engine.py 23.8 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19
# Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

import copy
import logging
from collections import defaultdict

import paddle
20
import paddle.utils as utils
21 22
import paddle.distributed.auto_parallel as auto

23
from paddle import fluid, static
24
from paddle.io import Dataset
25
from paddle.metric import Metric
26
from paddle.static import InputSpec
27
from paddle.fluid import core
28
from paddle.fluid import program_guard
29
from paddle.fluid.layers.utils import flatten
30
from paddle.fluid.executor import global_scope, _to_name_str
31
from paddle.fluid.backward import append_backward
32
from paddle.fluid.framework import Operator
33 34
from paddle.fluid.framework import _current_expected_place as _get_device
from paddle.fluid.dygraph.parallel import ParallelEnv
35
from paddle.distributed import fleet
36
from paddle.distributed.utils import get_logger
37
from paddle.distributed.passes import new_pass, PassContext
38

39
# from .cluster import Cluster, get_default_cluster
40 41
from .planner_v2 import Planner
from .parallelizer_v2 import Parallelizer
42 43 44 45 46
from .dist_op import DistributedOperator
from .dist_saver import DistributedSaver
from .dist_loader import NonIterableGeneratorLoader
from .utils import make_data_unshard, set_grad_var_shape
from .utils import print_program_with_dist_attr, to_list
47
from .process_group import new_process_group, get_all_process_groups, get_world_process_group
48
from .dist_context import DistributedContext, get_default_distributed_context
49 50 51


class Engine:
52

53 54 55 56 57 58
    def __init__(self,
                 model=None,
                 inputs_spec=None,
                 labels_spec=None,
                 cluster=None,
                 strategy=None):
59
        self.model = model
60 61
        self.inputs_spec = self._validate_spec(inputs_spec)
        self.labels_spec = self._validate_spec(labels_spec)
62
        self.cluster = cluster
63 64
        # if self.cluster is None:
        #     self.cluster = get_default_cluster()
65
        self.strategy = strategy
66 67
        if self.strategy is None:
            self.strategy = fleet.DistributedStrategy()
68

69
        self._executor = None
70 71 72 73 74 75
        self._cur_rank = paddle.distributed.get_rank()
        self._nranks = paddle.distributed.get_world_size()
        self._saver = DistributedSaver()
        self._logger = get_logger(logging.INFO)

        self._default_strategy = None
76 77
        self._orig_main_prog = static.default_main_program()
        self._orig_startup_prog = static.default_startup_program()
78
        self._orig_dist_context = get_default_distributed_context()
79
        self._dist_contexts = {}
80 81
        self._serial_main_progs = {}
        self._serial_startup_progs = {}
82 83 84 85
        self._dist_main_progs = defaultdict(dict)  # dist main programs
        self._dist_startup_progs = defaultdict(dict)  # dist startup programs
        self._feed_vars = {}
        self._fetch_vars = {}
86 87 88 89

    def prepare(self,
                optimizer=None,
                loss=None,
90
                gradient_scale=True,
91 92
                metrics=None,
                all_ranks=False):
93 94 95
        if optimizer and not isinstance(
                optimizer,
            (paddle.optimizer.Optimizer, paddle.fluid.optimizer.Optimizer)):
96 97 98 99
            raise TypeError(
                    "'optimizer' must be object of class `paddle.optimizer.Optimizer`" \
                        " or `paddle.fluid.optimizer.Optimizer`."
                )
100
        self._optimizer = optimizer
101 102 103 104 105 106

        if loss and not isinstance(loss,
                                   paddle.nn.Layer) and not callable(loss):
            raise TypeError(
                "'loss' must be sub classes of `paddle.nn.Layer` or any callable function."
            )
107
        self._loss = loss
108 109 110 111 112 113

        metrics = metrics or []
        for metric in to_list(metrics):
            assert isinstance(metric, Metric), \
                "{} is not sub class of Metric".format(
                    metric.__class__.__name__)
114
        self._metrics = to_list(metrics)
115
        self._gradient_scale = gradient_scale
116 117 118

        self._planned_mode = None
        self._modes = ['train', 'eval', 'predict']
119
        # Build forward program
120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140
        self._build()

        # Do auto parallel process
        for mode in self._modes:
            # Do the planning process
            self._plan(mode)
            # Do the parallel process
            self._parallel(mode, all_ranks)
            # Init comm and startup program
            self._initialize(mode)

    def _build(self):
        for mode in self._modes:
            serial_main_prog = self._serial_main_progs.get(mode, None)
            if serial_main_prog is not None:
                return

            losses = []
            metrics = []
            serial_main_prog = self._orig_main_prog.clone()
            serial_startup_prog = self._orig_startup_prog.clone()
141 142
            with static.program_guard(serial_main_prog, serial_startup_prog), \
                utils.unique_name.guard():
143 144 145 146 147 148 149 150 151 152 153 154 155 156 157
                inputs_spec = self.inputs_spec
                labels_spec = self.labels_spec if self.labels_spec else []
                inputs = [s._create_feed_layer() for s in inputs_spec]
                labels = [s._create_feed_layer() for s in labels_spec]
                outputs = to_list(self.model(*inputs))
                if mode != "predict" and self._loss:
                    losses = to_list(self._loss(*(outputs + labels)))

                if mode != "predict":
                    for metric in self._metrics:
                        metrics.extend(
                            to_list(metric.compute(*(outputs + labels))))

            default_ctx = get_default_distributed_context()
            if not default_ctx.has_annotation or self._default_strategy:
158 159 160 161
                # We build the world process group because the data parallel
                # needs all ranks by default.
                new_process_group(list(range(self._nranks)))
                default_ctx.data_parallel = True
162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191

            # self._feed_vars[mode] = {"inputs": inputs, "labels": labels}
            feed_vars = {"inputs": inputs, "labels": labels}

            # self._fetch_vars[mode] = {
            #     "outputs": flatten(outputs),
            #     "loss": losses,
            #     "metrics": metrics
            # }
            fetch_vars = {
                "outputs": flatten(outputs),
                "loss": losses,
                "metrics": metrics
            }

            self._dist_contexts[mode] = DistributedContext(
                serial_main_prog, serial_startup_prog, self._optimizer, losses,
                feed_vars, fetch_vars, self.cluster, self.strategy)
            self._dist_contexts[mode].gradient_scale = self._gradient_scale

    def _plan(self, mode):
        if self._planned_mode is None:
            self._planned_mode = mode
        else:
            self._init_dist_context(mode)

        self.planner = Planner(mode, self._dist_contexts[mode])
        self.planner.plan()

    def _parallel(self, mode, all_ranks):
192 193 194
        # Parallelize program based on the planner's results
        # For now, the completer has to be passed to the planner,
        # because we may use it to complete the annotation of the backwarkward and update.
195
        parallelizer = Parallelizer(mode, self.planner.completer,
196 197 198 199 200
                                    self._dist_contexts[mode])
        if not all_ranks:
            parallelizer.parallel(self._cur_rank)
        else:
            parallelizer.parallel_all()
201 202

    def _init_dist_context(self, mode):
203
        # Init dist_context['mode'] with the first planned dist_context
204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220
        # to guarantee that train/eval/predict mode have same parallel strategy
        dist_context = self._dist_contexts[mode]
        origin_main_prog = dist_context._original_serial_main_program
        ref_mode = self._planned_mode
        ref_dist_context = self._dist_contexts[ref_mode]
        ref_origin_main_prog = ref_dist_context._original_serial_main_program
        ref_blocks = ref_origin_main_prog.blocks
        for ib, block in enumerate(origin_main_prog.blocks):
            for iop, op in enumerate(block.ops):
                ref_op = ref_blocks[ib].ops[iop]
                assert op.type == ref_op.type, \
                    "'{}' mode op '{}' is different with '{}' op '{}'. ".format(mode, op.type, ref_mode, ref_op.type)
                ref_op_dist_attr = ref_dist_context.get_op_dist_attr_for_program(
                    ref_op)
                dist_context.set_op_dist_attr_for_program(op, ref_op_dist_attr)

    def _initialize(self, mode):
221
        # Get the current content from the distributed context
222 223 224 225
        self._serial_main_progs[mode] = self._dist_contexts[
            mode].serial_main_program
        self._serial_startup_progs[mode] = self._dist_contexts[
            mode].serial_startup_program
226 227 228 229
        self._dist_main_progs[mode] = self._dist_contexts[
            mode].dist_main_programs
        self._dist_startup_progs[mode] = self._dist_contexts[
            mode].dist_startup_programs
230 231
        self._feed_vars[mode] = self._dist_contexts[mode].serial_feed_vars
        self._fetch_vars[mode] = self._dist_contexts[mode].serial_fetch_vars
232

233 234 235 236 237 238 239 240
        if self._nranks > 1:
            # Traverse different rank programs and traverse each op of them,
            # instantiate communication by process_mapping.
            all_process_groups = get_all_process_groups()
            for process_group in all_process_groups:
                if self._cur_rank not in process_group.ranks:
                    continue
                process_group.instantiate()
241 242 243 244 245 246 247

        # initialize
        self._place = _get_device()
        if isinstance(self._place, fluid.CUDAPlace):
            self._place = fluid.CUDAPlace(ParallelEnv().dev_id)
        if self._executor is None:
            self._executor = paddle.static.Executor(self._place)
248 249 250 251 252 253 254 255 256 257
            uninitialized = []
            dist_startup_prog = self._dist_startup_progs[mode][self._cur_rank]
            for var in dist_startup_prog.list_vars():
                scope_var = global_scope().find_var(var.name)
                if scope_var and scope_var.get_tensor()._is_initialized():
                    continue
                uninitialized.append(var)
            if uninitialized:
                prune_startup_prog = dist_startup_prog._prune(uninitialized)
                self._executor.run(prune_startup_prog)
258

259 260 261 262
    def fit(self,
            train_data,
            batch_size=1,
            epochs=1,
263
            fetches=None,
264 265
            steps_per_epoch=None,
            use_program_cache=False,
266
            return_numpy=True):
267 268 269
        # TODO: callbacks
        # TODO: evaluate after training
        self.mode = 'train'
270
        assert self.mode in self._dist_main_progs, \
271
            "train model is not ready, please call `engine.prepare()` first."
272 273
        train_dataloader = self._create_dataloader(train_data, batch_size,
                                                   epochs, steps_per_epoch)
274

275 276 277 278
        usr_fetch = self._to_map_fetch(fetches)
        fetch_loss = self._inner_fetch(self.fetch_vars["loss"])
        fetch_list, fetch_map = self._fetch_map(fetch_loss, usr_fetch)

279
        for epoch in range(epochs):
280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295
            train_logs = {"epoch": epoch}
            for step, _ in enumerate(train_dataloader):
                outs = self._executor.run(self.main_program,
                                          fetch_list=fetch_list,
                                          use_program_cache=use_program_cache,
                                          return_numpy=return_numpy)
                train_logs["step"] = step
                # inner fetches
                if fetch_loss:
                    train_logs["train_loss"] = outs[0][0]
                # user fetches
                user_outs = outs[len(fetch_loss):]
                user_fetch_list = fetch_list[len(fetch_loss):]
                for i, out in enumerate(user_outs):
                    train_logs["train_" +
                               fetch_map[user_fetch_list[i]]] = out[0]
296
                self._logger.info(train_logs)
297

298 299 300
    def evaluate(self,
                 eval_data,
                 batch_size=1,
301
                 fetches=None,
302
                 use_program_cache=False,
303
                 return_numpy=True):
304
        self.mode = 'eval'
305
        assert self.mode in self._dist_main_progs, \
306
            "eval model is not ready, please call `engine.prepare()` first."
307
        eval_dataloader = self._create_dataloader(eval_data, batch_size)
308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337

        usr_fetch = self._to_map_fetch(fetches)
        fetch_loss = self._inner_fetch(self.fetch_vars["loss"])
        fetch_metrics = self._inner_fetch(self.fetch_vars["metrics"])
        inner_fetch = dict(fetch_loss, **fetch_metrics)
        fetch_list, fetch_map = self._fetch_map(inner_fetch, usr_fetch)

        for step, _ in enumerate(eval_dataloader):
            eval_logs = {"step": step}
            outs = self._executor.run(self.main_program,
                                      fetch_list=fetch_list,
                                      use_program_cache=use_program_cache,
                                      return_numpy=return_numpy)
            # inner fetches
            if fetch_loss:
                eval_logs["eval_loss"] = outs[0]
            # Metric
            if fetch_metrics:
                metric_out = outs[len(fetch_loss):len(inner_fetch)]
                for metric in self._metrics:
                    metric.update(*metric_out)
                    results = metric.accumulate()
                    for i, res in enumerate(to_list(results)):
                        eval_logs["eval_" + metric.name()[i]] = res
            # usr fetches
            usr_out = outs[len(inner_fetch):]
            usr_fetch_list = fetch_list[len(inner_fetch):]
            for i, out in enumerate(usr_out):
                eval_logs["eval_" + fetch_map[usr_fetch_list[i]]] = out
            # logger
338
            self._logger.info(eval_logs)
339

340 341 342
    def predict(self,
                test_data,
                batch_size=1,
343
                fetches=None,
344
                use_program_cache=False,
345
                return_numpy=True):
346
        self.mode = 'predict'
347
        assert self.mode in self._dist_main_progs, \
348
            "predict model is not ready, please call `engine.prepare()` first."
349
        test_dataloader = self._create_dataloader(test_data, batch_size)
350 351 352 353

        usr_fetch = self._to_map_fetch(fetches)
        fetch_outputs = self._inner_fetch(self.fetch_vars["outputs"])
        fetch_list, fetch_map = self._fetch_map(fetch_outputs, usr_fetch)
354 355

        outputs = []
356 357 358 359 360 361 362 363 364
        for step, _ in enumerate(test_dataloader):
            predict_logs = {"step": step}
            outs = self._executor.run(self.main_program,
                                      fetch_list=fetch_list,
                                      use_program_cache=use_program_cache,
                                      return_numpy=return_numpy)
            outputs.append(outs[:len(fetch_outputs)])
            for i, out in enumerate(outs):
                predict_logs["pred_" + fetch_map[fetch_list[i]]] = out[0]
365
            self._logger.info(predict_logs)
366

367
        return outputs
368

369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398
    def _local_var(self, var):
        var_name = _to_name_str(var)
        return var_name in self.main_program.global_block().vars

    def _to_map_fetch(self, fetches):
        if not fetches:
            return {}
        if isinstance(fetches, dict):
            fetch_var_names = list(map(_to_name_str, fetches.values()))
            usr_fetches = dict(zip(fetch_var_names, list(fetches.keys())))
        elif isinstance(fetches, list):
            fetch_var_names = list(map(_to_name_str, fetches))
            usr_fetches = dict(zip(fetch_var_names, fetch_var_names))
        return dict(filter(lambda x: self._local_var(x[0]),
                           usr_fetches.items()))

    def _inner_fetch(self, fetch_vars):
        fetch_list = list(
            map(lambda x: x.name, list(filter(self._local_var, fetch_vars))))
        inner_fetches = dict(zip(fetch_list, fetch_list))
        return inner_fetches

    def _fetch_map(self, inner_fetch, usr_fetch):
        # replace inner fetch name if usr set for it
        for iname in inner_fetch:
            if iname in usr_fetch:
                inner_fetch[iname] = usr_fetch[iname]
                usr_fetch.pop(iname)
        fetches = dict(inner_fetch, **usr_fetch)
        return list(fetches.keys()), fetches
399

400 401 402 403
    def _create_dataloader(self,
                           dataset,
                           batch_size,
                           epochs=1,
404
                           steps_per_epoch=None):
405 406 407 408
        dist_main_prog = self._dist_main_progs[self.mode][self._cur_rank]
        dist_startup_prog = self._dist_startup_progs[self.mode][self._cur_rank]
        dist_context = self._dist_contexts[self.mode]
        dist_main_block = dist_main_prog.global_block()
409

410
        # NOTE: Get feed_list from dist_program, then insert dataloader op
411 412
        # with sharded var shape. Because predict_program does not contain
        # labels var, so we will filter dataset's value with length of feed_list.
413 414 415 416 417 418
        inputs_var = self._feed_vars[self.mode]["inputs"]
        labels_var = self._feed_vars[self.mode]["labels"]
        feed_list = []
        for var in inputs_var + labels_var:
            if var.name in dist_main_block.vars:
                feed_list.append(dist_main_block.vars[var.name])
419 420
        dp_world_size, dp_rank = self._get_data_parallel_info(
            feed_list[0], dist_context)
421 422

        # remove the first three ops if multi run fit/evaluate/predict
423
        op_size = len(dist_main_block.ops)
424 425 426 427
        if dist_main_block.ops[0].type == 'create_py_reader':
            op_size -= 3
            for _ in range(3):
                dist_main_block._remove_op(0, sync=False)
428 429

        # insert read op at the end of program
430
        places = paddle.static.cuda_places()
431
        with static.program_guard(dist_main_prog, dist_startup_prog):
432
            dataloader = NonIterableGeneratorLoader(
433 434 435 436 437 438
                dataset,
                feed_list,
                places,
                batch_size,
                epochs,
                steps_per_epoch,
439 440 441 442
                data_parallel_world_size=dp_world_size,
                data_parallel_rank=dp_rank)

        # move read op from the end of program to the start of program
443
        new_op_size = len(dist_main_block.ops)
444
        for _ in range(new_op_size - 1, op_size - 1, -1):
445 446 447
            op = dist_main_block.ops[new_op_size - 1]
            new_op_desc = dist_main_block.desc._prepend_op()
            new_op_desc.copy_from(op.desc)
448 449 450
            new_op = Operator(dist_main_block,
                              new_op_desc,
                              type=new_op_desc.type())
451 452 453 454 455 456 457 458
            dist_main_block.ops.insert(0, new_op)
            dist_op = DistributedOperator(new_op)
            dist_context.add_dist_op_for_program(dist_op)
        for _ in range(new_op_size - op_size):
            dist_main_block._remove_op(new_op_size, sync=False)
        dist_main_block._sync_with_cpp()
        return dataloader

459 460 461 462 463 464 465 466 467 468 469
    def _validate_spec(self, specs):
        specs = to_list(specs)
        if specs is not None:
            for i, spec in enumerate(specs):
                assert isinstance(spec, InputSpec)
                if spec.name is None:
                    raise ValueError(
                        "Requires Input[{}].name != None, but receive `None` with {}."
                        .format(i, spec))
        return specs

470 471 472
    def _set_data_parallel(self, var):
        if self._nranks == 1:
            self._default_strategy = 'serial'
473 474 475 476 477 478
            auto.shard_tensor(var,
                              dist_attr={
                                  "process_mesh": [0],
                                  "dims_mapping":
                                  [-1 for _ in range(len(var.shape))]
                              })
479 480
        else:
            self._default_strategy = 'dp'
481 482 483 484 485 486 487
            auto.shard_tensor(var,
                              dist_attr={
                                  "process_mesh":
                                  list(range(self._nranks)),
                                  "dims_mapping":
                                  [0] + [-1 for _ in range(len(var.shape) - 1)]
                              })
488 489 490

        return var

491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513
    def _get_data_parallel_info(self, var, dist_context):
        # get data parallel world size and current data parallel rank
        from .utils import _get_comm_group, _get_corresponding_rank

        tensor_dist_attr = dist_context.get_tensor_dist_attr_for_program(var)
        process_mesh = tensor_dist_attr.process_mesh
        dims_mapping = tensor_dist_attr.dims_mapping

        if self._cur_rank not in process_mesh.processes:
            rank_id = _get_corresponding_rank(dist_context, process_mesh,
                                              self._cur_rank)
        else:
            rank_id = self._cur_rank

        batch_size_axis = dims_mapping[0]
        if batch_size_axis > -1 and process_mesh.topology[batch_size_axis] > 1:
            group_ranks = _get_comm_group(process_mesh.processes,
                                          process_mesh.topology,
                                          batch_size_axis, rank_id)
            return len(group_ranks), group_ranks.index(rank_id)

        return None, None

514 515 516 517 518
    def save(self, path, training=True, mode=None):
        if not mode:
            mode = self.mode

        if training:
519 520
            assert 'train' in self._serial_main_progs, \
                "training model is not ready, please call `engine.prepare()` first."
521 522 523
            serial_program = self._serial_main_progs["train"]
            dist_main_prog = self._dist_main_progs["train"][self._cur_rank]
            dist_context = self._dist_contexts["train"]
524 525 526 527
            self._saver.save(path,
                             serial_program=serial_program,
                             dist_main_program=dist_main_prog,
                             dist_context=dist_context)
528 529 530 531 532
        else:
            assert mode, "Please set the 'mode' you want to save."
            feed_vars = self._feed_vars[mode]['inputs']
            fetch_vars = self._fetch_vars[mode]['outputs']
            dist_main_prog = self._dist_main_progs[mode][self._cur_rank]
533 534 535 536 537
            self._saver.save_inference_model(path,
                                             feed_vars,
                                             fetch_vars,
                                             self._executor,
                                             program=dist_main_prog)
538

539 540 541 542
    def load(self, path, strict=True, load_optimizer=True, mode=None):
        if not mode:
            mode = self.mode
        assert mode, "Please set the 'mode' you want to load."
543

544 545 546 547
        dist_main_prog = self._dist_main_progs[mode][self._cur_rank]
        dist_context = self._dist_contexts[mode]
        self._saver.load(path, dist_main_prog, dist_context, strict,
                         load_optimizer)
548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575

    @property
    def mode(self):
        return self._mode

    @mode.setter
    def mode(self, mode):
        self._mode = mode

    @property
    def main_program(self):
        return self._dist_main_progs[self.mode][self._cur_rank]

    @property
    def startup_program(self):
        return self._dist_startup_progs[self.mode][self._cur_rank]

    @property
    def dist_context(self):
        return self._dist_contexts[self.mode]

    @property
    def serial_main_program(self):
        return self._serial_main_progs[self.mode]

    @property
    def serial_startup_program(self):
        return self._serial_startup_progs[self.mode]
576 577 578 579

    @property
    def fetch_vars(self):
        return self._fetch_vars[self.mode]