Skip to content
体验新版
项目
组织
正在加载...
登录
切换导航
打开侧边栏
PaddlePaddle
Paddle
提交
5595fdbb
P
Paddle
项目概览
PaddlePaddle
/
Paddle
大约 1 年 前同步成功
通知
2298
Star
20931
Fork
5422
代码
文件
提交
分支
Tags
贡献者
分支图
Diff
Issue
1423
列表
看板
标记
里程碑
合并请求
543
Wiki
0
Wiki
分析
仓库
DevOps
项目成员
Pages
P
Paddle
项目概览
项目概览
详情
发布
仓库
仓库
文件
提交
分支
标签
贡献者
分支图
比较
Issue
1,423
Issue
1,423
列表
看板
标记
里程碑
合并请求
543
合并请求
543
Pages
分析
分析
仓库分析
DevOps
Wiki
0
Wiki
成员
成员
收起侧边栏
关闭侧边栏
动态
分支图
创建新Issue
提交
Issue看板
未验证
提交
5595fdbb
编写于
2月 22, 2022
作者:
Y
Yulong Ao
提交者:
GitHub
2月 22, 2022
浏览文件
操作
浏览文件
下载
电子邮件补丁
差异文件
[Auto Parallel] Add the high-level Engine API (#39709)
* [Auto Parallel] Add the high-level Engine API * Update the test cmakefile
上级
c8d6c146
变更
5
隐藏空白更改
内联
并排
Showing
5 changed file
with
552 addition
and
6 deletion
+552
-6
python/paddle/distributed/auto_parallel/dist_context.py
python/paddle/distributed/auto_parallel/dist_context.py
+14
-6
python/paddle/distributed/auto_parallel/dist_loader.py
python/paddle/distributed/auto_parallel/dist_loader.py
+93
-0
python/paddle/distributed/auto_parallel/engine.py
python/paddle/distributed/auto_parallel/engine.py
+309
-0
python/paddle/fluid/tests/unittests/auto_parallel/CMakeLists.txt
...paddle/fluid/tests/unittests/auto_parallel/CMakeLists.txt
+1
-0
python/paddle/fluid/tests/unittests/auto_parallel/test_engine_api.py
...le/fluid/tests/unittests/auto_parallel/test_engine_api.py
+135
-0
未找到文件。
python/paddle/distributed/auto_parallel/dist_context.py
浏览文件 @
5595fdbb
...
...
@@ -45,9 +45,13 @@ class DistributedContext:
One auto-parallel run should use its own DistributedContext to avoid interfering other run.
"""
def
__init__
(
self
,
program
=
None
):
def
__init__
(
self
,
serial_main_prog
=
None
,
serial_startup_prog
=
None
,
dist_main_progs
=
None
,
dist_startup_progs
=
None
):
# Program related data members
self
.
_serial_program
=
program
self
.
_serial_program
=
serial_main_prog
self
.
_is_initialized_for_program
=
False
self
.
_dist_tensors_for_program
=
{}
self
.
_dist_ops_for_program
=
{}
...
...
@@ -65,8 +69,12 @@ class DistributedContext:
self
.
_tensor_id_to_tensor_node_ids
=
{}
# Distributed programs
self
.
_dist_main_programs
=
{}
self
.
_dist_startup_programs
=
{}
self
.
_dist_main_programs
=
dist_main_progs
if
not
self
.
_dist_main_programs
:
self
.
_dist_main_programs
=
{}
self
.
_dist_startup_programs
=
dist_startup_progs
if
not
self
.
_dist_startup_programs
:
self
.
_dist_startup_programs
=
{}
@
property
def
serial_program
(
self
):
...
...
@@ -78,8 +86,8 @@ class DistributedContext:
@
serial_program
.
setter
def
serial_program
(
self
,
program
):
assert
self
.
_serial_program
is
None
,
\
"This distributed context has already been realted to a serial program"
#
assert self._serial_program is None, \
#
"This distributed context has already been realted to a serial program"
self
.
_serial_program
=
program
@
property
...
...
python/paddle/distributed/auto_parallel/dist_loader.py
0 → 100644
浏览文件 @
5595fdbb
# Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License
import
abc
import
numpy
as
np
import
paddle
from
paddle.io
import
DataLoader
,
DistributedBatchSampler
class
DistributedDataLoader
(
metaclass
=
abc
.
ABCMeta
):
def
__init__
(
self
,
dataset
,
batch_size
=
1
,
epochs
=
1
,
data_parallel_world_size
=
None
,
data_parallel_rank
=
None
,
drop_last
=
False
):
self
.
dataset
=
dataset
self
.
batch_size
=
batch_size
self
.
epochs
=
epochs
self
.
data_parallel_world_size
=
data_parallel_world_size
self
.
data_parallel_rank
=
data_parallel_rank
self
.
drop_lost
=
drop_last
if
data_parallel_world_size
is
not
None
:
assert
batch_size
%
data_parallel_world_size
==
0
@
abc
.
abstractmethod
def
__iter__
(
self
):
raise
NotImplementedError
@
abc
.
abstractmethod
def
__next__
(
self
):
raise
NotImplementedError
class
NonIterableGeneratorLoader
(
DistributedDataLoader
):
def
__init__
(
self
,
dataset
,
feed_list
,
places
,
batch_size
=
1
,
epochs
=
1
,
steps_per_epoch
=
1000
,
data_parallel_world_size
=
None
,
data_parallel_rank
=
None
,
drop_last
=
False
):
self
.
feed_list
=
feed_list
self
.
places
=
places
self
.
steps_per_epoch
=
steps_per_epoch
super
(
NonIterableGeneratorLoader
,
self
).
__init__
(
dataset
,
batch_size
,
epochs
,
data_parallel_world_size
,
data_parallel_rank
,
drop_last
)
self
.
_inner_dataloader
=
self
.
_create_inner_dataloader
()
def
__iter__
(
self
):
self
.
_cur_step
=
0
self
.
_inner_dataloader
.
start
()
return
self
def
__next__
(
self
):
if
self
.
_cur_step
<
self
.
steps_per_epoch
:
self
.
_cur_step
+=
1
else
:
self
.
_inner_dataloader
.
reset
()
raise
StopIteration
def
_create_inner_dataloader
(
self
):
def
data_generator
():
batch_data
=
None
for
step
,
data
in
enumerate
(
self
.
dataset
):
if
batch_data
is
None
:
batch_data
=
[[]
for
i
in
range
(
len
(
data
))]
for
idx
,
data_item
in
enumerate
(
data
):
batch_data
[
idx
].
append
(
np
.
array
(
data_item
))
if
(
step
+
1
)
%
self
.
batch_size
==
0
:
yield
batch_data
[
0
],
batch_data
[
1
]
batch_data
=
None
dataloader
=
paddle
.
fluid
.
io
.
DataLoader
.
from_generator
(
feed_list
=
self
.
feed_list
,
capacity
=
70
,
iterable
=
False
)
dataloader
.
set_batch_generator
(
data_generator
,
self
.
places
)
return
dataloader
python/paddle/distributed/auto_parallel/engine.py
0 → 100644
浏览文件 @
5595fdbb
# Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import
copy
import
logging
from
collections
import
defaultdict
import
paddle
from
paddle
import
fluid
from
paddle.io
import
Dataset
from
paddle.fluid.backward
import
append_backward
import
paddle.fluid.core
as
core
from
paddle.static
import
InputSpec
from
paddle.fluid
import
program_guard
from
paddle.fluid.framework
import
Operator
from
paddle.fluid.framework
import
_current_expected_place
as
_get_device
from
paddle.fluid.dygraph.parallel
import
ParallelEnv
from
paddle.distributed.passes
import
new_pass
,
PassContext
from
paddle.distributed.utils
import
get_logger
from
.dist_loader
import
NonIterableGeneratorLoader
from
.dist_op
import
DistributedOperator
from
.dist_tensor
import
DistributedTensor
from
.dist_context
import
DistributedContext
from
.dist_context
import
get_default_distributed_context
from
.dist_context
import
set_default_distributed_context
from
.process_group
import
get_all_process_groups
from
.process_group
import
get_process_group
from
.process_group
import
get_world_process_group
from
.process_group
import
_g_process_group_map
,
ProcessGroup
from
.completion
import
Completer
from
.partitioner
import
Partitioner
from
.reshard
import
reshard
,
HAS_SENT
,
HAS_RECV
,
HAS_ALLGATHER
from
.cluster
import
Cluster
from
.mapper
import
mapping
from
.planner
import
Planner
from
.utils
import
make_data_unshard
from
.utils
import
set_grad_var_shape
from
.utils
import
print_program_with_dist_attr
from
.utils
import
SerialProgramInfo
paddle
.
enable_static
()
def
to_list
(
value
):
if
value
is
None
:
return
value
if
isinstance
(
value
,
(
list
,
tuple
)):
return
list
(
value
)
return
[
value
]
class
Engine
:
def
__init__
(
self
,
model
=
None
,
data_spec
=
None
,
cluster
=
None
,
strategy
=
None
):
self
.
model
=
model
self
.
data_spec
=
data_spec
self
.
cluster
=
cluster
self
.
strategy
=
strategy
self
.
_executor
=
None
self
.
_orig_main_prog
=
fluid
.
default_main_program
()
self
.
_orig_startup_prog
=
fluid
.
default_startup_program
()
self
.
_serial_main_progs
=
{}
self
.
_serial_startup_progs
=
{}
self
.
_dist_main_progs
=
defaultdict
(
dict
)
self
.
_dist_startup_progs
=
defaultdict
(
dict
)
self
.
_orig_dist_context
=
get_default_distributed_context
()
self
.
_dist_contexts
=
{}
self
.
_pass_contexts
=
{}
self
.
_cur_rank
=
paddle
.
distributed
.
get_rank
()
self
.
_logger
=
get_logger
(
logging
.
INFO
)
def
prepare
(
self
,
optimizer
=
None
,
loss
=
None
,
metrics
=
None
,
mode
=
"train"
,
all_ranks
=
False
):
self
.
optimizer
=
optimizer
self
.
loss
=
loss
self
.
metrics
=
metrics
self
.
mode
=
mode
self
.
_build
()
self
.
_plan
()
if
not
all_ranks
:
self
.
_parallel
(
self
.
_cur_rank
)
else
:
world_process_group
=
get_world_process_group
()
all_ranks
=
world_process_group
.
ranks
for
rank
in
all_ranks
:
self
.
_parallel
(
rank
)
place
=
_get_device
()
if
isinstance
(
place
,
fluid
.
CUDAPlace
):
self
.
_place
=
fluid
.
CUDAPlace
(
ParallelEnv
().
dev_id
)
if
self
.
_executor
is
None
:
self
.
_executor
=
fluid
.
Executor
(
place
)
def
_build
(
self
):
serial_main_prog
=
self
.
_serial_main_progs
.
get
(
self
.
mode
,
None
)
if
serial_main_prog
is
not
None
:
return
serial_main_prog
=
self
.
_orig_main_prog
.
clone
()
serial_startup_prog
=
self
.
_orig_startup_prog
.
clone
()
with
fluid
.
program_guard
(
serial_main_prog
,
serial_startup_prog
):
inputs_spec
=
self
.
data_spec
[
0
]
labels_spec
=
self
.
data_spec
[
1
]
inputs
=
[
s
.
_create_feed_layer
()
for
s
in
to_list
(
inputs_spec
)]
labels
=
[
s
.
_create_feed_layer
()
for
s
in
to_list
(
labels_spec
)]
self
.
_input_vars
=
inputs
self
.
_label_vars
=
labels
feed_list
=
self
.
_input_vars
+
self
.
_label_vars
outputs
=
to_list
(
self
.
model
(
*
inputs
))
if
self
.
mode
!=
"predict"
and
self
.
loss
:
loss
=
self
.
loss
(
*
(
outputs
+
labels
))
self
.
_loss_var
=
loss
self
.
_serial_main_progs
[
self
.
mode
]
=
serial_main_prog
self
.
_serial_startup_progs
[
self
.
mode
]
=
serial_startup_prog
self
.
_dist_contexts
[
self
.
mode
]
=
DistributedContext
(
serial_main_prog
,
serial_startup_prog
,
self
.
_dist_main_progs
[
self
.
mode
],
self
.
_dist_startup_progs
[
self
.
mode
])
self
.
_pass_contexts
[
self
.
mode
]
=
PassContext
()
def
_plan
(
self
):
# Complete the distributed annotation
serial_main_prog
=
self
.
_serial_main_progs
[
self
.
mode
]
self
.
_completer
=
Completer
(
self
.
_dist_contexts
[
self
.
mode
])
self
.
_completer
.
complete_forward_annotation
(
serial_main_prog
)
# TODO: add auto planner process
def
_parallel
(
self
,
rank
):
serial_main_program
=
self
.
_serial_main_progs
[
self
.
mode
]
serial_startup_program
=
self
.
_serial_startup_progs
[
self
.
mode
]
dist_context
=
self
.
_dist_contexts
[
self
.
mode
]
if
self
.
mode
!=
"predict"
and
self
.
loss
:
# Generate backward
serial_loss
=
self
.
_loss_var
params_grads
=
self
.
_generate_backward
(
serial_main_program
,
serial_startup_program
,
serial_loss
)
# Apply pre optimization passes
self
.
_apply_pre_optimization
(
serial_main_program
,
serial_startup_program
,
serial_loss
,
params_grads
)
# Do logical partition
partitioner
=
Partitioner
(
dist_context
,
rank
)
dist_main_prog
,
dist_startup_prog
,
dist_params_grads
=
partitioner
.
partition
(
serial_main_program
,
serial_startup_program
,
params_grads
)
# Generate optimizer
self
.
_generate_optimizer
(
dist_main_prog
,
dist_startup_prog
,
dist_params_grads
)
# Do reshard process
set_grad_var_shape
(
dist_main_prog
,
dist_context
)
make_data_unshard
(
dist_main_prog
,
dist_startup_prog
,
dist_context
)
reshard
(
dist_main_prog
,
dist_startup_prog
,
rank
,
dist_context
,
dist_params_grads
)
# Apply post optimization passes
self
.
_apply_post_optimization
(
dist_main_prog
,
dist_startup_prog
,
rank
,
dist_params_grads
)
self
.
_dist_main_progs
[
self
.
mode
][
rank
]
=
dist_main_prog
self
.
_dist_startup_progs
[
self
.
mode
][
rank
]
=
dist_startup_prog
def
_generate_backward
(
self
,
main_program
,
startup_program
,
loss
):
with
program_guard
(
main_program
,
startup_program
):
params_grads
=
append_backward
(
loss
,
distop_context
=
self
.
_dist_contexts
[
self
.
mode
].
dist_op_context
)
self
.
_completer
.
complete_backward_annotation
(
main_program
)
return
params_grads
def
_generate_optimizer
(
self
,
main_program
,
startup_program
,
params_grads
):
with
program_guard
(
main_program
,
startup_program
):
optimizer_ops
=
copy
.
deepcopy
(
self
.
optimizer
).
apply_gradients
(
params_grads
)
self
.
_completer
.
complete_update_annotation
(
main_program
)
return
optimizer_ops
def
_apply_pre_optimization
(
self
,
main_program
,
startup_program
,
loss
,
params_grads
):
# apply amp pass
if
self
.
strategy
.
amp
:
config
=
copy
.
deepcopy
(
self
.
strategy
.
amp_configs
)
config
[
"dist_context"
]
=
self
.
_dist_contexts
[
self
.
mode
]
config
[
"params_grads"
]
=
params_grads
config
[
"loss"
]
=
loss
auto_parallel_amp_pass
=
new_pass
(
"auto_parallel_amp"
,
config
)
auto_parallel_amp_pass
.
apply
([
main_program
],
[
startup_program
],
self
.
_pass_contexts
[
self
.
mode
])
# apply recompute pass
if
self
.
strategy
.
recompute
:
config
=
copy
.
deepcopy
(
self
.
strategy
.
recompute_configs
)
config
[
"dist_context"
]
=
self
.
_dist_contexts
[
self
.
mode
]
config
[
"no_grad_set"
]
=
None
config
[
"loss"
]
=
loss
auto_parallel_recompute_pass
=
new_pass
(
"auto_parallel_recompute"
,
config
)
auto_parallel_recompute_pass
.
apply
([
main_program
],
[
startup_program
],
self
.
_pass_contexts
[
self
.
mode
])
def
_apply_post_optimization
(
self
,
main_program
,
startup_program
,
rank
,
params_grads
):
if
self
.
strategy
.
sharding
:
config
=
copy
.
deepcopy
(
self
.
strategy
.
sharding_configs
)
config
[
"dist_context"
]
=
self
.
_dist_contexts
[
self
.
mode
]
config
[
"params_grads"
]
=
params_grads
config
[
"global_rank"
]
=
rank
auto_parallel_sharding_pass
=
new_pass
(
"auto_parallel_sharding"
,
config
)
auto_parallel_sharding_pass
.
apply
([
main_program
],
[
startup_program
],
self
.
_pass_contexts
[
self
.
mode
])
if
self
.
strategy
.
gradient_merge
:
config
=
copy
.
deepcopy
(
self
.
strategy
.
gradient_merge_configs
)
config
[
"dist_context"
]
=
self
.
_dist_contexts
[
self
.
mode
]
config
[
"params_grads"
]
=
params_grads
auto_parallel_gradient_merge_pass
=
new_pass
(
"auto_parallel_gradient_merge_pass"
,
config
)
auto_parallel_gradient_merge_pass
.
apply
(
[
main_program
],
[
startup_program
],
self
.
_pass_contexts
[
self
.
mode
])
def
fit
(
self
,
train_data
,
batch_size
=
1
,
epochs
=
1
,
steps_per_epoch
=
1000
):
assert
isinstance
(
train_data
,
Dataset
)
assert
steps_per_epoch
is
not
None
train_dataloader
=
self
.
_create_dataloader
(
train_data
,
batch_size
,
epochs
,
steps_per_epoch
)
self
.
_init_communication
()
dist_startup_prog
=
self
.
_dist_startup_progs
[
"train"
][
self
.
_cur_rank
]
self
.
_executor
.
run
(
dist_startup_prog
)
for
epoch
in
range
(
epochs
):
# train_dataloader.start()
# for step in range(steps_per_epoch):
# logs = self.train_step(None)
# self._logger.info(logs)
# train_dataloader.reset()
for
step
,
data
in
enumerate
(
train_dataloader
):
logs
=
self
.
_train_step
(
data
)
train_logs
=
{
"train_"
+
name
:
val
for
name
,
val
in
logs
.
items
()
}
self
.
_logger
.
info
(
logs
)
def
_train_step
(
self
,
data
):
logs
=
{}
dist_main_prog
=
self
.
_dist_main_progs
[
"train"
][
self
.
_cur_rank
]
if
self
.
_loss_var
.
name
not
in
dist_main_prog
.
global_block
().
vars
:
loss
=
self
.
_executor
.
run
(
dist_main_prog
)
logs
[
"loss"
]
=
None
else
:
fetch_list
=
self
.
_loss_var
loss
=
self
.
_executor
.
run
(
dist_main_prog
,
fetch_list
=
fetch_list
)
logs
[
"loss"
]
=
loss
return
logs
def
_create_dataloader
(
self
,
dataset
,
batch_size
,
epochs
,
steps_per_epoch
):
feed_list
=
self
.
_input_vars
+
self
.
_label_vars
dist_main_prog
=
self
.
_dist_main_progs
[
self
.
mode
][
self
.
_cur_rank
]
dist_startup_prog
=
self
.
_dist_startup_progs
[
self
.
mode
][
self
.
_cur_rank
]
dist_context
=
self
.
_dist_contexts
[
self
.
mode
]
dist_main_block
=
dist_main_prog
.
global_block
()
op_size
=
len
(
dist_main_block
.
ops
)
places
=
paddle
.
static
.
cuda_places
()
with
fluid
.
program_guard
(
dist_main_prog
,
dist_startup_prog
):
dataloader
=
NonIterableGeneratorLoader
(
dataset
,
feed_list
,
places
,
batch_size
,
epochs
,
steps_per_epoch
)
new_op_size
=
len
(
dist_main_block
.
ops
)
for
idx
in
range
(
new_op_size
-
1
,
op_size
-
1
,
-
1
):
op
=
dist_main_block
.
ops
[
new_op_size
-
1
]
new_op_desc
=
dist_main_block
.
desc
.
_prepend_op
()
new_op_desc
.
copy_from
(
op
.
desc
)
new_op
=
Operator
(
dist_main_block
,
new_op_desc
,
type
=
new_op_desc
.
type
())
dist_main_block
.
ops
.
insert
(
0
,
new_op
)
dist_op
=
DistributedOperator
(
new_op
)
dist_context
.
add_dist_op_for_program
(
dist_op
)
for
_
in
range
(
new_op_size
-
op_size
):
dist_main_block
.
_remove_op
(
new_op_size
,
sync
=
False
)
dist_main_block
.
_sync_with_cpp
()
return
dataloader
def
_init_communication
(
self
):
# Traverse different rank programs and traverse each op of them,
# instantiate communication by process_mapping.
all_process_groups
=
get_all_process_groups
()
for
process_group
in
all_process_groups
:
if
self
.
_cur_rank
not
in
process_group
.
ranks
:
continue
process_group
.
instantiate
()
# def save(self, path, training=True):
# pass
# def load(self, path, strict=True, load_optimizer=True):
# pass
python/paddle/fluid/tests/unittests/auto_parallel/CMakeLists.txt
浏览文件 @
5595fdbb
...
...
@@ -7,4 +7,5 @@ if(WITH_DISTRIBUTE AND WITH_GPU)
set_tests_properties
(
test_relaunch_with_planner PROPERTIES LABELS
"RUN_TYPE=EXCLUSIVE"
TIMEOUT 120
)
py_test_modules
(
test_relaunch_with_gpt_planner MODULES test_relaunch_with_planner ENVS
${
dist_ENVS
}
)
set_tests_properties
(
test_relaunch_with_gpt_planner PROPERTIES LABELS
"RUN_TYPE=EXCLUSIVE"
TIMEOUT 240
)
py_test_modules
(
test_engine_api MODULES test_engine_api ENVS
${
dist_ENVS
}
)
endif
()
python/paddle/fluid/tests/unittests/auto_parallel/test_engine_api.py
0 → 100644
浏览文件 @
5595fdbb
# Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import
unittest
import
time
import
paddle.fluid
as
fluid
import
copy
import
os
import
numpy
as
np
import
subprocess
import
paddle
import
paddle.nn
as
nn
import
paddle.fluid
as
fluid
import
paddle.static
as
static
import
paddle.nn.functional
as
F
import
paddle.utils
as
utils
from
paddle.fluid
import
layers
from
paddle.io
import
Dataset
,
IterableDataset
,
DataLoader
from
paddle.static
import
InputSpec
from
paddle.distributed
import
fleet
import
paddle.distributed.auto_parallel
as
auto
from
paddle.distributed.auto_parallel.engine
import
Engine
paddle
.
enable_static
()
global_process_mesh
=
auto
.
ProcessMesh
(
mesh
=
[
0
])
batch_size
=
1
batch_num
=
10
hidden_size
=
1024
sequence_len
=
512
image_size
=
hidden_size
class_num
=
10
paddle
.
seed
(
44
)
class
MyDataset
(
Dataset
):
def
__init__
(
self
,
num_samples
):
super
(
MyDataset
,
self
).
__init__
()
self
.
num_samples
=
num_samples
def
__getitem__
(
self
,
index
):
input
=
np
.
random
.
uniform
(
size
=
image_size
).
astype
(
"float32"
)
label
=
np
.
random
.
randint
(
0
,
class_num
-
1
,
dtype
=
"int64"
)
return
input
,
label
def
__len__
(
self
):
return
self
.
num_samples
class
MLPLayer
(
nn
.
Layer
):
def
__init__
(
self
,
hidden_size
=
1024
,
intermediate_size
=
4
*
1024
,
dropout_ratio
=
0.1
,
initializer_range
=
0.02
):
super
(
MLPLayer
,
self
).
__init__
()
d_model
=
hidden_size
dim_feedforward
=
intermediate_size
weight_attr
=
paddle
.
ParamAttr
(
initializer
=
nn
.
initializer
.
Normal
(
mean
=
0.0
,
std
=
initializer_range
))
bias_attr
=
None
self
.
linear0
=
nn
.
Linear
(
d_model
,
dim_feedforward
,
weight_attr
,
bias_attr
=
bias_attr
)
self
.
linear1
=
nn
.
Linear
(
dim_feedforward
,
d_model
,
weight_attr
,
bias_attr
=
bias_attr
)
self
.
linear2
=
nn
.
Linear
(
d_model
,
1
,
weight_attr
,
bias_attr
=
bias_attr
)
# self.norm = nn.LayerNorm(d_model, epsilon=1e-5)
# self.dropout = nn.Dropout(dropout_ratio, mode="upscale_in_train")
def
forward
(
self
,
input
):
auto
.
shard_tensor
(
input
,
dist_attr
=
{
"process_mesh"
:
global_process_mesh
,
"dims_mappig"
:
[
-
1
]
})
# out = self.norm(input)
out
=
self
.
linear0
(
input
)
out
=
F
.
gelu
(
out
,
approximate
=
True
)
out
=
self
.
linear1
(
out
)
# out = self.dropout(out)
out
=
self
.
linear2
(
out
)
return
out
class
TestEngineAPI
(
unittest
.
TestCase
):
def
test_engine_api
(
self
):
mlp
=
MLPLayer
(
hidden_size
=
hidden_size
,
intermediate_size
=
4
*
hidden_size
,
dropout_ratio
=
0.1
,
initializer_range
=
0.02
)
loss
=
paddle
.
nn
.
CrossEntropyLoss
()
optimizer
=
paddle
.
fluid
.
optimizer
.
AdamOptimizer
(
learning_rate
=
0.00001
,
beta1
=
0.9
,
beta2
=
0.999
,
epsilon
=
1e-08
,
grad_clip
=
None
)
dataset
=
MyDataset
(
batch_num
*
batch_size
)
data_spec
=
[
InputSpec
([
batch_size
,
hidden_size
],
'float32'
,
'x'
),
InputSpec
([
batch_size
],
'int64'
,
'label'
)
]
dist_strategy
=
fleet
.
DistributedStrategy
()
dist_strategy
.
amp
=
False
dist_strategy
.
pipeline
=
False
dist_strategy
.
recompute
=
False
# init parallel optimizer
dist_strategy
.
semi_auto
=
True
fleet
.
init
(
is_collective
=
True
,
strategy
=
dist_strategy
)
engine
=
Engine
(
mlp
,
data_spec
,
strategy
=
dist_strategy
)
engine
.
prepare
(
optimizer
,
loss
)
engine
.
fit
(
dataset
,
batch_size
=
batch_size
,
steps_per_epoch
=
batch_num
*
batch_size
)
if
__name__
==
"__main__"
:
unittest
.
main
()
编辑
预览
Markdown
is supported
0%
请重试
或
添加新附件
.
添加附件
取消
You are about to add
0
people
to the discussion. Proceed with caution.
先完成此消息的编辑!
取消
想要评论请
注册
或
登录