engine.py 69.5 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14
# Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

15
import os
Z
zhaoyingli 已提交
16
import copy
17
import logging
18
import random
Z
zhaoyingli 已提交
19
import numbers
20
import numpy as np
21 22 23
from collections import defaultdict

import paddle
24
import paddle.utils as utils
25

26
from paddle import fluid, static
27
from paddle.metric import Metric
28
from paddle.static import InputSpec
29
from paddle.fluid import core
30
from paddle.fluid import Variable
31
from paddle.fluid.layers.utils import flatten
32
from paddle.fluid.executor import global_scope, _to_name_str
33
from paddle.fluid.framework import Operator, _non_static_mode
34 35
from paddle.fluid.framework import _current_expected_place as _get_device
from paddle.fluid.dygraph.parallel import ParallelEnv
36
from paddle.distributed import fleet
37
from paddle.distributed.parallel import _is_global_parallel_initialize
38

39
from .callbacks import config_callbacks
40
from .converter import Converter
41
from .helper import ProgramHelper
42
from .cluster import Cluster, get_default_cluster
43 44
from .planner_v2 import Planner
from .parallelizer_v2 import Parallelizer
45 46
from .dist_op import DistributedOperator
from .dist_saver import DistributedSaver
Z
zhaoyingli 已提交
47 48 49 50
from .dist_loader import (
    DistributedDataLoaderFromGenerator,
    DistributedDataLoader,
)
51
from .process_group import new_process_group, get_all_process_groups
52
from .dist_context import DistributedContext, get_default_distributed_context
53
from .strategy import Strategy
J
JZ-LIANG 已提交
54
from .interface import CollectionNames, get_collection, fetch
Z
zhaoyingli 已提交
55 56
from .utils import to_list, get_dist_attr, get_lr, validate_opt
from .utils import initialize_pg_in_full_mode, get_input_split_info
57
from .cost.estimate_cost import get_cost_from_engine
58

Z
zhaoyingli 已提交
59 60
from ..utils.log_utils import get_logger

61 62

class Engine:
63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90
    """
    An Engine object can provide the full power of auto parallel to users.
    With the help of it, users can easily obtain the abilities of the
    distributed training and inference. It also support the dynamic graph and
    static graph at the same time.

    Args:
        model (paddle.nn.Layer, optional): The model is an instance of
            paddle.nn.Layer.
        loss (Loss|Callable|None, optional): The loss can be a `paddle.nn.Layer`
            instance or any callable function taken the predicted values and
            ground truth values as input. It can be None when there is no loss.
            Default: None.
        optimizer (Optimizer|None, optional): The optimizer need to be set in training
            and should be None in eval and predict mode. Default: None.
        metrics (Metric|list[Metric]|None, optional): If metrics is set, all
            metrics will be calculated and output in train/eval mode. Default: None.
        cluster (Cluster|None, optional): The cluster represents the topology information
            about the used physical devices. Default: None. (Unused for now)
        strategy (Strategy|None, optional): The strategy is used to configure the
        parallelization and optimization behaviors. Default: None.

    Examples:

        .. code-block:: python

            import paddle
            import paddle.vision.transforms as T
91
            from paddle.distributed.fleet import auto
92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123
            from paddle.vision.datasets import MNIST

            transform = T.Compose([
                T.Transpose(),
                T.Normalize([127.5], [127.5])
            ])
            train_dataset = MNIST(mode='train', transform=transform)
            valid_dataset = MNIST(mode='test', transform=transform)

            model = paddle.vision.models.LeNet()
            loss = paddle.nn.CrossEntropyLoss()
            optimizer = paddle.optimizer.Adam(
                learning_rate=0.001, parameters=model.parameters())
            metrics = paddle.metric.Accuracy(topk=(1, 2))

            engine = auto.Engine(model, loss, optimizer, metrics)
            # fit
            engine.fit(train_dataset,
                       epochs=2,
                       batch_size=64)
            # evaluate
            engine.evaluate(valid_dataset,
                            batch_size=64)
            # predict
            engine.predict(valid_dataset,
                           batch_size=64)
            # save
            engine.save("./my_model")
            # load
            engine.load("./my_model")

    """
124

Z
zhaoyingli 已提交
125 126 127 128 129 130 131 132 133 134 135 136 137 138 139
    def __init__(
        self,
        model=None,
        loss=None,
        optimizer=None,
        metrics=None,
        cluster=None,
        strategy=None,
    ):

        if (
            model
            and not isinstance(model, paddle.nn.Layer)
            and not callable(model)
        ):
140 141 142 143
            raise TypeError(
                "'model must be sub classes of `paddle.nn.Layer` or any callable function."
            )
        self._model = model
Z
zhaoyingli 已提交
144 145 146 147 148 149 150 151 152

        if (
            loss
            and not isinstance(loss, (paddle.nn.Layer, Variable))
            and not callable(loss)
        ):
            raise TypeError(
                "'loss' must be sub classes of `paddle.nn.Layer` or any callable function or a Variable."
            )
153 154 155
        self._loss = loss

        if optimizer and not isinstance(
Z
zhaoyingli 已提交
156 157 158
            optimizer,
            (paddle.optimizer.Optimizer, paddle.fluid.optimizer.Optimizer),
        ):
159 160
            raise TypeError(
                "'optimizer' must be object of class `paddle.optimizer.Optimizer`"
Z
zhaoyingli 已提交
161 162 163
                " or `paddle.fluid.optimizer.Optimizer`."
            )
        self._optimizer = validate_opt(optimizer)
164 165 166

        metrics = metrics or []
        for metric in to_list(metrics):
Z
zhaoyingli 已提交
167 168 169 170 171 172
            if metric and not isinstance(metric, Metric):
                raise TypeError(
                    "{} is not sub class of Metric".format(
                        metric.__class__.__name__
                    )
                )
173 174 175 176 177 178 179 180 181 182 183 184 185 186
        self._metrics = to_list(metrics)

        if cluster and not isinstance(cluster, Cluster):
            raise TypeError(
                "'cluster' must be the object or class `paddle.distributed.auto_parallel.Cluster`"
            )
        self._cluster = cluster or get_default_cluster()

        if strategy and not isinstance(strategy, Strategy):
            raise TypeError(
                "'strategy' must be object of class `paddle.distributed.auto_parallel.Strategy`"
            )
        self._strategy = strategy or Strategy()

Z
zhaoyingli 已提交
187
        self._logger = get_logger(logging.INFO)
188
        if os.getenv("POD_NAME") and not _is_global_parallel_initialize():
Z
zhaoyingli 已提交
189 190 191
            self._logger.info(
                "Distribute training by paddle.distributed.launch"
            )
192
            fleet.init(is_collective=True)
193

194 195 196 197 198 199
        # for compute cost
        # TODO: remove _fwd_main_progs and _orig_optimizer
        self._fwd_dist_contexts = {}
        self._fwd_main_progs = {}
        self._orig_optimizer = copy.deepcopy(self._optimizer)

200
        self._executor = None
201 202 203
        self._cur_rank = paddle.distributed.get_rank()
        self._nranks = paddle.distributed.get_world_size()
        self._saver = DistributedSaver()
204

205 206
        self._orig_main_prog = static.default_main_program()
        self._orig_startup_prog = static.default_startup_program()
207
        self._orig_dist_context = get_default_distributed_context()
208
        self._dist_contexts = {}
209
        self._planners = {}
210 211
        self._has_prepared = {"train": False, "eval": False, "predict": False}
        self._has_prepared_reader = {
212 213
            "train": False,
            "eval": False,
Z
zhaoyingli 已提交
214
            "predict": False,
215
        }
216 217 218 219
        self._inputs_spec = []
        self._labels_spec = []
        self._inputs = []
        self._labels = []
Z
zhaoyingli 已提交
220
        self._losses = []
221

Z
zhaoyingli 已提交
222
        self._mode = None
223 224
        self._skip_build = False
        self._outside_dataloader = False
225
        self._planned_mode = None
226 227
        self._dygraph_mode = False
        self._tuning = self._strategy.tuning
228 229 230 231 232
        self._acc_steps = 1
        if self._strategy.gradient_merge.enable:
            self._acc_steps = self._strategy.gradient_merge.k_steps
        elif self._strategy.pipeline.enable:
            self._acc_steps = self._strategy.pipeline.accumulate_steps
233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253

        self.history = None

    def _prepare_data_spec(self, data, split, batch_size):
        inputs_spec = []
        labels_spec = []
        if isinstance(data, paddle.io.IterableDataset):
            if split is None:
                inputs, labels = next(iter(data))
            else:
                sample = next(iter(data))
                inputs = sample[:split]
                labels = sample[split:]
        elif isinstance(data, paddle.io.Dataset):
            if split is None:
                inputs, labels = data[0]
            else:
                sample = data[0]
                inputs = sample[:split]
                labels = sample[split:]
        else:
Z
zhaoyingli 已提交
254 255 256 257 258
            raise TypeError(
                "Data should be a Dataset or IterableDatset, but received {}.".format(
                    type(data).__name__
                )
            )
259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277
        inputs = to_list(inputs)
        labels = to_list(labels)

        num_shards = self._strategy.dataset.num_shards

        def _adjust_item_spec(num_shards, spec):
            if num_shards > 1 and len(spec.shape) > 1:
                spec.shape[0] = spec.shape[0] * num_shards

        def _infer_item_spec(item, name, batch_size, specs):
            if isinstance(item, np.ndarray):
                spec = InputSpec.from_numpy(item, name)
                if batch_size is None:
                    _adjust_item_spec(num_shards, spec)
                    specs.append(spec)
                else:
                    specs.append(spec.batch(batch_size))
            elif isinstance(item, (Variable, core.VarBase, core.eager.Tensor)):
                spec = InputSpec.from_tensor(item, name)
Z
zhaoyingli 已提交
278
                _adjust_item_spec(num_shards, spec)
279 280 281 282
                if batch_size is None:
                    specs.append(spec)
                else:
                    specs.append(spec.batch(batch_size))
Z
zhaoyingli 已提交
283
            elif isinstance(item, numbers.Number):
284
                specs.append(InputSpec([batch_size], type(item), name))
Z
zhaoyingli 已提交
285 286 287 288 289 290
            else:
                raise TypeError(
                    "The sample's dtype returned of dataset should be number, np.ndarray or Tensor, but got {}".format(
                        type(item).__name__
                    )
                )
291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306

        if inputs is not None:
            for i, item in enumerate(inputs):
                assert item is not None, "Receive None input."
                name = "input" + str(i)
                _infer_item_spec(item, name, batch_size, inputs_spec)
        if labels is not None:
            for i, item in enumerate(labels):
                assert item is not None, "Receive None input."
                name = "label" + str(i)
                _infer_item_spec(item, name, batch_size, labels_spec)

        inputs_spec = self._validate_spec(inputs_spec)
        labels_spec = self._validate_spec(labels_spec)
        return inputs_spec, labels_spec

Z
zhaoyingli 已提交
307
    def _prepare_data_tensor(self, inputs_spec, labels_spec, inputs, labels):
308
        if _non_static_mode() or self._dygraph_mode:
Z
zhaoyingli 已提交
309 310
            raise ValueError("Only support static graph mode.")

311
        if inputs_spec:
Z
zhaoyingli 已提交
312 313 314 315 316 317 318 319 320 321 322 323 324 325
            assert isinstance(
                inputs_spec, list
            ), "inputs should be list, but received {}".format(
                type(inputs_spec)
            )
            assert isinstance(
                inputs, list
            ), "inputs should be list, but received {}".format(type(inputs))
            assert len(inputs_spec) == len(
                inputs
            ), "the number of `inputs_spec` should be equal to `inputs`'s."
            for input_spec, input in zip(inputs_spec, inputs):
                if input_spec.shape != input.shape:
                    input.desc.set_shape(input_spec.shape)
326
        if labels_spec:
Z
zhaoyingli 已提交
327 328 329 330 331 332 333 334 335 336 337 338 339 340 341
            assert isinstance(
                labels_spec, list
            ), "labels should be list, but received {}".format(
                type(labels_spec)
            )
            assert isinstance(
                labels, list
            ), "labels should be list, but received {}".format(type(labels))
            assert len(labels_spec) == len(
                labels
            ), "the number of `labels_spec` should be equal to `labels`'s."
            for label_spec, label in zip(labels_spec, labels):
                if label_spec.shape != label.shape:
                    label.desc.set_shape(label_spec.shape)

342 343
        return inputs, labels

344
    def _prepare_reader(self, feed_list=[]):
345
        dist_context = self._dist_contexts[self._mode]
346
        dist_main_prog = dist_context.dist_main_programs[self._cur_rank]
347
        dist_main_block = dist_main_prog.global_block()
348

349 350
        # NOTE: this list may be changed if Paddle changes the existing rules.
        related_reader_ops = [
Z
zhaoyingli 已提交
351 352 353
            "create_py_reader",
            "create_double_buffer_reader",
            "read",
354 355 356 357 358 359 360 361 362 363 364 365 366
        ]
        # remove the first three ops if multiple run fit/evaluate/predict
        if dist_main_block.ops[0].type == 'create_py_reader':
            for i in range(len(related_reader_ops)):
                if dist_main_block.ops[0].type in related_reader_ops:
                    dist_main_block._remove_op(0, sync=False)
        dist_main_block._sync_with_cpp()
        # Step 1: find the reader ops
        reader_op_indices = []
        for idx, op in enumerate(dist_main_block.ops):
            if op.type in related_reader_ops:
                reader_op_indices.append(idx)
        # Step 2: insert the new reader ops to cpp
367 368
        # record the read ops' desc to insert to program of forward task_node
        read_ops_desc = []
369 370 371 372
        new_reader_ops = []
        for idx in reversed(reader_op_indices):
            new_op_desc = dist_main_block.desc._prepend_op()
            new_op_desc.copy_from(dist_main_block.ops[idx].desc)
373
            read_ops_desc.append(new_op_desc)
Z
zhaoyingli 已提交
374 375 376
            new_op = Operator(
                dist_main_block, new_op_desc, type=new_op_desc.type()
            )
377 378 379 380 381 382 383 384 385 386 387 388 389 390 391
            new_reader_ops.append(new_op)
            dist_op = DistributedOperator(new_op)
            dist_context.add_dist_op_for_program(dist_op)
        # Step 3: insert the new reader ops to python
        for new_op in new_reader_ops:
            dist_main_block.ops.insert(0, new_op)
        for i in range(len(reader_op_indices)):
            reader_op_indices[i] += len(reader_op_indices)
        # Step 4: remove the old reader ops from python and cpp
        for idx in reversed(reader_op_indices):
            op = dist_main_block.ops.pop(idx)
            dist_main_block.desc._remove_op(idx, idx + 1)
        dist_main_block._sync_with_cpp()
        self._has_prepared_reader[self._mode] = True

392 393 394 395
        # Insert read op to forward TaskNode if 1F1B pass is setted
        if self.main_program._pipeline_opt:
            assert "tasks" in self.main_program._pipeline_opt["fleet_opt"]
            fleet_opt = self.main_program._pipeline_opt["fleet_opt"]
396 397 398 399 400 401
            fwd_task = None
            if self._strategy.pipeline.schedule_mode == "1F1B":
                fwd_task = fleet_opt["tasks"][1]
            elif self._strategy.pipeline.schedule_mode == "stream":
                fwd_task = fleet_opt["tasks"][0]
            assert fwd_task is not None
402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419
            fwd_prog = fwd_task.get_program()
            fwd_block = fwd_prog.global_block()

            for var in feed_list:
                if var.name not in fwd_block.vars:
                    fwd_block._clone_variable(var)

            for op_desc in read_ops_desc:
                new_op_desc = fwd_block.desc._prepend_op()
                new_op_desc.copy_from(op_desc)
                new_op = Operator(
                    fwd_block, new_op_desc, type=new_op_desc.type()
                )
                fwd_block.ops.insert(0, new_op)

            fwd_block._sync_with_cpp()
            fwd_task.set_program(fwd_prog)

420 421 422 423 424 425 426 427 428 429 430 431 432 433 434
    def _prepare_feed(self, data, user_feeds, mode):
        feeds = {}
        if data is not None:
            if isinstance(data, (list, tuple)):
                if len(data) == 1 and isinstance(data[0], dict):
                    for name, data in data[0].items():
                        feeds[name] = data
                else:
                    raise ValueError("Unsupported data {}".format(data))
            elif isinstance(data, dict):
                for name, data in data.items():
                    feeds[name] = data
            else:
                raise ValueError("Unsupported data {}".format(data))
        if user_feeds is not None:
Z
zhaoyingli 已提交
435 436 437 438 439
            assert isinstance(
                user_feeds, dict
            ), "user_feeds must be a dict, but receive {}".format(
                type(user_feeds).__name__
            )
440 441 442 443 444 445
            for name, data in user_feeds.items():
                feeds[name] = data
        return feeds

    def _prepare_fetch(self, user_fetches, mode):
        if user_fetches is not None:
Z
zhaoyingli 已提交
446 447 448 449 450
            assert isinstance(
                user_fetches, list
            ), "user_fetches must be a list, but receive {}".format(
                type(user_fetches).__name__
            )
451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466
        fetch_names = []
        fetch_indices = []

        def _process_fetch_group(group_name, var_list):
            group_indices = []
            for var in var_list:
                # Remove duplicate var_names
                if self._is_local_var(var):
                    var_name = _to_name_str(var)
                    if var_name not in fetch_names:
                        fetch_names.append(var_name)
                    group_indices.append(fetch_names.index(var_name))
            if not group_indices:
                fetch_names.append([])
            fetch_indices.append(group_indices)

467 468
        dist_context = self._dist_contexts[mode]
        fetch_vars = dist_context.serial_fetch_vars
469
        if mode != "predict":
470
            _process_fetch_group("loss", fetch_vars["loss"])
471
        if mode != "predict":
472
            metrics = fetch_vars["metrics"]
473 474 475
            for i, var_list in enumerate(metrics):
                _process_fetch_group("metrics_" + str(i), var_list)
        if mode == "predict":
476
            _process_fetch_group("outputs", fetch_vars["outputs"])
477
        for usr_fetch in user_fetches or []:
J
JZ-LIANG 已提交
478 479
            var_name = _to_name_str(usr_fetch)
            fetch(var_name)
480 481 482
        user_fetches_collection = [
            item[1] for item in get_collection(CollectionNames.FETCHES)
        ]
J
JZ-LIANG 已提交
483
        var_list = user_fetches_collection or []
484 485 486
        _process_fetch_group("fetches", var_list)
        return fetch_names, fetch_indices

Z
zhaoyingli 已提交
487 488 489 490 491 492 493 494 495 496
    def _prepare_logger(
        self,
        outs,
        epoch=None,
        step=None,
        lr=None,
        fetch_names=None,
        fetch_indices=None,
        mode=None,
    ):
497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512
        logs = {}
        if epoch is not None:
            logs["epoch"] = epoch
        if step is not None:
            logs["step"] = step + 1
        if lr is not None:
            logs["lr"] = lr
        group_idx = 0
        if mode != "predict":
            # logging loss
            loss_indices = fetch_indices[group_idx]
            assert len(loss_indices) <= 1
            for idx in loss_indices:
                logs["loss"] = outs[idx][0]
            group_idx += 1
            # logging metrics
513 514
            dist_context = self._dist_contexts[mode]
            metric_vars = dist_context.serial_fetch_vars["metrics"]
515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537
            if metric_vars:
                for metric in self._metrics:
                    metrics_indices = fetch_indices[group_idx]
                    metric_out = []
                    for idx in metrics_indices:
                        metric_out.append(outs[idx])
                    if metric_out:
                        metric.update(*metric_out)
                        results = metric.accumulate()
                        for i, res in enumerate(to_list(results)):
                            logs[metric.name()[i]] = res
                    group_idx += 1
        # logging outputs
        elif mode == "predict":
            outputs_indices = fetch_indices[group_idx]
            logs_out = {}
            for idx in outputs_indices:
                logs_out["out%d" % (idx)] = outs[idx]
            logs["outputs"] = logs_out
            group_idx += 1
        # logging user fetches
        collect_fetches = get_collection(CollectionNames.FETCHES)
        logs_fetch = {}
J
JZ-LIANG 已提交
538 539 540 541
        for name, var_name in collect_fetches:
            if var_name in fetch_names:
                idx = fetch_names.index(var_name)
                logs_fetch[name or var_name] = outs[idx]
542 543 544
        logs["fetches"] = logs_fetch
        return logs

545
    def _prepare_program(self, mode, init_parameters=True):
546
        # Do the build process
547 548 549 550
        self._build(mode)
        # Do the planning process
        self._plan(mode)
        # Do the parallel process
551
        self._parallel(mode)
552 553 554 555 556
        # Init comm
        self._init_comm()
        if init_parameters:
            # startup program
            self._initialize(mode)
557
        self._has_prepared[mode] = True
558

559
    def _build(self, mode):
560
        if _non_static_mode() or self._dygraph_mode:
561
            paddle.disable_static()
562 563 564
            self._dygraph_mode = True
            self._logger.info("Building model with 'to_static' method.")

Z
zhaoyingli 已提交
565 566 567 568 569 570 571
            self.program_helper = ProgramHelper(
                self._model,
                self._loss,
                self._metrics,
                self._inputs_spec,
                self._labels_spec,
            )
572
            # build forward main program
573
            self.program_helper.build_program(mode)
574

575 576 577
            self.concrete_program = self.program_helper.concrete_program
            serial_main_prog = self.program_helper.main_program
            serial_startup_prog = self.program_helper.startup_program
578

Z
zhaoyingli 已提交
579 580
            self._inputs = self.program_helper.input_vars
            self._labels = self.program_helper.label_vars
581
            outputs = self.program_helper.output_vars
Z
zhaoyingli 已提交
582
            self._losses = self.program_helper.loss_vars
583
            metrics = self.program_helper.metric_vars
584

585
            paddle.enable_static()
586 587
        else:
            # build program in static mode
588 589
            dist_context = self._dist_contexts.get(mode, None)
            if dist_context is not None:
590 591
                return

592
            outputs = []
593
            metrics = []
Z
zhaoyingli 已提交
594
            self._losses = []
595 596
            serial_main_prog = self._orig_main_prog.clone()
            serial_startup_prog = self._orig_startup_prog.clone()
597
            if not self._skip_build:
Z
zhaoyingli 已提交
598 599 600 601 602 603 604 605 606 607 608
                with static.program_guard(
                    serial_main_prog, serial_startup_prog
                ), utils.unique_name.guard():
                    self._inputs = [
                        s._create_feed_layer() for s in self._inputs_spec
                    ]
                    self._labels = [
                        s._create_feed_layer() for s in self._labels_spec
                    ]

                    outputs = to_list(self._model(*self._inputs))
609

Z
zhaoyingli 已提交
610 611 612 613 614 615 616 617 618 619 620
                    if mode != "predict" and self._loss:
                        assert isinstance(
                            self._loss, paddle.nn.Layer
                        ) or callable(
                            self._loss
                        ), "the type of `loss` of the Engine arguments should be sub classes of `paddle.nn.Layer` or any callable function."
                        self._losses = to_list(
                            self._loss(*(outputs + self._labels))
                        )

                    if mode != "predict" and (outputs or self._labels):
621 622
                        for metric in self._metrics:
                            metrics.append(
Z
zhaoyingli 已提交
623 624 625 626
                                to_list(
                                    metric.compute(*(outputs + self._labels))
                                )
                            )
627
            elif mode == "train":
Z
zhaoyingli 已提交
628 629 630 631
                assert isinstance(
                    self._loss, Variable
                ), "the type of `loss` of the Engine arguments should be Variable."
                self._losses = to_list(self._loss)
632 633 634 635 636 637 638 639

        default_ctx = get_default_distributed_context()
        if not default_ctx.has_annotation:
            # We build the world process group because the data parallel
            # needs all ranks by default.
            new_process_group(list(range(self._nranks)))
            default_ctx.data_parallel = True

Z
zhaoyingli 已提交
640
        feed_vars = {"inputs": self._inputs, "labels": self._labels}
641 642 643

        fetch_vars = {
            "outputs": flatten(outputs),
Z
zhaoyingli 已提交
644 645
            "loss": self._losses,
            "metrics": metrics,
646 647
        }

648 649 650
        if mode != "train":
            serial_main_prog = serial_main_prog.clone(for_test=True)

651
        self._set_recompute_ckpts()
652
        self._dist_contexts[mode] = DistributedContext(
Z
zhaoyingli 已提交
653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671
            serial_main_prog,
            serial_startup_prog,
            self._optimizer,
            self._losses,
            feed_vars,
            fetch_vars,
            self._cluster,
            self._strategy,
        )
        self._fwd_dist_contexts[mode] = DistributedContext(
            serial_main_prog,
            serial_startup_prog,
            self._optimizer,
            self._losses,
            feed_vars,
            fetch_vars,
            self._cluster,
            self._strategy,
        )
672
        self._dist_contexts[mode].gradient_scale = self._strategy.gradient_scale
Z
zhaoyingli 已提交
673
        self._fwd_main_progs[mode] = serial_main_prog.clone()
674

675 676 677
    def _optimization_tuning(self, mode, dataset, batch_size):
        if not self._tuning.enable:
            raise ValueError("Please set `tuning.enable=True`.")
678

679 680 681 682 683 684 685 686
        assert mode == "train"
        # Do the build process
        self._build(mode)
        # Do the planning process
        self._plan(mode)

        dataset.dp_world_size = self._dp_world_sizes
        dataset.dp_rank = self._dp_ranks
687 688

        from .tuner.optimization_tuner import OptimizationTuner
Z
zhaoyingli 已提交
689 690 691 692 693 694 695 696 697 698

        self._optimization_tuner = OptimizationTuner(
            self._tuning.to_dict(),
            self._dist_contexts[mode],
            dataset,
            self._inputs_spec,
            self._labels_spec,
            batch_size=batch_size,
            rank=self._cur_rank,
        )
699 700 701

        self._optimization_tuner.tune()

702
        if self._tuning.run_after_tuning:
703 704
            # update the strategy
            self._dist_contexts[
Z
zhaoyingli 已提交
705 706
                mode
            ]._strategy = self._optimization_tuner.get_best_config()
707

708 709 710 711 712 713
    def _plan(self, mode):
        if self._planned_mode is None:
            self._planned_mode = mode
        else:
            self._init_dist_context(mode)

714 715
        self._planners[mode] = Planner(mode, self._dist_contexts[mode])
        self._planners[mode].plan()
716

717 718 719 720
        # infer data parallel info
        inputs_var = self._dist_contexts[mode].serial_feed_vars["inputs"]
        labels_var = self._dist_contexts[mode].serial_feed_vars["labels"]
        block = self._dist_contexts[mode].serial_main_program.global_block()
721
        # TODO: check this feed_list
722 723 724 725 726
        feed_list = []
        for var in inputs_var + labels_var:
            if var.name in block.vars:
                feed_list.append(block.vars[var.name])

727 728
        self._dp_world_sizes = []
        self._dp_ranks = []
729
        for feed_var in feed_list:
Z
zhaoyingli 已提交
730 731 732
            dp_world_size, dp_rank = get_input_split_info(
                self._cur_rank, feed_var, self._dist_contexts[mode]
            )
733 734
            self._dp_world_sizes.append(dp_world_size)
            self._dp_ranks.append(dp_rank)
735

736
    def _parallel(self, mode, all_ranks=False):
737 738 739
        # Parallelize program based on the planner's results
        # For now, the completer has to be passed to the planner,
        # because we may use it to complete the annotation of the backwarkward and update.
Z
zhaoyingli 已提交
740 741 742
        parallelizer = Parallelizer(
            mode, self._planners[mode].completer, self._dist_contexts[mode]
        )
743 744 745 746
        if not all_ranks:
            parallelizer.parallel(self._cur_rank)
        else:
            parallelizer.parallel_all()
747 748

    def _init_dist_context(self, mode):
749
        # Init dist_context['mode'] with the first planned dist_context
750 751 752 753 754 755 756 757 758 759
        # to guarantee that train/eval/predict mode have same parallel strategy
        dist_context = self._dist_contexts[mode]
        origin_main_prog = dist_context._original_serial_main_program
        ref_mode = self._planned_mode
        ref_dist_context = self._dist_contexts[ref_mode]
        ref_origin_main_prog = ref_dist_context._original_serial_main_program
        ref_blocks = ref_origin_main_prog.blocks
        for ib, block in enumerate(origin_main_prog.blocks):
            for iop, op in enumerate(block.ops):
                ref_op = ref_blocks[ib].ops[iop]
Z
zhaoyingli 已提交
760 761 762 763 764 765 766 767
                assert (
                    op.type == ref_op.type
                ), "'{}' mode op '{}' is different with '{}' op '{}'. ".format(
                    mode, op.type, ref_mode, ref_op.type
                )
                ref_op_dist_attr = (
                    ref_dist_context.get_op_dist_attr_for_program(ref_op)
                )
768 769
                dist_context.set_op_dist_attr_for_program(op, ref_op_dist_attr)

770
    def _init_comm(self):
771 772 773 774
        if self._nranks > 1:
            # Traverse different rank programs and traverse each op of them,
            # instantiate communication by process_mapping.
            all_process_groups = get_all_process_groups()
775

776
            if self._strategy.auto_mode == "full":
777
                initialize_pg_in_full_mode(all_process_groups, self._cur_rank)
778 779 780 781 782
            else:
                for process_group in all_process_groups:
                    if self._cur_rank not in process_group.ranks:
                        continue
                    process_group.instantiate()
783

784
    def _initialize(self, mode):
785 786 787
        place = _get_device()
        if isinstance(place, fluid.CUDAPlace):
            place = fluid.CUDAPlace(ParallelEnv().dev_id)
788

789 790 791 792 793
        if self._strategy.seed:
            paddle.seed(self._strategy.seed + self._dp_ranks[0])
            np.random.seed(self._strategy.seed + self._dp_ranks[0])
            random.seed(self._strategy.seed + self._dp_ranks[0])

794
        dist_context = self._dist_contexts[mode]
795
        if self._dygraph_mode:
796
            dist_main_program = dist_context.dist_main_programs[self._cur_rank]
797
            self.program_helper.init(dist_main_program, place, dist_context)
798

799
        if self._executor is None:
800
            self._executor = paddle.static.Executor(place)
801
            uninitialized = []
802 803 804
            dist_startup_prog = dist_context.dist_startup_programs[
                self._cur_rank
            ]
805 806 807 808 809 810 811 812
            for var in dist_startup_prog.list_vars():
                scope_var = global_scope().find_var(var.name)
                if scope_var and scope_var.get_tensor()._is_initialized():
                    continue
                uninitialized.append(var)
            if uninitialized:
                prune_startup_prog = dist_startup_prog._prune(uninitialized)
                self._executor.run(prune_startup_prog)
813

814
            if hasattr(self, "_state_dict") and hasattr(self, "_dist_attr"):
Z
zhaoyingli 已提交
815 816 817
                self._set_state_dict(
                    mode, self._strict, self._state_dict, self._dist_attr
                )
818 819

        if self._strategy.reinit:
820
            self._logger.info("NOTE: parameters will be re-initialized.")
821 822 823
            dist_startup_prog = dist_context.dist_startup_programs[
                self._cur_rank
            ]
824 825
            self._executor.run(dist_startup_prog)

Z
zhaoyingli 已提交
826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843
    def fit(
        self,
        train_data,
        train_sample_split=None,
        batch_size=1,
        epochs=1,
        steps_per_epoch=None,
        log_freq=10,
        save_dir=None,
        save_freq=1,
        valid_data=None,
        valid_sample_split=None,
        valid_freq=1,
        valid_steps=None,
        collate_fn=None,
        callbacks=None,
        verbose=2,
    ):
844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889
        """
        Trains the model for a fixed number of epochs. If `valid_data` is set,
        evaluation will be done at the end of each epoch.

        Args:
            train_data (Dataset): An instance of paddle paddle.io.Dataset. Default: None.
            train_sample_split (int, optional): Each sample of the train dataset is assumed
                to be a (input, label) pair by default and has two items. If each sample has
                more than two items, train_sample_split specifies how to split these items into
                input and label. The items before it are input and the left are label. Default: None.
            batch_size (int, optional): The batch size of train_data and valid_data if provided.
                The user's data will be used directly without batching if set to None. Default: 1.
            epochs (int, optional): The number of epochs to train the model. Default: 1.
            steps_per_epoch (int, optional): The total number of steps (batches of samples)
                is executed in one epoch before stating the next one. If None, it is equal to
                the number samples in your dataset divided by the batch size. Default: None.
            valid_data (Dataset, optional): An instance of paddle paddle.io.Dataset used for
                evaluation at the end of epoch. No evaluation will be done if set to None.
                Default: None. (Unsupported for now)
            valid_freq (int, optional): Only relevant if valid_data is provided. This specifies
                how many training epochs before a new evaluation is performed. Default: 1.
            valid_sample_split (int, optional): Only relevant if valid_data is provided.
                Each sample of the valid dataset is assumed to be a (input, label) pair
                by default and has two items. If each sample has more than two items,
                valid_sample_split specifies how to split these items into input and label.
                The items before it are input and the left are label. Default: None.
            valid_steps (int, optional): Only relevant if valid_data is provided.
                It is the total number of steps (batches of samples) to draw before
                stopping validation at the end of every epoch. If None, validation will run until the
                `valid_data` dataset is exhausted. The validation will start from the
                beginning of the dataset at each epoch. Default: None.
            collate_fn(callable, optional): function to generate mini-batch data by merging
                the sample list, None for only stack each fields of sample in axis
                0. Default None.
            callbacks (Callback|None, optional): A list of `Callback` instances to apply
                during training. Default: None. (Unused for now)

        Returns:
            None

        Examples:

            .. code-block:: python

                import paddle
                import paddle.vision.transforms as T
890
                from paddle.distributed.fleet import auto
891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909
                from paddle.vision.datasets import MNIST

                transform = T.Compose([
                    T.Transpose(),
                    T.Normalize([127.5], [127.5])
                ])
                train_dataset = MNIST(mode='train', transform=transform)

                model = paddle.vision.models.LeNet()
                loss = paddle.nn.CrossEntropyLoss()
                optimizer = paddle.optimizer.Adam(
                    learning_rate=0.001, parameters=model.parameters())
                metrics = paddle.metric.Accuracy(topk=(1, 2))

                engine = auto.Engine(model, loss, optimizer, metrics)
                engine.fit(train_dataset,
                           epochs=2,
                           batch_size=64)
        """
910 911
        self._mode = 'train'
        self._inputs_spec, self._labels_spec = self._prepare_data_spec(
Z
zhaoyingli 已提交
912 913
            train_data, train_sample_split, batch_size
        )
914
        batch_size = self._validate_batch_size(batch_size)
915 916
        if not self._has_prepared[self._mode]:
            self._prepare_program(self._mode)
917
        else:
918 919 920 921 922 923 924 925 926
            self._switch_mode(self._mode)

        train_dataloader = self._prepare_dataloader_from_generator(
            dataset=train_data,
            capacity=70,
            iterable=False,
            batch_size=batch_size,
            epochs=epochs,
            steps_per_epoch=steps_per_epoch,
Z
zhaoyingli 已提交
927 928
            collate_fn=collate_fn,
        )
929 930 931 932 933 934 935 936 937 938 939 940 941 942

        fetch_names, fetch_indices = self._prepare_fetch(None, mode=self._mode)

        cbks = config_callbacks(
            callbacks,
            engine=self,
            batch_size=batch_size,
            epochs=epochs,
            steps=train_dataloader._steps,
            log_freq=log_freq,
            save_freq=save_freq,
            save_dir=save_dir,
            verbose=verbose,
            metrics=self._metrics_name(),
943
            acc_step=self._acc_steps,
944 945 946
        )

        cbks.on_begin('train')
947
        for epoch in range(epochs):
948 949
            logs = {}
            cbks.on_epoch_begin(epoch)
950
            for step, _ in enumerate(train_dataloader):
951
                cbks.on_batch_begin('train', step, logs)
952
                try:
953 954
                    outs = self._executor.run(
                        self.main_program,
955
                        fetch_list=fetch_names,
956
                        use_program_cache=self._strategy.use_cache,
Z
zhaoyingli 已提交
957 958
                        return_numpy=self._strategy.return_numpy,
                    )
959
                except core.EOFException:
960
                    break
961
                lr = get_lr(self.optimizer)
Z
zhaoyingli 已提交
962 963 964 965 966 967 968 969 970
                logs = self._prepare_logger(
                    outs,
                    epoch,
                    step,
                    lr,
                    fetch_names,
                    fetch_indices,
                    self._mode,
                )
971 972 973
                cbks.on_batch_end('train', step, logs)

            if valid_data and (epoch + 1) % valid_freq == 0:
Z
zhaoyingli 已提交
974 975 976
                val_logs = self.evaluate(
                    valid_data,
                    valid_sample_split,
977
                    batch_size * self._acc_steps,
Z
zhaoyingli 已提交
978 979 980 981 982 983
                    valid_steps,
                    log_freq,
                    collate_fn,
                    callbacks,
                    verbose,
                )
984
                val_logs = {
Z
zhaoyingli 已提交
985
                    "val_" + name: val for name, val in val_logs.items()
986 987
                }
                logs.update(val_logs)
988 989 990
                self._switch_mode("train")
            else:
                self._reset_metrics()
991 992 993 994 995

            cbks.on_epoch_end(epoch, logs)

        cbks.on_end('train', logs)
        return self.history
996

Z
zhaoyingli 已提交
997 998 999 1000 1001 1002 1003 1004 1005 1006 1007
    def evaluate(
        self,
        valid_data,
        valid_sample_split=None,
        batch_size=1,
        steps=None,
        log_freq=10,
        collate_fn=None,
        callbacks=None,
        verbose=2,
    ):
1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025
        """
        Evaluate the loss and metrics of the model on evaluation data.

        Args:
            valid_data (Dataset): An instance of paddle paddle.io.Dataset. Default: None.
            valid_sample_split (int, optional): Each sample of the eval dataset is assumed
                to be a (input, label) pair by default and has two items. If each sample has
                more than two items, valid_sample_split specifies how to split these items into
                input and label. The items before it are input and the left are label. Default: None.
            batch_size (int, optional): The batch size of valid_data. The user's data will
                be used directly without batching if set to None. Default: 1.
            steps (int, optional): It is the total number of steps (batches of samples) to draw before
                stopping evaluation. If None, evaluation will run until the `valid_data` dataset is exhausted.
                The evaluation will start from the beginning of the dataset in each run. Default: None.
            collate_fn(callable, optional): function to generate mini-batch data by merging
                the sample list, None for only stack each fields of sample in axis
                0. Default None.
            callbacks (Callback|None, optional): A list of `Callback` instances to apply
1026
                during evaluating. Default: None. (Unused for now)
1027 1028 1029 1030 1031 1032 1033 1034 1035 1036

        Returns:
            None

        Examples:

            .. code-block:: python

                import paddle
                import paddle.vision.transforms as T
1037
                from paddle.distributed.fleet import auto
1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053
                from paddle.vision.datasets import MNIST

                transform = T.Compose([
                    T.Transpose(),
                    T.Normalize([127.5], [127.5])
                ])
                valid_dataset = MNIST(mode='test', transform=transform)

                model = paddle.vision.models.LeNet()
                loss = paddle.nn.CrossEntropyLoss()
                metrics = paddle.metric.Accuracy(topk=(1, 2))

                engine = auto.Engine(model, loss, metrics=metrics)
                engine.evaluate(valid_dataset, batch_size=64)

        """
1054 1055
        self._mode = 'eval'
        self._inputs_spec, self._labels_spec = self._prepare_data_spec(
Z
zhaoyingli 已提交
1056 1057
            valid_data, valid_sample_split, batch_size
        )
1058
        batch_size = self._validate_batch_size(batch_size)
1059 1060
        if not self._has_prepared[self._mode]:
            self._prepare_program(self._mode)
1061
        else:
1062 1063 1064 1065 1066 1067 1068 1069
            self._switch_mode(self._mode)

        valid_dataloader = self._prepare_dataloader_from_generator(
            dataset=valid_data,
            capacity=70,
            iterable=False,
            batch_size=batch_size,
            steps_per_epoch=steps,
Z
zhaoyingli 已提交
1070 1071
            collate_fn=collate_fn,
        )
1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084

        fetch_names, fetch_indices = self._prepare_fetch(None, mode=self._mode)

        cbks = config_callbacks(
            callbacks,
            engine=self,
            batch_size=batch_size,
            log_freq=log_freq,
            verbose=verbose,
            metrics=self._metrics_name(),
        )

        eval_steps = valid_dataloader._steps
Z
zhaoyingli 已提交
1085 1086 1087
        cbks.on_begin(
            'eval', {'steps': eval_steps, 'metrics': self._metrics_name()}
        )
1088
        logs = {}
1089
        for step, _ in enumerate(valid_dataloader):
1090
            cbks.on_batch_begin('eval', step, logs)
1091
            try:
1092 1093
                outs = self._executor.run(
                    self.main_program,
1094
                    fetch_list=fetch_names,
1095
                    use_program_cache=self._strategy.use_cache,
Z
zhaoyingli 已提交
1096 1097
                    return_numpy=self._strategy.return_numpy,
                )
1098
            except core.EOFException:
1099
                break
Z
zhaoyingli 已提交
1100 1101 1102
            logs = self._prepare_logger(
                outs, None, step, None, fetch_names, fetch_indices, self._mode
            )
1103 1104
            cbks.on_batch_end('eval', step, logs)
        cbks.on_end('eval', logs)
1105
        self._reset_metrics()
1106
        return logs
1107

Z
zhaoyingli 已提交
1108 1109 1110 1111 1112 1113 1114 1115 1116 1117
    def predict(
        self,
        test_data,
        test_sample_split=None,
        batch_size=1,
        steps=None,
        collate_fn=None,
        callbacks=None,
        verbose=2,
    ):
1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146
        """
        Compute the output predictions on testing data.

        Args:
            test_data (Dataset): An instance of paddle paddle.io.Dataset. Default: None.
            test_sample_split (int, optional): Each sample of the test dataset is assumed
                to be a (input, label) pair by default and has two items. If each sample has
                more than two items, test_sample_split specifies how to split these items into
                input and label. The items before it are input and the left are label. Default: None.
            batch_size (int, optional): The batch size of test_data. The user's data will
                be used directly without batching if set to None. Default: 1.
            steps (int, optional): It is the total number of steps (batches of samples) to draw before
                stopping predict. If None, predict will run until the `test_data` dataset is exhausted.
                The predict will start from the beginning of the dataset in each run. Default: None.
            collate_fn(callable, optional): function to generate mini-batch data by merging
                the sample list, None for only stack each fields of sample in axis
                0. Default None.
            callbacks (Callback|None, optional): A list of `Callback` instances to apply
                during testing. Default: None. (Unused for now)

        Returns:
            None

        Examples:

            .. code-block:: python

                import paddle
                import paddle.vision.transforms as T
1147
                from paddle.distributed.fleet import auto
1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160
                from paddle.vision.datasets import MNIST

                transform = T.Compose([
                    T.Transpose(),
                    T.Normalize([127.5], [127.5])
                ])
                valid_dataset = MNIST(mode='test', transform=transform)

                model = paddle.vision.models.LeNet()

                engine = auto.Engine(model)
                engine.predict(valid_dataset, batch_size=64)
        """
1161 1162
        self._mode = 'predict'
        self._inputs_spec, self._labels_spec = self._prepare_data_spec(
Z
zhaoyingli 已提交
1163 1164
            test_data, test_sample_split, batch_size
        )
1165
        batch_size = self._validate_batch_size(batch_size)
1166 1167
        if not self._has_prepared[self._mode]:
            self._prepare_program(self._mode)
1168
        else:
1169
            self._switch_mode(self._mode)
1170

1171 1172 1173 1174 1175 1176
        test_dataloader = self._prepare_dataloader_from_generator(
            dataset=test_data,
            capacity=70,
            iterable=False,
            batch_size=batch_size,
            steps_per_epoch=steps,
Z
zhaoyingli 已提交
1177 1178
            collate_fn=collate_fn,
        )
1179 1180

        fetch_names, fetch_indices = self._prepare_fetch(None, mode=self._mode)
1181 1182

        outputs = []
1183 1184 1185 1186
        cbks = config_callbacks(callbacks, engine=self, verbose=verbose)
        test_steps = test_dataloader._steps
        cbks.on_begin('predict', {'steps': test_steps})
        logs = {}
1187
        for step, _ in enumerate(test_dataloader):
1188
            cbks.on_batch_begin('predict', step, logs)
1189
            try:
1190 1191
                outs = self._executor.run(
                    self.main_program,
1192
                    fetch_list=fetch_names,
1193
                    use_program_cache=self._strategy.use_cache,
Z
zhaoyingli 已提交
1194 1195
                    return_numpy=self._strategy.return_numpy,
                )
1196
            except core.EOFException:
1197
                break
Z
zhaoyingli 已提交
1198 1199 1200
            logs = self._prepare_logger(
                outs, None, step, None, fetch_names, fetch_indices, self._mode
            )
1201 1202 1203
            cbks.on_batch_end('predict', step, logs)
            outputs.append(list(logs["outputs"].values()))
        cbks.on_end('predict', logs)
1204
        return outputs
1205

Z
zhaoyingli 已提交
1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222
    def dataloader(
        self,
        dataset,
        batch_size=1,
        shuffle=False,
        drop_last=False,
        collate_fn=None,
        num_workers=0,
        use_buffer_reader=True,
        use_shared_memory=True,
        timeout=0,
        worker_init_fn=None,
        epochs=1,
        steps_per_epoch=None,
        sample_split=1,
        mode=None,
    ):
1223 1224 1225
        if mode is not None:
            self.to_mode(mode)
        self._inputs_spec, self._labels_spec = self._prepare_data_spec(
Z
zhaoyingli 已提交
1226 1227
            dataset, sample_split, batch_size
        )
1228
        batch_size = self._validate_batch_size(batch_size)
1229 1230 1231 1232
        if not self._has_prepared[self._mode]:
            self._prepare_program(self._mode)
        else:
            self._switch_mode(self._mode)
Z
zhaoyingli 已提交
1233

1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246
        dataloader = self._prepare_dataloader(
            dataset,
            return_list=False,
            batch_size=batch_size,
            shuffle=shuffle,
            drop_last=drop_last,
            collate_fn=collate_fn,
            num_workers=num_workers,
            use_buffer_reader=use_buffer_reader,
            use_shared_memory=use_shared_memory,
            timeout=timeout,
            worker_init_fn=worker_init_fn,
            epochs=epochs,
Z
zhaoyingli 已提交
1247 1248
            steps_per_epoch=steps_per_epoch,
        )
1249
        return dataloader
1250

Z
zhaoyingli 已提交
1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265
    def dataloader_from_generator(
        self,
        dataset,
        capacity=70,
        use_double_buffer=True,
        iterable=True,
        use_multiprocess=False,
        drop_last=True,
        batch_size=1,
        epochs=1,
        steps_per_epoch=None,
        collate_fn=None,
        sample_split=1,
        mode=None,
    ):
1266 1267 1268
        if mode is not None:
            self.to_mode(mode)
        self._inputs_spec, self._labels_spec = self._prepare_data_spec(
Z
zhaoyingli 已提交
1269 1270
            dataset, sample_split, batch_size
        )
1271
        batch_size = self._validate_batch_size(batch_size)
1272 1273 1274 1275
        if not self._has_prepared[self._mode]:
            self._prepare_program(self._mode)
        else:
            self._switch_mode(self._mode)
Z
zhaoyingli 已提交
1276

1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287
        dataloader = self._prepare_dataloader_from_generator(
            dataset=dataset,
            capacity=capacity,
            use_double_buffer=use_double_buffer,
            iterable=iterable,
            return_list=False,
            use_multiprocess=use_multiprocess,
            drop_last=drop_last,
            batch_size=batch_size,
            epochs=epochs,
            steps_per_epoch=steps_per_epoch,
Z
zhaoyingli 已提交
1288 1289
            collate_fn=collate_fn,
        )
1290 1291
        return dataloader

Z
zhaoyingli 已提交
1292 1293 1294 1295 1296 1297 1298 1299 1300
    def prepare(
        self,
        inputs_spec=None,
        labels_spec=None,
        inputs=None,
        labels=None,
        main_program=None,
        startup_program=None,
        mode=None,
1301
        init_parameters=True,
Z
zhaoyingli 已提交
1302
    ):
1303 1304
        if mode is not None:
            self.to_mode(mode)
Z
zhaoyingli 已提交
1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320

        if not self._mode:
            raise ValueError(
                "Please set mode to be prepared with `prepare(mode=...)`"
            )

        if self._has_prepared[self._mode]:
            return

        inputs_spec = self._validate_spec(inputs_spec)
        labels_spec = self._validate_spec(labels_spec)
        inputs = self._validate_vars(inputs)
        labels = self._validate_vars(labels)

        self._orig_main_prog = main_program
        self._orig_startup_prog = startup_program
1321 1322
        if inputs or labels:
            self._skip_build = True
Z
zhaoyingli 已提交
1323 1324 1325
            inputs, labels = self._prepare_data_tensor(
                inputs_spec, labels_spec, inputs, labels
            )
1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336
            if self._orig_main_prog is None:
                self._orig_main_prog = static.default_main_program()
            if self._orig_startup_prog is None:
                self._orig_startup_prog = static.default_startup_program()
        elif inputs_spec or labels_spec:
            self._outside_dataloader = True
            if self._orig_main_prog is None:
                self._orig_main_prog = static.default_main_program()
            if self._orig_startup_prog is None:
                self._orig_startup_prog = static.default_startup_program()
        else:
Z
zhaoyingli 已提交
1337 1338 1339 1340 1341 1342 1343
            assert (
                self._inputs_spec and self._labels_spec
            ), "Please call the dataloader(...) before calling prepare(...)"

        self._inputs_spec, self._labels_spec = inputs_spec, labels_spec
        self._inputs, self._labels = inputs, labels
        if not self._has_prepared[self._mode]:
1344
            self._prepare_program(self._mode, init_parameters)
Z
zhaoyingli 已提交
1345 1346
        else:
            self._switch_mode(self._mode)
1347 1348 1349 1350 1351 1352

    def run(self, data=None, feed=None, fetch_list=None, mode=None):
        if mode is not None:
            self.to_mode(mode)
        feed_dict = self._prepare_feed(data, feed, self._mode)
        fetch_names, fetch_indices = self._prepare_fetch(fetch_list, self._mode)
Z
zhaoyingli 已提交
1353 1354 1355 1356
        if (
            self._outside_dataloader
            and not self._has_prepared_reader[self._mode]
        ):
1357
            self._prepare_reader()
Z
zhaoyingli 已提交
1358 1359 1360 1361 1362 1363 1364 1365 1366 1367
        outs = self._executor.run(
            self.main_program,
            feed=feed_dict,
            fetch_list=fetch_names,
            use_program_cache=self._strategy.use_cache,
            return_numpy=self._strategy.return_numpy,
        )
        logs = self._prepare_logger(
            outs, None, None, None, fetch_names, fetch_indices, self._mode
        )
1368 1369
        return logs

Z
zhaoyingli 已提交
1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385
    def _prepare_dataloader(
        self,
        dataset,
        return_list=True,
        batch_size=1,
        shuffle=False,
        drop_last=False,
        collate_fn=None,
        num_workers=0,
        use_buffer_reader=True,
        use_shared_memory=True,
        timeout=0,
        worker_init_fn=None,
        epochs=1,
        steps_per_epoch=None,
    ):
1386

1387 1388 1389
        dist_context = self._dist_contexts[self._mode]
        dist_main_prog = dist_context.dist_main_programs[self._cur_rank]
        dist_startup_prog = dist_context.dist_startup_programs[self._cur_rank]
1390
        dist_main_block = dist_main_prog.global_block()
1391

1392 1393 1394 1395
        # NOTE: Get feed_list, then insert dataloader op with sharded var shape.
        # Cause predict_program does not contain labels var,
        # then we will add labels var from serial_program to dist_program,
        # that maintains the length of feed_list equal to the length of dataset's values.
1396 1397
        inputs_var = dist_context.serial_feed_vars["inputs"]
        labels_var = dist_context.serial_feed_vars["labels"]
1398 1399 1400 1401
        feed_list = []
        for var in inputs_var + labels_var:
            if var.name in dist_main_block.vars:
                feed_list.append(dist_main_block.vars[var.name])
1402 1403 1404 1405
            else:
                copy_var = dist_main_block._clone_variable(var, var.persistable)
                copy_var.desc.set_original_id(var.desc.original_id())
                feed_list.append(copy_var)
1406 1407

        # insert read op at the end of program
1408
        places = paddle.static.cuda_places()
1409
        with static.program_guard(dist_main_prog, dist_startup_prog):
1410
            dataloader = DistributedDataLoader(
1411
                dataset,
1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426
                feed_list=feed_list,
                places=places,
                return_list=return_list,
                batch_size=batch_size,
                shuffle=shuffle,
                drop_last=drop_last,
                collate_fn=collate_fn,
                num_workers=num_workers,
                use_buffer_reader=use_buffer_reader,
                use_shared_memory=use_shared_memory,
                timeout=timeout,
                worker_init_fn=worker_init_fn,
                epochs=epochs,
                steps_per_epoch=steps_per_epoch,
                split_data=self._strategy.split_data,
1427
                data_parallel_world_size=self._dp_world_sizes,
Z
zhaoyingli 已提交
1428 1429
                data_parallel_rank=self._dp_ranks,
            )
1430

1431 1432
        return dataloader

Z
zhaoyingli 已提交
1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446
    def _prepare_dataloader_from_generator(
        self,
        dataset,
        capacity=None,
        use_double_buffer=True,
        iterable=True,
        return_list=False,
        use_multiprocess=False,
        drop_last=True,
        batch_size=1,
        epochs=1,
        steps_per_epoch=None,
        collate_fn=None,
    ):
1447

1448 1449 1450
        dist_context = self._dist_contexts[self._mode]
        dist_main_prog = dist_context.dist_main_programs[self._cur_rank]
        dist_startup_prog = dist_context.dist_startup_programs[self._cur_rank]
1451 1452 1453 1454 1455 1456
        dist_main_block = dist_main_prog.global_block()

        # NOTE: Get feed_list, then insert dataloader op with sharded var shape.
        # Cause predict_program does not contain labels var,
        # then we will add labels var from serial_program to dist_program,
        # that maintains the length of feed_list equal to the length of dataset's values.
1457 1458
        inputs_var = dist_context.serial_feed_vars["inputs"]
        labels_var = dist_context.serial_feed_vars["labels"]
1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485
        feed_list = []
        for var in inputs_var + labels_var:
            if var.name in dist_main_block.vars:
                feed_list.append(dist_main_block.vars[var.name])
            else:
                copy_var = dist_main_block._clone_variable(var, var.persistable)
                copy_var.desc.set_original_id(var.desc.original_id())
                feed_list.append(copy_var)

        places = paddle.static.cuda_places()
        with static.program_guard(dist_main_prog, dist_startup_prog):
            dataloader = DistributedDataLoaderFromGenerator(
                dataset=dataset,
                feed_list=feed_list,
                capacity=capacity,
                use_double_buffer=use_double_buffer,
                iterable=iterable,
                return_list=return_list,
                use_multiprocess=use_multiprocess,
                drop_last=drop_last,
                places=places,
                batch_size=batch_size,
                epochs=epochs,
                steps_per_epoch=steps_per_epoch,
                collate_fn=collate_fn,
                split_data=self._strategy.split_data,
                data_parallel_world_size=self._dp_world_sizes,
Z
zhaoyingli 已提交
1486
                data_parallel_rank=self._dp_ranks,
1487 1488 1489
                acc_steps=1
                if not self._strategy.pipeline.enable
                else self._acc_steps,
Z
zhaoyingli 已提交
1490
            )
1491
        self._prepare_reader(feed_list)
1492 1493 1494 1495 1496
        return dataloader

    def _tune(self, tune_data, tune_sample_split=None, batch_size=1):
        self._mode = 'train'
        self._inputs_spec, self._labels_spec = self._prepare_data_spec(
Z
zhaoyingli 已提交
1497 1498
            tune_data, tune_sample_split, batch_size
        )
1499 1500
        self._optimization_tuning(self._mode, tune_data, batch_size)

1501 1502 1503 1504 1505 1506 1507 1508 1509 1510
    def _validate_batch_size(self, batch_size):
        if batch_size is None:
            return None
        assert (
            batch_size % self._acc_steps == 0
        ), "Requires batch_size:[{}] to be divisible by acc_steps:[{}].".format(
            batch_size, self._acc_steps
        )
        return batch_size // self._acc_steps

1511 1512 1513 1514
    def _validate_spec(self, specs):
        specs = to_list(specs)
        if specs is not None:
            for i, spec in enumerate(specs):
Z
zhaoyingli 已提交
1515 1516 1517 1518
                if not isinstance(spec, InputSpec):
                    raise TypeError(
                        "'spec' must be object of class `paddle.static.InputSpec`."
                    )
1519 1520
                if spec.name is None:
                    raise ValueError(
Z
zhaoyingli 已提交
1521 1522 1523 1524
                        "Requires Input[{}].name != None, but receive `None` with {}.".format(
                            i, spec
                        )
                    )
1525
                if self._acc_steps > 1:
1526
                    shape = list(spec.shape)
Z
zhaoyingli 已提交
1527
                    assert (
1528
                        shape[0] % self._acc_steps == 0
Z
zhaoyingli 已提交
1529
                    ), "Requires batch_size[{}] to be divisible by k_steps[{}].".format(
1530
                        spec.shape[0], self._acc_steps
Z
zhaoyingli 已提交
1531
                    )
1532
                    shape[0] //= self._acc_steps
1533
                    spec.shape = shape
Z
zhaoyingli 已提交
1534 1535 1536 1537 1538 1539 1540 1541 1542
        return specs or []

    def _validate_vars(self, vars):
        vars = to_list(vars)
        if vars is not None:
            for i, var in enumerate(vars):
                if not isinstance(var, Variable):
                    raise TypeError("'var' must be a `Variable`.")
        return vars or []
1543

1544 1545 1546 1547
    def _is_local_var(self, var):
        var_name = _to_name_str(var)
        return var_name in self.main_program.global_block().vars

1548 1549 1550 1551
    def _set_recompute_ckpts(self):
        # NOTE hack to enable recompute in engine api for GPT-3
        # TODO support more PaddleNLP/CV models here

1552
        recompute = self._strategy.recompute
1553 1554

        # extract ckpts by specific model
1555
        if isinstance(self._model, paddle.nn.Layer):
Z
zhaoyingli 已提交
1556 1557 1558 1559 1560 1561
            if hasattr(
                self._model, "gpt"
            ) and self._model.__class__.__name__ in [
                'GPTForPretraining',
                'GPTForPretrainingAuto',
            ]:
1562
                exact_ckpts = self._model.gpt.checkpoints
1563
            else:
1564
                exact_ckpts = recompute.checkpoints
1565
        else:
1566
            exact_ckpts = recompute.checkpoints
1567 1568

        # modify strategy
1569 1570
        if recompute.enable:
            recompute.checkpoints = exact_ckpts[:]
1571
            logs = {
1572
                'Model Class': self._model.__class__.__name__,
Z
zhaoyingli 已提交
1573
                'Applied Recompute ckpts': exact_ckpts,
1574 1575 1576
            }
            self._logger.info(logs)

1577 1578 1579
    def _reset_metrics(self):
        for metric in self._metrics:
            metric.reset()
1580

1581 1582 1583 1584 1585 1586
    def _metrics_name(self):
        metrics_name = ['loss'] if self._loss else []
        for m in self._metrics:
            metrics_name.extend(to_list(m.name()))
        return metrics_name

1587
    def _switch_mode(self, mode):
Z
zhaoyingli 已提交
1588
        assert (
1589
            mode in self._dist_contexts
Z
zhaoyingli 已提交
1590
        ), "{} model is not ready, please call `prepare()` first.".format(mode)
1591 1592 1593
        self.to_mode(mode)

    def to_mode(self, mode):
Z
zhaoyingli 已提交
1594 1595 1596 1597 1598
        assert mode in [
            "train",
            "eval",
            "predict",
        ], "mode {} should be one of ['train', 'eval', 'predict']".format(mode)
1599
        self._mode = mode
1600 1601 1602

    def _set_state_dict(self, mode, strict, state_dict, dist_attr):
        dist_context = self._dist_contexts[mode]
1603
        program = dist_context.dist_main_programs[self._cur_rank]
1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618
        cur_dist_attr = get_dist_attr(program, dist_context)
        converter = Converter(state_dict, dist_attr, cur_dist_attr)
        state_dict = converter.convert(strict=strict)
        program.set_state_dict(state_dict)

    def save(self, path, training=True):
        """
        Saves the model, parameters, optimizer state to path.
        If `training` is set to False, only inference model will be saved.

        Args:
            path (str): The file prefix to save model. The format
                is 'dirname/file_prefix' or 'file_prefix'. if empty str.
                A exception will be raised.
            training (bool, optional): Whether to save for training. If not, save
1619
                for inference only. If `training` is set to True, the optimizer state
1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631
                will be saved. Otherwise, only the model and parameters are saved.
                This function will silently overwrite existing file at the target
                location. Default: True.

        Returns:
            None

        Examples:

            .. code-block:: python
                import paddle
                import paddle.vision.transforms as T
1632
                from paddle.distributed.fleet import auto
1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653
                from paddle.vision.datasets import MNIST

                transform = T.Compose([
                    T.Transpose(),
                    T.Normalize([127.5], [127.5])
                ])
                train_dataset = MNIST(mode='train', transform=transform)

                model = paddle.vision.models.LeNet()
                loss = paddle.nn.CrossEntropyLoss()
                optimizer = paddle.optimizer.Adam(
                    learning_rate=0.001, parameters=model.parameters())
                metrics = paddle.metric.Accuracy(topk=(1, 2))

                engine = auto.Engine(model, loss, optimizer, metrics)
                engine.fit(train_dataset,
                           epochs=1,
                           batch_size=64)
                engine.save("./my_model")

        """
1654
        if training:
1655
            assert self._mode in self._dist_contexts
1656
            dist_context = self._dist_contexts[self._mode]
1657 1658
            serial_program = dist_context.serial_main_program
            dist_main_prog = dist_context.dist_main_programs[self._cur_rank]
Z
zhaoyingli 已提交
1659 1660 1661 1662 1663 1664
            self._saver.save(
                path,
                serial_program=serial_program,
                dist_main_program=dist_main_prog,
                dist_context=dist_context,
            )
1665
        else:
1666 1667 1668 1669 1670
            assert "predict" in self._dist_contexts
            dist_context = self._dist_contexts["predict"]
            feed_vars = dist_context.serial_feed_vars['inputs']
            fetch_vars = dist_context.serial_fetch_vars['outputs']
            dist_main_prog = dist_context.dist_main_programs[self._cur_rank]
Z
zhaoyingli 已提交
1671 1672 1673 1674 1675 1676 1677
            self._saver.save_inference_model(
                path,
                feed_vars,
                fetch_vars,
                self._executor,
                program=dist_main_prog,
            )
1678

1679 1680 1681 1682 1683 1684 1685 1686 1687 1688
    def load(self, path, strict=True, load_optimizer=True):
        """
        Load the stored model, parameters and optimizer states.

        Args:
            path (str): The prefix of files storing the model states and
                optimizer states.
            strict (bool, optional): Whether to skip the loading of mismatch
                parameter or raise an error when mismatch happens (not found
                the parameter in file storing model states of or receives a
Z
zhaoyingli 已提交
1689
                mismatch shape). Default: True.
1690
            load_optimizer (bool, optional): If True, the stored optimizer
1691
                states is restored. Otherwise, the optimizer states is initialized
Z
zhaoyingli 已提交
1692
                from scratch. Default: True.
1693 1694 1695 1696 1697 1698 1699 1700 1701

        Returns:
            None

        Examples:

            .. code-block:: python
                import paddle
                import paddle.vision.transforms as T
1702
                from paddle.distributed.fleet import auto
1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722
                from paddle.vision.datasets import MNIST

                transform = T.Compose([
                    T.Transpose(),
                    T.Normalize([127.5], [127.5])
                ])
                train_dataset = MNIST(mode='train', transform=transform)

                model = paddle.vision.models.LeNet()
                loss = paddle.nn.CrossEntropyLoss()
                optimizer = paddle.optimizer.Adam(
                    learning_rate=0.001, parameters=model.parameters())
                metrics = paddle.metric.Accuracy(topk=(1, 2))

                engine = auto.Engine(model, loss, optimizer, metrics)
                engine.fit(train_dataset,
                           epochs=1,
                           batch_size=64)
                engine.save("./my_model")
                engine.load("./my_model")
1723

1724 1725 1726
        """
        self._strict = strict
        self._state_dict, self._dist_attr = self._saver.load(
Z
zhaoyingli 已提交
1727 1728
            path, load_optimizer
        )
1729
        return self._state_dict, self._dist_attr
1730

Z
zhaoyingli 已提交
1731
    def cost(self, inputs_spec=None, labels_spec=None, mode=None):
1732 1733 1734 1735 1736 1737 1738 1739 1740 1741
        """
        Get and Print cost, including memory of every rank,
        max memory among all ranks, and the global cost of one step based on
        communication cost(computation cost is 0 by default).
        In the future, the flops information of every rank and global cost including
        computation cost will be added.

        Args:
            inputs_spec(InputSpec): The specification of inputs. Default: None.
            labels_spec(InputSpec): The specification of labels. Default: None.
Z
zhaoyingli 已提交
1742
            mode (str): The engine mode must be in ["train", "predict", "eval"]. Default: None.
1743 1744 1745 1746 1747 1748 1749

        Returns:
            Return the global execution time (ms) and max memory (B).

        """
        # Check parallel mode
        if self._strategy.auto_mode == "full":
Z
zhaoyingli 已提交
1750
            self._logger.info(
1751 1752 1753 1754 1755
                "The cost will be calcudated in the search process when the auto mode is full."
            )
            return

        # Check mode
Z
zhaoyingli 已提交
1756 1757 1758 1759 1760 1761 1762 1763
        mode = mode if mode is not None else self._mode
        assert mode is not None, "Please set mode."
        if mode not in self._has_prepared:
            raise ValueError(
                "The mode {} is not in accepted modes {}".format(
                    mode, list(self._has_prepared.keys())
                )
            )
1764 1765
        self.to_mode(mode)

Z
zhaoyingli 已提交
1766 1767 1768
        if inputs_spec is not None and not self._has_prepared[mode]:
            self._inputs_spec = self._validate_spec(inputs_spec)
            self._labels_spec = self._validate_spec(labels_spec)
1769 1770
            self._build(mode)
            self._plan(mode)
1771
        else:
1772 1773
            if _non_static_mode() or self._dygraph_mode:
                raise ValueError(
Z
zhaoyingli 已提交
1774
                    "Please call `prepare()` or `fit()` or  `evaluate()` or  `predict()` before calling `cost()`."
1775
                )
Z
zhaoyingli 已提交
1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787
            else:
                self._logger.info(
                    "The program whose cost to be estimated must be static default program. Otherwise, please call `prepare()`before calling `cost()`."
                )
                program = paddle.static.default_main_program()
                if (
                    not program.global_block().ops
                    or not program.global_block().ops
                ) and not self._has_prepared[mode]:
                    raise ValueError(
                        "Please call `prepare()` or `fit()` or  `evaluate()` or  `predict()` before calling `cost()`."
                    )
1788

1789 1790
        # Estimate the exec cost and max memory
        global_cost, max_memory = get_cost_from_engine(self, mode)
1791

1792
        return global_cost.time, max_memory
1793 1794 1795

    @property
    def main_program(self):
1796 1797
        dist_context = self._dist_contexts[self._mode]
        return dist_context.dist_main_programs[self._cur_rank]
1798 1799 1800

    @property
    def startup_program(self):
1801 1802
        dist_context = self._dist_contexts[self._mode]
        return dist_context.dist_startup_programs[self._cur_rank]
1803 1804 1805

    @property
    def dist_context(self):
1806
        return self._dist_contexts[self._mode]
1807 1808 1809

    @property
    def serial_main_program(self):
1810 1811
        dist_context = self._dist_contexts[self._mode]
        return dist_context.serial_main_program
1812 1813 1814

    @property
    def serial_startup_program(self):
1815 1816 1817 1818 1819 1820 1821
        dist_context = self._dist_contexts[self._mode]
        return dist_context.serial_startup_program

    @property
    def feed_vars(self):
        dist_context = self._dist_contexts[self._mode]
        return dist_context.serial_feed_vars
1822 1823 1824

    @property
    def fetch_vars(self):
1825 1826 1827 1828 1829 1830 1831 1832 1833
        dist_context = self._dist_contexts[self._mode]
        return dist_context.serial_fetch_vars

    @property
    def optimizer(self):
        dist_context = self._dist_contexts[self._mode]
        if dist_context._serial_optimizer:
            return dist_context._serial_optimizer
        return self._optimizer
1834 1835 1836

    @property
    def inputs(self):
1837
        return self._inputs
1838 1839 1840

    @property
    def labels(self):
1841
        return self._labels