
                out.dims = [6, 1]

        * Example 2:

            Given a 1-level LoDTensor x:
5125
                x.lod =  [[2,            3,                   1]]
Y
yangyaming 已提交
5126 5127 5128 5129
                x.data = [[1.0], [2.0], [3.0], [4.0], [5.0], [6.0]]
                x.dims = [6, 1]

            y is a Tensor:
5130
                y.data = [[2, 4]]
Y
yangyaming 已提交
5131 5132 5133
                y.dims = [1, 3]

            then we get a 1-level LoDTensor:
5134
                out.lod =  [[2,            4]]
Y
yangyaming 已提交
5135 5136 5137 5138 5139 5140
                out.data = [[1.0], [2.0], [3.0], [4.0], [5.0], [6.0]]
                out.dims = [6, 1]

        * Example 3:

            Given a 1-level LoDTensor x:
5141
                x.lod =  [[2,            3,                   1]]
Y
yangyaming 已提交
5142 5143 5144 5145
                x.data = [[1.0], [2.0], [3.0], [4.0], [5.0], [6.0]]
                x.dims = [6, 1]

            y is a 2-level LoDTensor:
5146
                y.lod =  [[2, 2], [2, 2, 1, 1]]
Y
yangyaming 已提交
5147 5148 5149 5150
                y.data = [[1.1], [2.1], [3.1], [4.1], [5.1], [6.1]]
                y.dims = [6, 1]

            then we get a 2-level LoDTensor:
5151
                out.lod =  [[2, 2], [2, 2, 1, 1]]
Y
yangyaming 已提交
5152 5153 5154 5155 5156
                out.data = [[1.0], [2.0], [3.0], [4.0], [5.0], [6.0]]
                out.dims = [6, 1]

    Args:
        x (Variable): Input variable which could be a Tensor or LodTensor.
5157
        y (Variable|None): If provided, output's LoD would be derived
Y
Yibing Liu 已提交
5158
                           from :attr:`y`.
Y
yangyaming 已提交
5159
        target_lod (list|tuple|None): One level LoD which should be considered
Y
Yibing Liu 已提交
5160
                                      as target LoD when :attr:`y` not provided.
Y
yangyaming 已提交
5161 5162

    Returns:
Y
Yibing Liu 已提交
5163
        Variable: Output variable with LoD specified by this layer.
Y
yangyaming 已提交
5164 5165

    Raises:
Y
Yibing Liu 已提交
5166
        ValueError: If :attr:`y` and :attr:`target_lod` are both None.
Y
yangyaming 已提交
5167 5168 5169 5170 5171 5172 5173 5174 5175

    Examples:
        .. code-block:: python

            x = layers.data(name='x', shape=[10])
            y = layers.data(name='y', shape=[10, 20], lod_level=2)
            out = layers.lod_reset(x=x, y=y)
    """
    helper = LayerHelper("lod_reset", **locals())
X
Xin Pan 已提交
5176
    out = helper.create_variable_for_type_inference(dtype=x.dtype)
Y
yangyaming 已提交
5177 5178 5179 5180 5181 5182 5183 5184 5185 5186 5187 5188 5189 5190
    if y is not None:
        helper.append_op(
            type="lod_reset", inputs={'X': x,
                                      'Y': y}, outputs={'Out': out})
    elif target_lod is not None:
        helper.append_op(
            type="lod_reset",
            inputs={'X': x},
            attrs={'target_lod': target_lod},
            outputs={'Out': out})
    else:
        raise ValueError("y and target_lod should not be both None.")

    return out
D
dragonwarrior 已提交
5191 5192 5193 5194 5195 5196 5197 5198 5199 5200 5201


def lrn(input, n=5, k=1.0, alpha=1e-4, beta=0.75, name=None):
    """
    Local Response Normalization Layer. This layer performs a type of
    "lateral inhibition" by normalizing over local input regions.

    The formula is as follows:

    .. math::

D
dzhwinter 已提交
5202
      Output(i, x, y) = Input(i, x, y) / \\left(k + \\alpha \\sum\\limits^{\\min(C, c + n/2)}_{j = \\max(0, c - n/2)}(Input(j, x, y))^2\\right)^{\\beta}
D
dragonwarrior 已提交
5203 5204 5205 5206 5207 5208 5209 5210 5211 5212 5213 5214 5215 5216 5217 5218 5219 5220 5221 5222 5223 5224 5225 5226 5227 5228 5229 5230

    In the above equation:

    * :math:`n`: The number of channels to sum over.
    * :math:`k`: The offset (avoid being divided by 0).
    * :math:`alpha`: The scaling parameter.
    * :math:`beta`: The exponent parameter.

    Refer to `ImageNet Classification with Deep Convolutional Neural Networks
    <https://papers.nips.cc/paper/4824-imagenet-classification-with-deep-convolutional-neural-networks.pdf>`_

    Args:
        input (Variable): The input tensor of this layer, and the dimension of input tensor must be 4.
        n (int, default 5): The number of channels to sum over.
        k (float, default 1.0): An offset (usually positive to avoid dividing by 0).
        alpha (float, default 1e-4): The scaling parameter.
        beta (float, default 0.75): The exponent.
        name (str, default None): A name for this operation.

    Raises:
        ValueError: If rank of the input tensor is not 4.

    Returns:
        A tensor variable storing the transformation result.

    Examples:
        .. code-block:: python

F
stash  
fengjiayi 已提交
5231 5232
          data = fluid.layers.data(
              name="data", shape=[3, 112, 112], dtype="float32")
D
dragonwarrior 已提交
5233 5234 5235 5236 5237 5238 5239 5240 5241 5242 5243 5244
          lrn = fluid.layers.lrn(input=data)
    """
    helper = LayerHelper('lrn', **locals())
    dtype = helper.input_dtype()
    input_shape = input.shape
    dims = len(input_shape)

    if dims != 4:
        raise ValueError(
            "dims of input must be 4(not %d), and it's order must be NCHW" %
            (dims))

X
Xin Pan 已提交
5245 5246 5247
    mid_out = helper.create_variable_for_type_inference(
        dtype=dtype, stop_gradient=True)
    lrn_out = helper.create_variable_for_type_inference(dtype)
D
dragonwarrior 已提交
5248 5249 5250 5251 5252 5253 5254 5255 5256 5257 5258 5259 5260
    helper.append_op(
        type="lrn",
        inputs={"X": input},
        outputs={
            "Out": lrn_out,
            "MidOut": mid_out,
        },
        attrs={"n": n,
               "k": k,
               "alpha": alpha,
               "beta": beta})

    return lrn_out
G
guosheng 已提交
5261 5262 5263 5264


def pad(x, paddings, pad_value=0., name=None):
    """
G
guosheng 已提交
5265
    Pads a tensor with a constant value given by :attr:`pad_value`, and the
W
wanghaoshuang 已提交
5266
    padded width is specified by :attr:`paddings`.
G
guosheng 已提交
5267

G
guosheng 已提交
5268 5269 5270 5271
    Specifically, the number of values padded before the contents of :attr:`x`
    in dimension :attr:`i` is indicated by :attr:`paddings[i]`, and the number
    of values padded after the contents of :attr:`x` in dimension :attr:`i` is
    indicated by :attr:`paddings[i+1]`.
G
guosheng 已提交
5272 5273 5274 5275 5276 5277 5278 5279 5280 5281 5282 5283 5284 5285 5286 5287 5288 5289 5290 5291 5292 5293

    See below for an example.

    .. code-block:: text

        Given:
            x = [[1, 2], [3, 4]]

            paddings = [0, 1, 1, 2]

            pad_value = 0

        Return:

            out = [[0, 1, 2, 0, 0]
                   [0, 3, 4, 0, 0]
                   [0, 0, 0, 0, 0]]

    Args:
        x (Variable): The input tensor variable.
        paddings (list): A list of integers. Its elements specify the padded
                         width before and after for each dimension in turn.
W
wanghaoshuang 已提交
5294
                         The length of :attr:paddings must be
G
guosheng 已提交
5295 5296 5297 5298 5299 5300 5301 5302 5303 5304
                         :math:`rank(x) \\times 2`.
        pad_value (float): The constant value used to pad.
        name(str|None): A name for this layer(optional). If set None, the layer
                        will be named automatically.

    Returns:
        Variable: The padded tensor variable.

    Examples:
        .. code-block:: python
G
guosheng 已提交
5305

G
guosheng 已提交
5306 5307 5308 5309 5310 5311
            # x is a rank 2 tensor variable.
            out = fluid.layers.pad(
                x=x, paddings=[0, 1, 1, 2], pad_value=0.)
    """
    helper = LayerHelper('pad', input=x, **locals())
    dtype = helper.input_dtype()
X
Xin Pan 已提交
5312
    out = helper.create_variable_for_type_inference(dtype)
G
guosheng 已提交
5313 5314 5315 5316 5317 5318 5319
    helper.append_op(
        type='pad',
        inputs={'X': x},
        outputs={'Out': out},
        attrs={'paddings': paddings,
               'pad_value': float(pad_value)})
    return out
5320 5321


C
chengduo 已提交
5322 5323 5324 5325 5326 5327 5328 5329 5330 5331 5332 5333 5334 5335 5336 5337 5338 5339 5340 5341 5342 5343 5344 5345 5346 5347 5348 5349 5350 5351 5352 5353 5354 5355 5356 5357 5358 5359 5360 5361 5362 5363 5364 5365 5366 5367 5368 5369 5370 5371 5372 5373 5374 5375 5376 5377 5378 5379 5380 5381 5382 5383 5384 5385 5386 5387 5388 5389 5390 5391
def pad_constant_like(x, y, pad_value=0., name=None):
    """
    Pad input(Y) with :attr:`pad_value`, the number of values padded to
    the edges of each axis is specified by the difference of the shape
    of X and Y. ((0, shape_x_0 - shape_y_0), ... (0, shape_x_n - shape_y_n))
    unique pad widths for each axis. The input should be a k-D
    tensor(k > 0 and k < 7).

    See below for an example.

    .. code-block:: text

        Given:
            X = [[[[ 0,  1,  2],
                   [ 3,  4,  5]],
                  [[ 6,  7,  8],
                   [ 9, 10, 11]],
                  [[12, 13, 14],
                   [15, 16, 17]]],
                 [[[18, 19, 20],
                   [21, 22, 23]],
                  [[24, 25, 26],
                   [27, 28, 29]],
                  [[30, 31, 32],
                   [33, 34, 35]]]]
            X.shape = (2, 3, 2, 3)

            Y = [[[[35, 36, 37]],
                  [[38, 39, 40]],
                  [[41, 42, 43]]]]
            Y.shape = (1, 3, 1, 3)

    And
        pad_value = -1,

    Return:
        Out = [[[[35, 36, 37],
                  [-1, -1, -1]],
                [[38, 39, 40],
                  [-1, -1, -1]],
                 [[41, 42, 43],
                  [-1, -1, -1]]],
                [[[-1, -1, -1],
                  [-1, -1, -1]],
                 [[-1, -1, -1],
                  [-1, -1, -1]],
                 [[-1, -1, -1],
                  [-1, -1, -1]]]]
        Out.shape = (2, 3, 2, 3)

    Args:
        x (Variable): The input tensor variable.
        y (Variable): The input tensor variable.
        pad_value (float): The constant value used to pad.
        name(str|None): A name for this layer(optional). If set None, the layer
                        will be named automatically.

    Returns:
        Variable: The padded tensor variable.

    Examples:
        .. code-block:: python

            # x is a rank 4 tensor variable, x.shape = (2, 3, 2, 3)
            # y is a rank 4 tensor variable, y.shape = (1, 3, 1, 3)
            out = fluid.layers.pad_constant_like(x=x, y=y, pad_value=0.)
            # out is a rank 4 tensor variable, and out.shape = [2, 3 ,2 , 3]
    """
    helper = LayerHelper('pad_constant_like', input=x, **locals())
    dtype = helper.input_dtype()
X
Xin Pan 已提交
5392
    out = helper.create_variable_for_type_inference(dtype)
C
chengduo 已提交
5393 5394 5395 5396 5397 5398 5399 5400 5401
    helper.append_op(
        type='pad_constant_like',
        inputs={'X': x,
                'Y': y},
        outputs={'Out': out},
        attrs={'pad_value': float(pad_value)})
    return out


5402 5403 5404 5405 5406 5407 5408
def label_smooth(label,
                 prior_dist=None,
                 epsilon=0.1,
                 dtype="float32",
                 name=None):
    """
    Label smoothing is a mechanism to regularize the classifier layer and is
5409 5410
    called label-smoothing regularization (LSR).

5411 5412 5413 5414 5415 5416 5417 5418 5419 5420 5421 5422 5423 5424 5425 5426 5427 5428 5429 5430 5431 5432 5433
    Label smoothing is proposed to encourage the model to be less confident,
    since optimizing the log-likelihood of the correct label directly may
    cause overfitting and reduce the ability of the model to adapt. Label
    smoothing replaces the ground-truth label :math:`y` with the weighted sum
    of itself and some fixed distribution :math:`\mu`. For class :math:`k`,
    i.e.

    .. math::

        \\tilde{y_k} = (1 - \epsilon) * y_k + \epsilon * \mu_k,

    where :math:`1 - \epsilon` and :math:`\epsilon` are the weights
    respectively, and :math:`\\tilde{y}_k` is the smoothed label. Usually
    uniform distribution is used for :math:`\mu`.

    See more details about label smoothing in https://arxiv.org/abs/1512.00567.

    Args:
        label(Variable): The input variable containing the label data. The
                          label data should use one-hot representation.
        prior_dist(Variable): The prior distribution to be used to smooth
                              labels. If not provided, an uniform distribution
                              is used. The shape of :attr:`prior_dist` should
5434
                              be :math:`(1, class\_num)`.
5435 5436
        epsilon(float): The weight used to mix up the original ground-truth
                        distribution and the fixed distribution.
5437
        dtype(np.dtype|core.VarDesc.VarType|str): The type of data : float32,
5438 5439 5440 5441 5442 5443 5444 5445 5446 5447 5448 5449 5450 5451 5452 5453 5454 5455 5456
                                                  float_64, int etc.
        name(str|None): A name for this layer(optional). If set None, the layer
                        will be named automatically.

    Returns:
        Variable: The tensor variable containing the smoothed labels.

    Examples:
        .. code-block:: python

            label = layers.data(name="label", shape=[1], dtype="float32")
            one_hot_label = layers.one_hot(input=label, depth=10)
            smooth_label = layers.label_smooth(
                label=one_hot_label, epsilon=0.1, dtype="float32")
    """
    if epsilon > 1. or epsilon < 0.:
        raise ValueError("The value of epsilon must be between 0 and 1.")
    helper = LayerHelper("label_smooth", **locals())
    label.stop_gradient = True
X
Xin Pan 已提交
5457
    smooth_label = helper.create_variable_for_type_inference(dtype)
5458 5459 5460 5461 5462 5463 5464
    helper.append_op(
        type="label_smooth",
        inputs={"X": label,
                "PriorDist": prior_dist} if prior_dist else {"X": label},
        outputs={"Out": smooth_label},
        attrs={"epsilon": float(epsilon)})
    return smooth_label
5465 5466


Y
yi.wu 已提交
5467
@templatedoc()
5468 5469
def roi_pool(input, rois, pooled_height=1, pooled_width=1, spatial_scale=1.0):
    """
Y
yi.wu 已提交
5470
    ${comment}
5471 5472

    Args:
Y
yi.wu 已提交
5473 5474
        input (Variable): ${x_comment}
        rois (Variable): ROIs (Regions of Interest) to pool over.
Y
yi.wu 已提交
5475 5476 5477
        pooled_height (integer): ${pooled_height_comment} Default: 1
        pooled_width (integer): ${pooled_width_comment} Default: 1
        spatial_scale (float): ${spatial_scale_comment} Default: 1.0
5478 5479

    Returns:
Y
update  
yi.wu 已提交
5480
        Variable: ${out_comment}.
5481 5482

    Examples:
5483 5484
        .. code-block:: python

5485
            pool_out = fluid.layers.roi_pool(input=x, rois=rois, 7, 7, 1.0)
5486 5487 5488
    """
    helper = LayerHelper('roi_pool', **locals())
    dtype = helper.input_dtype()
X
Xin Pan 已提交
5489 5490
    pool_out = helper.create_variable_for_type_inference(dtype)
    argmaxes = helper.create_variable_for_type_inference(dtype='int32')
5491 5492 5493 5494 5495 5496 5497 5498 5499 5500 5501 5502
    helper.append_op(
        type="roi_pool",
        inputs={"X": input,
                "ROIs": rois},
        outputs={"Out": pool_out,
                 "Argmax": argmaxes},
        attrs={
            "pooled_height": pooled_height,
            "pooled_width": pooled_width,
            "spatial_scale": spatial_scale
        })
    return pool_out
W
whs 已提交
5503 5504


J
jerrywgz 已提交
5505 5506 5507 5508 5509 5510
@templatedoc()
def roi_align(input,
              rois,
              pooled_height=1,
              pooled_width=1,
              spatial_scale=1.0,
J
jerrywgz 已提交
5511 5512
              sampling_ratio=-1,
              name=None):
J
jerrywgz 已提交
5513 5514 5515 5516 5517 5518 5519 5520 5521 5522 5523 5524 5525 5526 5527 5528
    """
    ${comment}

    Args:
        input (Variable): ${x_comment}
        rois (Variable): ROIs (Regions of Interest) to pool over.
        pooled_height (integer): ${pooled_height_comment} Default: 1
        pooled_width (integer): ${pooled_width_comment} Default: 1
        spatial_scale (float): ${spatial_scale_comment} Default: 1.0
        sampling_ratio(intger): ${sampling_ratio_comment} Default: -1

    Returns:
        Variable: ${out_comment}.
    Examples:
        .. code-block:: python

5529 5530 5531
            align_out = fluid.layers.roi_align(input=x,
                                               rois=rois,
                                               pooled_height=7,
J
jerrywgz 已提交
5532 5533 5534 5535 5536 5537
                                               pooled_width=7,
                                               spatial_scale=0.5,
                                               sampling_ratio=-1)
    """
    helper = LayerHelper('roi_align', **locals())
    dtype = helper.input_dtype()
X
Xin Pan 已提交
5538
    align_out = helper.create_variable_for_type_inference(dtype)
J
jerrywgz 已提交
5539 5540 5541 5542 5543 5544 5545 5546 5547 5548 5549 5550 5551 5552
    helper.append_op(
        type="roi_align",
        inputs={"X": input,
                "ROIs": rois},
        outputs={"Out": align_out},
        attrs={
            "pooled_height": pooled_height,
            "pooled_width": pooled_width,
            "spatial_scale": spatial_scale,
            "sampling_ratio": sampling_ratio
        })
    return align_out


W
whs 已提交
5553 5554 5555 5556 5557 5558 5559 5560 5561 5562 5563 5564 5565 5566 5567 5568 5569 5570 5571 5572 5573 5574 5575 5576 5577 5578
def dice_loss(input, label, epsilon=0.00001):
    """
    Dice loss for comparing the similarity of two batch of data,
    usually is used for binary image segmentation i.e. labels are binary.
    The dice loss can be defined as below equation:

    .. math::

        dice\_loss &= 1 - \\frac{2 * intersection\_area}{total\_area} \\\\
                  &= \\frac{(total\_area - intersection\_area) - intersection\_area}{total\_area} \\\\
                  &= \\frac{(union\_area - intersection\_area)}{total\_area}


    Args:
        input (Variable): The predictions with rank>=2. The first dimension is batch size,
                          and the last dimension is class number.
        label (Variable): The groud truth with the same rank with input. The first dimension
                          is batch size, and the last dimension is 1.
        epsilon (float): The epsilon will be added to the numerator and denominator.
                         If both input and label are empty, it makes sure dice is 1.
                         Default: 0.00001

    Returns:
        dice_loss (Variable): The dice loss with shape [1].

    Examples:
5579 5580
        .. code-block:: python

W
whs 已提交
5581 5582 5583 5584
            predictions = fluid.layers.softmax(x)
            loss = fluid.layers.dice_loss(input=predictions, label=label, 2)
    """
    label = one_hot(label, depth=input.shape[-1])
5585
    reduce_dim = list(range(1, len(input.shape)))
W
whs 已提交
5586 5587 5588 5589 5590 5591
    inse = reduce_sum(input * label, dim=reduce_dim)
    dice_denominator = reduce_sum(
        input, dim=reduce_dim) + reduce_sum(
            label, dim=reduce_dim)
    dice_score = 1 - inse * 2 / (dice_denominator + epsilon)
    return reduce_mean(dice_score)
5592 5593


5594 5595 5596 5597 5598
def image_resize(input,
                 out_shape=None,
                 scale=None,
                 name=None,
                 resample='BILINEAR'):
5599
    """
Q
qiaolongfei 已提交
5600
    **Resize a Batch of Images**
F
stash  
fengjiayi 已提交
5601

5602
    The input must be a tensor of the shape (num_batches, channels, in_h, in_w),
5603 5604 5605
    and the resizing only applies on the last two dimensions(hight and width).

    Supporting resample methods:
Q
update  
qiaolongfei 已提交
5606

5607
        'BILINEAR' : Bilinear interpolation
F
stash  
fengjiayi 已提交
5608

5609
    Args:
5610
        input (Variable): The input tensor of image resize layer,
5611 5612
                          This is a 4-D tensor of the shape
                          (num_batches, channels, in_h, in_w).
5613
        out_shape(list|tuple|Variable|None): Output shape of image resize
5614 5615
                                    layer, the shape is (out_h, out_w).
                                    Default: None
B
baiyf 已提交
5616
        scale(float|None): The multiplier for the input height or width.
5617 5618 5619
                         At least one of out_shape or scale must be set.
                         And out_shape has a higher priority than scale.
                         Default: None
5620 5621
        name(str|None): A name for this layer(optional). If set None, the layer
                        will be named automatically.
5622 5623
        resample(str): The resample method. It can only be 'BILINEAR' currently.
                       Default: 'BILINEAR'
5624 5625

    Returns:
Q
update  
qiaolongfei 已提交
5626 5627
        Variable: The output is a 4-D tensor of the shape
        (num_batches, channls, out_h, out_w).
F
stash  
fengjiayi 已提交
5628

5629 5630 5631
    Examples:
        .. code-block:: python

5632
            out = fluid.layers.image_resize(input, out_shape=[12, 12])
5633
    """
5634 5635 5636 5637
    resample_methods = {'BILINEAR': 'bilinear_interp'}
    if resample not in resample_methods:
        raise ValueError(
            "The 'resample' of image_resize can only be 'BILINEAR' currently.")
5638 5639
    if out_shape is None and scale is None:
        raise ValueError("One of out_shape and scale must not be None")
5640 5641
    helper = LayerHelper('bilinear_interp', **locals())
    dtype = helper.input_dtype()
5642 5643 5644 5645

    def _is_list_or_turple_(data):
        return (isinstance(data, list) or isinstance(data, tuple))

5646 5647 5648
    out_h = 0
    out_w = 0
    inputs = {"X": input}
5649
    if out_shape is not None:
B
baiyf 已提交
5650 5651 5652
        if not (_is_list_or_turple_(out_shape) and
                len(out_shape) == 2) and not isinstance(out_shape, Variable):
            raise ValueError('out_shape should be a list or tuple or variable')
5653 5654 5655 5656 5657 5658
        if _is_list_or_turple_(out_shape):
            out_shape = list(map(int, out_shape))
            out_h = out_shape[0]
            out_w = out_shape[1]
        else:
            inputs['OutSize'] = out_shape
5659 5660 5661 5662
    else:
        out_h = int(input.shape[2] * scale)
        out_w = int(input.shape[3] * scale)

X
Xin Pan 已提交
5663
    out = helper.create_variable_for_type_inference(dtype)
5664
    helper.append_op(
5665
        type=resample_methods[resample],
5666
        inputs=inputs,
5667 5668 5669 5670
        outputs={"Out": out},
        attrs={"out_h": out_h,
               "out_w": out_w})
    return out
F
stash  
fengjiayi 已提交
5671 5672


Y
yuyang18 已提交
5673
@templatedoc(op_type="bilinear_interp")
5674 5675
def resize_bilinear(input, out_shape=None, scale=None, name=None):
    """
Y
yuyang18 已提交
5676 5677 5678 5679 5680 5681
    ${comment}

    Args:
        input(${x_type}): ${x_comment}.

        out_shape(${out_size_type}): ${out_size_comment}.
5682

Y
yuyang18 已提交
5683 5684 5685 5686 5687 5688 5689 5690
        scale(float|None): The multiplier for the input height or width. At
             least one of out_shape or scale must be set. And out_shape has
             a higher priority than scale. Default: None.

        name(str|None): The output variable name.

    Returns:
        ${out_comment}.
5691 5692 5693 5694 5695 5696 5697
    """

    return image_resize(input, out_shape, scale, name, 'BILINEAR')


def image_resize_short(input, out_short_len, resample='BILINEAR'):
    """
5698 5699 5700
    Resize a batch of images. The short edge of input images will be
    resized to the given 'out_short_len'. The long edge of input images
    will be resized proportionately to make images' length-width ratio
5701 5702 5703 5704 5705 5706 5707
    constant.

    Args:
        input (Variable): The input tensor of image resize layer,
                          This is a 4-D tensor of the shape
                          (num_batches, channels, in_h, in_w).
        out_short_len(int): The length of output images' short edge.
5708
        resample (str): resample method, default: BILINEAR.
F
fengjiayi 已提交
5709

5710
    Returns:
Q
update  
qiaolongfei 已提交
5711
        Variable: The output is a 4-D tensor of the shape
5712
        (num_batches, channls, out_h, out_w).
5713 5714 5715 5716 5717 5718 5719 5720 5721 5722
    """
    in_shape = input.shape
    if len(in_shape) != 4:
        raise ValueError(
            "The rank of input must be 4 (num_batches, channels, in_h, in_w).")
    hw = in_shape[2:4]
    short_idx = hw.index(min(hw))
    long_idx = 1 - short_idx
    out_shape = list(hw)
    out_shape[short_idx] = out_short_len
F
fengjiayi 已提交
5723 5724 5725
    out_shape[long_idx] = int(
        float(out_shape[long_idx]) * (float(out_short_len) / float(hw[
            short_idx])) + 0.5)
5726 5727 5728
    return image_resize(input=input, out_shape=out_shape, resample=resample)


W
whs 已提交
5729 5730
def gather(input, index):
    """
Q
qiaolongfei 已提交
5731 5732
    **Gather Layer**

5733
    Output is obtained by gathering entries of the outer-most dimension
W
whs 已提交
5734 5735 5736 5737
    of X indexed by `index` and concatenate them together.

    .. math::

5738
        Out = X[Index]
W
whs 已提交
5739 5740 5741 5742 5743 5744 5745


    .. code-block:: text


                Given:

5746 5747
                X = [[1, 2],
                     [3, 4],
W
whs 已提交
5748 5749 5750 5751 5752 5753 5754 5755 5756 5757
                     [5, 6]]

                Index = [1, 2]

                Then:

                Out = [[3, 4],
                       [5, 6]]

    Args:
5758
        input (Variable): The source input with rank>=1.
W
whs 已提交
5759 5760 5761 5762 5763 5764
        index (Variable): The index input with rank=1.

    Returns:
        output (Variable): The output is a tensor with the same rank as input.

    Examples:
W
whs 已提交
5765

W
whs 已提交
5766 5767 5768 5769 5770 5771
        .. code-block:: python

            output = fluid.layers.gather(x, index)
    """
    helper = LayerHelper('gather', **locals())
    dtype = helper.input_dtype()
X
Xin Pan 已提交
5772
    out = helper.create_variable_for_type_inference(dtype)
W
whs 已提交
5773 5774 5775 5776 5777 5778 5779 5780
    helper.append_op(
        type="gather",
        inputs={"X": input,
                "Index": index},
        outputs={"Out": out})
    return out


5781 5782 5783 5784 5785 5786 5787 5788 5789 5790 5791 5792 5793 5794 5795 5796 5797 5798 5799 5800 5801 5802 5803 5804 5805 5806 5807 5808 5809 5810 5811
def scatter(input, index, updates, name=None):
    """
    **Scatter Layer**

    Output is obtained by updating the input on selected indices on the first
    axis.

    .. math::

        Out = X
        Out[Ids] = Updates

    Args:
        input (Variable): The source input with rank>=1.
        index (Variable): The index input with rank=1. Its dtype should be
                          int32 or int64 as it is used as indexes.
        updates (Variable): The updated value of scatter op.
        name (str|None): The output variable name. Default None.

    Returns:
        output (Variable): The output is a tensor with the same shape as input.

    Examples:

        .. code-block:: python

            output = fluid.layers.scatter(input, index, updates)

    """
    helper = LayerHelper('scatter', **locals())
    dtype = helper.input_dtype()
X
Xin Pan 已提交
5812
    out = helper.create_variable_for_type_inference(dtype)
5813 5814 5815 5816 5817 5818 5819 5820 5821
    helper.append_op(
        type="scatter",
        inputs={"X": input,
                "Ids": index,
                "Updates": updates},
        outputs={"Out": out})
    return out


Q
Qingsheng Li 已提交
5822 5823 5824 5825 5826 5827 5828 5829 5830 5831 5832 5833 5834 5835 5836 5837 5838 5839 5840 5841 5842 5843 5844 5845 5846 5847 5848 5849 5850 5851 5852 5853 5854 5855 5856 5857 5858 5859 5860 5861 5862 5863 5864 5865 5866 5867 5868 5869 5870 5871
def sequence_scatter(input, index, updates, name=None):
    """
    **Sequence Scatter Layer**

    This operator scatters the Updates tensor to the input X. It uses the LoD
    information of Ids to select the rows to update, and use the values in Ids as
    the columns to update in each row of X.

    Here is an example:
    Given the following input:
    .. code-block:: text
        input.data = [[1.0, 1.0, 1.0, 1.0, 1.0, 1.0],
                      [1.0, 1.0, 1.0, 1.0, 1.0, 1.0],
                      [1.0, 1.0, 1.0, 1.0, 1.0, 1.0]]
        input.dims = [3, 6]

        index.data = [[0], [1], [2], [5], [4], [3], [2], [1], [3], [2], [5], [4]]
        index.lod =  [[0,        3,                       8,                 12]]

        updates.data = [[0.3], [0.3], [0.4], [0.1], [0.2], [0.3], [0.4], [0.0], [0.2], [0.3], [0.1], [0.4]]
        updates.lod =  [[  0,            3,                                 8,                         12]]

    Then we have the output:
    .. code-block:: text
        out.data = [[1.3, 1.3, 1.4, 1.0, 1.0, 1.0],
                    [1.0, 1.0, 1.4, 1.3, 1.2, 1.1],
                    [1.0, 1.0, 1.3, 1.2, 1.4, 1.1]]
        out.dims = X.dims = [3, 6]

    Args:
        input (Variable): The source input with rank>=1.
        index (Variable): A LoD Tensor. The index input of sequence scatter op
            where input will be  updated. The index input with rank=1. Its dtype
            should be int32 or int64 as it is used as indexes.
        updates (Variable): A LoD Tensor. The values to scatter to the input
            tensor X, must be a LoDTensor with the same LoD information as index.
        name (str|None): The output variable name. Default None.

    Returns:
        output (Variable): The output is a tensor with the same shape as input.

    Examples:

        .. code-block:: python

            output = fluid.layers.sequence_scatter(input, index, updates)

    """
    helper = LayerHelper('sequence_scatter', **locals())
    dtype = helper.input_dtype()
X
Xin Pan 已提交
5872
    out = helper.create_variable_for_type_inference(dtype)
Q
Qingsheng Li 已提交
5873 5874 5875 5876 5877 5878 5879 5880 5881
    helper.append_op(
        type="sequence_scatter",
        inputs={"X": input,
                "Ids": index,
                "Updates": updates},
        outputs={"Out": out})
    return out


Y
yuyang18 已提交
5882 5883 5884 5885 5886 5887 5888 5889 5890 5891 5892 5893 5894
@templatedoc()
def random_crop(x, shape, seed=None):
    """
    ${comment}

    Args:
        x(${x_type}): ${x_comment}
        shape(${shape_type}): ${shape_comment}
        seed(int|${seed_type}|None): ${seed_comment} By default, the seed will
            get from `random.randint(-65536, 65535)`.

    Returns:
        ${out_comment}
5895

5896 5897 5898
    Examples:
        >>> img = fluid.layers.data("img", [3, 256, 256])
        >>> cropped_img = fluid.layers.random_crop(img, shape=[3, 224, 224])
Y
yuyang18 已提交
5899
    """
F
stash  
fengjiayi 已提交
5900
    helper = LayerHelper("random_crop", **locals())
F
fengjiayi 已提交
5901
    dtype = x.dtype
X
Xin Pan 已提交
5902
    out = helper.create_variable_for_type_inference(dtype)
Y
yuyang18 已提交
5903
    if seed is None:
5904
        seed = np.random.randint(-65536, 65536)
F
fengjiayi 已提交
5905
    op_attrs = {"shape": shape}
F
stash  
fengjiayi 已提交
5906
    if isinstance(seed, int):
F
fengjiayi 已提交
5907 5908 5909 5910 5911
        op_attrs["startup_seed"] = seed
        seed = helper.create_variable(
            name=unique_name.generate("random_crop_seed"),
            dtype="int64",
            persistable=True)
F
stash  
fengjiayi 已提交
5912 5913 5914 5915
    elif not isinstance(seed, Variable):
        raise ValueError("'seed' must be a Variable or an int.")
    helper.append_op(
        type="random_crop",
F
fix  
fengjiayi 已提交
5916
        inputs={"X": x,
F
stash  
fengjiayi 已提交
5917 5918
                "Seed": seed},
        outputs={"Out": out,
F
fengjiayi 已提交
5919 5920
                 "SeedOut": seed},
        attrs=op_attrs)
F
stash  
fengjiayi 已提交
5921
    return out
W
whs 已提交
5922 5923


5924
def log(x, name=None):
W
wanghaoshuang 已提交
5925 5926 5927 5928 5929
    """
    Calculates the natural log of the given input tensor, element-wise.

    .. math::

5930
        Out = \\ln(x)
W
wanghaoshuang 已提交
5931 5932

    Args:
5933
        x (Variable): Input tensor.
5934 5935
        name (str|None, default None): A name for this layer If set None,
            the layer will be named automatically.
W
wanghaoshuang 已提交
5936 5937 5938 5939 5940 5941 5942 5943

    Returns:
        Variable: The natural log of the input tensor computed element-wise.

    Examples:

        .. code-block:: python

5944
            output = fluid.layers.log(x)
W
wanghaoshuang 已提交
5945 5946
    """
    helper = LayerHelper('log', **locals())
W
wanghaoshuang 已提交
5947
    dtype = helper.input_dtype(input_param_name='x')
X
Xin Pan 已提交
5948
    out = helper.create_variable_for_type_inference(dtype)
W
wanghaoshuang 已提交
5949
    helper.append_op(type="log", inputs={"X": x}, outputs={"Out": out})
W
wanghaoshuang 已提交
5950 5951 5952
    return out


5953
def relu(x, name=None):
W
wanghaoshuang 已提交
5954 5955
    """
    Relu takes one input data (Tensor) and produces one output data (Tensor)
5956
    where the rectified linear function, y = max(0, x), is applied to
W
wanghaoshuang 已提交
5957 5958 5959 5960
    the tensor elementwise.

    .. math::

5961
        Out = \\max(0, x)
W
wanghaoshuang 已提交
5962 5963

    Args:
5964
        x (Variable): The input tensor.
5965 5966
        name (str|None, default None): A name for this layer If set None,
            the layer will be named automatically.
W
wanghaoshuang 已提交
5967 5968 5969 5970 5971 5972 5973 5974

    Returns:
        Variable: The output tensor with the same shape as input.

    Examples:

        .. code-block:: python

5975
            output = fluid.layers.relu(x)
W
wanghaoshuang 已提交
5976 5977
    """
    helper = LayerHelper('relu', **locals())
W
wanghaoshuang 已提交
5978
    dtype = helper.input_dtype(input_param_name='x')
X
Xin Pan 已提交
5979
    out = helper.create_variable_for_type_inference(dtype)
W
wanghaoshuang 已提交
5980
    helper.append_op(type="relu", inputs={"X": x}, outputs={"Out": out})
W
wanghaoshuang 已提交
5981
    return out
5982 5983


W
whs 已提交
5984 5985 5986
def mean_iou(input, label, num_classes):
    """
    Mean Intersection-Over-Union is a common evaluation metric for
5987 5988 5989 5990
    semantic image segmentation, which first computes the IOU for each
    semantic class and then computes the average over classes.
    IOU is defined as follows:

W
whs 已提交
5991
    .. math::
5992 5993

        IOU = \\frac{true\_positiv}{(true\_positive + false\_positive + false\_negative)}.
W
whs 已提交
5994

5995
    The predictions are accumulated in a confusion matrix and mean-IOU
W
whs 已提交
5996 5997 5998 5999 6000
    is then calculated from it.


    Args:
        input (Variable): A Tensor of prediction results for semantic labels with type int32 or int64.
6001
        label (Variable): A Tensor of ground truth labels with type int32 or int64.
W
whs 已提交
6002
                           Its shape should be the same as input.
6003
        num_classes (int): The possible number of labels.
W
whs 已提交
6004 6005 6006 6007

    Returns:
        mean_iou (Variable): A Tensor representing the mean intersection-over-union with shape [1].
        out_wrong(Variable): A Tensor with shape [num_classes]. The wrong numbers of each class.
6008
        out_correct(Variable): A Tensor with shape [num_classes]. The correct numbers of each class.
W
whs 已提交
6009 6010 6011 6012

    Examples:

        .. code-block:: python
6013

W
whs 已提交
6014 6015 6016 6017
            iou, wrongs, corrects = fluid.layers.mean_iou(predict, label, num_classes)
    """
    helper = LayerHelper('mean_iou', **locals())
    dtype = helper.input_dtype()
X
Xin Pan 已提交
6018 6019 6020
    out_mean_iou = helper.create_variable_for_type_inference(dtype='float32')
    out_wrong = helper.create_variable_for_type_inference(dtype='int32')
    out_correct = helper.create_variable_for_type_inference(dtype='int32')
W
whs 已提交
6021 6022
    helper.append_op(
        type="mean_iou",
W
whs 已提交
6023 6024
        inputs={"Predictions": input,
                "Labels": label},
W
whs 已提交
6025
        outputs={
W
whs 已提交
6026 6027 6028
            "OutMeanIou": out_mean_iou,
            "OutWrong": out_wrong,
            "OutCorrect": out_correct
W
whs 已提交
6029 6030 6031
        },
        attrs={"num_classes": num_classes})
    return out_mean_iou, out_wrong, out_correct
6032 6033 6034 6035 6036 6037 6038 6039 6040 6041 6042 6043 6044 6045 6046 6047 6048 6049 6050 6051 6052 6053 6054 6055 6056 6057 6058 6059 6060 6061 6062 6063 6064 6065 6066 6067 6068 6069 6070 6071 6072 6073 6074 6075 6076 6077 6078 6079 6080 6081 6082 6083 6084 6085 6086 6087 6088 6089 6090 6091 6092 6093 6094 6095 6096 6097 6098 6099 6100 6101 6102 6103 6104 6105


def crop(x, shape=None, offsets=None, name=None):
    """
    Crop input into output, as specified by offsets and shape.

    .. code-block:: text

        * Case 1:
            Given
                X = [[0, 1, 2, 0, 0]
                     [0, 3, 4, 0, 0]
                     [0, 0, 0, 0, 0]],
            and
                shape = [2, 2],
                offsets = [0, 1],
            output is:
                Out = [[1, 2],
                       [3, 4]].
        * Case 2:
            Given
                X = [[0, 1, 2, 5, 0]
                     [0, 3, 4, 6, 0]
                     [0, 0, 0, 0, 0]],
            and shape is tensor
                shape = [[0, 0, 0]
                         [0, 0, 0]]
            and
                offsets = [0, 1],

            output is:
                Out = [[1, 2, 5],
                       [3, 4, 6]].

    Args:
        x (Variable): The input tensor variable.
        shape (Variable|list/tuple of integer): The output shape is specified
            by `shape`, which can a Variable or a list/tupe of integer.
            If a tensor Variable, it's rank must be the same as `x`. This way
            is suitable for the case that the output shape may be changed each
            iteration. If a list/tupe of integer, it's length must be the same
            as the rank of `x`
        offsets (Variable|list/tuple of integer|None): Specifies the copping
            offsets at each dimension. It can be a Variable or or a list/tupe
            of integer. If a tensor Variable, it's rank must be the same as `x`.
            This way is suitable for the case that the offsets may be changed
            each iteration. If a list/tupe of integer, it's length must be the
            same as the rank of `x`. If None, the offsets are 0 at each
            dimension.
        name(str|None): A name for this layer(optional). If set None, the layer
                        will be named automatically.

    Returns:
        Variable: The cropped tensor variable.

    Raises:
        ValueError: If shape is not a list, tuple or Variable.

    Examples:

        .. code-block:: python

            x = fluid.layers.data(name="x", shape=[3, 5], dtype="float32")
            y = fluid.layers.data(name="y", shape=[2, 3], dtype="float32")
            crop = fluid.layers.crop(x, shape=y)

            # or
            z = fluid.layers.data(name="z", shape=[3, 5], dtype="float32")
            crop = fluid.layers.crop(z, shape=[2, 3])

    """
    helper = LayerHelper('crop', **locals())

    if not (isinstance(shape, list) or isinstance(shape, tuple) or \
C
chengduo 已提交
6106
                    isinstance(shape, Variable)):
6107 6108 6109 6110 6111
        raise ValueError("The shape should be a list, tuple or Variable.")

    if offsets is None:
        offsets = [0] * len(x.shape)

X
Xin Pan 已提交
6112
    out = helper.create_variable_for_type_inference(x.dtype)
6113 6114 6115 6116 6117 6118 6119 6120 6121 6122 6123 6124 6125 6126 6127 6128 6129
    ipts = {'X': x}
    attrs = {}
    if isinstance(shape, Variable):
        ipts['Y'] = shape
    else:
        attrs['shape'] = shape
    if isinstance(offsets, Variable):
        ipts['Offsets'] = offsets
    else:
        attrs['offsets'] = offsets

    helper.append_op(
        type='crop',
        inputs=ipts,
        outputs={'Out': out},
        attrs=None if len(attrs) == 0 else attrs)
    return out
6130 6131 6132 6133 6134 6135 6136 6137 6138 6139


def rank_loss(label, left, right, name=None):
    """
    **Rank loss layer for RankNet**

    RankNet(http://icml.cc/2015/wp-content/uploads/2015/06/icml_ranking.pdf)
    is a pairwise ranking model with a training sample consisting of a pair
    of documents, A and B. Label P indicates whether A is ranked higher than B
    or not:
M
minqiyang 已提交
6140

6141 6142
    P = {0, 1} or {0, 0.5, 1}, where 0.5 means that there is no information
    about the rank of the input pair.
M
minqiyang 已提交
6143

6144 6145 6146 6147
    Rank loss layer takes three inputs: left (o_i), right (o_j) and
    label (P_{i,j}). The inputs respectively represent RankNet's output scores
    for documents A and B and the value of label P. The following equation
    computes rank loss C_{i,j} from the inputs:
M
minqiyang 已提交
6148

6149 6150 6151 6152 6153
    $$
      C_{i,j} = -\tilde{P_{ij}} * o_{i,j} + \log(1 + e^{o_{i,j}}) \\
      o_{i,j} =  o_i - o_j  \\
      \tilde{P_{i,j}} = \left \{0, 0.5, 1 \right \} \ or \ \left \{0, 1 \right \}
    $$
M
minqiyang 已提交
6154 6155 6156

    Rank loss layer takes batch inputs with size batch_size (batch_size >= 1).

6157 6158 6159 6160 6161 6162 6163 6164 6165 6166 6167 6168 6169 6170 6171 6172 6173 6174 6175 6176 6177 6178 6179 6180 6181 6182 6183 6184 6185 6186 6187 6188 6189 6190 6191
    Args:
        label (Variable): Indicats whether A ranked higher than B or not.
        left (Variable): RankNet's output score for doc A.
        right (Variable): RankNet's output score for doc B.
        name(str|None): A name for this layer(optional). If set None, the layer
                        will be named automatically.

    Returns:
        list: The value of rank loss.

    Raises:
        ValueError: Any of label, left, and right is not a variable.

    Examples:

        .. code-block:: python

            label = fluid.layers.data(name="label", shape=[4, 1], dtype="float32")
            left = fluid.layers.data(name="left", shape=[4, 1], dtype="float32")
            right = fluid.layers.data(name="right", shape=[4, 1], dtype="float32")
            out = fluid.layers.rank_loss(label, left, right)


    """
    helper = LayerHelper('rank_loss', **locals())

    if not (isinstance(label, Variable)):
        raise ValueError("The label should be a Variable")

    if not (isinstance(left, Variable)):
        raise ValueError("The left should be a Variable")

    if not (isinstance(right, Variable)):
        raise ValueError("The right should be a Variable")

X
Xin Pan 已提交
6192
    out = helper.create_variable_for_type_inference("float32")
6193 6194 6195 6196 6197 6198 6199 6200

    helper.append_op(
        type='rank_loss',
        inputs={"Label": label,
                "Left": left,
                "Right": right},
        outputs={'Out': out})
    return out
6201 6202


M
minqiyang 已提交
6203 6204
def margin_rank_loss(label, left, right, margin=0.1, name=None):
    """
M
minqiyang 已提交
6205
    Margin Ranking Loss Layer for ranking problem,
M
minqiyang 已提交
6206
    which compares left score and right score passed in.
M
minqiyang 已提交
6207
    The ranking loss can be defined as following equation:
M
minqiyang 已提交
6208 6209 6210 6211 6212 6213

    .. math::

        rank\_loss &= max(0, -label * (left - right) + margin)

    Args:
M
minqiyang 已提交
6214
       label (Variable): Indicates whether the left is ranked higher than the right or not.
M
minqiyang 已提交
6215 6216
       left (Variable): Ranking score for left.
       right (Variable): Ranking score for right.
M
minqiyang 已提交
6217
       margin (float): Indicates the given margin.
M
minqiyang 已提交
6218 6219 6220
       name (str|None): A name for this layer (optional). If set None, the layer
                       will be named automatically.
    Returns:
M
minqiyang 已提交
6221
       Variable: The ranking loss.
M
minqiyang 已提交
6222
    Raises:
M
minqiyang 已提交
6223
       ValueError: Any of label, left, and right is not a Variable.
M
minqiyang 已提交
6224 6225 6226 6227 6228 6229 6230
    Examples:
        .. code-block:: python
           label = fluid.layers.data(name="label", shape=[4, 1], dtype="float32")
           left = fluid.layers.data(name="left", shape=[4, 1], dtype="float32")
           right = fluid.layers.data(name="right", shape=[4, 1], dtype="float32")
           out = fluid.layers.margin_rank_loss(label, left, right)
    """
M
minqiyang 已提交
6231
    helper = LayerHelper('margin_rank_loss', **locals())
M
minqiyang 已提交
6232 6233 6234 6235 6236 6237
    if not isinstance(label, Variable):
        raise ValueError("The label should be a Variable.")
    if not isinstance(left, Variable):
        raise ValueError("The left should be a Variable.")
    if not isinstance(right, Variable):
        raise ValueError("The right should be a Variable.")
X
Xin Pan 已提交
6238 6239
    out = helper.create_variable_for_type_inference(left.dtype)
    act = helper.create_variable_for_type_inference(left.dtype)
M
minqiyang 已提交
6240 6241 6242 6243 6244 6245 6246 6247 6248 6249 6250
    helper.append_op(
        type='margin_rank_loss',
        inputs={"Label": label,
                "X1": left,
                "X2": right},
        outputs={'Out': out,
                 'Activated': act},
        attrs={'margin': margin})
    return out


W
whs 已提交
6251 6252 6253 6254 6255 6256 6257 6258 6259 6260 6261 6262 6263 6264
def pad2d(input,
          paddings=[0, 0, 0, 0],
          mode='constant',
          pad_value=0.0,
          data_format="NCHW",
          name=None):
    """
    Pad 2-d images accordding to 'paddings' and 'mode'.
    If mode is 'reflect', paddings[0] and paddings[1] must be no greater
    than height-1. And the width dimension has the same condition.

    Example:

      Given that X is a channel of image from input:
M
minqiyang 已提交
6265

W
whs 已提交
6266 6267
      X = [[1, 2, 3],
           [4, 5, 6]]
M
minqiyang 已提交
6268

W
whs 已提交
6269
      Case 0:
M
minqiyang 已提交
6270

W
whs 已提交
6271 6272 6273
        paddings = [0, 1, 2, 3],
        mode = 'constant'
        pad_value = 0
M
minqiyang 已提交
6274

W
whs 已提交
6275 6276 6277
        Out = [[0, 0, 1, 2, 3, 0, 0, 0]
               [0, 0, 4, 5, 6, 0, 0, 0]
               [0, 0, 0, 0, 0, 0, 0, 0]]
M
minqiyang 已提交
6278

W
whs 已提交
6279
      Case 1:
M
minqiyang 已提交
6280

W
whs 已提交
6281 6282
        paddings = [0, 1, 2, 1],
        mode = 'reflect'
M
minqiyang 已提交
6283

W
whs 已提交
6284 6285 6286
        Out = [[3, 2, 1, 2, 3, 2]
               [6, 5, 4, 5, 6, 5]
               [3, 2, 1, 2, 3, 2]]
M
minqiyang 已提交
6287

W
whs 已提交
6288
      Case 2:
M
minqiyang 已提交
6289

W
whs 已提交
6290 6291
        paddings = [0, 1, 2, 1],
        mode = 'edge'
M
minqiyang 已提交
6292

W
whs 已提交
6293 6294 6295
        Out = [[1, 1, 1, 2, 3, 3]
               [4, 4, 4, 5, 6, 6]
               [4, 4, 4, 5, 6, 6]]
M
minqiyang 已提交
6296 6297


W
whs 已提交
6298 6299 6300 6301 6302 6303 6304 6305 6306 6307 6308 6309 6310 6311 6312 6313 6314 6315 6316 6317 6318 6319 6320 6321 6322 6323
    Args:
        input (Variable): The input image with [N, C, H, W] format or [N, H, W, C] format.
        paddings (tuple|list): The padding size. If padding is a tuple, it must
            contain four integers, (padding_top, padding_bottom, padding_left, padding_right).
            Default: padding = [0, 0, 0, 0].
        mode (str): Three modes: constant(default), reflect, edge. Default: constant
        pad_value (float32): The value to fill the padded areas in constant mode. Default: 0
        data_format (str): An optional string from: "NHWC", "NCHW". Specify the data format of
                           the input data.
                           Default: "NCHW"
        name (str|None): A name for this layer(optional). If set None, the layer
            will be named automatically.

    Returns:
        Variable: The tensor variable padded accordding to paddings and mode.


    Examples:
        .. code-block:: python

          data = fluid.layers.data(name='data', shape=[3, 32, 32], dtype='float32')
          result = fluid.layers.pad2d(input=data, padding=[1,2,3,4], mode='reflect')
    """

    helper = LayerHelper('pad2d', **locals())
    dtype = helper.input_dtype(input_param_name='input')
X
Xin Pan 已提交
6324
    out = helper.create_variable_for_type_inference(dtype)
W
whs 已提交
6325 6326 6327 6328 6329 6330 6331 6332 6333 6334 6335 6336 6337 6338
    helper.append_op(
        type='pad2d',
        inputs={'X': input},
        outputs={"Out": out},
        attrs={
            'paddings': paddings,
            'mode': mode,
            'pad_value': pad_value,
            'data_frmat': data_format
        })

    return out


6339 6340 6341 6342 6343 6344 6345 6346 6347 6348 6349 6350 6351 6352
@templatedoc()
def elu(x, alpha=1.0, name=None):
    """
    ${comment}
    Args:
        x(${x_type}): ${x_comment}
        alpha(${alpha_type}|1.0): ${alpha_comment}
        name(str|None): A name for this layer(optional). If set None, the layer
                        will be named automatically.

    Returns:
        output(${out_type}): ${out_comment}
    """
    helper = LayerHelper('elu', **locals())
X
Xin Pan 已提交
6353
    out = helper.create_variable_for_type_inference(dtype=x.dtype)
6354 6355 6356 6357 6358 6359 6360 6361 6362 6363 6364 6365 6366 6367 6368 6369 6370 6371 6372 6373 6374 6375
    helper.append_op(
        type='elu',
        inputs={'X': x},
        outputs={'Out': out},
        attrs={'alpha': alpha})
    return out


@templatedoc()
def relu6(x, threshold=6.0, name=None):
    """
    ${comment}
    Args:
        x(${x_type}): ${x_comment}
        threshold(${threshold_type}|6.0): ${threshold_comment}
        name(str|None): A name for this layer(optional). If set None, the layer
                        will be named automatically.

    Returns:
        output(${out_type}): ${out_comment}
    """
    helper = LayerHelper('relu6', **locals())
X
Xin Pan 已提交
6376
    out = helper.create_variable_for_type_inference(dtype=x.dtype)
6377 6378 6379 6380 6381 6382 6383 6384 6385 6386 6387 6388 6389 6390 6391 6392 6393 6394 6395 6396 6397 6398
    helper.append_op(
        type='relu6',
        inputs={'X': x},
        outputs={'Out': out},
        attrs={'threshold': threshold})
    return out


@templatedoc()
def pow(x, factor=1.0, name=None):
    """
    ${comment}
    Args:
        x(${x_type}): ${x_comment}
        factor(${factor_type}|1.0): ${factor_comment}
        name(str|None): A name for this layer(optional). If set None, the layer
                        will be named automatically.

    Returns:
        output(${out_type}): ${out_comment}
    """
    helper = LayerHelper('pow', **locals())
X
Xin Pan 已提交
6399
    out = helper.create_variable_for_type_inference(dtype=x.dtype)
6400 6401 6402 6403 6404 6405 6406 6407 6408 6409 6410 6411 6412 6413 6414 6415 6416 6417 6418 6419 6420 6421 6422
    helper.append_op(
        type='pow',
        inputs={'X': x},
        outputs={'Out': out},
        attrs={'factor': factor})
    return out


@templatedoc()
def stanh(x, scale_a=2.0 / 3.0, scale_b=1.7159, name=None):
    """
    ${comment}
    Args:
        x(${x_type}): ${x_comment}
        scale_a(${scale_a_type}|2.0 / 3.0): ${scale_a_comment}
        scale_b(${scale_b_type}|1.7159): ${scale_b_comment}
        name(str|None): A name for this layer(optional). If set None, the layer
                        will be named automatically.

    Returns:
        output(${out_type}): ${out_comment}
    """
    helper = LayerHelper('stanh', **locals())
X
Xin Pan 已提交
6423
    out = helper.create_variable_for_type_inference(dtype=x.dtype)
6424 6425 6426 6427 6428 6429 6430 6431 6432 6433 6434 6435 6436 6437 6438 6439 6440 6441 6442 6443 6444 6445 6446 6447
    helper.append_op(
        type='stanh',
        inputs={'X': x},
        outputs={'Out': out},
        attrs={'scale_a': scale_a,
               'scale_b': scale_b})
    return out


@templatedoc()
def hard_sigmoid(x, slope=0.2, offset=0.5, name=None):
    """
    ${comment}
    Args:
        x(${x_type}): ${x_comment}
        slope(${slope_type}|0.2): ${slope_comment}
        offset(${offset_type}|0.5): ${offset_comment}
        name(str|None): A name for this layer(optional). If set None, the layer
                        will be named automatically.

    Returns:
        output(${out_type}): ${out_comment}
    """
    helper = LayerHelper('hard_sigmoid', **locals())
X
Xin Pan 已提交
6448
    out = helper.create_variable_for_type_inference(dtype=x.dtype)
6449 6450 6451 6452 6453 6454 6455 6456 6457 6458 6459 6460 6461 6462 6463 6464 6465 6466 6467 6468 6469 6470 6471
    helper.append_op(
        type='hard_sigmoid',
        inputs={'X': x},
        outputs={'Out': out},
        attrs={'slope': slope,
               'offset': offset})
    return out


@templatedoc()
def swish(x, beta=1.0, name=None):
    """
    ${comment}
    Args:
        x(${x_type}): ${x_comment}
        beta(${beta_type}|1.0): ${beta_comment}
        name(str|None): A name for this layer(optional). If set None, the layer
                        will be named automatically.

    Returns:
        output(${out_type}): ${out_comment}
    """
    helper = LayerHelper('swish', **locals())
X
Xin Pan 已提交
6472
    out = helper.create_variable_for_type_inference(dtype=x.dtype)
6473 6474 6475 6476 6477 6478 6479 6480
    helper.append_op(
        type='swish',
        inputs={'X': x},
        outputs={'Out': out},
        attrs={'slope': beta})
    return out


J
jerrywgz 已提交
6481 6482 6483 6484 6485 6486 6487 6488 6489 6490 6491 6492 6493 6494
def prelu(x, mode, param_attr=None, name=None):
    """
    Equation:

        y = \max(0, x) + alpha \min(0, x)

    Args:
        x (Variable): The input tensor.
	  param_attr(ParamAttr|None): The parameter attribute for the learnable
                                    weight (alpha).
        mode (string): The mode for weight sharing
		       all: all elements share same weight
 		       channel:elements in a channel share same weight
 		       element:each element has a weight
W
whs 已提交
6495
	name(str|None): A name for this layer(optional). If set None, the layer
M
minqiyang 已提交
6496
                        will be named automatically.
J
jerrywgz 已提交
6497 6498 6499 6500 6501 6502 6503 6504 6505 6506 6507 6508 6509 6510 6511 6512 6513 6514 6515 6516 6517 6518 6519 6520 6521 6522 6523

    Returns:
        Variable: The output tensor with the same shape as input.

    Examples:

        .. code-block:: python

         x = fluid.layers.data(name="x", shape=[10,10], dtype="float32")
            mode = 'channel'
            output = fluid.layers.prelu(x,mode)
    """
    helper = LayerHelper('prelu', **locals())
    if mode not in ['all', 'channel', 'element']:
        raise ValueError('mode should be one of all, channel, element.')
    alpha_shape = [1]
    if mode == 'channel':
        alpha_shape = [1, x.shape[1], 1, 1]
    elif mode == 'element':
        alpha_shape = x.shape
    dtype = helper.input_dtype(input_param_name='x')
    alpha = helper.create_parameter(
        attr=param_attr,
        shape=alpha_shape,
        dtype='float32',
        is_bias=False,
        default_initializer=Constant(1.0))
X
Xin Pan 已提交
6524
    out = helper.create_variable_for_type_inference(dtype)
J
jerrywgz 已提交
6525 6526 6527 6528 6529 6530 6531 6532 6533
    helper.append_op(
        type="prelu",
        inputs={"X": x,
                'Alpha': alpha},
        attrs={"mode": mode},
        outputs={"Out": out})
    return out


6534 6535 6536 6537 6538 6539 6540 6541 6542 6543 6544 6545 6546 6547
@templatedoc()
def brelu(x, t_min=0.0, t_max=24.0, name=None):
    """
    ${comment}
    Args:
        x(${x_type}): ${x_comment}
        t_min(${t_min_type}|0.0): ${t_min_comment}
        t_max(${t_max_type}|24.0): ${t_max_comment}
        name(str|None): A name for this layer(optional). If set None, the layer
                        will be named automatically.
     Returns:
        output(${out_type}): ${out_comment}
    """
    helper = LayerHelper('brelu', **locals())
X
Xin Pan 已提交
6548
    out = helper.create_variable_for_type_inference(dtype=x.dtype)
6549 6550 6551 6552 6553 6554 6555 6556 6557 6558 6559 6560 6561 6562 6563 6564 6565 6566 6567 6568 6569 6570
    helper.append_op(
        type='brelu',
        inputs={'X': x},
        outputs={'Out': out},
        attrs={'t_min': t_min,
               't_max': t_max})
    return out


@templatedoc()
def leaky_relu(x, alpha=0.02, name=None):
    """
    ${comment}
    Args:
        x(${x_type}): ${x_comment}
        alpha(${alpha_type}|0.02): ${alpha_comment}
        name(str|None): A name for this layer(optional). If set None, the layer
                        will be named automatically.
     Returns:
        output(${out_type}): ${out_comment}
    """
    helper = LayerHelper('leaky_relu', **locals())
X
Xin Pan 已提交
6571
    out = helper.create_variable_for_type_inference(dtype=x.dtype)
6572 6573 6574 6575 6576 6577 6578 6579 6580 6581 6582 6583 6584 6585 6586 6587 6588 6589 6590 6591 6592
    helper.append_op(
        type='leaky_relu',
        inputs={'X': x},
        outputs={'Out': out},
        attrs={'alpha': alpha})
    return out


@templatedoc()
def soft_relu(x, threshold=40.0, name=None):
    """
    ${comment}
    Args:
        x(${x_type}): ${x_comment}
        threshold(${threshold_type}|40.0): ${threshold_comment}
        name(str|None): A name for this layer(optional). If set None, the layer
                        will be named automatically.
     Returns:
        output(${out_type}): ${out_comment}
    """
    helper = LayerHelper('soft_relu', **locals())
X
Xin Pan 已提交
6593
    out = helper.create_variable_for_type_inference(dtype=x.dtype)
6594 6595 6596 6597 6598 6599 6600 6601
    helper.append_op(
        type='soft_relu',
        inputs={'X': x},
        outputs={'Out': out},
        attrs={'threshold': threshold})
    return out


6602 6603 6604 6605 6606 6607 6608 6609 6610 6611 6612 6613 6614
def flatten(x, axis=1, name=None):
    """
    **Flatten layer**
    Flattens the input tensor into a 2D matrix.

    Examples:
    Case 1:
      Given
        X.shape = (3, 100, 100, 4)
      and
        axis = 2
      We get:
        Out.shape = (3 * 100, 4 * 100)
6615

6616 6617 6618 6619 6620 6621 6622 6623 6624 6625
    Case 2:
      Given
        X.shape = (3, 100, 100, 4)
      and
        axis = 0
      We get:
        Out.shape = (1, 3 * 100 * 100 * 4)

    Args:
        x (Variable): A tensor of rank >= axis.
6626 6627
        axis (int): Indicate up to which input dimensions (exclusive) should
                    be flattened to the outer dimension of the output.
6628 6629 6630 6631 6632 6633 6634 6635 6636 6637 6638 6639 6640 6641 6642
                    The value for axis must be in the range [0, R], where R
                    is the rank of the input tensor. When axis = 0, the shape
                    of the output tensor is (1, (d_0 X d_1 ... d_n), where the
                    shape of the input tensor is (d_0, d_1, ... d_n).
        name(str|None): A name for this layer(optional). If set None, the layer
                        will be named automatically.

    Returns:
        Variable: A 2D tensor with the contents of the input tensor, with input
                  dimensions up to axis flattened to the outer dimension of
                  the output and remaining input dimensions flattened into the
                  inner dimension of the output.

    Raises:
        ValueError: If x is not a variable.
6643
        ValueError: If axis is not in range [0, rank(x)].
6644 6645 6646 6647 6648 6649 6650 6651 6652 6653 6654 6655 6656 6657 6658 6659

    Examples:

        .. code-block:: python

            x = fluid.layers.data(name="x", shape=[4, 4, 3], dtype="float32")
            out = fluid.layers.flatten(x=x, axis=2)
    """
    helper = LayerHelper('flatten', **locals())

    if not (isinstance(x, Variable)):
        raise ValueError("The input x should be a Variable")

    if not (isinstance(axis, int)) or axis > len(x.shape) or axis < 0:
        raise ValueError("The axis should be a int, and in range [0, rank(x)]")

X
Xin Pan 已提交
6660 6661
    out = helper.create_variable_for_type_inference(x.dtype)
    x_shape = helper.create_variable_for_type_inference(x.dtype)
6662
    helper.append_op(
6663
        type='flatten2',
6664
        inputs={"X": x},
6665 6666
        outputs={'Out': out,
                 'XShape': x_shape},
6667 6668
        attrs={"axis": axis})
    return out
X
Xin Pan 已提交
6669 6670


C
chenweihang 已提交
6671
def sequence_enumerate(input, win_size, pad_value=0, name=None):
C
chenweihang 已提交
6672
    """
C
chenweihang 已提交
6673
    Generate a new sequence for the input index sequence, which enumerates all the
M
minqiyang 已提交
6674
    sub-sequences with length `win_size` of the input.
C
chenweihang 已提交
6675 6676
    The enumerated sequence has the same 1st dimension with variable `input`, and
    the 2nd dimension is `win_size`, padded by `pad_value` if necessary in generation.
M
minqiyang 已提交
6677

C
chenweihang 已提交
6678 6679 6680 6681
    Examples:
    Case 1:
      Input:
        X.lod = [[0, 3, 5]]
6682
        X.data = [[1], [2], [3], [4], [5]]
C
chenweihang 已提交
6683 6684 6685 6686 6687 6688
        X.dims = [5, 1]
      Attrs:
        win_size = 2
        pad_value = 0
      Output:
        Out.lod = [[0, 3, 5]]
6689
        Out.data = [[1, 2], [2, 3], [3, 0], [4, 5], [5, 0]]
C
chenweihang 已提交
6690 6691 6692
        Out.dims = [5, 2]

    Args:
C
chenweihang 已提交
6693 6694 6695
        input (Variable): The input variable which is a index sequence.
        win_size (int): The window size for enumerating all sub-sequences.
        pad_value (int): The padding value, default 0.
C
chenweihang 已提交
6696 6697 6698 6699 6700 6701 6702 6703 6704 6705 6706

    Returns:
        Variable: The enumerate sequence variable which is a LoDTensor.

    Examples:
        .. code-block:: python

            x = fluid.layers.data(shape[30, 1], dtype='int32', lod_level=1)
            out = fluid.layers.sequence_enumerate(input=x, win_size=3, pad_value=0)
    """
    helper = LayerHelper('sequence_enumerate', **locals())
X
Xin Pan 已提交
6707 6708
    out = helper.create_variable_for_type_inference(
        helper.input_dtype(), stop_gradient=True)
C
chenweihang 已提交
6709 6710 6711 6712 6713 6714
    helper.append_op(
        type='sequence_enumerate',
        inputs={'X': input},
        outputs={'Out': out},
        attrs={'win_size': win_size,
               'pad_value': pad_value})
M
minqiyang 已提交
6715
    return out
6716

6717

S
sneaxiy 已提交
6718 6719 6720 6721 6722 6723 6724 6725 6726
def sequence_mask(x, maxlen=None, dtype='int64', name=None):
    """
    **SequenceMask Layer**

    This layer outputs a mask according to the input :code:`x` and
    :code:`maxlen` with data type of :code:`dtype`.

    Supposing :code:`x` is a Tensor with shape [d_1, d_2, ..., d_n], the
    :code:`y` is a mask with shape [d_1, d_2, ..., d_n, maxlen], where:
6727

S
sneaxiy 已提交
6728
    .. math::
6729

S
sneaxiy 已提交
6730 6731 6732
        y(i_1, i_2,..., i_n, j) = (j < x(i_1, i_2,..., i_n))

    Args:
6733
        x (Variable): Input tensor of sequence_mask layer,
S
sneaxiy 已提交
6734 6735 6736 6737
                      whose elements are integers less than :code:`maxlen`.
        maxlen (int|None): Maximum length of the sequence. If :code:`maxlen`
                           is None, it would be replace with :math:`max(x)`.
        dtype (np.dtype|core.VarDesc.VarType|str): Data type of the output.
6738 6739 6740
        name (str|None): A name for this layer(optional). If set None, the
                         layer will be named automatically.

S
sneaxiy 已提交
6741 6742
    Returns:
        Variable: The output sequence mask.
6743

S
sneaxiy 已提交
6744 6745
    """

Q
qingqing01 已提交
6746
    helper = LayerHelper('sequence_mask', **locals())
S
sneaxiy 已提交
6747
    if name is None:
X
Xin Pan 已提交
6748
        out = helper.create_variable_for_type_inference(dtype=dtype)
S
sneaxiy 已提交
6749
    else:
X
Xin Pan 已提交
6750
        out = helper.create_variable_for_type_inference(dtype=dtype, name=name)
S
sneaxiy 已提交
6751

Q
qingqing01 已提交
6752 6753 6754
    helper.append_op(
        type='sequence_mask',
        inputs={'X': [x]},
S
sneaxiy 已提交
6755 6756
        outputs={'Y': out},
        attrs={
6757
            'maxlen': maxlen if maxlen is not None else -1,
S
sneaxiy 已提交
6758 6759 6760
            'out_dtype': out.dtype
        })
    return out
S
sneaxiy 已提交
6761 6762


X
Xin Pan 已提交
6763
def stack(x, axis=0):
S
sneaxiy 已提交
6764 6765 6766 6767
    """
    **Stack Layer**

    This layer stacks all of the input :code:`x` along axis.
6768 6769 6770 6771 6772 6773 6774

    Input :code:`x` can be a single variable, a :code:`list` of variables,
    or a :code:`tuple` of variables. If :code:`x` is a :code:`list` or
    :code:`tuple`, the shapes of all these variables must be the same.
    Supposing the shape of each input is :math:`[d_0, d_1, ..., d_{n-1}]`,
    the shape of the output variable would be
    :math:`[d_0, d_1, ..., d_{axis}=len(x), ..., d_{n-1}]`.
S
sneaxiy 已提交
6775
    If :code:`axis` < 0, it would be replaced with :code:`axis+rank(x[0])+1`.
6776
    If :code:`axis` is None, it would be replaced with 0.
S
sneaxiy 已提交
6777 6778

    Args:
6779
        x (Variable|list(Variable)|tuple(Variable)): Input variables.
S
sneaxiy 已提交
6780
        axis (int|None): The axis along which all inputs are stacked.
6781

S
sneaxiy 已提交
6782 6783
    Returns:
        Variable: The stacked variable.
6784

S
sneaxiy 已提交
6785 6786
    """

X
Xin Pan 已提交
6787 6788 6789 6790 6791 6792
    helper = LayerHelper('stack', **locals())
    axis = 0 if axis is None else axis

    if not isinstance(x, list) and not isinstance(x, tuple):
        x = [x]

X
Xin Pan 已提交
6793
    out = helper.create_variable_for_type_inference(x[0].dtype)
X
Xin Pan 已提交
6794
    helper.append_op(
S
sneaxiy 已提交
6795 6796
        type='stack', inputs={'X': x}, outputs={'Y': out},
        attrs={'axis': axis})
6797

X
Xin Pan 已提交
6798
    return out
D
dzhwinter 已提交
6799 6800 6801 6802 6803 6804 6805


def unstack(x, axis=0, num=None):
    """
    **UnStack Layer**

    This layer unstacks input :code:`x` into several tensors along axis.
M
minqiyang 已提交
6806

D
dzhwinter 已提交
6807 6808 6809
    If :code:`axis` < 0, it would be replaced with :code:`axis+rank(x)`.
    If :code:`num` is None, it would be inferred from :code:`x.shape[axis]`,
    and if :code:`x.shape[axis]` <= 0 or is unknown, :code:`ValueError` is
M
minqiyang 已提交
6810
    raised.
D
dzhwinter 已提交
6811 6812

    Args:
M
minqiyang 已提交
6813
        x (Variable): Input variable.
D
dzhwinter 已提交
6814 6815
        axis (int): The axis along which the input is unstacked.
        num (int|None): The number of output variables.
M
minqiyang 已提交
6816

D
dzhwinter 已提交
6817 6818
    Returns:
        list(Variable): The unstacked variables.
M
minqiyang 已提交
6819

D
dzhwinter 已提交
6820 6821 6822 6823 6824 6825 6826 6827 6828 6829 6830
    """

    helper = LayerHelper('unstack', **locals())
    if num is None:
        if axis is None or x.shape[axis] <= 0:
            raise ValueError('unknown unstack number')
        else:
            num = x.shape[axis]

    outs = []
    for _ in num:
X
Xin Pan 已提交
6831
        outs.append(helper.create_variable_for_type_inference(x.dtype))
D
dzhwinter 已提交
6832 6833 6834 6835 6836 6837 6838 6839

    helper.append_op(
        type='unstack',
        inputs={'X': [x]},
        outputs={'Y': outs},
        attrs={'axis': axis,
               'num': num})
    return outs
W
whs 已提交
6840 6841 6842 6843 6844 6845 6846 6847 6848 6849 6850 6851


def expand(x, expand_times, name=None):
    """Expand operator tiles the input by given times number. You should set times
    number for each dimension by providing attribute 'expand_times'. The rank of X
    should be in [1, 6]. Please note that size of 'expand_times' must be the same
    with X's rank. Following is a using case:


    .. code-block:: text

        Input(X) is a 3-D tensor with shape [2, 3, 1]:
M
minqiyang 已提交
6852

W
whs 已提交
6853 6854 6855 6856
                [
                   [[1], [2], [3]],
                   [[4], [5], [6]]
                ]
M
minqiyang 已提交
6857

W
whs 已提交
6858
        Attr(expand_times):  [1, 2, 2]
M
minqiyang 已提交
6859

W
whs 已提交
6860
        Output(Out) is a 3-D tensor with shape [2, 6, 2]:
M
minqiyang 已提交
6861

W
whs 已提交
6862 6863 6864 6865
                [
                    [[1, 1], [2, 2], [3, 3], [1, 1], [2, 2], [3, 3]],
                    [[4, 4], [5, 5], [6, 6], [4, 4], [5, 5], [6, 6]]
                ]
M
minqiyang 已提交
6866

W
whs 已提交
6867 6868 6869 6870 6871 6872 6873 6874 6875 6876 6877 6878 6879 6880 6881 6882
    Args:
        x (Variable): A tensor with rank in [1, 6].
        expand_times (list|tuple): Expand times number for each dimension.

    Returns:
        Variable: The expanded variable which is a LoDTensor. After expanding, size of each dimension of Output(Out) is equal to ithe size of the corresponding dimension of Input(X) multiplying the corresponding value given by expand_times.


    Examples:
        .. code-block:: python

            x = fluid.layers.data(name='x', shape=[10], dtype='float32')
            out = fluid.layers.expand(x=x, expand_times=[1, 2, 2])
    """
    helper = LayerHelper('expand', input=x, **locals())
    dtype = helper.input_dtype(input_param_name='x')
X
Xin Pan 已提交
6883
    out = helper.create_variable_for_type_inference(dtype)
W
whs 已提交
6884 6885 6886 6887 6888 6889
    helper.append_op(
        type='expand',
        inputs={'X': x},
        outputs={'Out': out},
        attrs={'expand_times': expand_times})
    return out
S
sneaxiy 已提交
6890 6891


G
fix  
gongweibao 已提交
6892 6893 6894
from paddle.fluid.framework import convert_np_dtype_to_dtype_


G
gongweibao 已提交
6895
@templatedoc()
G
fix  
gongweibao 已提交
6896 6897 6898 6899 6900 6901 6902 6903 6904
def uniform_random_batch_size_like(input,
                                   shape,
                                   dtype='float32',
                                   input_dim_idx=0,
                                   output_dim_idx=0,
                                   min=-1.0,
                                   max=1.0,
                                   seed=0):
    """
G
gongweibao 已提交
6905
    ${comment}
G
fix  
gongweibao 已提交
6906 6907

    Args:
G
gongweibao 已提交
6908 6909 6910
        input (Variable): ${input_comment}
        shape (tuple|list): ${shape_comment}
        input_dim_idx (Int): ${input_dim_idx_comment}
G
gongweibao 已提交
6911
        output_dim_idx (Int): ${output_dim_idx_comment}
G
gongweibao 已提交
6912 6913 6914
        min (Float): ${min_comment}
        max (Float): ${max_comment}
        seed (Int): ${seed_comment}
G
fix  
gongweibao 已提交
6915 6916
        dtype(np.dtype|core.VarDesc.VarType|str): The type of data : float32, float_16, int etc
    Returns:
G
gongweibao 已提交
6917
        out (Variable): ${out_comment}
G
fix  
gongweibao 已提交
6918 6919 6920 6921

    """

    helper = LayerHelper('uniform_random_batch_size_like', **locals())
X
Xin Pan 已提交
6922
    out = helper.create_variable_for_type_inference(dtype)
G
fix  
gongweibao 已提交
6923 6924 6925 6926 6927 6928 6929 6930 6931 6932 6933 6934 6935 6936 6937 6938
    c_dtype = convert_np_dtype_to_dtype_(dtype)
    helper.append_op(
        type='uniform_random_batch_size_like',
        inputs={'Input': input},
        outputs={'Out': out},
        attrs={
            'shape': shape,
            'input_dim_idx': input_dim_idx,
            'output_dim_idx': output_dim_idx,
            'min': min,
            'max': max,
            'seed': seed,
            'dtype': c_dtype
        })

    return out
G
fix  
gongweibao 已提交
6939 6940


G
gongweibao 已提交
6941
@templatedoc()
X
Xin Pan 已提交
6942
def gaussian_random(shape, mean=0.0, std=1.0, seed=0, dtype='float32'):
G
fix  
gongweibao 已提交
6943
    """
G
gongweibao 已提交
6944
    ${comment}
G
fix  
gongweibao 已提交
6945 6946

    Args:
G
gongweibao 已提交
6947 6948 6949 6950
        shape (tuple|list): ${shape_comment}
        mean (Float): ${mean_comment}
        std (Float): ${std_comment}
        seed (Int): ${seed_comment}
G
fix  
gongweibao 已提交
6951 6952 6953
        dtype(np.dtype|core.VarDesc.VarType|str): Output data type.

    Returns:
G
gongweibao 已提交
6954
        out (Variable): ${out_comment}
G
fix  
gongweibao 已提交
6955 6956 6957 6958

    """

    helper = LayerHelper('gaussian_random', **locals())
X
Xin Pan 已提交
6959
    out = helper.create_variable_for_type_inference(dtype)
G
fix  
gongweibao 已提交
6960 6961 6962 6963 6964 6965 6966 6967 6968 6969
    c_dtype = convert_np_dtype_to_dtype_(dtype)
    helper.append_op(
        type='gaussian_random',
        outputs={'Out': out},
        attrs={
            'shape': shape,
            'mean': mean,
            'std': std,
            'seed': seed,
            'dtype': c_dtype,
X
Xin Pan 已提交
6970
            'use_mkldnn': False
G
fix  
gongweibao 已提交
6971 6972 6973 6974 6975
        })

    return out


G
gongweibao 已提交
6976
@templatedoc()
G
fix  
gongweibao 已提交
6977
def sampling_id(x, min=0.0, max=1.0, seed=0, dtype='float32'):
G
fix  
gongweibao 已提交
6978
    """
G
gongweibao 已提交
6979
    ${comment}
G
fix  
gongweibao 已提交
6980 6981

    Args:
G
gongweibao 已提交
6982 6983 6984 6985
        x (Variable): ${x_comment}
        min (Float): ${min_comment}
        max (Float): ${max_comment}
        seed (Float): ${seed_comment}
G
fix  
gongweibao 已提交
6986
        dtype(np.dtype|core.VarDesc.VarType|str): The type of output data : float32, float_16, int etc
G
fix  
gongweibao 已提交
6987 6988

    Returns:
G
gongweibao 已提交
6989
        out (Variable): ${out_comment}
G
fix  
gongweibao 已提交
6990 6991 6992 6993

    """

    helper = LayerHelper('sampling_id', **locals())
X
Xin Pan 已提交
6994
    out = helper.create_variable_for_type_inference(dtype)
G
fix  
gongweibao 已提交
6995 6996 6997 6998 6999 7000 7001 7002 7003 7004 7005
    helper.append_op(
        type='sampling_id',
        inputs={'X': x},
        outputs={'Out': out},
        attrs={'min': min,
               'max': max,
               'seed': seed})

    return out


G
gongweibao 已提交
7006
@templatedoc()
G
fix  
gongweibao 已提交
7007 7008 7009 7010 7011 7012 7013 7014 7015
def gaussian_random_batch_size_like(input,
                                    shape,
                                    input_dim_idx=0,
                                    output_dim_idx=0,
                                    mean=0.0,
                                    std=1.0,
                                    seed=0,
                                    dtype='float32'):
    """
G
gongweibao 已提交
7016
    ${comment}
G
fix  
gongweibao 已提交
7017 7018

    Args:
G
gongweibao 已提交
7019 7020
        input (Variable): ${input_comment}
        shape (tuple|list): ${shape_comment}
G
gongweibao 已提交
7021
        input_dim_idx (Int): ${input_dim_idx_comment}
G
gongweibao 已提交
7022 7023 7024 7025
        output_dim_idx (Int): ${output_dim_idx_comment}
        mean (Float): ${mean_comment}
        std (Float): ${std_comment}
        seed (Int): ${seed_comment}
G
fix  
gongweibao 已提交
7026
        dtype(np.dtype|core.VarDesc.VarType|str): The type of output data : float32, float_16, int etc
G
fix  
gongweibao 已提交
7027 7028

    Returns:
G
gongweibao 已提交
7029
        out (Variable): ${out_comment}
G
fix  
gongweibao 已提交
7030 7031 7032
    """

    helper = LayerHelper('gaussian_random_batch_size_like', **locals())
X
Xin Pan 已提交
7033
    out = helper.create_variable_for_type_inference(dtype)
G
fix  
gongweibao 已提交
7034 7035 7036 7037 7038 7039 7040 7041 7042 7043 7044 7045 7046 7047 7048 7049 7050 7051
    c_dtype = convert_np_dtype_to_dtype_(dtype)
    helper.append_op(
        type='gaussian_random_batch_size_like',
        inputs={'Input': input},
        outputs={'Out': out},
        attrs={
            'shape': shape,
            'input_dim_idx': input_dim_idx,
            'output_dim_idx': output_dim_idx,
            'mean': mean,
            'std': std,
            'seed': seed,
            'dtype': c_dtype
        })

    return out


G
gongweibao 已提交
7052
@templatedoc()
X
Xin Pan 已提交
7053
def sum(x):
G
fix  
gongweibao 已提交
7054
    """
G
gongweibao 已提交
7055
    ${comment}
G
fix  
gongweibao 已提交
7056 7057

    Args:
G
gongweibao 已提交
7058
        x (Variable): ${x_comment}
G
fix  
gongweibao 已提交
7059 7060

    Returns:
G
gongweibao 已提交
7061
        out (Variable): ${out_comment}
G
fix  
gongweibao 已提交
7062 7063 7064
    """

    helper = LayerHelper('sum', **locals())
X
Xin Pan 已提交
7065 7066
    out = helper.create_variable_for_type_inference(
        dtype=helper.input_dtype('x'))
G
fix  
gongweibao 已提交
7067 7068 7069 7070
    helper.append_op(
        type='sum',
        inputs={'X': x},
        outputs={'Out': out},
X
Xin Pan 已提交
7071
        attrs={'use_mkldnn': False})
G
fix  
gongweibao 已提交
7072 7073 7074 7075

    return out


G
gongweibao 已提交
7076
@templatedoc()
G
fix  
gongweibao 已提交
7077 7078
def slice(input, axes, starts, ends):
    """
G
gongweibao 已提交
7079
    ${comment}
G
fix  
gongweibao 已提交
7080 7081

    Args:
G
gongweibao 已提交
7082 7083 7084 7085
        input (Variable): ${input_comment}.
        axes (List): ${axes_comment}
        starts (List): ${starts_comment}
        ends (List): ${ends_comment}
G
fix  
gongweibao 已提交
7086 7087

    Returns:
G
gongweibao 已提交
7088
        out (Variable): ${out_comment}
G
fix  
gongweibao 已提交
7089 7090 7091 7092

    """

    helper = LayerHelper('slice', **locals())
X
Xin Pan 已提交
7093 7094
    out = helper.create_variable_for_type_inference(
        dtype=helper.input_dtype('input'))
G
fix  
gongweibao 已提交
7095 7096 7097 7098 7099 7100 7101 7102 7103 7104 7105
    helper.append_op(
        type='slice',
        inputs={'Input': input},
        outputs={'Out': out},
        attrs={'axes': axes,
               'starts': starts,
               'ends': ends})

    return out


G
gongweibao 已提交
7106
@templatedoc()
G
fix  
gongweibao 已提交
7107 7108
def shape(input):
    """
G
gongweibao 已提交
7109
    ${comment}
G
fix  
gongweibao 已提交
7110 7111

    Args:
G
gongweibao 已提交
7112
        input (Variable): ${input_comment}
G
fix  
gongweibao 已提交
7113 7114

    Returns:
G
gongweibao 已提交
7115
        out (Variable): ${out_comment}
G
fix  
gongweibao 已提交
7116 7117 7118 7119

    """

    helper = LayerHelper('shape', **locals())
X
Xin Pan 已提交
7120 7121
    out = helper.create_variable_for_type_inference(
        dtype=helper.input_dtype('input'))
G
fix  
gongweibao 已提交
7122
    helper.append_op(
G
fix  
gongweibao 已提交
7123
        type='shape', inputs={'Input': input}, outputs={'Out': out})
G
fix  
gongweibao 已提交
7124 7125

    return out
G
merge  
gongweibao 已提交
7126 7127


S
sneaxiy 已提交
7128 7129 7130 7131 7132 7133 7134 7135
def _elementwise_op(helper):
    op_type = helper.layer_type
    x = helper.kwargs.get('x', None)
    y = helper.kwargs.get('y', None)
    assert x is not None, 'x cannot be None in {}'.format(op_type)
    assert y is not None, 'y cannot be None in {}'.format(op_type)
    axis = helper.kwargs.get('axis', -1)
    use_mkldnn = helper.kwargs.get('use_mkldnn', False)
S
sneaxiy 已提交
7136 7137
    name = helper.kwargs.get('name', None)
    if name is None:
X
Xin Pan 已提交
7138
        out = helper.create_variable_for_type_inference(dtype=x.dtype)
S
sneaxiy 已提交
7139 7140 7141
    else:
        out = helper.create_variable(
            name=name, dtype=x.dtype, persistable=False)
S
sneaxiy 已提交
7142

S
sneaxiy 已提交
7143 7144 7145 7146 7147 7148 7149 7150 7151 7152 7153
    helper.append_op(
        type=op_type,
        inputs={'X': x,
                'Y': y},
        outputs={'Out': out},
        attrs={'axis': axis,
               'use_mkldnn': use_mkldnn})
    return helper.append_activation(out)


@templatedoc()
S
sneaxiy 已提交
7154
def scale(x, scale=1.0, bias=0.0, bias_after_scale=True, act=None, name=None):
S
sneaxiy 已提交
7155 7156 7157 7158 7159 7160 7161 7162
    """
    ${comment}

    Args:
        x(${x_type}): ${x_comment}
        scale(${scale_type}): ${scale_comment}
        bias(${bias_type}): ${bias_comment}
        bias_after_scale(${bias_after_scale_type}): ${bias_after_scale_comment}
S
sneaxiy 已提交
7163
        act(basestring|None): Activation applied to the output.
M
minqiyang 已提交
7164
        name(basestring|None): Name of the output.
S
sneaxiy 已提交
7165 7166 7167 7168 7169 7170

    Returns:
        out(${out_type}): ${out_comment}
    """

    helper = LayerHelper('scale', **locals())
S
sneaxiy 已提交
7171
    if name is None:
X
Xin Pan 已提交
7172
        out = helper.create_variable_for_type_inference(dtype=x.dtype)
S
sneaxiy 已提交
7173 7174 7175
    else:
        out = helper.create_variable(
            name=name, dtype=x.dtype, persistable=False)
S
sneaxiy 已提交
7176 7177 7178 7179 7180 7181 7182 7183 7184 7185

    helper.append_op(
        type='scale',
        inputs={'X': x},
        outputs={'Out': out},
        attrs={
            'scale': float(scale),
            'bias': float(bias),
            'bias_after_scale': bias_after_scale
        })
S
sneaxiy 已提交
7186
    return helper.append_activation(out)
S
sneaxiy 已提交
7187 7188


X
Xin Pan 已提交
7189
def elementwise_add(x, y, axis=-1, act=None, name=None):
S
sneaxiy 已提交
7190 7191 7192
    return _elementwise_op(LayerHelper('elementwise_add', **locals()))


X
Xin Pan 已提交
7193
def elementwise_div(x, y, axis=-1, act=None, name=None):
S
sneaxiy 已提交
7194 7195 7196
    return _elementwise_op(LayerHelper('elementwise_div', **locals()))


X
Xin Pan 已提交
7197
def elementwise_sub(x, y, axis=-1, act=None, name=None):
S
sneaxiy 已提交
7198 7199 7200
    return _elementwise_op(LayerHelper('elementwise_sub', **locals()))


X
Xin Pan 已提交
7201
def elementwise_mul(x, y, axis=-1, act=None, name=None):
S
sneaxiy 已提交
7202 7203 7204
    return _elementwise_op(LayerHelper('elementwise_mul', **locals()))


X
Xin Pan 已提交
7205
def elementwise_max(x, y, axis=-1, act=None, name=None):
S
sneaxiy 已提交
7206 7207 7208
    return _elementwise_op(LayerHelper('elementwise_max', **locals()))


X
Xin Pan 已提交
7209
def elementwise_min(x, y, axis=-1, act=None, name=None):
S
sneaxiy 已提交
7210 7211 7212
    return _elementwise_op(LayerHelper('elementwise_min', **locals()))


X
Xin Pan 已提交
7213
def elementwise_pow(x, y, axis=-1, act=None, name=None):
S
sneaxiy 已提交
7214 7215 7216 7217 7218 7219 7220 7221 7222 7223 7224
    return _elementwise_op(LayerHelper('elementwise_pow', **locals()))


for func in [
        elementwise_add, elementwise_div, elementwise_sub, elementwise_mul,
        elementwise_max, elementwise_min, elementwise_pow
]:
    op_proto = OpProtoHolder.instance().get_op_proto(func.__name__)
    func.__doc__ = _generate_doc_string_(
        op_proto,
        additional_args_lines=[
S
sneaxiy 已提交
7225 7226
            "act (basestring|None): Activation applied to the output.",
            "name (basestring|None): Name of the output."
S
sneaxiy 已提交
7227
        ])
M
minqiyang 已提交
7228 7229


7230
def _logical_op(op_name, x, y, out=None, name=None, binary_op=True):
M
minqiyang 已提交
7231 7232
    helper = LayerHelper(op_name, **locals())

M
minqiyang 已提交
7233 7234
    if binary_op:
        assert x.dtype == y.dtype
M
minqiyang 已提交
7235 7236 7237

    if out is None:
        if name is None:
X
Xin Pan 已提交
7238
            out = helper.create_variable_for_type_inference(dtype=x.dtype)
M
minqiyang 已提交
7239 7240 7241 7242 7243 7244 7245 7246 7247 7248 7249 7250 7251 7252 7253
        else:
            out = helper.create_variable(
                name=name, dtype=x.dtype, persistable=False)

    if binary_op:
        helper.append_op(
            type=op_name, inputs={"X": x,
                                  "Y": y}, outputs={"Out": out})
    else:
        helper.append_op(type=op_name, inputs={"X": x}, outputs={"Out": out})

    return out


@templatedoc()
7254
def logical_and(x, y, out=None, name=None):
M
minqiyang 已提交
7255 7256 7257 7258 7259 7260 7261 7262 7263 7264 7265 7266 7267 7268 7269 7270 7271 7272
    """
    ${comment}

    Args:
        x(${x_type}): ${x_comment}
        y(${y_type}): ${y_comment}
        out(Tensor): Output tensor of logical operation.
        name(basestring|None): Name of the output.

    Returns:
        out(${out_type}): ${out_comment}
    """

    return _logical_op(
        op_name="logical_and", x=x, y=y, name=name, out=out, binary_op=True)


@templatedoc()
7273
def logical_or(x, y, out=None, name=None):
M
minqiyang 已提交
7274 7275 7276 7277 7278 7279 7280 7281 7282 7283 7284 7285 7286 7287 7288 7289 7290 7291
    """
    ${comment}

    Args:
        x(${x_type}): ${x_comment}
        y(${y_type}): ${y_comment}
        out(Tensor): Output tensor of logical operation.
        name(basestring|None): Name of the output.

    Returns:
        out(${out_type}): ${out_comment}
    """

    return _logical_op(
        op_name="logical_or", x=x, y=y, name=name, out=out, binary_op=True)


@templatedoc()
7292
def logical_xor(x, y, out=None, name=None):
M
minqiyang 已提交
7293 7294 7295 7296 7297 7298 7299 7300 7301 7302 7303 7304 7305 7306 7307 7308 7309 7310
    """
    ${comment}

    Args:
        x(${x_type}): ${x_comment}
        y(${y_type}): ${y_comment}
        out(Tensor): Output tensor of logical operation.
        name(basestring|None): Name of the output.

    Returns:
        out(${out_type}): ${out_comment}
    """

    return _logical_op(
        op_name="logical_xor", x=x, y=y, name=name, out=out, binary_op=True)


@templatedoc()
7311
def logical_not(x, out=None, name=None):
M
minqiyang 已提交
7312 7313 7314 7315 7316 7317 7318 7319 7320 7321 7322 7323 7324 7325
    """
    ${comment}

    Args:
        x(${x_type}): ${x_comment}
        out(Tensor): Output tensor of logical operation.
        name(basestring|None): Name of the output.

    Returns:
        out(${out_type}): ${out_comment}
    """

    return _logical_op(
        op_name="logical_not", x=x, y=None, name=name, out=out, binary_op=False)
7326 7327 7328 7329 7330 7331 7332 7333 7334 7335 7336 7337 7338 7339 7340 7341 7342 7343 7344 7345


@templatedoc()
def clip(x, min, max, name=None):
    """
    ${comment}

    Args:
        x(${x_type}): ${x_comment}
        min(${min_type}): ${min_comment}
        max(${max_type}): ${max_comment}
        name(basestring|None): Name of the output.

    Returns:
        out(${out_type}): ${out_comment}
    """

    helper = LayerHelper("clip", **locals())

    if name is None:
X
Xin Pan 已提交
7346
        out = helper.create_variable_for_type_inference(dtype=x.dtype)
7347 7348 7349 7350 7351 7352 7353 7354 7355 7356 7357 7358 7359 7360 7361 7362 7363 7364 7365 7366 7367 7368 7369 7370 7371 7372 7373 7374 7375 7376 7377
    else:
        out = helper.create_variable(
            name=name, dtype=x.dtype, persistable=False)

    helper.append_op(
        type="clip",
        inputs={"X": x},
        attrs={"min": min,
               "max": max},
        outputs={"Out": out})

    return out


@templatedoc()
def clip_by_norm(x, max_norm, name=None):
    """
    ${comment}

    Args:
        x(${x_type}): ${x_comment}
        max_norm(${max_norm_type}): ${max_norm_comment}
        name(basestring|None): Name of the output.

    Returns:
        out(${out_type}): ${out_comment}
    """

    helper = LayerHelper("clip_by_norm", **locals())

    if name is None:
X
Xin Pan 已提交
7378
        out = helper.create_variable_for_type_inference(dtype=x.dtype)
7379 7380 7381 7382 7383 7384 7385 7386 7387 7388 7389
    else:
        out = helper.create_variable(
            name=name, dtype=x.dtype, persistable=False)

    helper.append_op(
        type="clip_by_norm",
        inputs={"X": x},
        attrs={"max_norm": max_norm},
        outputs={"Out": out})

    return out
X
Xin Pan 已提交
7390 7391 7392 7393 7394 7395 7396 7397 7398 7399 7400 7401 7402 7403 7404 7405 7406 7407


@templatedoc()
def mean(x, name=None):
    """
    ${comment}

    Args:
        x(${x_type}): ${x_comment}
        name(basestring|None): Name of the output.

    Returns:
        out(${out_type}): ${out_comment}
    """

    helper = LayerHelper("mean", **locals())

    if name is None:
X
Xin Pan 已提交
7408
        out = helper.create_variable_for_type_inference(dtype=x.dtype)
X
Xin Pan 已提交
7409 7410 7411 7412 7413 7414 7415 7416 7417 7418 7419 7420 7421 7422 7423 7424 7425 7426 7427 7428 7429 7430 7431 7432 7433 7434 7435 7436 7437
    else:
        out = helper.create_variable(
            name=name, dtype=x.dtype, persistable=False)

    helper.append_op(
        type="mean", inputs={"X": x}, attrs={}, outputs={"Out": out})

    return out


@templatedoc()
def mul(x, y, x_num_col_dims=1, y_num_col_dims=1, name=None):
    """
    ${comment}

    Args:
        x(${x_type}): ${x_comment}
        y(${y_type}): ${y_comment}
        x_num_col_dims(${x_num_col_dims_type}): ${x_num_col_dims_comment}
        y_num_col_dims(${y_num_col_dims_type}): ${y_num_col_dims_comment}
        name(basestring|None): Name of the output.

    Returns:
        out(${out_type}): ${out_comment}
    """

    helper = LayerHelper("mul", **locals())

    if name is None:
X
Xin Pan 已提交
7438
        out = helper.create_variable_for_type_inference(dtype=x.dtype)
X
Xin Pan 已提交
7439 7440 7441 7442 7443 7444 7445 7446 7447
    else:
        out = helper.create_variable(
            name=name, dtype=x.dtype, persistable=False)

    helper.append_op(
        type="mul",
        inputs={"X": x,
                "Y": y},
        attrs={
X
fix  
Xin Pan 已提交
7448 7449
            "x_num_col_dims": x_num_col_dims,
            "y_num_col_dims": y_num_col_dims
X
Xin Pan 已提交
7450 7451 7452 7453 7454 7455 7456 7457 7458 7459 7460 7461 7462 7463 7464 7465 7466 7467 7468 7469 7470 7471
        },
        outputs={"Out": out})
    return out


@templatedoc()
def sigmoid_cross_entropy_with_logits(x, label, name=None):
    """
    ${comment}

    Args:
        x(${x_type}): ${x_comment}
        label(${label_type}): ${label_comment}
        name(basestring|None): Name of the output.

    Returns:
        out(${out_type}): ${out_comment}
    """

    helper = LayerHelper("sigmoid_cross_entropy_with_logits", **locals())

    if name is None:
X
Xin Pan 已提交
7472
        out = helper.create_variable_for_type_inference(dtype=x.dtype)
X
Xin Pan 已提交
7473 7474 7475 7476 7477 7478 7479 7480 7481 7482 7483 7484 7485 7486 7487 7488 7489 7490 7491 7492 7493 7494 7495 7496 7497 7498 7499 7500 7501
    else:
        out = helper.create_variable(
            name=name, dtype=x.dtype, persistable=False)

    helper.append_op(
        type="sigmoid_cross_entropy_with_logits",
        inputs={"X": x,
                "Label": label},
        attrs={},
        outputs={"Out": out})
    return out


@templatedoc()
def maxout(x, groups, name=None):
    """
    ${comment}

    Args:
        x(${x_type}): ${x_comment}
        groups(${groups_type}): ${groups_comment}
        name(basestring|None): Name of the output.

    Returns:
        out(${out_type}): ${out_comment}
    """
    helper = LayerHelper("maxout", **locals())

    if name is None:
X
Xin Pan 已提交
7502
        out = helper.create_variable_for_type_inference(dtype=x.dtype)
X
Xin Pan 已提交
7503 7504 7505 7506 7507 7508 7509 7510 7511 7512
    else:
        out = helper.create_variable(
            name=name, dtype=x.dtype, persistable=False)

    helper.append_op(
        type="maxout",
        inputs={"X": x},
        attrs={"groups": groups},
        outputs={"Out": out})
    return out
7513 7514


S
sneaxiy 已提交
7515 7516 7517 7518 7519 7520 7521 7522 7523 7524 7525 7526 7527 7528
@templatedoc()
def sequence_reverse(x, name=None):
    """ 
    ${comment}

    Args:
        x(${x_type}): ${x_comment}
        name(basestring|None): Name of the output.

    Returns:
        out(${y_type}): ${y_comment}
    """
    helper = LayerHelper("sequence_reverse", **locals())
    if name is None:
S
sneaxiy 已提交
7529
        out = helper.create_variable_for_type_inference(dtype=x.dtype)
S
sneaxiy 已提交
7530 7531 7532 7533 7534 7535 7536 7537 7538 7539
    else:
        out = helper.create_variable(
            name=name, dtype=x.dtype, persistable=False)

    helper.append_op(
        type="sequence_reverse",
        inputs={"X": x},
        outputs={"Y": out},
        attrs=dict())
    return out
S
sneaxiy 已提交
7540 7541


7542 7543 7544 7545 7546 7547
def affine_channel(x, scale=None, bias=None, data_layout='NCHW', name=None):
    """
    Applies a separate affine transformation to each channel of the input.
    Useful for replacing spatial batch norm with its equivalent fixed
    transformation. The input also can be 2D tensor and applies a affine
    transformation in second dimension.
7548

7549 7550 7551 7552 7553 7554 7555 7556 7557 7558 7559 7560 7561 7562 7563 7564 7565 7566 7567
    Args:
        x (Variable): Feature map input can be a 4D tensor with order NCHW
            or NHWC. It also can be a 2D tensor and the affine transformation
            is applied in the second dimension.
        scale (Variable): 1D input of shape (C), the c-th element is the scale
            factor of the affine transformation for the c-th channel of
            the input.
        bias (Variable): 1D input of shape (C), the c-th element is the bias
            of the affine transformation for the c-th channel of the input.
        data_layout (string, default NCHW): NCHW or NHWC. If input is 2D
            tensor, you can ignore data_layout.
        name (str, default None): The name of this layer.

    Returns:
        out (Variable): A tensor of the same shape and data layout with x.
    """
    helper = LayerHelper("affine_channel", **locals())

    if name is None:
X
Xin Pan 已提交
7568
        out = helper.create_variable_for_type_inference(dtype=x.dtype)
7569 7570 7571 7572 7573 7574 7575 7576 7577 7578 7579 7580
    else:
        out = helper.create_variable(
            name=name, dtype=x.dtype, persistable=False)

    helper.append_op(
        type="affine_channel",
        inputs={"X": x,
                'Scale': scale,
                'Bias': bias},
        attrs={"data_layout": data_layout},
        outputs={"Out": out})
    return out
7581 7582


M
minqiyang 已提交
7583 7584 7585 7586 7587 7588 7589
def hash(input, hash_size, num_hash=1, name=None):
    """
    hash the input
     Args:
        input (Variable): The input variable which is a one-hot word.
        hash_size (int): The space size for hash algorithm.
        num_hash (int): The times of hash, default 1.
M
minqiyang 已提交
7590
        name (str, default None): The name of this layer.
M
minqiyang 已提交
7591 7592 7593 7594
     Returns:
        Variable: The hash result variable which is a LoDTensor.
     Examples:
        .. code-block:: python
M
minqiyang 已提交
7595
            word_dict = paddle.dataset.imdb.word_dict()
M
minqiyang 已提交
7596 7597 7598 7599
            x = fluid.layers.data(shape[1], dtype='int32', lod_level=1)
            out = fluid.layers.hash(input=x, len(word_dict))
    """
    helper = LayerHelper('hash', **locals())
M
minqiyang 已提交
7600 7601
    out = helper.create_variable_for_type_inference(
        helper.input_dtype(), stop_gradient=True)
M
minqiyang 已提交
7602 7603 7604 7605 7606 7607 7608
    helper.append_op(
        type='hash',
        inputs={'X': input},
        outputs={'Out': out},
        attrs={'num_hash': num_hash,
               'mod_by': hash_size})
    return out
G
gmcather 已提交
7609 7610 7611 7612 7613 7614 7615 7616 7617 7618 7619 7620 7621 7622 7623 7624 7625 7626 7627 7628 7629 7630 7631 7632 7633 7634 7635 7636 7637 7638 7639 7640 7641 7642 7643 7644 7645 7646 7647 7648 7649 7650 7651 7652 7653 7654 7655 7656 7657 7658 7659 7660 7661 7662 7663 7664 7665 7666 7667 7668 7669 7670 7671 7672 7673 7674 7675 7676 7677 7678 7679 7680 7681 7682 7683 7684 7685 7686 7687 7688 7689 7690 7691 7692 7693 7694 7695 7696 7697 7698 7699 7700 7701 7702 7703 7704


def log_loss(input, label, epsilon=1e-4, name=None):
    """
    **Negative Log Loss Layer**

    This layer accepts input predictions and target label and returns the
    negative log loss.

    .. math::

        Out = -label * \\log{(input + \\epsilon)}
              - (1 - label) * \\log{(1 - input + \\epsilon)}

    Args:
        input (Variable|list):  a 2-D tensor with shape [N x 1], where N is the
                                batch size. This input is a probability computed
                                by the previous operator.
        label (Variable|list):  the ground truth which is a 2-D tensor with
                                shape [N x 1], where N is the batch size.
        epsilon (float): epsilon
        name (string): the name of log_loss

    Returns:
        Variable: A 2-D tensor with shape [N x 1], the negative log loss.

    Examples:
        .. code-block:: python

          prob = fluid.layers.sigmoid(net)
          cost = fluid.layers.log_loss(input=prob, label=label)
    """
    helper = LayerHelper('log_loss', **locals())

    if name is None:
        loss = helper.create_variable_for_type_inference(dtype=input.dtype)
    else:
        loss = helper.create_variable(
            name=name, dtype=input.dtype, persistable=False)

    helper.append_op(
        type='log_loss',
        inputs={'Predicted': [input],
                'Labels': [label]},
        outputs={'Loss': [loss]},
        attrs={'epsilon': epsilon})
    return loss


def add_position_encoding(input, alpha, beta, name=None):
    """
    **Add Position Encoding Layer**

    This layer accepts an input 3D-Tensor of shape [N x M x P], and return an
    output Tensor of shape [N x M x P] with positional encoding value.

    Refer to `Attention Is All You Need<http://arxiv.org/pdf/1706.03762.pdf>`_ .

    .. math::
        PE(pos, 2i) = \\sin{(pos / 10000^{2i / P})}   \\\\
        PE(pos, 2i + 1) = \\cos{(pos / 10000^{2i / P})}  \\\\
        Out(:, pos, i) = \\alpha * input(:, pos, i) + \\beta * PE(pos, i)

    Where:
    * PE(pos, 2i): the increment for the number at even position
    * PE(pos, 2i + 1): the increment for the number at odd position

    Args:
        input (Variable): 3-D input tensor with shape [N x M x P]
        alpha (float): multiple of Input Tensor
        beta (float): multiple of Positional Encoding Tensor
        name (string): the name of position encoding layer

    Returns:
        Variable: A 3-D Tensor of shape [N x M x P] with positional encoding.

    Examples:
        .. code-block:: python

          position_tensor = fluid.layers.add_position_encoding(input=tensor)
    """
    helper = LayerHelper('add_position_encoding', **locals())
    dtype = helper.input_dtype()

    if name is None:
        out = helper.create_variable_for_type_inference(dtype=dtype)
    else:
        out = helper.create_variable(name=name, dtype=dtype, persistable=False)

    helper.append_op(
        type="add_position_encoding",
        inputs={"X": input},
        outputs={"Out": out},
        attrs={"alpha": alpha,
               "beta": beta})
    return out