engine.py 67.5 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14
# Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

15
import os
Z
zhaoyingli 已提交
16
import copy
17
import logging
18
import random
Z
zhaoyingli 已提交
19
import numbers
20
import numpy as np
21 22 23
from collections import defaultdict

import paddle
24
import paddle.utils as utils
25

26
from paddle import fluid, static
27
from paddle.metric import Metric
28
from paddle.static import InputSpec
29
from paddle.fluid import core
30
from paddle.fluid import Variable
31
from paddle.fluid.layers.utils import flatten
32
from paddle.fluid.executor import global_scope, _to_name_str
33
from paddle.fluid.framework import Operator, _non_static_mode
34 35
from paddle.fluid.framework import _current_expected_place as _get_device
from paddle.fluid.dygraph.parallel import ParallelEnv
36
from paddle.distributed import fleet
37

38
from .callbacks import config_callbacks
39
from .converter import Converter
40
from .helper import ProgramHelper
41
from .cluster import Cluster, get_default_cluster
42 43
from .planner_v2 import Planner
from .parallelizer_v2 import Parallelizer
44 45
from .dist_op import DistributedOperator
from .dist_saver import DistributedSaver
Z
zhaoyingli 已提交
46 47 48 49
from .dist_loader import (
    DistributedDataLoaderFromGenerator,
    DistributedDataLoader,
)
50
from .process_group import new_process_group, get_all_process_groups
51
from .dist_context import DistributedContext, get_default_distributed_context
52
from .strategy import Strategy
53
from .interface import CollectionNames, get_collection
Z
zhaoyingli 已提交
54 55
from .utils import to_list, get_dist_attr, get_lr, validate_opt
from .utils import initialize_pg_in_full_mode, get_input_split_info
56
from .cost.estimate_cost import get_cost_from_engine
57

Z
zhaoyingli 已提交
58 59
from ..utils.log_utils import get_logger

60 61

class Engine:
62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89
    """
    An Engine object can provide the full power of auto parallel to users.
    With the help of it, users can easily obtain the abilities of the
    distributed training and inference. It also support the dynamic graph and
    static graph at the same time.

    Args:
        model (paddle.nn.Layer, optional): The model is an instance of
            paddle.nn.Layer.
        loss (Loss|Callable|None, optional): The loss can be a `paddle.nn.Layer`
            instance or any callable function taken the predicted values and
            ground truth values as input. It can be None when there is no loss.
            Default: None.
        optimizer (Optimizer|None, optional): The optimizer need to be set in training
            and should be None in eval and predict mode. Default: None.
        metrics (Metric|list[Metric]|None, optional): If metrics is set, all
            metrics will be calculated and output in train/eval mode. Default: None.
        cluster (Cluster|None, optional): The cluster represents the topology information
            about the used physical devices. Default: None. (Unused for now)
        strategy (Strategy|None, optional): The strategy is used to configure the
        parallelization and optimization behaviors. Default: None.

    Examples:

        .. code-block:: python

            import paddle
            import paddle.vision.transforms as T
90
            from paddle.distributed.fleet import auto
91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122
            from paddle.vision.datasets import MNIST

            transform = T.Compose([
                T.Transpose(),
                T.Normalize([127.5], [127.5])
            ])
            train_dataset = MNIST(mode='train', transform=transform)
            valid_dataset = MNIST(mode='test', transform=transform)

            model = paddle.vision.models.LeNet()
            loss = paddle.nn.CrossEntropyLoss()
            optimizer = paddle.optimizer.Adam(
                learning_rate=0.001, parameters=model.parameters())
            metrics = paddle.metric.Accuracy(topk=(1, 2))

            engine = auto.Engine(model, loss, optimizer, metrics)
            # fit
            engine.fit(train_dataset,
                       epochs=2,
                       batch_size=64)
            # evaluate
            engine.evaluate(valid_dataset,
                            batch_size=64)
            # predict
            engine.predict(valid_dataset,
                           batch_size=64)
            # save
            engine.save("./my_model")
            # load
            engine.load("./my_model")

    """
123

Z
zhaoyingli 已提交
124 125 126 127 128 129 130 131 132 133 134 135 136 137 138
    def __init__(
        self,
        model=None,
        loss=None,
        optimizer=None,
        metrics=None,
        cluster=None,
        strategy=None,
    ):

        if (
            model
            and not isinstance(model, paddle.nn.Layer)
            and not callable(model)
        ):
139 140 141 142
            raise TypeError(
                "'model must be sub classes of `paddle.nn.Layer` or any callable function."
            )
        self._model = model
Z
zhaoyingli 已提交
143 144 145 146 147 148 149 150 151

        if (
            loss
            and not isinstance(loss, (paddle.nn.Layer, Variable))
            and not callable(loss)
        ):
            raise TypeError(
                "'loss' must be sub classes of `paddle.nn.Layer` or any callable function or a Variable."
            )
152 153 154
        self._loss = loss

        if optimizer and not isinstance(
Z
zhaoyingli 已提交
155 156 157
            optimizer,
            (paddle.optimizer.Optimizer, paddle.fluid.optimizer.Optimizer),
        ):
158 159
            raise TypeError(
                "'optimizer' must be object of class `paddle.optimizer.Optimizer`"
Z
zhaoyingli 已提交
160 161 162 163
                " or `paddle.fluid.optimizer.Optimizer`."
            )
        self._optimizer = validate_opt(optimizer)
        self._orig_optimizer = copy.deepcopy(self._optimizer)
164 165 166

        metrics = metrics or []
        for metric in to_list(metrics):
Z
zhaoyingli 已提交
167 168 169 170 171 172
            if metric and not isinstance(metric, Metric):
                raise TypeError(
                    "{} is not sub class of Metric".format(
                        metric.__class__.__name__
                    )
                )
173 174 175 176 177 178 179 180 181 182 183 184 185 186
        self._metrics = to_list(metrics)

        if cluster and not isinstance(cluster, Cluster):
            raise TypeError(
                "'cluster' must be the object or class `paddle.distributed.auto_parallel.Cluster`"
            )
        self._cluster = cluster or get_default_cluster()

        if strategy and not isinstance(strategy, Strategy):
            raise TypeError(
                "'strategy' must be object of class `paddle.distributed.auto_parallel.Strategy`"
            )
        self._strategy = strategy or Strategy()

Z
zhaoyingli 已提交
187
        self._logger = get_logger(logging.INFO)
188
        if os.getenv("POD_NAME"):
Z
zhaoyingli 已提交
189 190 191
            self._logger.info(
                "Distribute training by paddle.distributed.launch"
            )
192
            fleet.init(is_collective=True)
193

194
        self._executor = None
195 196 197
        self._cur_rank = paddle.distributed.get_rank()
        self._nranks = paddle.distributed.get_world_size()
        self._saver = DistributedSaver()
198

199 200
        self._orig_main_prog = static.default_main_program()
        self._orig_startup_prog = static.default_startup_program()
201
        self._orig_dist_context = get_default_distributed_context()
202
        self._dist_contexts = {}
Z
zhaoyingli 已提交
203 204
        self._fwd_main_progs = {}
        self._fwd_dist_contexts = {}
205 206
        self._serial_main_progs = {}
        self._serial_startup_progs = {}
207 208 209 210
        self._dist_main_progs = defaultdict(dict)  # dist main programs
        self._dist_startup_progs = defaultdict(dict)  # dist startup programs
        self._feed_vars = {}
        self._fetch_vars = {}
211
        self._planners = {}
212 213
        self._has_prepared = {"train": False, "eval": False, "predict": False}
        self._has_prepared_reader = {
214 215
            "train": False,
            "eval": False,
Z
zhaoyingli 已提交
216
            "predict": False,
217
        }
218 219 220 221
        self._inputs_spec = []
        self._labels_spec = []
        self._inputs = []
        self._labels = []
Z
zhaoyingli 已提交
222
        self._losses = []
223

Z
zhaoyingli 已提交
224
        self._mode = None
225 226
        self._skip_build = False
        self._outside_dataloader = False
227
        self._planned_mode = None
228 229
        self._dygraph_mode = False
        self._tuning = self._strategy.tuning
230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250

        self.history = None

    def _prepare_data_spec(self, data, split, batch_size):
        inputs_spec = []
        labels_spec = []
        if isinstance(data, paddle.io.IterableDataset):
            if split is None:
                inputs, labels = next(iter(data))
            else:
                sample = next(iter(data))
                inputs = sample[:split]
                labels = sample[split:]
        elif isinstance(data, paddle.io.Dataset):
            if split is None:
                inputs, labels = data[0]
            else:
                sample = data[0]
                inputs = sample[:split]
                labels = sample[split:]
        else:
Z
zhaoyingli 已提交
251 252 253 254 255
            raise TypeError(
                "Data should be a Dataset or IterableDatset, but received {}.".format(
                    type(data).__name__
                )
            )
256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274
        inputs = to_list(inputs)
        labels = to_list(labels)

        num_shards = self._strategy.dataset.num_shards

        def _adjust_item_spec(num_shards, spec):
            if num_shards > 1 and len(spec.shape) > 1:
                spec.shape[0] = spec.shape[0] * num_shards

        def _infer_item_spec(item, name, batch_size, specs):
            if isinstance(item, np.ndarray):
                spec = InputSpec.from_numpy(item, name)
                if batch_size is None:
                    _adjust_item_spec(num_shards, spec)
                    specs.append(spec)
                else:
                    specs.append(spec.batch(batch_size))
            elif isinstance(item, (Variable, core.VarBase, core.eager.Tensor)):
                spec = InputSpec.from_tensor(item, name)
Z
zhaoyingli 已提交
275
                _adjust_item_spec(num_shards, spec)
276 277 278 279
                if batch_size is None:
                    specs.append(spec)
                else:
                    specs.append(spec.batch(batch_size))
Z
zhaoyingli 已提交
280
            elif isinstance(item, numbers.Number):
281
                specs.append(InputSpec([batch_size], type(item), name))
Z
zhaoyingli 已提交
282 283 284 285 286 287
            else:
                raise TypeError(
                    "The sample's dtype returned of dataset should be number, np.ndarray or Tensor, but got {}".format(
                        type(item).__name__
                    )
                )
288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303

        if inputs is not None:
            for i, item in enumerate(inputs):
                assert item is not None, "Receive None input."
                name = "input" + str(i)
                _infer_item_spec(item, name, batch_size, inputs_spec)
        if labels is not None:
            for i, item in enumerate(labels):
                assert item is not None, "Receive None input."
                name = "label" + str(i)
                _infer_item_spec(item, name, batch_size, labels_spec)

        inputs_spec = self._validate_spec(inputs_spec)
        labels_spec = self._validate_spec(labels_spec)
        return inputs_spec, labels_spec

Z
zhaoyingli 已提交
304
    def _prepare_data_tensor(self, inputs_spec, labels_spec, inputs, labels):
305
        if _non_static_mode() or self._dygraph_mode:
Z
zhaoyingli 已提交
306 307
            raise ValueError("Only support static graph mode.")

308
        if inputs_spec:
Z
zhaoyingli 已提交
309 310 311 312 313 314 315 316 317 318 319 320 321 322
            assert isinstance(
                inputs_spec, list
            ), "inputs should be list, but received {}".format(
                type(inputs_spec)
            )
            assert isinstance(
                inputs, list
            ), "inputs should be list, but received {}".format(type(inputs))
            assert len(inputs_spec) == len(
                inputs
            ), "the number of `inputs_spec` should be equal to `inputs`'s."
            for input_spec, input in zip(inputs_spec, inputs):
                if input_spec.shape != input.shape:
                    input.desc.set_shape(input_spec.shape)
323
        if labels_spec:
Z
zhaoyingli 已提交
324 325 326 327 328 329 330 331 332 333 334 335 336 337 338
            assert isinstance(
                labels_spec, list
            ), "labels should be list, but received {}".format(
                type(labels_spec)
            )
            assert isinstance(
                labels, list
            ), "labels should be list, but received {}".format(type(labels))
            assert len(labels_spec) == len(
                labels
            ), "the number of `labels_spec` should be equal to `labels`'s."
            for label_spec, label in zip(labels_spec, labels):
                if label_spec.shape != label.shape:
                    label.desc.set_shape(label_spec.shape)

339 340 341 342 343 344
        return inputs, labels

    def _prepare_reader(self):
        dist_main_prog = self._dist_main_progs[self._mode][self._cur_rank]
        dist_context = self._dist_contexts[self._mode]
        dist_main_block = dist_main_prog.global_block()
345

346 347
        # NOTE: this list may be changed if Paddle changes the existing rules.
        related_reader_ops = [
Z
zhaoyingli 已提交
348 349 350
            "create_py_reader",
            "create_double_buffer_reader",
            "read",
351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367
        ]
        # remove the first three ops if multiple run fit/evaluate/predict
        if dist_main_block.ops[0].type == 'create_py_reader':
            for i in range(len(related_reader_ops)):
                if dist_main_block.ops[0].type in related_reader_ops:
                    dist_main_block._remove_op(0, sync=False)
        dist_main_block._sync_with_cpp()
        # Step 1: find the reader ops
        reader_op_indices = []
        for idx, op in enumerate(dist_main_block.ops):
            if op.type in related_reader_ops:
                reader_op_indices.append(idx)
        # Step 2: insert the new reader ops to cpp
        new_reader_ops = []
        for idx in reversed(reader_op_indices):
            new_op_desc = dist_main_block.desc._prepend_op()
            new_op_desc.copy_from(dist_main_block.ops[idx].desc)
Z
zhaoyingli 已提交
368 369 370
            new_op = Operator(
                dist_main_block, new_op_desc, type=new_op_desc.type()
            )
371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400
            new_reader_ops.append(new_op)
            dist_op = DistributedOperator(new_op)
            dist_context.add_dist_op_for_program(dist_op)
        # Step 3: insert the new reader ops to python
        for new_op in new_reader_ops:
            dist_main_block.ops.insert(0, new_op)
        for i in range(len(reader_op_indices)):
            reader_op_indices[i] += len(reader_op_indices)
        # Step 4: remove the old reader ops from python and cpp
        for idx in reversed(reader_op_indices):
            op = dist_main_block.ops.pop(idx)
            dist_main_block.desc._remove_op(idx, idx + 1)
        dist_main_block._sync_with_cpp()
        self._has_prepared_reader[self._mode] = True

    def _prepare_feed(self, data, user_feeds, mode):
        feeds = {}
        if data is not None:
            if isinstance(data, (list, tuple)):
                if len(data) == 1 and isinstance(data[0], dict):
                    for name, data in data[0].items():
                        feeds[name] = data
                else:
                    raise ValueError("Unsupported data {}".format(data))
            elif isinstance(data, dict):
                for name, data in data.items():
                    feeds[name] = data
            else:
                raise ValueError("Unsupported data {}".format(data))
        if user_feeds is not None:
Z
zhaoyingli 已提交
401 402 403 404 405
            assert isinstance(
                user_feeds, dict
            ), "user_feeds must be a dict, but receive {}".format(
                type(user_feeds).__name__
            )
406 407 408 409 410 411
            for name, data in user_feeds.items():
                feeds[name] = data
        return feeds

    def _prepare_fetch(self, user_fetches, mode):
        if user_fetches is not None:
Z
zhaoyingli 已提交
412 413 414 415 416
            assert isinstance(
                user_fetches, list
            ), "user_fetches must be a list, but receive {}".format(
                type(user_fetches).__name__
            )
417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447
        fetch_names = []
        fetch_indices = []

        def _process_fetch_group(group_name, var_list):
            group_indices = []
            for var in var_list:
                # Remove duplicate var_names
                if self._is_local_var(var):
                    var_name = _to_name_str(var)
                    if var_name not in fetch_names:
                        fetch_names.append(var_name)
                    group_indices.append(fetch_names.index(var_name))
            if not group_indices:
                fetch_names.append([])
            fetch_indices.append(group_indices)

        if mode != "predict":
            _process_fetch_group("loss", self._fetch_vars[mode]["loss"])
        if mode != "predict":
            metrics = self._fetch_vars[mode]["metrics"]
            for i, var_list in enumerate(metrics):
                _process_fetch_group("metrics_" + str(i), var_list)
        if mode == "predict":
            _process_fetch_group("outputs", self._fetch_vars[mode]["outputs"])
        user_fetches_collection = [
            item[1] for item in get_collection(CollectionNames.FETCHES)
        ]
        var_list = (user_fetches_collection or []) + (user_fetches or [])
        _process_fetch_group("fetches", var_list)
        return fetch_names, fetch_indices

Z
zhaoyingli 已提交
448 449 450 451 452 453 454 455 456 457
    def _prepare_logger(
        self,
        outs,
        epoch=None,
        step=None,
        lr=None,
        fetch_names=None,
        fetch_indices=None,
        mode=None,
    ):
458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505
        logs = {}
        if epoch is not None:
            logs["epoch"] = epoch
        if step is not None:
            logs["step"] = step + 1
        if lr is not None:
            logs["lr"] = lr
        group_idx = 0
        if mode != "predict":
            # logging loss
            loss_indices = fetch_indices[group_idx]
            assert len(loss_indices) <= 1
            for idx in loss_indices:
                logs["loss"] = outs[idx][0]
            group_idx += 1
            # logging metrics
            metric_vars = self._fetch_vars[mode]["metrics"]
            if metric_vars:
                for metric in self._metrics:
                    metrics_indices = fetch_indices[group_idx]
                    metric_out = []
                    for idx in metrics_indices:
                        metric_out.append(outs[idx])
                    if metric_out:
                        metric.update(*metric_out)
                        results = metric.accumulate()
                        for i, res in enumerate(to_list(results)):
                            logs[metric.name()[i]] = res
                    group_idx += 1
        # logging outputs
        elif mode == "predict":
            outputs_indices = fetch_indices[group_idx]
            logs_out = {}
            for idx in outputs_indices:
                logs_out["out%d" % (idx)] = outs[idx]
            logs["outputs"] = logs_out
            group_idx += 1
        # logging user fetches
        collect_fetches = get_collection(CollectionNames.FETCHES)
        logs_fetch = {}
        for name, var in collect_fetches:
            if var.name in fetch_names:
                idx = fetch_names.index(var.name)
                logs_fetch[name or var.name] = outs[idx]
        logs["fetches"] = logs_fetch
        return logs

    def _prepare_program(self, mode):
506
        # Do the build process
507 508 509 510
        self._build(mode)
        # Do the planning process
        self._plan(mode)
        # Do the parallel process
511
        self._parallel(mode)
512 513
        # Init comm and startup program
        self._initialize(mode)
514
        self._has_prepared[mode] = True
515

516
    def _build(self, mode):
517
        if _non_static_mode() or self._dygraph_mode:
518
            paddle.disable_static()
519 520 521
            self._dygraph_mode = True
            self._logger.info("Building model with 'to_static' method.")

Z
zhaoyingli 已提交
522 523 524 525 526 527 528
            self.program_helper = ProgramHelper(
                self._model,
                self._loss,
                self._metrics,
                self._inputs_spec,
                self._labels_spec,
            )
529
            # build forward main program
530
            self.program_helper.build_program(mode)
531

532 533 534
            self.concrete_program = self.program_helper.concrete_program
            serial_main_prog = self.program_helper.main_program
            serial_startup_prog = self.program_helper.startup_program
535

Z
zhaoyingli 已提交
536 537
            self._inputs = self.program_helper.input_vars
            self._labels = self.program_helper.label_vars
538
            outputs = self.program_helper.output_vars
Z
zhaoyingli 已提交
539
            self._losses = self.program_helper.loss_vars
540
            metrics = self.program_helper.metric_vars
541

542
            paddle.enable_static()
543 544 545 546 547 548
        else:
            # build program in static mode
            serial_main_prog = self._serial_main_progs.get(mode, None)
            if serial_main_prog is not None:
                return

549
            outputs = []
550
            metrics = []
Z
zhaoyingli 已提交
551
            self._losses = []
552 553
            serial_main_prog = self._orig_main_prog.clone()
            serial_startup_prog = self._orig_startup_prog.clone()
554
            if not self._skip_build:
Z
zhaoyingli 已提交
555 556 557 558 559 560 561 562 563 564 565
                with static.program_guard(
                    serial_main_prog, serial_startup_prog
                ), utils.unique_name.guard():
                    self._inputs = [
                        s._create_feed_layer() for s in self._inputs_spec
                    ]
                    self._labels = [
                        s._create_feed_layer() for s in self._labels_spec
                    ]

                    outputs = to_list(self._model(*self._inputs))
566

Z
zhaoyingli 已提交
567 568 569 570 571 572 573 574 575 576 577
                    if mode != "predict" and self._loss:
                        assert isinstance(
                            self._loss, paddle.nn.Layer
                        ) or callable(
                            self._loss
                        ), "the type of `loss` of the Engine arguments should be sub classes of `paddle.nn.Layer` or any callable function."
                        self._losses = to_list(
                            self._loss(*(outputs + self._labels))
                        )

                    if mode != "predict" and (outputs or self._labels):
578 579
                        for metric in self._metrics:
                            metrics.append(
Z
zhaoyingli 已提交
580 581 582 583
                                to_list(
                                    metric.compute(*(outputs + self._labels))
                                )
                            )
584
            else:
Z
zhaoyingli 已提交
585 586 587 588
                assert isinstance(
                    self._loss, Variable
                ), "the type of `loss` of the Engine arguments should be Variable."
                self._losses = to_list(self._loss)
589 590 591 592 593 594 595 596

        default_ctx = get_default_distributed_context()
        if not default_ctx.has_annotation:
            # We build the world process group because the data parallel
            # needs all ranks by default.
            new_process_group(list(range(self._nranks)))
            default_ctx.data_parallel = True

Z
zhaoyingli 已提交
597
        feed_vars = {"inputs": self._inputs, "labels": self._labels}
598 599 600

        fetch_vars = {
            "outputs": flatten(outputs),
Z
zhaoyingli 已提交
601 602
            "loss": self._losses,
            "metrics": metrics,
603 604
        }

605 606 607
        if mode != "train":
            serial_main_prog = serial_main_prog.clone(for_test=True)

608
        self._set_recompute_ckpts()
609
        self._dist_contexts[mode] = DistributedContext(
Z
zhaoyingli 已提交
610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628
            serial_main_prog,
            serial_startup_prog,
            self._optimizer,
            self._losses,
            feed_vars,
            fetch_vars,
            self._cluster,
            self._strategy,
        )
        self._fwd_dist_contexts[mode] = DistributedContext(
            serial_main_prog,
            serial_startup_prog,
            self._optimizer,
            self._losses,
            feed_vars,
            fetch_vars,
            self._cluster,
            self._strategy,
        )
629
        self._dist_contexts[mode].gradient_scale = self._strategy.gradient_scale
Z
zhaoyingli 已提交
630
        self._fwd_main_progs[mode] = serial_main_prog.clone()
631

632 633 634
    def _optimization_tuning(self, mode, dataset, batch_size):
        if not self._tuning.enable:
            raise ValueError("Please set `tuning.enable=True`.")
635

636 637 638 639 640 641 642 643
        assert mode == "train"
        # Do the build process
        self._build(mode)
        # Do the planning process
        self._plan(mode)

        dataset.dp_world_size = self._dp_world_sizes
        dataset.dp_rank = self._dp_ranks
644 645

        from .tuner.optimization_tuner import OptimizationTuner
Z
zhaoyingli 已提交
646 647 648 649 650 651 652 653 654 655

        self._optimization_tuner = OptimizationTuner(
            self._tuning.to_dict(),
            self._dist_contexts[mode],
            dataset,
            self._inputs_spec,
            self._labels_spec,
            batch_size=batch_size,
            rank=self._cur_rank,
        )
656 657 658

        self._optimization_tuner.tune()

659
        if self._tuning.run_after_tuning:
660 661
            # update the strategy
            self._dist_contexts[
Z
zhaoyingli 已提交
662 663
                mode
            ]._strategy = self._optimization_tuner.get_best_config()
664

665 666 667 668 669 670
    def _plan(self, mode):
        if self._planned_mode is None:
            self._planned_mode = mode
        else:
            self._init_dist_context(mode)

671 672
        self._planners[mode] = Planner(mode, self._dist_contexts[mode])
        self._planners[mode].plan()
673

674 675 676 677
        # infer data parallel info
        inputs_var = self._dist_contexts[mode].serial_feed_vars["inputs"]
        labels_var = self._dist_contexts[mode].serial_feed_vars["labels"]
        block = self._dist_contexts[mode].serial_main_program.global_block()
678
        # TODO: check this feed_list
679 680 681 682 683
        feed_list = []
        for var in inputs_var + labels_var:
            if var.name in block.vars:
                feed_list.append(block.vars[var.name])

684 685
        self._dp_world_sizes = []
        self._dp_ranks = []
686
        for feed_var in feed_list:
Z
zhaoyingli 已提交
687 688 689
            dp_world_size, dp_rank = get_input_split_info(
                self._cur_rank, feed_var, self._dist_contexts[mode]
            )
690 691
            self._dp_world_sizes.append(dp_world_size)
            self._dp_ranks.append(dp_rank)
692

693
    def _parallel(self, mode, all_ranks=False):
694 695 696
        # Parallelize program based on the planner's results
        # For now, the completer has to be passed to the planner,
        # because we may use it to complete the annotation of the backwarkward and update.
Z
zhaoyingli 已提交
697 698 699
        parallelizer = Parallelizer(
            mode, self._planners[mode].completer, self._dist_contexts[mode]
        )
700 701 702 703
        if not all_ranks:
            parallelizer.parallel(self._cur_rank)
        else:
            parallelizer.parallel_all()
704 705

    def _init_dist_context(self, mode):
706
        # Init dist_context['mode'] with the first planned dist_context
707 708 709 710 711 712 713 714 715 716
        # to guarantee that train/eval/predict mode have same parallel strategy
        dist_context = self._dist_contexts[mode]
        origin_main_prog = dist_context._original_serial_main_program
        ref_mode = self._planned_mode
        ref_dist_context = self._dist_contexts[ref_mode]
        ref_origin_main_prog = ref_dist_context._original_serial_main_program
        ref_blocks = ref_origin_main_prog.blocks
        for ib, block in enumerate(origin_main_prog.blocks):
            for iop, op in enumerate(block.ops):
                ref_op = ref_blocks[ib].ops[iop]
Z
zhaoyingli 已提交
717 718 719 720 721 722 723 724
                assert (
                    op.type == ref_op.type
                ), "'{}' mode op '{}' is different with '{}' op '{}'. ".format(
                    mode, op.type, ref_mode, ref_op.type
                )
                ref_op_dist_attr = (
                    ref_dist_context.get_op_dist_attr_for_program(ref_op)
                )
725 726 727
                dist_context.set_op_dist_attr_for_program(op, ref_op_dist_attr)

    def _initialize(self, mode):
728
        # Get the current content from the distributed context
729
        self._serial_main_progs[mode] = self._dist_contexts[
Z
zhaoyingli 已提交
730 731
            mode
        ].serial_main_program
732
        self._serial_startup_progs[mode] = self._dist_contexts[
Z
zhaoyingli 已提交
733 734
            mode
        ].serial_startup_program
735
        self._dist_main_progs[mode] = self._dist_contexts[
Z
zhaoyingli 已提交
736 737
            mode
        ].dist_main_programs
738
        self._dist_startup_progs[mode] = self._dist_contexts[
Z
zhaoyingli 已提交
739 740
            mode
        ].dist_startup_programs
741 742
        self._feed_vars[mode] = self._dist_contexts[mode].serial_feed_vars
        self._fetch_vars[mode] = self._dist_contexts[mode].serial_fetch_vars
743
        self._optimizer = self._dist_contexts[mode]._serial_optimizer
744

745 746 747 748
        if self._nranks > 1:
            # Traverse different rank programs and traverse each op of them,
            # instantiate communication by process_mapping.
            all_process_groups = get_all_process_groups()
749

750 751 752 753 754 755 756
            if self._strategy.auto_mode == "full":
                initialize_pg_in_full_mode(all_process_groups, cur_rank)
            else:
                for process_group in all_process_groups:
                    if self._cur_rank not in process_group.ranks:
                        continue
                    process_group.instantiate()
757

758 759 760
        place = _get_device()
        if isinstance(place, fluid.CUDAPlace):
            place = fluid.CUDAPlace(ParallelEnv().dev_id)
761

762 763 764 765 766
        if self._strategy.seed:
            paddle.seed(self._strategy.seed + self._dp_ranks[0])
            np.random.seed(self._strategy.seed + self._dp_ranks[0])
            random.seed(self._strategy.seed + self._dp_ranks[0])

767
        if self._dygraph_mode:
768 769 770
            dist_context = self._dist_contexts[mode]
            dist_main_program = self._dist_main_progs[mode][self._cur_rank]
            self.program_helper.init(dist_main_program, place, dist_context)
771

772
        if self._executor is None:
773
            self._executor = paddle.static.Executor(place)
774 775 776 777 778 779 780 781 782 783
            uninitialized = []
            dist_startup_prog = self._dist_startup_progs[mode][self._cur_rank]
            for var in dist_startup_prog.list_vars():
                scope_var = global_scope().find_var(var.name)
                if scope_var and scope_var.get_tensor()._is_initialized():
                    continue
                uninitialized.append(var)
            if uninitialized:
                prune_startup_prog = dist_startup_prog._prune(uninitialized)
                self._executor.run(prune_startup_prog)
784

785
            if hasattr(self, "_state_dict") and hasattr(self, "_dist_attr"):
Z
zhaoyingli 已提交
786 787 788
                self._set_state_dict(
                    mode, self._strict, self._state_dict, self._dist_attr
                )
789 790

        if self._strategy.reinit:
791
            self._logger.info("NOTE: parameters will be re-initialized.")
792 793 794
            dist_startup_prog = self._dist_startup_progs[mode][self._cur_rank]
            self._executor.run(dist_startup_prog)

Z
zhaoyingli 已提交
795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812
    def fit(
        self,
        train_data,
        train_sample_split=None,
        batch_size=1,
        epochs=1,
        steps_per_epoch=None,
        log_freq=10,
        save_dir=None,
        save_freq=1,
        valid_data=None,
        valid_sample_split=None,
        valid_freq=1,
        valid_steps=None,
        collate_fn=None,
        callbacks=None,
        verbose=2,
    ):
813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858
        """
        Trains the model for a fixed number of epochs. If `valid_data` is set,
        evaluation will be done at the end of each epoch.

        Args:
            train_data (Dataset): An instance of paddle paddle.io.Dataset. Default: None.
            train_sample_split (int, optional): Each sample of the train dataset is assumed
                to be a (input, label) pair by default and has two items. If each sample has
                more than two items, train_sample_split specifies how to split these items into
                input and label. The items before it are input and the left are label. Default: None.
            batch_size (int, optional): The batch size of train_data and valid_data if provided.
                The user's data will be used directly without batching if set to None. Default: 1.
            epochs (int, optional): The number of epochs to train the model. Default: 1.
            steps_per_epoch (int, optional): The total number of steps (batches of samples)
                is executed in one epoch before stating the next one. If None, it is equal to
                the number samples in your dataset divided by the batch size. Default: None.
            valid_data (Dataset, optional): An instance of paddle paddle.io.Dataset used for
                evaluation at the end of epoch. No evaluation will be done if set to None.
                Default: None. (Unsupported for now)
            valid_freq (int, optional): Only relevant if valid_data is provided. This specifies
                how many training epochs before a new evaluation is performed. Default: 1.
            valid_sample_split (int, optional): Only relevant if valid_data is provided.
                Each sample of the valid dataset is assumed to be a (input, label) pair
                by default and has two items. If each sample has more than two items,
                valid_sample_split specifies how to split these items into input and label.
                The items before it are input and the left are label. Default: None.
            valid_steps (int, optional): Only relevant if valid_data is provided.
                It is the total number of steps (batches of samples) to draw before
                stopping validation at the end of every epoch. If None, validation will run until the
                `valid_data` dataset is exhausted. The validation will start from the
                beginning of the dataset at each epoch. Default: None.
            collate_fn(callable, optional): function to generate mini-batch data by merging
                the sample list, None for only stack each fields of sample in axis
                0. Default None.
            callbacks (Callback|None, optional): A list of `Callback` instances to apply
                during training. Default: None. (Unused for now)

        Returns:
            None

        Examples:

            .. code-block:: python

                import paddle
                import paddle.vision.transforms as T
859
                from paddle.distributed.fleet import auto
860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878
                from paddle.vision.datasets import MNIST

                transform = T.Compose([
                    T.Transpose(),
                    T.Normalize([127.5], [127.5])
                ])
                train_dataset = MNIST(mode='train', transform=transform)

                model = paddle.vision.models.LeNet()
                loss = paddle.nn.CrossEntropyLoss()
                optimizer = paddle.optimizer.Adam(
                    learning_rate=0.001, parameters=model.parameters())
                metrics = paddle.metric.Accuracy(topk=(1, 2))

                engine = auto.Engine(model, loss, optimizer, metrics)
                engine.fit(train_dataset,
                           epochs=2,
                           batch_size=64)
        """
879 880
        self._mode = 'train'
        self._inputs_spec, self._labels_spec = self._prepare_data_spec(
Z
zhaoyingli 已提交
881 882
            train_data, train_sample_split, batch_size
        )
883 884
        if not self._has_prepared[self._mode]:
            self._prepare_program(self._mode)
885
        else:
886 887 888 889 890 891 892 893 894
            self._switch_mode(self._mode)

        train_dataloader = self._prepare_dataloader_from_generator(
            dataset=train_data,
            capacity=70,
            iterable=False,
            batch_size=batch_size,
            epochs=epochs,
            steps_per_epoch=steps_per_epoch,
Z
zhaoyingli 已提交
895 896
            collate_fn=collate_fn,
        )
897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914

        fetch_names, fetch_indices = self._prepare_fetch(None, mode=self._mode)

        cbks = config_callbacks(
            callbacks,
            engine=self,
            batch_size=batch_size,
            epochs=epochs,
            steps=train_dataloader._steps,
            log_freq=log_freq,
            save_freq=save_freq,
            save_dir=save_dir,
            verbose=verbose,
            metrics=self._metrics_name(),
            acc_step=self._k_steps,
        )

        cbks.on_begin('train')
915
        for epoch in range(epochs):
916 917
            logs = {}
            cbks.on_epoch_begin(epoch)
918
            for step, _ in enumerate(train_dataloader):
919
                cbks.on_batch_begin('train', step, logs)
920
                try:
921 922
                    outs = self._executor.run(
                        self.main_program,
923
                        fetch_list=fetch_names,
924
                        use_program_cache=self._strategy.use_cache,
Z
zhaoyingli 已提交
925 926
                        return_numpy=self._strategy.return_numpy,
                    )
927
                except core.EOFException:
928
                    break
929
                lr = get_lr(self._optimizer)
Z
zhaoyingli 已提交
930 931 932 933 934 935 936 937 938
                logs = self._prepare_logger(
                    outs,
                    epoch,
                    step,
                    lr,
                    fetch_names,
                    fetch_indices,
                    self._mode,
                )
939 940 941
                cbks.on_batch_end('train', step, logs)

            if valid_data and (epoch + 1) % valid_freq == 0:
Z
zhaoyingli 已提交
942 943 944 945 946 947 948 949 950 951
                val_logs = self.evaluate(
                    valid_data,
                    valid_sample_split,
                    batch_size,
                    valid_steps,
                    log_freq,
                    collate_fn,
                    callbacks,
                    verbose,
                )
952
                val_logs = {
Z
zhaoyingli 已提交
953
                    "val_" + name: val for name, val in val_logs.items()
954 955
                }
                logs.update(val_logs)
956 957 958
                self._switch_mode("train")
            else:
                self._reset_metrics()
959 960 961 962 963

            cbks.on_epoch_end(epoch, logs)

        cbks.on_end('train', logs)
        return self.history
964

Z
zhaoyingli 已提交
965 966 967 968 969 970 971 972 973 974 975
    def evaluate(
        self,
        valid_data,
        valid_sample_split=None,
        batch_size=1,
        steps=None,
        log_freq=10,
        collate_fn=None,
        callbacks=None,
        verbose=2,
    ):
976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993
        """
        Evaluate the loss and metrics of the model on evaluation data.

        Args:
            valid_data (Dataset): An instance of paddle paddle.io.Dataset. Default: None.
            valid_sample_split (int, optional): Each sample of the eval dataset is assumed
                to be a (input, label) pair by default and has two items. If each sample has
                more than two items, valid_sample_split specifies how to split these items into
                input and label. The items before it are input and the left are label. Default: None.
            batch_size (int, optional): The batch size of valid_data. The user's data will
                be used directly without batching if set to None. Default: 1.
            steps (int, optional): It is the total number of steps (batches of samples) to draw before
                stopping evaluation. If None, evaluation will run until the `valid_data` dataset is exhausted.
                The evaluation will start from the beginning of the dataset in each run. Default: None.
            collate_fn(callable, optional): function to generate mini-batch data by merging
                the sample list, None for only stack each fields of sample in axis
                0. Default None.
            callbacks (Callback|None, optional): A list of `Callback` instances to apply
994
                during evaluating. Default: None. (Unused for now)
995 996 997 998 999 1000 1001 1002 1003 1004

        Returns:
            None

        Examples:

            .. code-block:: python

                import paddle
                import paddle.vision.transforms as T
1005
                from paddle.distributed.fleet import auto
1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021
                from paddle.vision.datasets import MNIST

                transform = T.Compose([
                    T.Transpose(),
                    T.Normalize([127.5], [127.5])
                ])
                valid_dataset = MNIST(mode='test', transform=transform)

                model = paddle.vision.models.LeNet()
                loss = paddle.nn.CrossEntropyLoss()
                metrics = paddle.metric.Accuracy(topk=(1, 2))

                engine = auto.Engine(model, loss, metrics=metrics)
                engine.evaluate(valid_dataset, batch_size=64)

        """
1022 1023
        self._mode = 'eval'
        self._inputs_spec, self._labels_spec = self._prepare_data_spec(
Z
zhaoyingli 已提交
1024 1025
            valid_data, valid_sample_split, batch_size
        )
1026 1027
        if not self._has_prepared[self._mode]:
            self._prepare_program(self._mode)
1028
        else:
1029 1030 1031 1032 1033 1034 1035 1036
            self._switch_mode(self._mode)

        valid_dataloader = self._prepare_dataloader_from_generator(
            dataset=valid_data,
            capacity=70,
            iterable=False,
            batch_size=batch_size,
            steps_per_epoch=steps,
Z
zhaoyingli 已提交
1037 1038
            collate_fn=collate_fn,
        )
1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051

        fetch_names, fetch_indices = self._prepare_fetch(None, mode=self._mode)

        cbks = config_callbacks(
            callbacks,
            engine=self,
            batch_size=batch_size,
            log_freq=log_freq,
            verbose=verbose,
            metrics=self._metrics_name(),
        )

        eval_steps = valid_dataloader._steps
Z
zhaoyingli 已提交
1052 1053 1054
        cbks.on_begin(
            'eval', {'steps': eval_steps, 'metrics': self._metrics_name()}
        )
1055
        logs = {}
1056
        for step, _ in enumerate(valid_dataloader):
1057
            cbks.on_batch_begin('eval', step, logs)
1058
            try:
1059 1060
                outs = self._executor.run(
                    self.main_program,
1061
                    fetch_list=fetch_names,
1062
                    use_program_cache=self._strategy.use_cache,
Z
zhaoyingli 已提交
1063 1064
                    return_numpy=self._strategy.return_numpy,
                )
1065
            except core.EOFException:
1066
                break
Z
zhaoyingli 已提交
1067 1068 1069
            logs = self._prepare_logger(
                outs, None, step, None, fetch_names, fetch_indices, self._mode
            )
1070 1071
            cbks.on_batch_end('eval', step, logs)
        cbks.on_end('eval', logs)
1072
        self._reset_metrics()
1073
        return logs
1074

Z
zhaoyingli 已提交
1075 1076 1077 1078 1079 1080 1081 1082 1083 1084
    def predict(
        self,
        test_data,
        test_sample_split=None,
        batch_size=1,
        steps=None,
        collate_fn=None,
        callbacks=None,
        verbose=2,
    ):
1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113
        """
        Compute the output predictions on testing data.

        Args:
            test_data (Dataset): An instance of paddle paddle.io.Dataset. Default: None.
            test_sample_split (int, optional): Each sample of the test dataset is assumed
                to be a (input, label) pair by default and has two items. If each sample has
                more than two items, test_sample_split specifies how to split these items into
                input and label. The items before it are input and the left are label. Default: None.
            batch_size (int, optional): The batch size of test_data. The user's data will
                be used directly without batching if set to None. Default: 1.
            steps (int, optional): It is the total number of steps (batches of samples) to draw before
                stopping predict. If None, predict will run until the `test_data` dataset is exhausted.
                The predict will start from the beginning of the dataset in each run. Default: None.
            collate_fn(callable, optional): function to generate mini-batch data by merging
                the sample list, None for only stack each fields of sample in axis
                0. Default None.
            callbacks (Callback|None, optional): A list of `Callback` instances to apply
                during testing. Default: None. (Unused for now)

        Returns:
            None

        Examples:

            .. code-block:: python

                import paddle
                import paddle.vision.transforms as T
1114
                from paddle.distributed.fleet import auto
1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127
                from paddle.vision.datasets import MNIST

                transform = T.Compose([
                    T.Transpose(),
                    T.Normalize([127.5], [127.5])
                ])
                valid_dataset = MNIST(mode='test', transform=transform)

                model = paddle.vision.models.LeNet()

                engine = auto.Engine(model)
                engine.predict(valid_dataset, batch_size=64)
        """
1128 1129
        self._mode = 'predict'
        self._inputs_spec, self._labels_spec = self._prepare_data_spec(
Z
zhaoyingli 已提交
1130 1131
            test_data, test_sample_split, batch_size
        )
1132 1133
        if not self._has_prepared[self._mode]:
            self._prepare_program(self._mode)
1134
        else:
1135
            self._switch_mode(self._mode)
1136

1137 1138 1139 1140 1141 1142
        test_dataloader = self._prepare_dataloader_from_generator(
            dataset=test_data,
            capacity=70,
            iterable=False,
            batch_size=batch_size,
            steps_per_epoch=steps,
Z
zhaoyingli 已提交
1143 1144
            collate_fn=collate_fn,
        )
1145 1146

        fetch_names, fetch_indices = self._prepare_fetch(None, mode=self._mode)
1147 1148

        outputs = []
1149 1150 1151 1152
        cbks = config_callbacks(callbacks, engine=self, verbose=verbose)
        test_steps = test_dataloader._steps
        cbks.on_begin('predict', {'steps': test_steps})
        logs = {}
1153
        for step, _ in enumerate(test_dataloader):
1154
            cbks.on_batch_begin('predict', step, logs)
1155
            try:
1156 1157
                outs = self._executor.run(
                    self.main_program,
1158
                    fetch_list=fetch_names,
1159
                    use_program_cache=self._strategy.use_cache,
Z
zhaoyingli 已提交
1160 1161
                    return_numpy=self._strategy.return_numpy,
                )
1162
            except core.EOFException:
1163
                break
Z
zhaoyingli 已提交
1164 1165 1166
            logs = self._prepare_logger(
                outs, None, step, None, fetch_names, fetch_indices, self._mode
            )
1167 1168 1169
            cbks.on_batch_end('predict', step, logs)
            outputs.append(list(logs["outputs"].values()))
        cbks.on_end('predict', logs)
1170
        return outputs
1171

Z
zhaoyingli 已提交
1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188
    def dataloader(
        self,
        dataset,
        batch_size=1,
        shuffle=False,
        drop_last=False,
        collate_fn=None,
        num_workers=0,
        use_buffer_reader=True,
        use_shared_memory=True,
        timeout=0,
        worker_init_fn=None,
        epochs=1,
        steps_per_epoch=None,
        sample_split=1,
        mode=None,
    ):
1189 1190 1191
        if mode is not None:
            self.to_mode(mode)
        self._inputs_spec, self._labels_spec = self._prepare_data_spec(
Z
zhaoyingli 已提交
1192 1193
            dataset, sample_split, batch_size
        )
1194 1195 1196 1197
        if not self._has_prepared[self._mode]:
            self._prepare_program(self._mode)
        else:
            self._switch_mode(self._mode)
Z
zhaoyingli 已提交
1198

1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211
        dataloader = self._prepare_dataloader(
            dataset,
            return_list=False,
            batch_size=batch_size,
            shuffle=shuffle,
            drop_last=drop_last,
            collate_fn=collate_fn,
            num_workers=num_workers,
            use_buffer_reader=use_buffer_reader,
            use_shared_memory=use_shared_memory,
            timeout=timeout,
            worker_init_fn=worker_init_fn,
            epochs=epochs,
Z
zhaoyingli 已提交
1212 1213
            steps_per_epoch=steps_per_epoch,
        )
1214
        return dataloader
1215

Z
zhaoyingli 已提交
1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230
    def dataloader_from_generator(
        self,
        dataset,
        capacity=70,
        use_double_buffer=True,
        iterable=True,
        use_multiprocess=False,
        drop_last=True,
        batch_size=1,
        epochs=1,
        steps_per_epoch=None,
        collate_fn=None,
        sample_split=1,
        mode=None,
    ):
1231 1232 1233
        if mode is not None:
            self.to_mode(mode)
        self._inputs_spec, self._labels_spec = self._prepare_data_spec(
Z
zhaoyingli 已提交
1234 1235
            dataset, sample_split, batch_size
        )
1236 1237 1238 1239
        if not self._has_prepared[self._mode]:
            self._prepare_program(self._mode)
        else:
            self._switch_mode(self._mode)
Z
zhaoyingli 已提交
1240

1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251
        dataloader = self._prepare_dataloader_from_generator(
            dataset=dataset,
            capacity=capacity,
            use_double_buffer=use_double_buffer,
            iterable=iterable,
            return_list=False,
            use_multiprocess=use_multiprocess,
            drop_last=drop_last,
            batch_size=batch_size,
            epochs=epochs,
            steps_per_epoch=steps_per_epoch,
Z
zhaoyingli 已提交
1252 1253
            collate_fn=collate_fn,
        )
1254 1255
        return dataloader

Z
zhaoyingli 已提交
1256 1257 1258 1259 1260 1261 1262 1263 1264 1265
    def prepare(
        self,
        inputs_spec=None,
        labels_spec=None,
        inputs=None,
        labels=None,
        main_program=None,
        startup_program=None,
        mode=None,
    ):
1266 1267
        if mode is not None:
            self.to_mode(mode)
Z
zhaoyingli 已提交
1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283

        if not self._mode:
            raise ValueError(
                "Please set mode to be prepared with `prepare(mode=...)`"
            )

        if self._has_prepared[self._mode]:
            return

        inputs_spec = self._validate_spec(inputs_spec)
        labels_spec = self._validate_spec(labels_spec)
        inputs = self._validate_vars(inputs)
        labels = self._validate_vars(labels)

        self._orig_main_prog = main_program
        self._orig_startup_prog = startup_program
1284 1285
        if inputs or labels:
            self._skip_build = True
Z
zhaoyingli 已提交
1286 1287 1288
            inputs, labels = self._prepare_data_tensor(
                inputs_spec, labels_spec, inputs, labels
            )
1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299
            if self._orig_main_prog is None:
                self._orig_main_prog = static.default_main_program()
            if self._orig_startup_prog is None:
                self._orig_startup_prog = static.default_startup_program()
        elif inputs_spec or labels_spec:
            self._outside_dataloader = True
            if self._orig_main_prog is None:
                self._orig_main_prog = static.default_main_program()
            if self._orig_startup_prog is None:
                self._orig_startup_prog = static.default_startup_program()
        else:
Z
zhaoyingli 已提交
1300 1301 1302 1303 1304 1305 1306 1307 1308 1309
            assert (
                self._inputs_spec and self._labels_spec
            ), "Please call the dataloader(...) before calling prepare(...)"

        self._inputs_spec, self._labels_spec = inputs_spec, labels_spec
        self._inputs, self._labels = inputs, labels
        if not self._has_prepared[self._mode]:
            self._prepare_program(self._mode)
        else:
            self._switch_mode(self._mode)
1310 1311 1312 1313 1314 1315

    def run(self, data=None, feed=None, fetch_list=None, mode=None):
        if mode is not None:
            self.to_mode(mode)
        feed_dict = self._prepare_feed(data, feed, self._mode)
        fetch_names, fetch_indices = self._prepare_fetch(fetch_list, self._mode)
Z
zhaoyingli 已提交
1316 1317 1318 1319
        if (
            self._outside_dataloader
            and not self._has_prepared_reader[self._mode]
        ):
1320
            self._prepare_reader()
Z
zhaoyingli 已提交
1321 1322 1323 1324 1325 1326 1327 1328 1329 1330
        outs = self._executor.run(
            self.main_program,
            feed=feed_dict,
            fetch_list=fetch_names,
            use_program_cache=self._strategy.use_cache,
            return_numpy=self._strategy.return_numpy,
        )
        logs = self._prepare_logger(
            outs, None, None, None, fetch_names, fetch_indices, self._mode
        )
1331 1332
        return logs

Z
zhaoyingli 已提交
1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348
    def _prepare_dataloader(
        self,
        dataset,
        return_list=True,
        batch_size=1,
        shuffle=False,
        drop_last=False,
        collate_fn=None,
        num_workers=0,
        use_buffer_reader=True,
        use_shared_memory=True,
        timeout=0,
        worker_init_fn=None,
        epochs=1,
        steps_per_epoch=None,
    ):
1349 1350

        if self._strategy.gradient_merge and batch_size is not None:
Z
zhaoyingli 已提交
1351 1352 1353 1354 1355
            assert (
                batch_size % self._k_steps == 0
            ), "Requires batch_size:[{}] to be divisible by k_steps:[{}].".format(
                batch_size, self._k_steps
            )
1356 1357
            batch_size //= self._k_steps

1358 1359
        dist_main_prog = self._dist_main_progs[self._mode][self._cur_rank]
        dist_startup_prog = self._dist_startup_progs[self._mode][self._cur_rank]
1360
        dist_main_block = dist_main_prog.global_block()
1361

1362 1363 1364 1365
        # NOTE: Get feed_list, then insert dataloader op with sharded var shape.
        # Cause predict_program does not contain labels var,
        # then we will add labels var from serial_program to dist_program,
        # that maintains the length of feed_list equal to the length of dataset's values.
1366 1367
        inputs_var = self._feed_vars[self._mode]["inputs"]
        labels_var = self._feed_vars[self._mode]["labels"]
1368 1369 1370 1371
        feed_list = []
        for var in inputs_var + labels_var:
            if var.name in dist_main_block.vars:
                feed_list.append(dist_main_block.vars[var.name])
1372 1373 1374 1375
            else:
                copy_var = dist_main_block._clone_variable(var, var.persistable)
                copy_var.desc.set_original_id(var.desc.original_id())
                feed_list.append(copy_var)
1376 1377

        # insert read op at the end of program
1378
        places = paddle.static.cuda_places()
1379
        with static.program_guard(dist_main_prog, dist_startup_prog):
1380
            dataloader = DistributedDataLoader(
1381
                dataset,
1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396
                feed_list=feed_list,
                places=places,
                return_list=return_list,
                batch_size=batch_size,
                shuffle=shuffle,
                drop_last=drop_last,
                collate_fn=collate_fn,
                num_workers=num_workers,
                use_buffer_reader=use_buffer_reader,
                use_shared_memory=use_shared_memory,
                timeout=timeout,
                worker_init_fn=worker_init_fn,
                epochs=epochs,
                steps_per_epoch=steps_per_epoch,
                split_data=self._strategy.split_data,
1397
                data_parallel_world_size=self._dp_world_sizes,
Z
zhaoyingli 已提交
1398 1399
                data_parallel_rank=self._dp_ranks,
            )
1400

1401 1402
        return dataloader

Z
zhaoyingli 已提交
1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416
    def _prepare_dataloader_from_generator(
        self,
        dataset,
        capacity=None,
        use_double_buffer=True,
        iterable=True,
        return_list=False,
        use_multiprocess=False,
        drop_last=True,
        batch_size=1,
        epochs=1,
        steps_per_epoch=None,
        collate_fn=None,
    ):
1417 1418

        if self._strategy.gradient_merge and batch_size is not None:
Z
zhaoyingli 已提交
1419 1420 1421 1422 1423
            assert (
                batch_size % self._k_steps == 0
            ), "Requires batch_size:[{}] to be divisible by k_steps:[{}].".format(
                batch_size, self._k_steps
            )
1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462
            batch_size //= self._k_steps

        dist_main_prog = self._dist_main_progs[self._mode][self._cur_rank]
        dist_startup_prog = self._dist_startup_progs[self._mode][self._cur_rank]
        dist_main_block = dist_main_prog.global_block()

        # NOTE: Get feed_list, then insert dataloader op with sharded var shape.
        # Cause predict_program does not contain labels var,
        # then we will add labels var from serial_program to dist_program,
        # that maintains the length of feed_list equal to the length of dataset's values.
        inputs_var = self._feed_vars[self._mode]["inputs"]
        labels_var = self._feed_vars[self._mode]["labels"]
        feed_list = []
        for var in inputs_var + labels_var:
            if var.name in dist_main_block.vars:
                feed_list.append(dist_main_block.vars[var.name])
            else:
                copy_var = dist_main_block._clone_variable(var, var.persistable)
                copy_var.desc.set_original_id(var.desc.original_id())
                feed_list.append(copy_var)

        places = paddle.static.cuda_places()
        with static.program_guard(dist_main_prog, dist_startup_prog):
            dataloader = DistributedDataLoaderFromGenerator(
                dataset=dataset,
                feed_list=feed_list,
                capacity=capacity,
                use_double_buffer=use_double_buffer,
                iterable=iterable,
                return_list=return_list,
                use_multiprocess=use_multiprocess,
                drop_last=drop_last,
                places=places,
                batch_size=batch_size,
                epochs=epochs,
                steps_per_epoch=steps_per_epoch,
                collate_fn=collate_fn,
                split_data=self._strategy.split_data,
                data_parallel_world_size=self._dp_world_sizes,
Z
zhaoyingli 已提交
1463 1464
                data_parallel_rank=self._dp_ranks,
            )
1465 1466 1467 1468 1469 1470
        self._prepare_reader()
        return dataloader

    def _tune(self, tune_data, tune_sample_split=None, batch_size=1):
        self._mode = 'train'
        self._inputs_spec, self._labels_spec = self._prepare_data_spec(
Z
zhaoyingli 已提交
1471 1472
            tune_data, tune_sample_split, batch_size
        )
1473 1474
        self._optimization_tuning(self._mode, tune_data, batch_size)

1475 1476
    def _validate_spec(self, specs):
        specs = to_list(specs)
1477
        self._k_steps = self._strategy.gradient_merge.k_steps
1478 1479
        if specs is not None:
            for i, spec in enumerate(specs):
Z
zhaoyingli 已提交
1480 1481 1482 1483
                if not isinstance(spec, InputSpec):
                    raise TypeError(
                        "'spec' must be object of class `paddle.static.InputSpec`."
                    )
1484 1485
                if spec.name is None:
                    raise ValueError(
Z
zhaoyingli 已提交
1486 1487 1488 1489
                        "Requires Input[{}].name != None, but receive `None` with {}.".format(
                            i, spec
                        )
                    )
1490 1491
                if self._k_steps > 1:
                    shape = list(spec.shape)
Z
zhaoyingli 已提交
1492 1493 1494 1495 1496
                    assert (
                        shape[0] % self._k_steps == 0
                    ), "Requires batch_size[{}] to be divisible by k_steps[{}].".format(
                        spec.shape[0], self._k_steps
                    )
1497 1498
                    shape[0] //= self._k_steps
                    spec.shape = shape
Z
zhaoyingli 已提交
1499 1500 1501 1502 1503 1504 1505 1506 1507
        return specs or []

    def _validate_vars(self, vars):
        vars = to_list(vars)
        if vars is not None:
            for i, var in enumerate(vars):
                if not isinstance(var, Variable):
                    raise TypeError("'var' must be a `Variable`.")
        return vars or []
1508

1509 1510 1511 1512
    def _is_local_var(self, var):
        var_name = _to_name_str(var)
        return var_name in self.main_program.global_block().vars

1513 1514 1515 1516
    def _set_recompute_ckpts(self):
        # NOTE hack to enable recompute in engine api for GPT-3
        # TODO support more PaddleNLP/CV models here

1517
        recompute = self._strategy.recompute
1518 1519

        # extract ckpts by specific model
1520
        if isinstance(self._model, paddle.nn.Layer):
Z
zhaoyingli 已提交
1521 1522 1523 1524 1525 1526
            if hasattr(
                self._model, "gpt"
            ) and self._model.__class__.__name__ in [
                'GPTForPretraining',
                'GPTForPretrainingAuto',
            ]:
1527
                exact_ckpts = self._model.gpt.checkpoints
1528
            else:
1529
                exact_ckpts = recompute.checkpoints
1530
        else:
1531
            exact_ckpts = recompute.checkpoints
1532 1533

        # modify strategy
1534 1535
        if recompute.enable:
            recompute.checkpoints = exact_ckpts[:]
1536
            logs = {
1537
                'Model Class': self._model.__class__.__name__,
Z
zhaoyingli 已提交
1538
                'Applied Recompute ckpts': exact_ckpts,
1539 1540 1541
            }
            self._logger.info(logs)

1542 1543 1544
    def _reset_metrics(self):
        for metric in self._metrics:
            metric.reset()
1545

1546 1547 1548 1549 1550 1551
    def _metrics_name(self):
        metrics_name = ['loss'] if self._loss else []
        for m in self._metrics:
            metrics_name.extend(to_list(m.name()))
        return metrics_name

1552
    def _switch_mode(self, mode):
Z
zhaoyingli 已提交
1553 1554 1555
        assert (
            mode in self._dist_main_progs
        ), "{} model is not ready, please call `prepare()` first.".format(mode)
1556 1557 1558 1559
        self.to_mode(mode)
        self._optimizer = self._dist_contexts[mode]._serial_optimizer

    def to_mode(self, mode):
Z
zhaoyingli 已提交
1560 1561 1562 1563 1564
        assert mode in [
            "train",
            "eval",
            "predict",
        ], "mode {} should be one of ['train', 'eval', 'predict']".format(mode)
1565
        self._mode = mode
1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584

    def _set_state_dict(self, mode, strict, state_dict, dist_attr):
        program = self._dist_main_progs[mode][self._cur_rank]
        dist_context = self._dist_contexts[mode]
        cur_dist_attr = get_dist_attr(program, dist_context)
        converter = Converter(state_dict, dist_attr, cur_dist_attr)
        state_dict = converter.convert(strict=strict)
        program.set_state_dict(state_dict)

    def save(self, path, training=True):
        """
        Saves the model, parameters, optimizer state to path.
        If `training` is set to False, only inference model will be saved.

        Args:
            path (str): The file prefix to save model. The format
                is 'dirname/file_prefix' or 'file_prefix'. if empty str.
                A exception will be raised.
            training (bool, optional): Whether to save for training. If not, save
1585
                for inference only. If `training` is set to True, the optimizer state
1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597
                will be saved. Otherwise, only the model and parameters are saved.
                This function will silently overwrite existing file at the target
                location. Default: True.

        Returns:
            None

        Examples:

            .. code-block:: python
                import paddle
                import paddle.vision.transforms as T
1598
                from paddle.distributed.fleet import auto
1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619
                from paddle.vision.datasets import MNIST

                transform = T.Compose([
                    T.Transpose(),
                    T.Normalize([127.5], [127.5])
                ])
                train_dataset = MNIST(mode='train', transform=transform)

                model = paddle.vision.models.LeNet()
                loss = paddle.nn.CrossEntropyLoss()
                optimizer = paddle.optimizer.Adam(
                    learning_rate=0.001, parameters=model.parameters())
                metrics = paddle.metric.Accuracy(topk=(1, 2))

                engine = auto.Engine(model, loss, optimizer, metrics)
                engine.fit(train_dataset,
                           epochs=1,
                           batch_size=64)
                engine.save("./my_model")

        """
1620
        if training:
1621 1622 1623 1624
            assert self._mode in self._serial_main_progs
            serial_program = self._serial_main_progs[self._mode]
            dist_main_prog = self._dist_main_progs[self._mode][self._cur_rank]
            dist_context = self._dist_contexts[self._mode]
Z
zhaoyingli 已提交
1625 1626 1627 1628 1629 1630
            self._saver.save(
                path,
                serial_program=serial_program,
                dist_main_program=dist_main_prog,
                dist_context=dist_context,
            )
1631
        else:
1632 1633 1634 1635
            assert "predict" in self._dist_main_progs
            feed_vars = self._feed_vars["predict"]['inputs']
            fetch_vars = self._fetch_vars["predict"]['outputs']
            dist_main_prog = self._dist_main_progs["predict"][self._cur_rank]
Z
zhaoyingli 已提交
1636 1637 1638 1639 1640 1641 1642
            self._saver.save_inference_model(
                path,
                feed_vars,
                fetch_vars,
                self._executor,
                program=dist_main_prog,
            )
1643

1644 1645 1646 1647 1648 1649 1650 1651 1652 1653
    def load(self, path, strict=True, load_optimizer=True):
        """
        Load the stored model, parameters and optimizer states.

        Args:
            path (str): The prefix of files storing the model states and
                optimizer states.
            strict (bool, optional): Whether to skip the loading of mismatch
                parameter or raise an error when mismatch happens (not found
                the parameter in file storing model states of or receives a
Z
zhaoyingli 已提交
1654
                mismatch shape). Default: True.
1655
            load_optimizer (bool, optional): If True, the stored optimizer
1656
                states is restored. Otherwise, the optimizer states is initialized
Z
zhaoyingli 已提交
1657
                from scratch. Default: True.
1658 1659 1660 1661 1662 1663 1664 1665 1666

        Returns:
            None

        Examples:

            .. code-block:: python
                import paddle
                import paddle.vision.transforms as T
1667
                from paddle.distributed.fleet import auto
1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687
                from paddle.vision.datasets import MNIST

                transform = T.Compose([
                    T.Transpose(),
                    T.Normalize([127.5], [127.5])
                ])
                train_dataset = MNIST(mode='train', transform=transform)

                model = paddle.vision.models.LeNet()
                loss = paddle.nn.CrossEntropyLoss()
                optimizer = paddle.optimizer.Adam(
                    learning_rate=0.001, parameters=model.parameters())
                metrics = paddle.metric.Accuracy(topk=(1, 2))

                engine = auto.Engine(model, loss, optimizer, metrics)
                engine.fit(train_dataset,
                           epochs=1,
                           batch_size=64)
                engine.save("./my_model")
                engine.load("./my_model")
1688

1689 1690 1691
        """
        self._strict = strict
        self._state_dict, self._dist_attr = self._saver.load(
Z
zhaoyingli 已提交
1692 1693
            path, load_optimizer
        )
1694
        return self._state_dict, self._dist_attr
1695

Z
zhaoyingli 已提交
1696
    def cost(self, inputs_spec=None, labels_spec=None, mode=None):
1697 1698 1699 1700 1701 1702 1703 1704 1705 1706
        """
        Get and Print cost, including memory of every rank,
        max memory among all ranks, and the global cost of one step based on
        communication cost(computation cost is 0 by default).
        In the future, the flops information of every rank and global cost including
        computation cost will be added.

        Args:
            inputs_spec(InputSpec): The specification of inputs. Default: None.
            labels_spec(InputSpec): The specification of labels. Default: None.
Z
zhaoyingli 已提交
1707
            mode (str): The engine mode must be in ["train", "predict", "eval"]. Default: None.
1708 1709 1710 1711 1712 1713 1714

        Returns:
            Return the global execution time (ms) and max memory (B).

        """
        # Check parallel mode
        if self._strategy.auto_mode == "full":
Z
zhaoyingli 已提交
1715
            self._logger.info(
1716 1717 1718 1719 1720
                "The cost will be calcudated in the search process when the auto mode is full."
            )
            return

        # Check mode
Z
zhaoyingli 已提交
1721 1722 1723 1724 1725 1726 1727 1728
        mode = mode if mode is not None else self._mode
        assert mode is not None, "Please set mode."
        if mode not in self._has_prepared:
            raise ValueError(
                "The mode {} is not in accepted modes {}".format(
                    mode, list(self._has_prepared.keys())
                )
            )
1729 1730
        self.to_mode(mode)

Z
zhaoyingli 已提交
1731 1732 1733
        if inputs_spec is not None and not self._has_prepared[mode]:
            self._inputs_spec = self._validate_spec(inputs_spec)
            self._labels_spec = self._validate_spec(labels_spec)
1734 1735
            self._build(mode)
            self._plan(mode)
1736
        else:
1737 1738
            if _non_static_mode() or self._dygraph_mode:
                raise ValueError(
Z
zhaoyingli 已提交
1739
                    "Please call `prepare()` or `fit()` or  `evaluate()` or  `predict()` before calling `cost()`."
1740
                )
Z
zhaoyingli 已提交
1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752
            else:
                self._logger.info(
                    "The program whose cost to be estimated must be static default program. Otherwise, please call `prepare()`before calling `cost()`."
                )
                program = paddle.static.default_main_program()
                if (
                    not program.global_block().ops
                    or not program.global_block().ops
                ) and not self._has_prepared[mode]:
                    raise ValueError(
                        "Please call `prepare()` or `fit()` or  `evaluate()` or  `predict()` before calling `cost()`."
                    )
1753

1754 1755
        # Estimate the exec cost and max memory
        global_cost, max_memory = get_cost_from_engine(self, mode)
1756

1757
        return global_cost.time, max_memory
1758 1759 1760

    @property
    def main_program(self):
1761
        return self._dist_main_progs[self._mode][self._cur_rank]
1762 1763 1764

    @property
    def startup_program(self):
1765
        return self._dist_startup_progs[self._mode][self._cur_rank]
1766 1767 1768

    @property
    def dist_context(self):
1769
        return self._dist_contexts[self._mode]
1770 1771 1772

    @property
    def serial_main_program(self):
1773
        return self._serial_main_progs[self._mode]
1774 1775 1776

    @property
    def serial_startup_program(self):
1777
        return self._serial_startup_progs[self._mode]
1778 1779 1780

    @property
    def fetch_vars(self):
1781
        return self._fetch_vars[self._mode]
1782 1783 1784

    @property
    def inputs(self):
1785
        return self._inputs
1786 1787 1788

    @property
    def labels(self):
1789
        return self._labels