engine.py 28.2 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19
# Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

import copy
import logging
from collections import defaultdict

import paddle
20
import paddle.utils as utils
21

22
from paddle import fluid, static
23
from paddle.io import Dataset
24
from paddle.jit import to_static
25
from paddle.metric import Metric
26
from paddle.static import InputSpec
27
from paddle.fluid import core
28
from paddle.fluid import program_guard
29
from paddle.fluid.layers.utils import flatten
30
from paddle.fluid.executor import global_scope, _to_name_str
31
from paddle.fluid.backward import append_backward
32
from paddle.fluid.framework import Operator, Parameter, _non_static_mode
33 34
from paddle.fluid.framework import _current_expected_place as _get_device
from paddle.fluid.dygraph.parallel import ParallelEnv
35
from paddle.distributed import fleet
36
from paddle.distributed.utils import get_logger
37
from paddle.distributed.passes import new_pass, PassContext
38

39
# from .cluster import Cluster, get_default_cluster
40 41
from .planner_v2 import Planner
from .parallelizer_v2 import Parallelizer
42 43 44 45 46
from .dist_op import DistributedOperator
from .dist_saver import DistributedSaver
from .dist_loader import NonIterableGeneratorLoader
from .utils import make_data_unshard, set_grad_var_shape
from .utils import print_program_with_dist_attr, to_list
47
from .process_group import new_process_group, get_all_process_groups, get_world_process_group
48
from .dist_context import DistributedContext, get_default_distributed_context
49 50 51


class Engine:
52

53 54 55 56 57 58
    def __init__(self,
                 model=None,
                 inputs_spec=None,
                 labels_spec=None,
                 cluster=None,
                 strategy=None):
59
        self.model = model
60 61
        self.inputs_spec = self._validate_spec(inputs_spec)
        self.labels_spec = self._validate_spec(labels_spec)
62
        self.cluster = cluster
63 64
        # if self.cluster is None:
        #     self.cluster = get_default_cluster()
65
        self.strategy = strategy
66 67
        if self.strategy is None:
            self.strategy = fleet.DistributedStrategy()
68

69
        self._executor = None
70 71 72 73 74
        self._cur_rank = paddle.distributed.get_rank()
        self._nranks = paddle.distributed.get_world_size()
        self._saver = DistributedSaver()
        self._logger = get_logger(logging.INFO)

75 76
        self._orig_main_prog = static.default_main_program()
        self._orig_startup_prog = static.default_startup_program()
77
        self._orig_dist_context = get_default_distributed_context()
78
        self._dist_contexts = {}
79 80
        self._serial_main_progs = {}
        self._serial_startup_progs = {}
81 82 83 84
        self._dist_main_progs = defaultdict(dict)  # dist main programs
        self._dist_startup_progs = defaultdict(dict)  # dist startup programs
        self._feed_vars = {}
        self._fetch_vars = {}
85
        self._planners = {}
86
        self._dygraph_mode = False
87 88 89 90

    def prepare(self,
                optimizer=None,
                loss=None,
91
                gradient_scale=True,
92 93
                metrics=None,
                all_ranks=False):
94 95 96
        if optimizer and not isinstance(
                optimizer,
            (paddle.optimizer.Optimizer, paddle.fluid.optimizer.Optimizer)):
97 98 99 100
            raise TypeError(
                    "'optimizer' must be object of class `paddle.optimizer.Optimizer`" \
                        " or `paddle.fluid.optimizer.Optimizer`."
                )
101
        self._optimizer = optimizer
102 103 104 105 106 107

        if loss and not isinstance(loss,
                                   paddle.nn.Layer) and not callable(loss):
            raise TypeError(
                "'loss' must be sub classes of `paddle.nn.Layer` or any callable function."
            )
108
        self._loss = loss
109 110 111 112 113 114

        metrics = metrics or []
        for metric in to_list(metrics):
            assert isinstance(metric, Metric), \
                "{} is not sub class of Metric".format(
                    metric.__class__.__name__)
115
        self._metrics = to_list(metrics)
116
        self._gradient_scale = gradient_scale
117 118 119 120

        self._planned_mode = None
        self._modes = ['train', 'eval', 'predict']

121 122 123 124
        # Build program and do auto parallel process
        for mode in self._modes:
            # Build forward program
            self._build(mode)
125 126 127
        for mode in self._modes:
            # Do the planning process
            self._plan(mode)
128
        for mode in self._modes:
129 130 131 132 133
            # Do the parallel process
            self._parallel(mode, all_ranks)
            # Init comm and startup program
            self._initialize(mode)

134 135
    def _build(self, mode):

136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239
        if _non_static_mode() or self._dygraph_mode:
            self._dygraph_mode = True
            self._logger.info("Building model with 'to_static' method.")

            # build forward main program
            self.static_model = to_static(self.model,
                                          input_spec=self.inputs_spec)
            inputs = self.static_model.forward.inputs
            outputs = self.static_model.forward.outputs
            forward_main_prog = self.static_model.forward.main_program
            forward_startup_prog = self.static_model.forward.concrete_program.startup_program
            self.concrete_program = self.static_model.forward.concrete_program

            # build loss main program
            outputs_spec = []
            outputs_name = []
            for out in outputs:
                outputs_spec.append(InputSpec(out.shape, out.dtype, out.name))
                outputs_name.append(out.name)
            if isinstance(self._loss, paddle.nn.Layer):
                self.static_loss = to_static(self._loss.forward,
                                             input_spec=outputs_spec +
                                             self.labels_spec)
                loss_main_prog = self.static_loss.main_program
            elif callable(self._loss):
                self.static_loss = to_static(self._loss,
                                             input_spec=outputs_spec +
                                             self.labels_spec)
                loss_main_prog = self.static_loss.main_program

            # build startup program
            for param in self.concrete_program.parameters:
                Parameter(name=param.name,
                          desc=param,
                          type=param.type,
                          shape=param.shape,
                          dtype=param.dtype,
                          stop_gradient=param.stop_gradient,
                          block=forward_startup_prog.global_block())

            paddle.enable_static()

            # NOTE: pure program will loss dist_attr
            # feeded_var_names = [var.name for var in inputs]
            # main_prog_0 = main_prog_0._prune_with_input(
            #     feeded_var_names=feeded_var_names, targets=outputs)

            labels = []
            losses = []
            metrics = []
            # concat forward and loss prog
            if mode != 'predict' and self._loss:
                forward_block = forward_main_prog.global_block()
                loss_block = loss_main_prog.global_block()
                for idx, op in enumerate(loss_block.ops):
                    op_desc = forward_block.desc.append_op()
                    op_desc.copy_from(op.desc)
                    for in_name in op.input_arg_names:
                        if in_name in outputs_name:
                            continue
                        in_var = forward_block._clone_variable(
                            loss_block.vars[in_name], force_persistable=False)
                        if loss_block.vars[in_name].is_data:
                            labels.append(in_var)
                    for out_name in op.output_arg_names:
                        out_var = forward_block._clone_variable(
                            loss_block.vars[out_name], force_persistable=False)
                        if idx == len(loss_block.ops) - 1:
                            losses.append(out_var)
                forward_block._sync_with_cpp()
            serial_main_prog = forward_main_prog
            serial_startup_prog = forward_startup_prog
            # update metrics op in program
            with static.program_guard(serial_main_prog, serial_startup_prog), \
                utils.unique_name.guard():
                if mode != "predict":
                    for metric in self._metrics:
                        metrics.extend(
                            to_list(metric.compute(*(outputs + labels))))

        else:
            # build program in static mode
            serial_main_prog = self._serial_main_progs.get(mode, None)
            if serial_main_prog is not None:
                return

            losses = []
            metrics = []
            serial_main_prog = self._orig_main_prog.clone()
            serial_startup_prog = self._orig_startup_prog.clone()
            with static.program_guard(serial_main_prog, serial_startup_prog), \
                utils.unique_name.guard():
                inputs_spec = self.inputs_spec
                labels_spec = self.labels_spec if self.labels_spec else []
                inputs = [s._create_feed_layer() for s in inputs_spec]
                labels = [s._create_feed_layer() for s in labels_spec]
                outputs = to_list(self.model(*inputs))
                if mode != "predict" and self._loss:
                    losses = to_list(self._loss(*(outputs + labels)))

                if mode != "predict":
                    for metric in self._metrics:
                        metrics.extend(
                            to_list(metric.compute(*(outputs + labels))))
240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259

        default_ctx = get_default_distributed_context()
        if not default_ctx.has_annotation:
            # We build the world process group because the data parallel
            # needs all ranks by default.
            new_process_group(list(range(self._nranks)))
            default_ctx.data_parallel = True

        feed_vars = {"inputs": inputs, "labels": labels}

        fetch_vars = {
            "outputs": flatten(outputs),
            "loss": losses,
            "metrics": metrics
        }

        self._dist_contexts[mode] = DistributedContext(
            serial_main_prog, serial_startup_prog, self._optimizer, losses,
            feed_vars, fetch_vars, self.cluster, self.strategy)
        self._dist_contexts[mode].gradient_scale = self._gradient_scale
260
        self._dist_contexts[mode]._dygraph_mode = self._dygraph_mode
261 262 263 264 265 266 267

    def _plan(self, mode):
        if self._planned_mode is None:
            self._planned_mode = mode
        else:
            self._init_dist_context(mode)

268 269
        self._planners[mode] = Planner(mode, self._dist_contexts[mode])
        self._planners[mode].plan()
270 271

    def _parallel(self, mode, all_ranks):
272 273 274
        # Parallelize program based on the planner's results
        # For now, the completer has to be passed to the planner,
        # because we may use it to complete the annotation of the backwarkward and update.
275
        parallelizer = Parallelizer(mode, self._planners[mode].completer,
276 277 278 279 280
                                    self._dist_contexts[mode])
        if not all_ranks:
            parallelizer.parallel(self._cur_rank)
        else:
            parallelizer.parallel_all()
281 282

    def _init_dist_context(self, mode):
283
        # Init dist_context['mode'] with the first planned dist_context
284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300
        # to guarantee that train/eval/predict mode have same parallel strategy
        dist_context = self._dist_contexts[mode]
        origin_main_prog = dist_context._original_serial_main_program
        ref_mode = self._planned_mode
        ref_dist_context = self._dist_contexts[ref_mode]
        ref_origin_main_prog = ref_dist_context._original_serial_main_program
        ref_blocks = ref_origin_main_prog.blocks
        for ib, block in enumerate(origin_main_prog.blocks):
            for iop, op in enumerate(block.ops):
                ref_op = ref_blocks[ib].ops[iop]
                assert op.type == ref_op.type, \
                    "'{}' mode op '{}' is different with '{}' op '{}'. ".format(mode, op.type, ref_mode, ref_op.type)
                ref_op_dist_attr = ref_dist_context.get_op_dist_attr_for_program(
                    ref_op)
                dist_context.set_op_dist_attr_for_program(op, ref_op_dist_attr)

    def _initialize(self, mode):
301
        # Get the current content from the distributed context
302 303 304 305
        self._serial_main_progs[mode] = self._dist_contexts[
            mode].serial_main_program
        self._serial_startup_progs[mode] = self._dist_contexts[
            mode].serial_startup_program
306 307 308 309
        self._dist_main_progs[mode] = self._dist_contexts[
            mode].dist_main_programs
        self._dist_startup_progs[mode] = self._dist_contexts[
            mode].dist_startup_programs
310 311
        self._feed_vars[mode] = self._dist_contexts[mode].serial_feed_vars
        self._fetch_vars[mode] = self._dist_contexts[mode].serial_fetch_vars
312

313 314 315 316 317 318 319 320
        if self._nranks > 1:
            # Traverse different rank programs and traverse each op of them,
            # instantiate communication by process_mapping.
            all_process_groups = get_all_process_groups()
            for process_group in all_process_groups:
                if self._cur_rank not in process_group.ranks:
                    continue
                process_group.instantiate()
321 322 323 324

        self._place = _get_device()
        if isinstance(self._place, fluid.CUDAPlace):
            self._place = fluid.CUDAPlace(ParallelEnv().dev_id)
325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353

        if self._dygraph_mode:
            paddle.disable_static()
            main_program = self._dist_main_progs[mode][self._cur_rank]
            for param in self.concrete_program.parameters:
                # create var in scope and share parameters to scope
                if param.name not in main_program.global_block().vars:
                    continue
                # get param_var's dist_attr
                var = main_program.global_block().vars[param.name]
                var_dist_attr = self._dist_contexts[
                    mode].get_tensor_dist_attr_for_program(var)
                dist_attr = {
                    "dims_mapping": var_dist_attr.dims_mapping,
                    "process_shape": var_dist_attr.process_mesh.topology,
                    "process_group": var_dist_attr.process_mesh.processes
                }
                # slice param_value with dist_attr
                # share sliced_param_value with param_tensor in global_scope
                from .converter import Converter
                param_tensor = global_scope().var(param.name).get_tensor()
                sliced_param = Converter.slice_with_dist_attr(
                    param.numpy(), dist_attr)
                shared_tensor = paddle.to_tensor(sliced_param,
                                                 place=self._place)
                param_tensor._share_data_with(
                    shared_tensor.value().get_tensor())
            paddle.enable_static()

354 355
        if self._executor is None:
            self._executor = paddle.static.Executor(self._place)
356 357 358 359 360 361 362 363 364 365
            uninitialized = []
            dist_startup_prog = self._dist_startup_progs[mode][self._cur_rank]
            for var in dist_startup_prog.list_vars():
                scope_var = global_scope().find_var(var.name)
                if scope_var and scope_var.get_tensor()._is_initialized():
                    continue
                uninitialized.append(var)
            if uninitialized:
                prune_startup_prog = dist_startup_prog._prune(uninitialized)
                self._executor.run(prune_startup_prog)
366

367 368 369 370
    def fit(self,
            train_data,
            batch_size=1,
            epochs=1,
371
            fetches=None,
372 373
            steps_per_epoch=None,
            use_program_cache=False,
374
            return_numpy=True):
375 376 377
        # TODO: callbacks
        # TODO: evaluate after training
        self.mode = 'train'
378
        assert self.mode in self._dist_main_progs, \
379
            "train model is not ready, please call `engine.prepare()` first."
380 381
        train_dataloader = self._create_dataloader(train_data, batch_size,
                                                   epochs, steps_per_epoch)
382

383 384
        usr_fetch = self._validate_fetches(fetches)
        fetch_loss = self._validate_fetches(self.fetch_vars["loss"])
385 386
        fetch_list, fetch_map = self._fetch_map(fetch_loss, usr_fetch)

387
        for epoch in range(epochs):
388 389 390 391 392 393 394 395 396 397 398 399 400 401
            train_logs = {"epoch": epoch}
            for step, _ in enumerate(train_dataloader):
                outs = self._executor.run(self.main_program,
                                          fetch_list=fetch_list,
                                          use_program_cache=use_program_cache,
                                          return_numpy=return_numpy)
                train_logs["step"] = step
                # inner fetches
                if fetch_loss:
                    train_logs["train_loss"] = outs[0][0]
                # user fetches
                user_outs = outs[len(fetch_loss):]
                user_fetch_list = fetch_list[len(fetch_loss):]
                for i, out in enumerate(user_outs):
402
                    train_logs["train_" + fetch_map[user_fetch_list[i]]] = out
403
                self._logger.info(train_logs)
404

405 406 407
    def evaluate(self,
                 eval_data,
                 batch_size=1,
408
                 fetches=None,
409
                 use_program_cache=False,
410
                 return_numpy=True):
411
        self.mode = 'eval'
412
        assert self.mode in self._dist_main_progs, \
413
            "eval model is not ready, please call `engine.prepare()` first."
414
        eval_dataloader = self._create_dataloader(eval_data, batch_size)
415

416 417 418
        usr_fetch = self._validate_fetches(fetches)
        fetch_loss = self._validate_fetches(self.fetch_vars["loss"])
        fetch_metrics = self._validate_fetches(self.fetch_vars["metrics"])
419 420 421 422 423 424 425 426 427 428 429
        inner_fetch = dict(fetch_loss, **fetch_metrics)
        fetch_list, fetch_map = self._fetch_map(inner_fetch, usr_fetch)

        for step, _ in enumerate(eval_dataloader):
            eval_logs = {"step": step}
            outs = self._executor.run(self.main_program,
                                      fetch_list=fetch_list,
                                      use_program_cache=use_program_cache,
                                      return_numpy=return_numpy)
            # inner fetches
            if fetch_loss:
430
                eval_logs["eval_loss"] = outs[0][0]
431 432 433 434 435 436 437 438 439
            # Metric
            if fetch_metrics:
                metric_out = outs[len(fetch_loss):len(inner_fetch)]
                for metric in self._metrics:
                    metric.update(*metric_out)
                    results = metric.accumulate()
                    for i, res in enumerate(to_list(results)):
                        eval_logs["eval_" + metric.name()[i]] = res
            # usr fetches
440
            usr_outs = outs[len(inner_fetch):]
441
            usr_fetch_list = fetch_list[len(inner_fetch):]
442
            for i, out in enumerate(usr_outs):
443 444
                eval_logs["eval_" + fetch_map[usr_fetch_list[i]]] = out
            # logger
445
            self._logger.info(eval_logs)
446

447 448 449
    def predict(self,
                test_data,
                batch_size=1,
450
                fetches=None,
451
                use_program_cache=False,
452
                return_numpy=True):
453
        self.mode = 'predict'
454
        assert self.mode in self._dist_main_progs, \
455
            "predict model is not ready, please call `engine.prepare()` first."
456
        test_dataloader = self._create_dataloader(test_data, batch_size)
457

458 459
        usr_fetch = self._validate_fetches(fetches)
        fetch_outputs = self._validate_fetches(self.fetch_vars["outputs"])
460
        fetch_list, fetch_map = self._fetch_map(fetch_outputs, usr_fetch)
461 462

        outputs = []
463 464 465 466 467 468 469 470
        for step, _ in enumerate(test_dataloader):
            predict_logs = {"step": step}
            outs = self._executor.run(self.main_program,
                                      fetch_list=fetch_list,
                                      use_program_cache=use_program_cache,
                                      return_numpy=return_numpy)
            outputs.append(outs[:len(fetch_outputs)])
            for i, out in enumerate(outs):
471
                predict_logs["pred_" + fetch_map[fetch_list[i]]] = out
472
            self._logger.info(predict_logs)
473

474
        return outputs
475

476 477 478 479
    def _create_dataloader(self,
                           dataset,
                           batch_size,
                           epochs=1,
480
                           steps_per_epoch=None):
481 482 483 484
        dist_main_prog = self._dist_main_progs[self.mode][self._cur_rank]
        dist_startup_prog = self._dist_startup_progs[self.mode][self._cur_rank]
        dist_context = self._dist_contexts[self.mode]
        dist_main_block = dist_main_prog.global_block()
485

486
        # NOTE: Get feed_list from dist_program, then insert dataloader op
487 488
        # with sharded var shape. Because predict_program does not contain
        # labels var, so we will filter dataset's value with length of feed_list.
489 490 491 492 493 494
        inputs_var = self._feed_vars[self.mode]["inputs"]
        labels_var = self._feed_vars[self.mode]["labels"]
        feed_list = []
        for var in inputs_var + labels_var:
            if var.name in dist_main_block.vars:
                feed_list.append(dist_main_block.vars[var.name])
495 496
        dp_world_size, dp_rank = self._get_data_parallel_info(
            feed_list[0], dist_context)
497 498

        # remove the first three ops if multi run fit/evaluate/predict
499
        op_size = len(dist_main_block.ops)
500 501 502 503
        if dist_main_block.ops[0].type == 'create_py_reader':
            op_size -= 3
            for _ in range(3):
                dist_main_block._remove_op(0, sync=False)
504 505

        # insert read op at the end of program
506
        places = paddle.static.cuda_places()
507
        with static.program_guard(dist_main_prog, dist_startup_prog):
508
            dataloader = NonIterableGeneratorLoader(
509 510 511 512 513 514
                dataset,
                feed_list,
                places,
                batch_size,
                epochs,
                steps_per_epoch,
515 516 517 518
                data_parallel_world_size=dp_world_size,
                data_parallel_rank=dp_rank)

        # move read op from the end of program to the start of program
519
        new_op_size = len(dist_main_block.ops)
520
        for _ in range(new_op_size - 1, op_size - 1, -1):
521 522 523
            op = dist_main_block.ops[new_op_size - 1]
            new_op_desc = dist_main_block.desc._prepend_op()
            new_op_desc.copy_from(op.desc)
524 525 526
            new_op = Operator(dist_main_block,
                              new_op_desc,
                              type=new_op_desc.type())
527 528 529 530 531 532 533 534
            dist_main_block.ops.insert(0, new_op)
            dist_op = DistributedOperator(new_op)
            dist_context.add_dist_op_for_program(dist_op)
        for _ in range(new_op_size - op_size):
            dist_main_block._remove_op(new_op_size, sync=False)
        dist_main_block._sync_with_cpp()
        return dataloader

535 536 537 538 539 540 541 542 543 544 545
    def _validate_spec(self, specs):
        specs = to_list(specs)
        if specs is not None:
            for i, spec in enumerate(specs):
                assert isinstance(spec, InputSpec)
                if spec.name is None:
                    raise ValueError(
                        "Requires Input[{}].name != None, but receive `None` with {}."
                        .format(i, spec))
        return specs

546 547 548 549 550 551 552 553 554 555 556 557 558 559 560
    def _is_local_var(self, var):
        var_name = _to_name_str(var)
        return var_name in self.main_program.global_block().vars

    def _validate_fetches(self, fetches):
        # 1. Check user-defined fetches type
        # 2. Prepare fetches_dict like {user_defined_name: var_name}
        if not fetches:
            return {}
        if isinstance(fetches, dict):
            fetch_var_names = list(map(_to_name_str, fetches.values()))
            fetches_dict = dict(zip(fetch_var_names, list(fetches.keys())))
        elif isinstance(fetches, list):
            fetch_var_names = list(map(_to_name_str, fetches))
            fetches_dict = dict(zip(fetch_var_names, fetch_var_names))
561
        else:
562 563 564 565 566 567 568 569 570 571 572 573 574
            raise TypeError("'fetches' only support 'dict' and 'list', "
                            "but got '{}'".format(str(type(fetches))))
        return dict(
            filter(lambda x: self._is_local_var(x[0]), fetches_dict.items()))

    def _fetch_map(self, inner_fetch, usr_fetch):
        # replace inner fetch name if usr set for it
        for iname in inner_fetch:
            if iname in usr_fetch:
                inner_fetch[iname] = usr_fetch[iname]
                usr_fetch.pop(iname)
        fetches = dict(inner_fetch, **usr_fetch)
        return list(fetches.keys()), fetches
575

576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598
    def _get_data_parallel_info(self, var, dist_context):
        # get data parallel world size and current data parallel rank
        from .utils import _get_comm_group, _get_corresponding_rank

        tensor_dist_attr = dist_context.get_tensor_dist_attr_for_program(var)
        process_mesh = tensor_dist_attr.process_mesh
        dims_mapping = tensor_dist_attr.dims_mapping

        if self._cur_rank not in process_mesh.processes:
            rank_id = _get_corresponding_rank(dist_context, process_mesh,
                                              self._cur_rank)
        else:
            rank_id = self._cur_rank

        batch_size_axis = dims_mapping[0]
        if batch_size_axis > -1 and process_mesh.topology[batch_size_axis] > 1:
            group_ranks = _get_comm_group(process_mesh.processes,
                                          process_mesh.topology,
                                          batch_size_axis, rank_id)
            return len(group_ranks), group_ranks.index(rank_id)

        return None, None

599 600 601 602 603
    def save(self, path, training=True, mode=None):
        if not mode:
            mode = self.mode

        if training:
604 605
            assert 'train' in self._serial_main_progs, \
                "training model is not ready, please call `engine.prepare()` first."
606 607 608
            serial_program = self._serial_main_progs["train"]
            dist_main_prog = self._dist_main_progs["train"][self._cur_rank]
            dist_context = self._dist_contexts["train"]
609 610 611 612
            self._saver.save(path,
                             serial_program=serial_program,
                             dist_main_program=dist_main_prog,
                             dist_context=dist_context)
613 614 615 616 617
        else:
            assert mode, "Please set the 'mode' you want to save."
            feed_vars = self._feed_vars[mode]['inputs']
            fetch_vars = self._fetch_vars[mode]['outputs']
            dist_main_prog = self._dist_main_progs[mode][self._cur_rank]
618 619 620 621 622
            self._saver.save_inference_model(path,
                                             feed_vars,
                                             fetch_vars,
                                             self._executor,
                                             program=dist_main_prog)
623

624 625 626 627
    def load(self, path, strict=True, load_optimizer=True, mode=None):
        if not mode:
            mode = self.mode
        assert mode, "Please set the 'mode' you want to load."
628

629 630 631 632
        dist_main_prog = self._dist_main_progs[mode][self._cur_rank]
        dist_context = self._dist_contexts[mode]
        self._saver.load(path, dist_main_prog, dist_context, strict,
                         load_optimizer)
633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660

    @property
    def mode(self):
        return self._mode

    @mode.setter
    def mode(self, mode):
        self._mode = mode

    @property
    def main_program(self):
        return self._dist_main_progs[self.mode][self._cur_rank]

    @property
    def startup_program(self):
        return self._dist_startup_progs[self.mode][self._cur_rank]

    @property
    def dist_context(self):
        return self._dist_contexts[self.mode]

    @property
    def serial_main_program(self):
        return self._serial_main_progs[self.mode]

    @property
    def serial_startup_program(self):
        return self._serial_startup_progs[self.mode]
661 662 663 664

    @property
    def fetch_vars(self):
        return self._fetch_vars[self.mode]