engine.py 68.8 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14
# Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

15
import os
Z
zhaoyingli 已提交
16
import copy
17
import logging
18
import random
Z
zhaoyingli 已提交
19
import numbers
20
import numpy as np
21 22 23
from collections import defaultdict

import paddle
24
import paddle.utils as utils
25

26
from paddle import fluid, static
27
from paddle.metric import Metric
28
from paddle.static import InputSpec
29
from paddle.fluid import core
30
from paddle.fluid import Variable
31
from paddle.fluid.layers.utils import flatten
32
from paddle.fluid.executor import global_scope, _to_name_str
33
from paddle.fluid.framework import Operator, _non_static_mode
34 35
from paddle.fluid.framework import _current_expected_place as _get_device
from paddle.fluid.dygraph.parallel import ParallelEnv
36
from paddle.distributed import fleet
37
from paddle.distributed.parallel import _is_global_parallel_initialize
38

39
from .callbacks import config_callbacks
40
from .converter import Converter
41
from .helper import ProgramHelper
42
from .cluster import Cluster, get_default_cluster
43 44
from .planner_v2 import Planner
from .parallelizer_v2 import Parallelizer
45 46
from .dist_op import DistributedOperator
from .dist_saver import DistributedSaver
Z
zhaoyingli 已提交
47 48 49 50
from .dist_loader import (
    DistributedDataLoaderFromGenerator,
    DistributedDataLoader,
)
51
from .process_group import new_process_group, get_all_process_groups
52
from .dist_context import DistributedContext, get_default_distributed_context
53
from .strategy import Strategy
54
from .interface import CollectionNames, get_collection
Z
zhaoyingli 已提交
55 56
from .utils import to_list, get_dist_attr, get_lr, validate_opt
from .utils import initialize_pg_in_full_mode, get_input_split_info
57
from .cost.estimate_cost import get_cost_from_engine
58

Z
zhaoyingli 已提交
59 60
from ..utils.log_utils import get_logger

61 62

class Engine:
63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90
    """
    An Engine object can provide the full power of auto parallel to users.
    With the help of it, users can easily obtain the abilities of the
    distributed training and inference. It also support the dynamic graph and
    static graph at the same time.

    Args:
        model (paddle.nn.Layer, optional): The model is an instance of
            paddle.nn.Layer.
        loss (Loss|Callable|None, optional): The loss can be a `paddle.nn.Layer`
            instance or any callable function taken the predicted values and
            ground truth values as input. It can be None when there is no loss.
            Default: None.
        optimizer (Optimizer|None, optional): The optimizer need to be set in training
            and should be None in eval and predict mode. Default: None.
        metrics (Metric|list[Metric]|None, optional): If metrics is set, all
            metrics will be calculated and output in train/eval mode. Default: None.
        cluster (Cluster|None, optional): The cluster represents the topology information
            about the used physical devices. Default: None. (Unused for now)
        strategy (Strategy|None, optional): The strategy is used to configure the
        parallelization and optimization behaviors. Default: None.

    Examples:

        .. code-block:: python

            import paddle
            import paddle.vision.transforms as T
91
            from paddle.distributed.fleet import auto
92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123
            from paddle.vision.datasets import MNIST

            transform = T.Compose([
                T.Transpose(),
                T.Normalize([127.5], [127.5])
            ])
            train_dataset = MNIST(mode='train', transform=transform)
            valid_dataset = MNIST(mode='test', transform=transform)

            model = paddle.vision.models.LeNet()
            loss = paddle.nn.CrossEntropyLoss()
            optimizer = paddle.optimizer.Adam(
                learning_rate=0.001, parameters=model.parameters())
            metrics = paddle.metric.Accuracy(topk=(1, 2))

            engine = auto.Engine(model, loss, optimizer, metrics)
            # fit
            engine.fit(train_dataset,
                       epochs=2,
                       batch_size=64)
            # evaluate
            engine.evaluate(valid_dataset,
                            batch_size=64)
            # predict
            engine.predict(valid_dataset,
                           batch_size=64)
            # save
            engine.save("./my_model")
            # load
            engine.load("./my_model")

    """
124

Z
zhaoyingli 已提交
125 126 127 128 129 130 131 132 133 134 135 136 137 138 139
    def __init__(
        self,
        model=None,
        loss=None,
        optimizer=None,
        metrics=None,
        cluster=None,
        strategy=None,
    ):

        if (
            model
            and not isinstance(model, paddle.nn.Layer)
            and not callable(model)
        ):
140 141 142 143
            raise TypeError(
                "'model must be sub classes of `paddle.nn.Layer` or any callable function."
            )
        self._model = model
Z
zhaoyingli 已提交
144 145 146 147 148 149 150 151 152

        if (
            loss
            and not isinstance(loss, (paddle.nn.Layer, Variable))
            and not callable(loss)
        ):
            raise TypeError(
                "'loss' must be sub classes of `paddle.nn.Layer` or any callable function or a Variable."
            )
153 154 155
        self._loss = loss

        if optimizer and not isinstance(
Z
zhaoyingli 已提交
156 157 158
            optimizer,
            (paddle.optimizer.Optimizer, paddle.fluid.optimizer.Optimizer),
        ):
159 160
            raise TypeError(
                "'optimizer' must be object of class `paddle.optimizer.Optimizer`"
Z
zhaoyingli 已提交
161 162 163
                " or `paddle.fluid.optimizer.Optimizer`."
            )
        self._optimizer = validate_opt(optimizer)
164 165 166

        metrics = metrics or []
        for metric in to_list(metrics):
Z
zhaoyingli 已提交
167 168 169 170 171 172
            if metric and not isinstance(metric, Metric):
                raise TypeError(
                    "{} is not sub class of Metric".format(
                        metric.__class__.__name__
                    )
                )
173 174 175 176 177 178 179 180 181 182 183 184 185 186
        self._metrics = to_list(metrics)

        if cluster and not isinstance(cluster, Cluster):
            raise TypeError(
                "'cluster' must be the object or class `paddle.distributed.auto_parallel.Cluster`"
            )
        self._cluster = cluster or get_default_cluster()

        if strategy and not isinstance(strategy, Strategy):
            raise TypeError(
                "'strategy' must be object of class `paddle.distributed.auto_parallel.Strategy`"
            )
        self._strategy = strategy or Strategy()

Z
zhaoyingli 已提交
187
        self._logger = get_logger(logging.INFO)
188
        if os.getenv("POD_NAME") and not _is_global_parallel_initialize():
Z
zhaoyingli 已提交
189 190 191
            self._logger.info(
                "Distribute training by paddle.distributed.launch"
            )
192
            fleet.init(is_collective=True)
193

194 195 196 197 198 199
        # for compute cost
        # TODO: remove _fwd_main_progs and _orig_optimizer
        self._fwd_dist_contexts = {}
        self._fwd_main_progs = {}
        self._orig_optimizer = copy.deepcopy(self._optimizer)

200
        self._executor = None
201 202 203
        self._cur_rank = paddle.distributed.get_rank()
        self._nranks = paddle.distributed.get_world_size()
        self._saver = DistributedSaver()
204

205 206
        self._orig_main_prog = static.default_main_program()
        self._orig_startup_prog = static.default_startup_program()
207
        self._orig_dist_context = get_default_distributed_context()
208
        self._dist_contexts = {}
209
        self._planners = {}
210 211
        self._has_prepared = {"train": False, "eval": False, "predict": False}
        self._has_prepared_reader = {
212 213
            "train": False,
            "eval": False,
Z
zhaoyingli 已提交
214
            "predict": False,
215
        }
216 217 218 219
        self._inputs_spec = []
        self._labels_spec = []
        self._inputs = []
        self._labels = []
Z
zhaoyingli 已提交
220
        self._losses = []
221

Z
zhaoyingli 已提交
222
        self._mode = None
223 224
        self._skip_build = False
        self._outside_dataloader = False
225
        self._planned_mode = None
226 227
        self._dygraph_mode = False
        self._tuning = self._strategy.tuning
228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248

        self.history = None

    def _prepare_data_spec(self, data, split, batch_size):
        inputs_spec = []
        labels_spec = []
        if isinstance(data, paddle.io.IterableDataset):
            if split is None:
                inputs, labels = next(iter(data))
            else:
                sample = next(iter(data))
                inputs = sample[:split]
                labels = sample[split:]
        elif isinstance(data, paddle.io.Dataset):
            if split is None:
                inputs, labels = data[0]
            else:
                sample = data[0]
                inputs = sample[:split]
                labels = sample[split:]
        else:
Z
zhaoyingli 已提交
249 250 251 252 253
            raise TypeError(
                "Data should be a Dataset or IterableDatset, but received {}.".format(
                    type(data).__name__
                )
            )
254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272
        inputs = to_list(inputs)
        labels = to_list(labels)

        num_shards = self._strategy.dataset.num_shards

        def _adjust_item_spec(num_shards, spec):
            if num_shards > 1 and len(spec.shape) > 1:
                spec.shape[0] = spec.shape[0] * num_shards

        def _infer_item_spec(item, name, batch_size, specs):
            if isinstance(item, np.ndarray):
                spec = InputSpec.from_numpy(item, name)
                if batch_size is None:
                    _adjust_item_spec(num_shards, spec)
                    specs.append(spec)
                else:
                    specs.append(spec.batch(batch_size))
            elif isinstance(item, (Variable, core.VarBase, core.eager.Tensor)):
                spec = InputSpec.from_tensor(item, name)
Z
zhaoyingli 已提交
273
                _adjust_item_spec(num_shards, spec)
274 275 276 277
                if batch_size is None:
                    specs.append(spec)
                else:
                    specs.append(spec.batch(batch_size))
Z
zhaoyingli 已提交
278
            elif isinstance(item, numbers.Number):
279
                specs.append(InputSpec([batch_size], type(item), name))
Z
zhaoyingli 已提交
280 281 282 283 284 285
            else:
                raise TypeError(
                    "The sample's dtype returned of dataset should be number, np.ndarray or Tensor, but got {}".format(
                        type(item).__name__
                    )
                )
286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301

        if inputs is not None:
            for i, item in enumerate(inputs):
                assert item is not None, "Receive None input."
                name = "input" + str(i)
                _infer_item_spec(item, name, batch_size, inputs_spec)
        if labels is not None:
            for i, item in enumerate(labels):
                assert item is not None, "Receive None input."
                name = "label" + str(i)
                _infer_item_spec(item, name, batch_size, labels_spec)

        inputs_spec = self._validate_spec(inputs_spec)
        labels_spec = self._validate_spec(labels_spec)
        return inputs_spec, labels_spec

Z
zhaoyingli 已提交
302
    def _prepare_data_tensor(self, inputs_spec, labels_spec, inputs, labels):
303
        if _non_static_mode() or self._dygraph_mode:
Z
zhaoyingli 已提交
304 305
            raise ValueError("Only support static graph mode.")

306
        if inputs_spec:
Z
zhaoyingli 已提交
307 308 309 310 311 312 313 314 315 316 317 318 319 320
            assert isinstance(
                inputs_spec, list
            ), "inputs should be list, but received {}".format(
                type(inputs_spec)
            )
            assert isinstance(
                inputs, list
            ), "inputs should be list, but received {}".format(type(inputs))
            assert len(inputs_spec) == len(
                inputs
            ), "the number of `inputs_spec` should be equal to `inputs`'s."
            for input_spec, input in zip(inputs_spec, inputs):
                if input_spec.shape != input.shape:
                    input.desc.set_shape(input_spec.shape)
321
        if labels_spec:
Z
zhaoyingli 已提交
322 323 324 325 326 327 328 329 330 331 332 333 334 335 336
            assert isinstance(
                labels_spec, list
            ), "labels should be list, but received {}".format(
                type(labels_spec)
            )
            assert isinstance(
                labels, list
            ), "labels should be list, but received {}".format(type(labels))
            assert len(labels_spec) == len(
                labels
            ), "the number of `labels_spec` should be equal to `labels`'s."
            for label_spec, label in zip(labels_spec, labels):
                if label_spec.shape != label.shape:
                    label.desc.set_shape(label_spec.shape)

337 338
        return inputs, labels

339
    def _prepare_reader(self, feed_list=[]):
340
        dist_context = self._dist_contexts[self._mode]
341
        dist_main_prog = dist_context.dist_main_programs[self._cur_rank]
342
        dist_main_block = dist_main_prog.global_block()
343

344 345
        # NOTE: this list may be changed if Paddle changes the existing rules.
        related_reader_ops = [
Z
zhaoyingli 已提交
346 347 348
            "create_py_reader",
            "create_double_buffer_reader",
            "read",
349 350 351 352 353 354 355 356 357 358 359 360 361
        ]
        # remove the first three ops if multiple run fit/evaluate/predict
        if dist_main_block.ops[0].type == 'create_py_reader':
            for i in range(len(related_reader_ops)):
                if dist_main_block.ops[0].type in related_reader_ops:
                    dist_main_block._remove_op(0, sync=False)
        dist_main_block._sync_with_cpp()
        # Step 1: find the reader ops
        reader_op_indices = []
        for idx, op in enumerate(dist_main_block.ops):
            if op.type in related_reader_ops:
                reader_op_indices.append(idx)
        # Step 2: insert the new reader ops to cpp
362 363
        # record the read ops' desc to insert to program of forward task_node
        read_ops_desc = []
364 365 366 367
        new_reader_ops = []
        for idx in reversed(reader_op_indices):
            new_op_desc = dist_main_block.desc._prepend_op()
            new_op_desc.copy_from(dist_main_block.ops[idx].desc)
368
            read_ops_desc.append(new_op_desc)
Z
zhaoyingli 已提交
369 370 371
            new_op = Operator(
                dist_main_block, new_op_desc, type=new_op_desc.type()
            )
372 373 374 375 376 377 378 379 380 381 382 383 384 385 386
            new_reader_ops.append(new_op)
            dist_op = DistributedOperator(new_op)
            dist_context.add_dist_op_for_program(dist_op)
        # Step 3: insert the new reader ops to python
        for new_op in new_reader_ops:
            dist_main_block.ops.insert(0, new_op)
        for i in range(len(reader_op_indices)):
            reader_op_indices[i] += len(reader_op_indices)
        # Step 4: remove the old reader ops from python and cpp
        for idx in reversed(reader_op_indices):
            op = dist_main_block.ops.pop(idx)
            dist_main_block.desc._remove_op(idx, idx + 1)
        dist_main_block._sync_with_cpp()
        self._has_prepared_reader[self._mode] = True

387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409
        # Insert read op to forward TaskNode if 1F1B pass is setted
        if self.main_program._pipeline_opt:
            assert "tasks" in self.main_program._pipeline_opt["fleet_opt"]
            fleet_opt = self.main_program._pipeline_opt["fleet_opt"]
            fwd_task = fleet_opt["tasks"][0]
            fwd_prog = fwd_task.get_program()
            fwd_block = fwd_prog.global_block()

            for var in feed_list:
                if var.name not in fwd_block.vars:
                    fwd_block._clone_variable(var)

            for op_desc in read_ops_desc:
                new_op_desc = fwd_block.desc._prepend_op()
                new_op_desc.copy_from(op_desc)
                new_op = Operator(
                    fwd_block, new_op_desc, type=new_op_desc.type()
                )
                fwd_block.ops.insert(0, new_op)

            fwd_block._sync_with_cpp()
            fwd_task.set_program(fwd_prog)

410 411 412 413 414 415 416 417 418 419 420 421 422 423 424
    def _prepare_feed(self, data, user_feeds, mode):
        feeds = {}
        if data is not None:
            if isinstance(data, (list, tuple)):
                if len(data) == 1 and isinstance(data[0], dict):
                    for name, data in data[0].items():
                        feeds[name] = data
                else:
                    raise ValueError("Unsupported data {}".format(data))
            elif isinstance(data, dict):
                for name, data in data.items():
                    feeds[name] = data
            else:
                raise ValueError("Unsupported data {}".format(data))
        if user_feeds is not None:
Z
zhaoyingli 已提交
425 426 427 428 429
            assert isinstance(
                user_feeds, dict
            ), "user_feeds must be a dict, but receive {}".format(
                type(user_feeds).__name__
            )
430 431 432 433 434 435
            for name, data in user_feeds.items():
                feeds[name] = data
        return feeds

    def _prepare_fetch(self, user_fetches, mode):
        if user_fetches is not None:
Z
zhaoyingli 已提交
436 437 438 439 440
            assert isinstance(
                user_fetches, list
            ), "user_fetches must be a list, but receive {}".format(
                type(user_fetches).__name__
            )
441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456
        fetch_names = []
        fetch_indices = []

        def _process_fetch_group(group_name, var_list):
            group_indices = []
            for var in var_list:
                # Remove duplicate var_names
                if self._is_local_var(var):
                    var_name = _to_name_str(var)
                    if var_name not in fetch_names:
                        fetch_names.append(var_name)
                    group_indices.append(fetch_names.index(var_name))
            if not group_indices:
                fetch_names.append([])
            fetch_indices.append(group_indices)

457 458
        dist_context = self._dist_contexts[mode]
        fetch_vars = dist_context.serial_fetch_vars
459
        if mode != "predict":
460
            _process_fetch_group("loss", fetch_vars["loss"])
461
        if mode != "predict":
462
            metrics = fetch_vars["metrics"]
463 464 465
            for i, var_list in enumerate(metrics):
                _process_fetch_group("metrics_" + str(i), var_list)
        if mode == "predict":
466
            _process_fetch_group("outputs", fetch_vars["outputs"])
467 468 469 470 471 472 473
        user_fetches_collection = [
            item[1] for item in get_collection(CollectionNames.FETCHES)
        ]
        var_list = (user_fetches_collection or []) + (user_fetches or [])
        _process_fetch_group("fetches", var_list)
        return fetch_names, fetch_indices

Z
zhaoyingli 已提交
474 475 476 477 478 479 480 481 482 483
    def _prepare_logger(
        self,
        outs,
        epoch=None,
        step=None,
        lr=None,
        fetch_names=None,
        fetch_indices=None,
        mode=None,
    ):
484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499
        logs = {}
        if epoch is not None:
            logs["epoch"] = epoch
        if step is not None:
            logs["step"] = step + 1
        if lr is not None:
            logs["lr"] = lr
        group_idx = 0
        if mode != "predict":
            # logging loss
            loss_indices = fetch_indices[group_idx]
            assert len(loss_indices) <= 1
            for idx in loss_indices:
                logs["loss"] = outs[idx][0]
            group_idx += 1
            # logging metrics
500 501
            dist_context = self._dist_contexts[mode]
            metric_vars = dist_context.serial_fetch_vars["metrics"]
502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531
            if metric_vars:
                for metric in self._metrics:
                    metrics_indices = fetch_indices[group_idx]
                    metric_out = []
                    for idx in metrics_indices:
                        metric_out.append(outs[idx])
                    if metric_out:
                        metric.update(*metric_out)
                        results = metric.accumulate()
                        for i, res in enumerate(to_list(results)):
                            logs[metric.name()[i]] = res
                    group_idx += 1
        # logging outputs
        elif mode == "predict":
            outputs_indices = fetch_indices[group_idx]
            logs_out = {}
            for idx in outputs_indices:
                logs_out["out%d" % (idx)] = outs[idx]
            logs["outputs"] = logs_out
            group_idx += 1
        # logging user fetches
        collect_fetches = get_collection(CollectionNames.FETCHES)
        logs_fetch = {}
        for name, var in collect_fetches:
            if var.name in fetch_names:
                idx = fetch_names.index(var.name)
                logs_fetch[name or var.name] = outs[idx]
        logs["fetches"] = logs_fetch
        return logs

532
    def _prepare_program(self, mode, init_parameters=True):
533
        # Do the build process
534 535 536 537
        self._build(mode)
        # Do the planning process
        self._plan(mode)
        # Do the parallel process
538
        self._parallel(mode)
539 540 541 542 543
        # Init comm
        self._init_comm()
        if init_parameters:
            # startup program
            self._initialize(mode)
544
        self._has_prepared[mode] = True
545

546
    def _build(self, mode):
547
        if _non_static_mode() or self._dygraph_mode:
548
            paddle.disable_static()
549 550 551
            self._dygraph_mode = True
            self._logger.info("Building model with 'to_static' method.")

Z
zhaoyingli 已提交
552 553 554 555 556 557 558
            self.program_helper = ProgramHelper(
                self._model,
                self._loss,
                self._metrics,
                self._inputs_spec,
                self._labels_spec,
            )
559
            # build forward main program
560
            self.program_helper.build_program(mode)
561

562 563 564
            self.concrete_program = self.program_helper.concrete_program
            serial_main_prog = self.program_helper.main_program
            serial_startup_prog = self.program_helper.startup_program
565

Z
zhaoyingli 已提交
566 567
            self._inputs = self.program_helper.input_vars
            self._labels = self.program_helper.label_vars
568
            outputs = self.program_helper.output_vars
Z
zhaoyingli 已提交
569
            self._losses = self.program_helper.loss_vars
570
            metrics = self.program_helper.metric_vars
571

572
            paddle.enable_static()
573 574
        else:
            # build program in static mode
575 576
            dist_context = self._dist_contexts.get(mode, None)
            if dist_context is not None:
577 578
                return

579
            outputs = []
580
            metrics = []
Z
zhaoyingli 已提交
581
            self._losses = []
582 583
            serial_main_prog = self._orig_main_prog.clone()
            serial_startup_prog = self._orig_startup_prog.clone()
584
            if not self._skip_build:
Z
zhaoyingli 已提交
585 586 587 588 589 590 591 592 593 594 595
                with static.program_guard(
                    serial_main_prog, serial_startup_prog
                ), utils.unique_name.guard():
                    self._inputs = [
                        s._create_feed_layer() for s in self._inputs_spec
                    ]
                    self._labels = [
                        s._create_feed_layer() for s in self._labels_spec
                    ]

                    outputs = to_list(self._model(*self._inputs))
596

Z
zhaoyingli 已提交
597 598 599 600 601 602 603 604 605 606 607
                    if mode != "predict" and self._loss:
                        assert isinstance(
                            self._loss, paddle.nn.Layer
                        ) or callable(
                            self._loss
                        ), "the type of `loss` of the Engine arguments should be sub classes of `paddle.nn.Layer` or any callable function."
                        self._losses = to_list(
                            self._loss(*(outputs + self._labels))
                        )

                    if mode != "predict" and (outputs or self._labels):
608 609
                        for metric in self._metrics:
                            metrics.append(
Z
zhaoyingli 已提交
610 611 612 613
                                to_list(
                                    metric.compute(*(outputs + self._labels))
                                )
                            )
614
            elif mode == "train":
Z
zhaoyingli 已提交
615 616 617 618
                assert isinstance(
                    self._loss, Variable
                ), "the type of `loss` of the Engine arguments should be Variable."
                self._losses = to_list(self._loss)
619 620 621 622 623 624 625 626

        default_ctx = get_default_distributed_context()
        if not default_ctx.has_annotation:
            # We build the world process group because the data parallel
            # needs all ranks by default.
            new_process_group(list(range(self._nranks)))
            default_ctx.data_parallel = True

Z
zhaoyingli 已提交
627
        feed_vars = {"inputs": self._inputs, "labels": self._labels}
628 629 630

        fetch_vars = {
            "outputs": flatten(outputs),
Z
zhaoyingli 已提交
631 632
            "loss": self._losses,
            "metrics": metrics,
633 634
        }

635 636 637
        if mode != "train":
            serial_main_prog = serial_main_prog.clone(for_test=True)

638
        self._set_recompute_ckpts()
639
        self._dist_contexts[mode] = DistributedContext(
Z
zhaoyingli 已提交
640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658
            serial_main_prog,
            serial_startup_prog,
            self._optimizer,
            self._losses,
            feed_vars,
            fetch_vars,
            self._cluster,
            self._strategy,
        )
        self._fwd_dist_contexts[mode] = DistributedContext(
            serial_main_prog,
            serial_startup_prog,
            self._optimizer,
            self._losses,
            feed_vars,
            fetch_vars,
            self._cluster,
            self._strategy,
        )
659
        self._dist_contexts[mode].gradient_scale = self._strategy.gradient_scale
Z
zhaoyingli 已提交
660
        self._fwd_main_progs[mode] = serial_main_prog.clone()
661

662 663 664
    def _optimization_tuning(self, mode, dataset, batch_size):
        if not self._tuning.enable:
            raise ValueError("Please set `tuning.enable=True`.")
665

666 667 668 669 670 671 672 673
        assert mode == "train"
        # Do the build process
        self._build(mode)
        # Do the planning process
        self._plan(mode)

        dataset.dp_world_size = self._dp_world_sizes
        dataset.dp_rank = self._dp_ranks
674 675

        from .tuner.optimization_tuner import OptimizationTuner
Z
zhaoyingli 已提交
676 677 678 679 680 681 682 683 684 685

        self._optimization_tuner = OptimizationTuner(
            self._tuning.to_dict(),
            self._dist_contexts[mode],
            dataset,
            self._inputs_spec,
            self._labels_spec,
            batch_size=batch_size,
            rank=self._cur_rank,
        )
686 687 688

        self._optimization_tuner.tune()

689
        if self._tuning.run_after_tuning:
690 691
            # update the strategy
            self._dist_contexts[
Z
zhaoyingli 已提交
692 693
                mode
            ]._strategy = self._optimization_tuner.get_best_config()
694

695 696 697 698 699 700
    def _plan(self, mode):
        if self._planned_mode is None:
            self._planned_mode = mode
        else:
            self._init_dist_context(mode)

701 702
        self._planners[mode] = Planner(mode, self._dist_contexts[mode])
        self._planners[mode].plan()
703

704 705 706 707
        # infer data parallel info
        inputs_var = self._dist_contexts[mode].serial_feed_vars["inputs"]
        labels_var = self._dist_contexts[mode].serial_feed_vars["labels"]
        block = self._dist_contexts[mode].serial_main_program.global_block()
708
        # TODO: check this feed_list
709 710 711 712 713
        feed_list = []
        for var in inputs_var + labels_var:
            if var.name in block.vars:
                feed_list.append(block.vars[var.name])

714 715
        self._dp_world_sizes = []
        self._dp_ranks = []
716
        for feed_var in feed_list:
Z
zhaoyingli 已提交
717 718 719
            dp_world_size, dp_rank = get_input_split_info(
                self._cur_rank, feed_var, self._dist_contexts[mode]
            )
720 721
            self._dp_world_sizes.append(dp_world_size)
            self._dp_ranks.append(dp_rank)
722

723
    def _parallel(self, mode, all_ranks=False):
724 725 726
        # Parallelize program based on the planner's results
        # For now, the completer has to be passed to the planner,
        # because we may use it to complete the annotation of the backwarkward and update.
Z
zhaoyingli 已提交
727 728 729
        parallelizer = Parallelizer(
            mode, self._planners[mode].completer, self._dist_contexts[mode]
        )
730 731 732 733
        if not all_ranks:
            parallelizer.parallel(self._cur_rank)
        else:
            parallelizer.parallel_all()
734 735

    def _init_dist_context(self, mode):
736
        # Init dist_context['mode'] with the first planned dist_context
737 738 739 740 741 742 743 744 745 746
        # to guarantee that train/eval/predict mode have same parallel strategy
        dist_context = self._dist_contexts[mode]
        origin_main_prog = dist_context._original_serial_main_program
        ref_mode = self._planned_mode
        ref_dist_context = self._dist_contexts[ref_mode]
        ref_origin_main_prog = ref_dist_context._original_serial_main_program
        ref_blocks = ref_origin_main_prog.blocks
        for ib, block in enumerate(origin_main_prog.blocks):
            for iop, op in enumerate(block.ops):
                ref_op = ref_blocks[ib].ops[iop]
Z
zhaoyingli 已提交
747 748 749 750 751 752 753 754
                assert (
                    op.type == ref_op.type
                ), "'{}' mode op '{}' is different with '{}' op '{}'. ".format(
                    mode, op.type, ref_mode, ref_op.type
                )
                ref_op_dist_attr = (
                    ref_dist_context.get_op_dist_attr_for_program(ref_op)
                )
755 756
                dist_context.set_op_dist_attr_for_program(op, ref_op_dist_attr)

757
    def _init_comm(self):
758 759 760 761
        if self._nranks > 1:
            # Traverse different rank programs and traverse each op of them,
            # instantiate communication by process_mapping.
            all_process_groups = get_all_process_groups()
762

763
            if self._strategy.auto_mode == "full":
764
                initialize_pg_in_full_mode(all_process_groups, self._cur_rank)
765 766 767 768 769
            else:
                for process_group in all_process_groups:
                    if self._cur_rank not in process_group.ranks:
                        continue
                    process_group.instantiate()
770

771
    def _initialize(self, mode):
772 773 774
        place = _get_device()
        if isinstance(place, fluid.CUDAPlace):
            place = fluid.CUDAPlace(ParallelEnv().dev_id)
775

776 777 778 779 780
        if self._strategy.seed:
            paddle.seed(self._strategy.seed + self._dp_ranks[0])
            np.random.seed(self._strategy.seed + self._dp_ranks[0])
            random.seed(self._strategy.seed + self._dp_ranks[0])

781
        dist_context = self._dist_contexts[mode]
782
        if self._dygraph_mode:
783
            dist_main_program = dist_context.dist_main_programs[self._cur_rank]
784
            self.program_helper.init(dist_main_program, place, dist_context)
785

786
        if self._executor is None:
787
            self._executor = paddle.static.Executor(place)
788
            uninitialized = []
789 790 791
            dist_startup_prog = dist_context.dist_startup_programs[
                self._cur_rank
            ]
792 793 794 795 796 797 798 799
            for var in dist_startup_prog.list_vars():
                scope_var = global_scope().find_var(var.name)
                if scope_var and scope_var.get_tensor()._is_initialized():
                    continue
                uninitialized.append(var)
            if uninitialized:
                prune_startup_prog = dist_startup_prog._prune(uninitialized)
                self._executor.run(prune_startup_prog)
800

801
            if hasattr(self, "_state_dict") and hasattr(self, "_dist_attr"):
Z
zhaoyingli 已提交
802 803 804
                self._set_state_dict(
                    mode, self._strict, self._state_dict, self._dist_attr
                )
805 806

        if self._strategy.reinit:
807
            self._logger.info("NOTE: parameters will be re-initialized.")
808 809 810
            dist_startup_prog = dist_context.dist_startup_programs[
                self._cur_rank
            ]
811 812
            self._executor.run(dist_startup_prog)

Z
zhaoyingli 已提交
813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830
    def fit(
        self,
        train_data,
        train_sample_split=None,
        batch_size=1,
        epochs=1,
        steps_per_epoch=None,
        log_freq=10,
        save_dir=None,
        save_freq=1,
        valid_data=None,
        valid_sample_split=None,
        valid_freq=1,
        valid_steps=None,
        collate_fn=None,
        callbacks=None,
        verbose=2,
    ):
831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876
        """
        Trains the model for a fixed number of epochs. If `valid_data` is set,
        evaluation will be done at the end of each epoch.

        Args:
            train_data (Dataset): An instance of paddle paddle.io.Dataset. Default: None.
            train_sample_split (int, optional): Each sample of the train dataset is assumed
                to be a (input, label) pair by default and has two items. If each sample has
                more than two items, train_sample_split specifies how to split these items into
                input and label. The items before it are input and the left are label. Default: None.
            batch_size (int, optional): The batch size of train_data and valid_data if provided.
                The user's data will be used directly without batching if set to None. Default: 1.
            epochs (int, optional): The number of epochs to train the model. Default: 1.
            steps_per_epoch (int, optional): The total number of steps (batches of samples)
                is executed in one epoch before stating the next one. If None, it is equal to
                the number samples in your dataset divided by the batch size. Default: None.
            valid_data (Dataset, optional): An instance of paddle paddle.io.Dataset used for
                evaluation at the end of epoch. No evaluation will be done if set to None.
                Default: None. (Unsupported for now)
            valid_freq (int, optional): Only relevant if valid_data is provided. This specifies
                how many training epochs before a new evaluation is performed. Default: 1.
            valid_sample_split (int, optional): Only relevant if valid_data is provided.
                Each sample of the valid dataset is assumed to be a (input, label) pair
                by default and has two items. If each sample has more than two items,
                valid_sample_split specifies how to split these items into input and label.
                The items before it are input and the left are label. Default: None.
            valid_steps (int, optional): Only relevant if valid_data is provided.
                It is the total number of steps (batches of samples) to draw before
                stopping validation at the end of every epoch. If None, validation will run until the
                `valid_data` dataset is exhausted. The validation will start from the
                beginning of the dataset at each epoch. Default: None.
            collate_fn(callable, optional): function to generate mini-batch data by merging
                the sample list, None for only stack each fields of sample in axis
                0. Default None.
            callbacks (Callback|None, optional): A list of `Callback` instances to apply
                during training. Default: None. (Unused for now)

        Returns:
            None

        Examples:

            .. code-block:: python

                import paddle
                import paddle.vision.transforms as T
877
                from paddle.distributed.fleet import auto
878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896
                from paddle.vision.datasets import MNIST

                transform = T.Compose([
                    T.Transpose(),
                    T.Normalize([127.5], [127.5])
                ])
                train_dataset = MNIST(mode='train', transform=transform)

                model = paddle.vision.models.LeNet()
                loss = paddle.nn.CrossEntropyLoss()
                optimizer = paddle.optimizer.Adam(
                    learning_rate=0.001, parameters=model.parameters())
                metrics = paddle.metric.Accuracy(topk=(1, 2))

                engine = auto.Engine(model, loss, optimizer, metrics)
                engine.fit(train_dataset,
                           epochs=2,
                           batch_size=64)
        """
897 898
        self._mode = 'train'
        self._inputs_spec, self._labels_spec = self._prepare_data_spec(
Z
zhaoyingli 已提交
899 900
            train_data, train_sample_split, batch_size
        )
901 902
        if not self._has_prepared[self._mode]:
            self._prepare_program(self._mode)
903
        else:
904 905 906 907 908 909 910 911 912
            self._switch_mode(self._mode)

        train_dataloader = self._prepare_dataloader_from_generator(
            dataset=train_data,
            capacity=70,
            iterable=False,
            batch_size=batch_size,
            epochs=epochs,
            steps_per_epoch=steps_per_epoch,
Z
zhaoyingli 已提交
913 914
            collate_fn=collate_fn,
        )
915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932

        fetch_names, fetch_indices = self._prepare_fetch(None, mode=self._mode)

        cbks = config_callbacks(
            callbacks,
            engine=self,
            batch_size=batch_size,
            epochs=epochs,
            steps=train_dataloader._steps,
            log_freq=log_freq,
            save_freq=save_freq,
            save_dir=save_dir,
            verbose=verbose,
            metrics=self._metrics_name(),
            acc_step=self._k_steps,
        )

        cbks.on_begin('train')
933
        for epoch in range(epochs):
934 935
            logs = {}
            cbks.on_epoch_begin(epoch)
936
            for step, _ in enumerate(train_dataloader):
937
                cbks.on_batch_begin('train', step, logs)
938
                try:
939 940
                    outs = self._executor.run(
                        self.main_program,
941
                        fetch_list=fetch_names,
942
                        use_program_cache=self._strategy.use_cache,
Z
zhaoyingli 已提交
943 944
                        return_numpy=self._strategy.return_numpy,
                    )
945
                except core.EOFException:
946
                    break
947
                lr = get_lr(self.optimizer)
Z
zhaoyingli 已提交
948 949 950 951 952 953 954 955 956
                logs = self._prepare_logger(
                    outs,
                    epoch,
                    step,
                    lr,
                    fetch_names,
                    fetch_indices,
                    self._mode,
                )
957 958 959
                cbks.on_batch_end('train', step, logs)

            if valid_data and (epoch + 1) % valid_freq == 0:
Z
zhaoyingli 已提交
960 961 962 963 964 965 966 967 968 969
                val_logs = self.evaluate(
                    valid_data,
                    valid_sample_split,
                    batch_size,
                    valid_steps,
                    log_freq,
                    collate_fn,
                    callbacks,
                    verbose,
                )
970
                val_logs = {
Z
zhaoyingli 已提交
971
                    "val_" + name: val for name, val in val_logs.items()
972 973
                }
                logs.update(val_logs)
974 975 976
                self._switch_mode("train")
            else:
                self._reset_metrics()
977 978 979 980 981

            cbks.on_epoch_end(epoch, logs)

        cbks.on_end('train', logs)
        return self.history
982

Z
zhaoyingli 已提交
983 984 985 986 987 988 989 990 991 992 993
    def evaluate(
        self,
        valid_data,
        valid_sample_split=None,
        batch_size=1,
        steps=None,
        log_freq=10,
        collate_fn=None,
        callbacks=None,
        verbose=2,
    ):
994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011
        """
        Evaluate the loss and metrics of the model on evaluation data.

        Args:
            valid_data (Dataset): An instance of paddle paddle.io.Dataset. Default: None.
            valid_sample_split (int, optional): Each sample of the eval dataset is assumed
                to be a (input, label) pair by default and has two items. If each sample has
                more than two items, valid_sample_split specifies how to split these items into
                input and label. The items before it are input and the left are label. Default: None.
            batch_size (int, optional): The batch size of valid_data. The user's data will
                be used directly without batching if set to None. Default: 1.
            steps (int, optional): It is the total number of steps (batches of samples) to draw before
                stopping evaluation. If None, evaluation will run until the `valid_data` dataset is exhausted.
                The evaluation will start from the beginning of the dataset in each run. Default: None.
            collate_fn(callable, optional): function to generate mini-batch data by merging
                the sample list, None for only stack each fields of sample in axis
                0. Default None.
            callbacks (Callback|None, optional): A list of `Callback` instances to apply
1012
                during evaluating. Default: None. (Unused for now)
1013 1014 1015 1016 1017 1018 1019 1020 1021 1022

        Returns:
            None

        Examples:

            .. code-block:: python

                import paddle
                import paddle.vision.transforms as T
1023
                from paddle.distributed.fleet import auto
1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039
                from paddle.vision.datasets import MNIST

                transform = T.Compose([
                    T.Transpose(),
                    T.Normalize([127.5], [127.5])
                ])
                valid_dataset = MNIST(mode='test', transform=transform)

                model = paddle.vision.models.LeNet()
                loss = paddle.nn.CrossEntropyLoss()
                metrics = paddle.metric.Accuracy(topk=(1, 2))

                engine = auto.Engine(model, loss, metrics=metrics)
                engine.evaluate(valid_dataset, batch_size=64)

        """
1040 1041
        self._mode = 'eval'
        self._inputs_spec, self._labels_spec = self._prepare_data_spec(
Z
zhaoyingli 已提交
1042 1043
            valid_data, valid_sample_split, batch_size
        )
1044 1045
        if not self._has_prepared[self._mode]:
            self._prepare_program(self._mode)
1046
        else:
1047 1048 1049 1050 1051 1052 1053 1054
            self._switch_mode(self._mode)

        valid_dataloader = self._prepare_dataloader_from_generator(
            dataset=valid_data,
            capacity=70,
            iterable=False,
            batch_size=batch_size,
            steps_per_epoch=steps,
Z
zhaoyingli 已提交
1055 1056
            collate_fn=collate_fn,
        )
1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069

        fetch_names, fetch_indices = self._prepare_fetch(None, mode=self._mode)

        cbks = config_callbacks(
            callbacks,
            engine=self,
            batch_size=batch_size,
            log_freq=log_freq,
            verbose=verbose,
            metrics=self._metrics_name(),
        )

        eval_steps = valid_dataloader._steps
Z
zhaoyingli 已提交
1070 1071 1072
        cbks.on_begin(
            'eval', {'steps': eval_steps, 'metrics': self._metrics_name()}
        )
1073
        logs = {}
1074
        for step, _ in enumerate(valid_dataloader):
1075
            cbks.on_batch_begin('eval', step, logs)
1076
            try:
1077 1078
                outs = self._executor.run(
                    self.main_program,
1079
                    fetch_list=fetch_names,
1080
                    use_program_cache=self._strategy.use_cache,
Z
zhaoyingli 已提交
1081 1082
                    return_numpy=self._strategy.return_numpy,
                )
1083
            except core.EOFException:
1084
                break
Z
zhaoyingli 已提交
1085 1086 1087
            logs = self._prepare_logger(
                outs, None, step, None, fetch_names, fetch_indices, self._mode
            )
1088 1089
            cbks.on_batch_end('eval', step, logs)
        cbks.on_end('eval', logs)
1090
        self._reset_metrics()
1091
        return logs
1092

Z
zhaoyingli 已提交
1093 1094 1095 1096 1097 1098 1099 1100 1101 1102
    def predict(
        self,
        test_data,
        test_sample_split=None,
        batch_size=1,
        steps=None,
        collate_fn=None,
        callbacks=None,
        verbose=2,
    ):
1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131
        """
        Compute the output predictions on testing data.

        Args:
            test_data (Dataset): An instance of paddle paddle.io.Dataset. Default: None.
            test_sample_split (int, optional): Each sample of the test dataset is assumed
                to be a (input, label) pair by default and has two items. If each sample has
                more than two items, test_sample_split specifies how to split these items into
                input and label. The items before it are input and the left are label. Default: None.
            batch_size (int, optional): The batch size of test_data. The user's data will
                be used directly without batching if set to None. Default: 1.
            steps (int, optional): It is the total number of steps (batches of samples) to draw before
                stopping predict. If None, predict will run until the `test_data` dataset is exhausted.
                The predict will start from the beginning of the dataset in each run. Default: None.
            collate_fn(callable, optional): function to generate mini-batch data by merging
                the sample list, None for only stack each fields of sample in axis
                0. Default None.
            callbacks (Callback|None, optional): A list of `Callback` instances to apply
                during testing. Default: None. (Unused for now)

        Returns:
            None

        Examples:

            .. code-block:: python

                import paddle
                import paddle.vision.transforms as T
1132
                from paddle.distributed.fleet import auto
1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145
                from paddle.vision.datasets import MNIST

                transform = T.Compose([
                    T.Transpose(),
                    T.Normalize([127.5], [127.5])
                ])
                valid_dataset = MNIST(mode='test', transform=transform)

                model = paddle.vision.models.LeNet()

                engine = auto.Engine(model)
                engine.predict(valid_dataset, batch_size=64)
        """
1146 1147
        self._mode = 'predict'
        self._inputs_spec, self._labels_spec = self._prepare_data_spec(
Z
zhaoyingli 已提交
1148 1149
            test_data, test_sample_split, batch_size
        )
1150 1151
        if not self._has_prepared[self._mode]:
            self._prepare_program(self._mode)
1152
        else:
1153
            self._switch_mode(self._mode)
1154

1155 1156 1157 1158 1159 1160
        test_dataloader = self._prepare_dataloader_from_generator(
            dataset=test_data,
            capacity=70,
            iterable=False,
            batch_size=batch_size,
            steps_per_epoch=steps,
Z
zhaoyingli 已提交
1161 1162
            collate_fn=collate_fn,
        )
1163 1164

        fetch_names, fetch_indices = self._prepare_fetch(None, mode=self._mode)
1165 1166

        outputs = []
1167 1168 1169 1170
        cbks = config_callbacks(callbacks, engine=self, verbose=verbose)
        test_steps = test_dataloader._steps
        cbks.on_begin('predict', {'steps': test_steps})
        logs = {}
1171
        for step, _ in enumerate(test_dataloader):
1172
            cbks.on_batch_begin('predict', step, logs)
1173
            try:
1174 1175
                outs = self._executor.run(
                    self.main_program,
1176
                    fetch_list=fetch_names,
1177
                    use_program_cache=self._strategy.use_cache,
Z
zhaoyingli 已提交
1178 1179
                    return_numpy=self._strategy.return_numpy,
                )
1180
            except core.EOFException:
1181
                break
Z
zhaoyingli 已提交
1182 1183 1184
            logs = self._prepare_logger(
                outs, None, step, None, fetch_names, fetch_indices, self._mode
            )
1185 1186 1187
            cbks.on_batch_end('predict', step, logs)
            outputs.append(list(logs["outputs"].values()))
        cbks.on_end('predict', logs)
1188
        return outputs
1189

Z
zhaoyingli 已提交
1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206
    def dataloader(
        self,
        dataset,
        batch_size=1,
        shuffle=False,
        drop_last=False,
        collate_fn=None,
        num_workers=0,
        use_buffer_reader=True,
        use_shared_memory=True,
        timeout=0,
        worker_init_fn=None,
        epochs=1,
        steps_per_epoch=None,
        sample_split=1,
        mode=None,
    ):
1207 1208 1209
        if mode is not None:
            self.to_mode(mode)
        self._inputs_spec, self._labels_spec = self._prepare_data_spec(
Z
zhaoyingli 已提交
1210 1211
            dataset, sample_split, batch_size
        )
1212 1213 1214 1215
        if not self._has_prepared[self._mode]:
            self._prepare_program(self._mode)
        else:
            self._switch_mode(self._mode)
Z
zhaoyingli 已提交
1216

1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229
        dataloader = self._prepare_dataloader(
            dataset,
            return_list=False,
            batch_size=batch_size,
            shuffle=shuffle,
            drop_last=drop_last,
            collate_fn=collate_fn,
            num_workers=num_workers,
            use_buffer_reader=use_buffer_reader,
            use_shared_memory=use_shared_memory,
            timeout=timeout,
            worker_init_fn=worker_init_fn,
            epochs=epochs,
Z
zhaoyingli 已提交
1230 1231
            steps_per_epoch=steps_per_epoch,
        )
1232
        return dataloader
1233

Z
zhaoyingli 已提交
1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248
    def dataloader_from_generator(
        self,
        dataset,
        capacity=70,
        use_double_buffer=True,
        iterable=True,
        use_multiprocess=False,
        drop_last=True,
        batch_size=1,
        epochs=1,
        steps_per_epoch=None,
        collate_fn=None,
        sample_split=1,
        mode=None,
    ):
1249 1250 1251
        if mode is not None:
            self.to_mode(mode)
        self._inputs_spec, self._labels_spec = self._prepare_data_spec(
Z
zhaoyingli 已提交
1252 1253
            dataset, sample_split, batch_size
        )
1254 1255 1256 1257
        if not self._has_prepared[self._mode]:
            self._prepare_program(self._mode)
        else:
            self._switch_mode(self._mode)
Z
zhaoyingli 已提交
1258

1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269
        dataloader = self._prepare_dataloader_from_generator(
            dataset=dataset,
            capacity=capacity,
            use_double_buffer=use_double_buffer,
            iterable=iterable,
            return_list=False,
            use_multiprocess=use_multiprocess,
            drop_last=drop_last,
            batch_size=batch_size,
            epochs=epochs,
            steps_per_epoch=steps_per_epoch,
Z
zhaoyingli 已提交
1270 1271
            collate_fn=collate_fn,
        )
1272 1273
        return dataloader

Z
zhaoyingli 已提交
1274 1275 1276 1277 1278 1279 1280 1281 1282
    def prepare(
        self,
        inputs_spec=None,
        labels_spec=None,
        inputs=None,
        labels=None,
        main_program=None,
        startup_program=None,
        mode=None,
1283
        init_parameters=True,
Z
zhaoyingli 已提交
1284
    ):
1285 1286
        if mode is not None:
            self.to_mode(mode)
Z
zhaoyingli 已提交
1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302

        if not self._mode:
            raise ValueError(
                "Please set mode to be prepared with `prepare(mode=...)`"
            )

        if self._has_prepared[self._mode]:
            return

        inputs_spec = self._validate_spec(inputs_spec)
        labels_spec = self._validate_spec(labels_spec)
        inputs = self._validate_vars(inputs)
        labels = self._validate_vars(labels)

        self._orig_main_prog = main_program
        self._orig_startup_prog = startup_program
1303 1304
        if inputs or labels:
            self._skip_build = True
Z
zhaoyingli 已提交
1305 1306 1307
            inputs, labels = self._prepare_data_tensor(
                inputs_spec, labels_spec, inputs, labels
            )
1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318
            if self._orig_main_prog is None:
                self._orig_main_prog = static.default_main_program()
            if self._orig_startup_prog is None:
                self._orig_startup_prog = static.default_startup_program()
        elif inputs_spec or labels_spec:
            self._outside_dataloader = True
            if self._orig_main_prog is None:
                self._orig_main_prog = static.default_main_program()
            if self._orig_startup_prog is None:
                self._orig_startup_prog = static.default_startup_program()
        else:
Z
zhaoyingli 已提交
1319 1320 1321 1322 1323 1324 1325
            assert (
                self._inputs_spec and self._labels_spec
            ), "Please call the dataloader(...) before calling prepare(...)"

        self._inputs_spec, self._labels_spec = inputs_spec, labels_spec
        self._inputs, self._labels = inputs, labels
        if not self._has_prepared[self._mode]:
1326
            self._prepare_program(self._mode, init_parameters)
Z
zhaoyingli 已提交
1327 1328
        else:
            self._switch_mode(self._mode)
1329 1330 1331 1332 1333 1334

    def run(self, data=None, feed=None, fetch_list=None, mode=None):
        if mode is not None:
            self.to_mode(mode)
        feed_dict = self._prepare_feed(data, feed, self._mode)
        fetch_names, fetch_indices = self._prepare_fetch(fetch_list, self._mode)
Z
zhaoyingli 已提交
1335 1336 1337 1338
        if (
            self._outside_dataloader
            and not self._has_prepared_reader[self._mode]
        ):
1339
            self._prepare_reader()
Z
zhaoyingli 已提交
1340 1341 1342 1343 1344 1345 1346 1347 1348 1349
        outs = self._executor.run(
            self.main_program,
            feed=feed_dict,
            fetch_list=fetch_names,
            use_program_cache=self._strategy.use_cache,
            return_numpy=self._strategy.return_numpy,
        )
        logs = self._prepare_logger(
            outs, None, None, None, fetch_names, fetch_indices, self._mode
        )
1350 1351
        return logs

Z
zhaoyingli 已提交
1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367
    def _prepare_dataloader(
        self,
        dataset,
        return_list=True,
        batch_size=1,
        shuffle=False,
        drop_last=False,
        collate_fn=None,
        num_workers=0,
        use_buffer_reader=True,
        use_shared_memory=True,
        timeout=0,
        worker_init_fn=None,
        epochs=1,
        steps_per_epoch=None,
    ):
1368 1369

        if self._strategy.gradient_merge and batch_size is not None:
Z
zhaoyingli 已提交
1370 1371 1372 1373 1374
            assert (
                batch_size % self._k_steps == 0
            ), "Requires batch_size:[{}] to be divisible by k_steps:[{}].".format(
                batch_size, self._k_steps
            )
1375 1376
            batch_size //= self._k_steps

1377 1378 1379
        dist_context = self._dist_contexts[self._mode]
        dist_main_prog = dist_context.dist_main_programs[self._cur_rank]
        dist_startup_prog = dist_context.dist_startup_programs[self._cur_rank]
1380
        dist_main_block = dist_main_prog.global_block()
1381

1382 1383 1384 1385
        # NOTE: Get feed_list, then insert dataloader op with sharded var shape.
        # Cause predict_program does not contain labels var,
        # then we will add labels var from serial_program to dist_program,
        # that maintains the length of feed_list equal to the length of dataset's values.
1386 1387
        inputs_var = dist_context.serial_feed_vars["inputs"]
        labels_var = dist_context.serial_feed_vars["labels"]
1388 1389 1390 1391
        feed_list = []
        for var in inputs_var + labels_var:
            if var.name in dist_main_block.vars:
                feed_list.append(dist_main_block.vars[var.name])
1392 1393 1394 1395
            else:
                copy_var = dist_main_block._clone_variable(var, var.persistable)
                copy_var.desc.set_original_id(var.desc.original_id())
                feed_list.append(copy_var)
1396 1397

        # insert read op at the end of program
1398
        places = paddle.static.cuda_places()
1399
        with static.program_guard(dist_main_prog, dist_startup_prog):
1400
            dataloader = DistributedDataLoader(
1401
                dataset,
1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416
                feed_list=feed_list,
                places=places,
                return_list=return_list,
                batch_size=batch_size,
                shuffle=shuffle,
                drop_last=drop_last,
                collate_fn=collate_fn,
                num_workers=num_workers,
                use_buffer_reader=use_buffer_reader,
                use_shared_memory=use_shared_memory,
                timeout=timeout,
                worker_init_fn=worker_init_fn,
                epochs=epochs,
                steps_per_epoch=steps_per_epoch,
                split_data=self._strategy.split_data,
1417
                data_parallel_world_size=self._dp_world_sizes,
Z
zhaoyingli 已提交
1418 1419
                data_parallel_rank=self._dp_ranks,
            )
1420

1421 1422
        return dataloader

Z
zhaoyingli 已提交
1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436
    def _prepare_dataloader_from_generator(
        self,
        dataset,
        capacity=None,
        use_double_buffer=True,
        iterable=True,
        return_list=False,
        use_multiprocess=False,
        drop_last=True,
        batch_size=1,
        epochs=1,
        steps_per_epoch=None,
        collate_fn=None,
    ):
1437 1438

        if self._strategy.gradient_merge and batch_size is not None:
Z
zhaoyingli 已提交
1439 1440 1441 1442 1443
            assert (
                batch_size % self._k_steps == 0
            ), "Requires batch_size:[{}] to be divisible by k_steps:[{}].".format(
                batch_size, self._k_steps
            )
1444 1445
            batch_size //= self._k_steps

1446 1447 1448
        dist_context = self._dist_contexts[self._mode]
        dist_main_prog = dist_context.dist_main_programs[self._cur_rank]
        dist_startup_prog = dist_context.dist_startup_programs[self._cur_rank]
1449 1450 1451 1452 1453 1454
        dist_main_block = dist_main_prog.global_block()

        # NOTE: Get feed_list, then insert dataloader op with sharded var shape.
        # Cause predict_program does not contain labels var,
        # then we will add labels var from serial_program to dist_program,
        # that maintains the length of feed_list equal to the length of dataset's values.
1455 1456
        inputs_var = dist_context.serial_feed_vars["inputs"]
        labels_var = dist_context.serial_feed_vars["labels"]
1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483
        feed_list = []
        for var in inputs_var + labels_var:
            if var.name in dist_main_block.vars:
                feed_list.append(dist_main_block.vars[var.name])
            else:
                copy_var = dist_main_block._clone_variable(var, var.persistable)
                copy_var.desc.set_original_id(var.desc.original_id())
                feed_list.append(copy_var)

        places = paddle.static.cuda_places()
        with static.program_guard(dist_main_prog, dist_startup_prog):
            dataloader = DistributedDataLoaderFromGenerator(
                dataset=dataset,
                feed_list=feed_list,
                capacity=capacity,
                use_double_buffer=use_double_buffer,
                iterable=iterable,
                return_list=return_list,
                use_multiprocess=use_multiprocess,
                drop_last=drop_last,
                places=places,
                batch_size=batch_size,
                epochs=epochs,
                steps_per_epoch=steps_per_epoch,
                collate_fn=collate_fn,
                split_data=self._strategy.split_data,
                data_parallel_world_size=self._dp_world_sizes,
Z
zhaoyingli 已提交
1484 1485
                data_parallel_rank=self._dp_ranks,
            )
1486
        self._prepare_reader(feed_list)
1487 1488 1489 1490 1491
        return dataloader

    def _tune(self, tune_data, tune_sample_split=None, batch_size=1):
        self._mode = 'train'
        self._inputs_spec, self._labels_spec = self._prepare_data_spec(
Z
zhaoyingli 已提交
1492 1493
            tune_data, tune_sample_split, batch_size
        )
1494 1495
        self._optimization_tuning(self._mode, tune_data, batch_size)

1496 1497
    def _validate_spec(self, specs):
        specs = to_list(specs)
1498
        self._k_steps = self._strategy.gradient_merge.k_steps
1499 1500
        if specs is not None:
            for i, spec in enumerate(specs):
Z
zhaoyingli 已提交
1501 1502 1503 1504
                if not isinstance(spec, InputSpec):
                    raise TypeError(
                        "'spec' must be object of class `paddle.static.InputSpec`."
                    )
1505 1506
                if spec.name is None:
                    raise ValueError(
Z
zhaoyingli 已提交
1507 1508 1509 1510
                        "Requires Input[{}].name != None, but receive `None` with {}.".format(
                            i, spec
                        )
                    )
1511 1512
                if self._k_steps > 1:
                    shape = list(spec.shape)
Z
zhaoyingli 已提交
1513 1514 1515 1516 1517
                    assert (
                        shape[0] % self._k_steps == 0
                    ), "Requires batch_size[{}] to be divisible by k_steps[{}].".format(
                        spec.shape[0], self._k_steps
                    )
1518 1519
                    shape[0] //= self._k_steps
                    spec.shape = shape
Z
zhaoyingli 已提交
1520 1521 1522 1523 1524 1525 1526 1527 1528
        return specs or []

    def _validate_vars(self, vars):
        vars = to_list(vars)
        if vars is not None:
            for i, var in enumerate(vars):
                if not isinstance(var, Variable):
                    raise TypeError("'var' must be a `Variable`.")
        return vars or []
1529

1530 1531 1532 1533
    def _is_local_var(self, var):
        var_name = _to_name_str(var)
        return var_name in self.main_program.global_block().vars

1534 1535 1536 1537
    def _set_recompute_ckpts(self):
        # NOTE hack to enable recompute in engine api for GPT-3
        # TODO support more PaddleNLP/CV models here

1538
        recompute = self._strategy.recompute
1539 1540

        # extract ckpts by specific model
1541
        if isinstance(self._model, paddle.nn.Layer):
Z
zhaoyingli 已提交
1542 1543 1544 1545 1546 1547
            if hasattr(
                self._model, "gpt"
            ) and self._model.__class__.__name__ in [
                'GPTForPretraining',
                'GPTForPretrainingAuto',
            ]:
1548
                exact_ckpts = self._model.gpt.checkpoints
1549
            else:
1550
                exact_ckpts = recompute.checkpoints
1551
        else:
1552
            exact_ckpts = recompute.checkpoints
1553 1554

        # modify strategy
1555 1556
        if recompute.enable:
            recompute.checkpoints = exact_ckpts[:]
1557
            logs = {
1558
                'Model Class': self._model.__class__.__name__,
Z
zhaoyingli 已提交
1559
                'Applied Recompute ckpts': exact_ckpts,
1560 1561 1562
            }
            self._logger.info(logs)

1563 1564 1565
    def _reset_metrics(self):
        for metric in self._metrics:
            metric.reset()
1566

1567 1568 1569 1570 1571 1572
    def _metrics_name(self):
        metrics_name = ['loss'] if self._loss else []
        for m in self._metrics:
            metrics_name.extend(to_list(m.name()))
        return metrics_name

1573
    def _switch_mode(self, mode):
Z
zhaoyingli 已提交
1574
        assert (
1575
            mode in self._dist_contexts
Z
zhaoyingli 已提交
1576
        ), "{} model is not ready, please call `prepare()` first.".format(mode)
1577 1578 1579
        self.to_mode(mode)

    def to_mode(self, mode):
Z
zhaoyingli 已提交
1580 1581 1582 1583 1584
        assert mode in [
            "train",
            "eval",
            "predict",
        ], "mode {} should be one of ['train', 'eval', 'predict']".format(mode)
1585
        self._mode = mode
1586 1587 1588

    def _set_state_dict(self, mode, strict, state_dict, dist_attr):
        dist_context = self._dist_contexts[mode]
1589
        program = dist_context.dist_main_programs[self._cur_rank]
1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604
        cur_dist_attr = get_dist_attr(program, dist_context)
        converter = Converter(state_dict, dist_attr, cur_dist_attr)
        state_dict = converter.convert(strict=strict)
        program.set_state_dict(state_dict)

    def save(self, path, training=True):
        """
        Saves the model, parameters, optimizer state to path.
        If `training` is set to False, only inference model will be saved.

        Args:
            path (str): The file prefix to save model. The format
                is 'dirname/file_prefix' or 'file_prefix'. if empty str.
                A exception will be raised.
            training (bool, optional): Whether to save for training. If not, save
1605
                for inference only. If `training` is set to True, the optimizer state
1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617
                will be saved. Otherwise, only the model and parameters are saved.
                This function will silently overwrite existing file at the target
                location. Default: True.

        Returns:
            None

        Examples:

            .. code-block:: python
                import paddle
                import paddle.vision.transforms as T
1618
                from paddle.distributed.fleet import auto
1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639
                from paddle.vision.datasets import MNIST

                transform = T.Compose([
                    T.Transpose(),
                    T.Normalize([127.5], [127.5])
                ])
                train_dataset = MNIST(mode='train', transform=transform)

                model = paddle.vision.models.LeNet()
                loss = paddle.nn.CrossEntropyLoss()
                optimizer = paddle.optimizer.Adam(
                    learning_rate=0.001, parameters=model.parameters())
                metrics = paddle.metric.Accuracy(topk=(1, 2))

                engine = auto.Engine(model, loss, optimizer, metrics)
                engine.fit(train_dataset,
                           epochs=1,
                           batch_size=64)
                engine.save("./my_model")

        """
1640
        if training:
1641
            assert self._mode in self._dist_contexts
1642
            dist_context = self._dist_contexts[self._mode]
1643 1644
            serial_program = dist_context.serial_main_program
            dist_main_prog = dist_context.dist_main_programs[self._cur_rank]
Z
zhaoyingli 已提交
1645 1646 1647 1648 1649 1650
            self._saver.save(
                path,
                serial_program=serial_program,
                dist_main_program=dist_main_prog,
                dist_context=dist_context,
            )
1651
        else:
1652 1653 1654 1655 1656
            assert "predict" in self._dist_contexts
            dist_context = self._dist_contexts["predict"]
            feed_vars = dist_context.serial_feed_vars['inputs']
            fetch_vars = dist_context.serial_fetch_vars['outputs']
            dist_main_prog = dist_context.dist_main_programs[self._cur_rank]
Z
zhaoyingli 已提交
1657 1658 1659 1660 1661 1662 1663
            self._saver.save_inference_model(
                path,
                feed_vars,
                fetch_vars,
                self._executor,
                program=dist_main_prog,
            )
1664

1665 1666 1667 1668 1669 1670 1671 1672 1673 1674
    def load(self, path, strict=True, load_optimizer=True):
        """
        Load the stored model, parameters and optimizer states.

        Args:
            path (str): The prefix of files storing the model states and
                optimizer states.
            strict (bool, optional): Whether to skip the loading of mismatch
                parameter or raise an error when mismatch happens (not found
                the parameter in file storing model states of or receives a
Z
zhaoyingli 已提交
1675
                mismatch shape). Default: True.
1676
            load_optimizer (bool, optional): If True, the stored optimizer
1677
                states is restored. Otherwise, the optimizer states is initialized
Z
zhaoyingli 已提交
1678
                from scratch. Default: True.
1679 1680 1681 1682 1683 1684 1685 1686 1687

        Returns:
            None

        Examples:

            .. code-block:: python
                import paddle
                import paddle.vision.transforms as T
1688
                from paddle.distributed.fleet import auto
1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708
                from paddle.vision.datasets import MNIST

                transform = T.Compose([
                    T.Transpose(),
                    T.Normalize([127.5], [127.5])
                ])
                train_dataset = MNIST(mode='train', transform=transform)

                model = paddle.vision.models.LeNet()
                loss = paddle.nn.CrossEntropyLoss()
                optimizer = paddle.optimizer.Adam(
                    learning_rate=0.001, parameters=model.parameters())
                metrics = paddle.metric.Accuracy(topk=(1, 2))

                engine = auto.Engine(model, loss, optimizer, metrics)
                engine.fit(train_dataset,
                           epochs=1,
                           batch_size=64)
                engine.save("./my_model")
                engine.load("./my_model")
1709

1710 1711 1712
        """
        self._strict = strict
        self._state_dict, self._dist_attr = self._saver.load(
Z
zhaoyingli 已提交
1713 1714
            path, load_optimizer
        )
1715
        return self._state_dict, self._dist_attr
1716

Z
zhaoyingli 已提交
1717
    def cost(self, inputs_spec=None, labels_spec=None, mode=None):
1718 1719 1720 1721 1722 1723 1724 1725 1726 1727
        """
        Get and Print cost, including memory of every rank,
        max memory among all ranks, and the global cost of one step based on
        communication cost(computation cost is 0 by default).
        In the future, the flops information of every rank and global cost including
        computation cost will be added.

        Args:
            inputs_spec(InputSpec): The specification of inputs. Default: None.
            labels_spec(InputSpec): The specification of labels. Default: None.
Z
zhaoyingli 已提交
1728
            mode (str): The engine mode must be in ["train", "predict", "eval"]. Default: None.
1729 1730 1731 1732 1733 1734 1735

        Returns:
            Return the global execution time (ms) and max memory (B).

        """
        # Check parallel mode
        if self._strategy.auto_mode == "full":
Z
zhaoyingli 已提交
1736
            self._logger.info(
1737 1738 1739 1740 1741
                "The cost will be calcudated in the search process when the auto mode is full."
            )
            return

        # Check mode
Z
zhaoyingli 已提交
1742 1743 1744 1745 1746 1747 1748 1749
        mode = mode if mode is not None else self._mode
        assert mode is not None, "Please set mode."
        if mode not in self._has_prepared:
            raise ValueError(
                "The mode {} is not in accepted modes {}".format(
                    mode, list(self._has_prepared.keys())
                )
            )
1750 1751
        self.to_mode(mode)

Z
zhaoyingli 已提交
1752 1753 1754
        if inputs_spec is not None and not self._has_prepared[mode]:
            self._inputs_spec = self._validate_spec(inputs_spec)
            self._labels_spec = self._validate_spec(labels_spec)
1755 1756
            self._build(mode)
            self._plan(mode)
1757
        else:
1758 1759
            if _non_static_mode() or self._dygraph_mode:
                raise ValueError(
Z
zhaoyingli 已提交
1760
                    "Please call `prepare()` or `fit()` or  `evaluate()` or  `predict()` before calling `cost()`."
1761
                )
Z
zhaoyingli 已提交
1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773
            else:
                self._logger.info(
                    "The program whose cost to be estimated must be static default program. Otherwise, please call `prepare()`before calling `cost()`."
                )
                program = paddle.static.default_main_program()
                if (
                    not program.global_block().ops
                    or not program.global_block().ops
                ) and not self._has_prepared[mode]:
                    raise ValueError(
                        "Please call `prepare()` or `fit()` or  `evaluate()` or  `predict()` before calling `cost()`."
                    )
1774

1775 1776
        # Estimate the exec cost and max memory
        global_cost, max_memory = get_cost_from_engine(self, mode)
1777

1778
        return global_cost.time, max_memory
1779 1780 1781

    @property
    def main_program(self):
1782 1783
        dist_context = self._dist_contexts[self._mode]
        return dist_context.dist_main_programs[self._cur_rank]
1784 1785 1786

    @property
    def startup_program(self):
1787 1788
        dist_context = self._dist_contexts[self._mode]
        return dist_context.dist_startup_programs[self._cur_rank]
1789 1790 1791

    @property
    def dist_context(self):
1792
        return self._dist_contexts[self._mode]
1793 1794 1795

    @property
    def serial_main_program(self):
1796 1797
        dist_context = self._dist_contexts[self._mode]
        return dist_context.serial_main_program
1798 1799 1800

    @property
    def serial_startup_program(self):
1801 1802 1803 1804 1805 1806 1807
        dist_context = self._dist_contexts[self._mode]
        return dist_context.serial_startup_program

    @property
    def feed_vars(self):
        dist_context = self._dist_contexts[self._mode]
        return dist_context.serial_feed_vars
1808 1809 1810

    @property
    def fetch_vars(self):
1811 1812 1813 1814 1815 1816 1817 1818 1819
        dist_context = self._dist_contexts[self._mode]
        return dist_context.serial_fetch_vars

    @property
    def optimizer(self):
        dist_context = self._dist_contexts[self._mode]
        if dist_context._serial_optimizer:
            return dist_context._serial_optimizer
        return self._optimizer
1820 1821 1822

    @property
    def inputs(self):
1823
        return self._inputs
1824 1825 1826

    @property
    def labels(self):
1827
        return self._labels