engine.py 32.0 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14
# Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

15
import time
16 17 18
import copy
import logging
from collections import defaultdict
19
import socket
20 21

import paddle
22
import paddle.utils as utils
23

24
from paddle import fluid, static
25
from paddle.io import Dataset
26
from paddle.jit import to_static
27
from paddle.metric import Metric
28
from paddle.static import InputSpec
29
from paddle.fluid import core
30
from paddle.fluid import program_guard
31
from paddle.fluid.layers.utils import flatten
32
from paddle.fluid.executor import global_scope, _to_name_str
33
from paddle.fluid.backward import append_backward
34
from paddle.fluid.framework import Operator, Parameter, _non_static_mode
35 36
from paddle.fluid.framework import _current_expected_place as _get_device
from paddle.fluid.dygraph.parallel import ParallelEnv
37
from paddle.distributed import fleet
38
from paddle.distributed.utils import get_logger
39
from paddle.distributed.passes import new_pass, PassContext
40

41
from .hepler import ProgramHelper
42 43
from ..collective import _get_global_env
from .cluster import Cluster, get_default_cluster
44 45
from .planner_v2 import Planner
from .parallelizer_v2 import Parallelizer
46 47 48 49 50
from .dist_op import DistributedOperator
from .dist_saver import DistributedSaver
from .dist_loader import NonIterableGeneratorLoader
from .utils import make_data_unshard, set_grad_var_shape
from .utils import print_program_with_dist_attr, to_list
51
from .process_group import new_process_group, get_all_process_groups, get_world_process_group
52
from .dist_context import DistributedContext, get_default_distributed_context
53 54 55


class Engine:
56

57 58 59 60 61
    def __init__(self,
                 model=None,
                 inputs_spec=None,
                 labels_spec=None,
                 cluster=None,
62 63
                 strategy=None,
                 user_tuning_config=None):
64
        self.model = model
65 66
        self.inputs_spec = self._validate_spec(inputs_spec)
        self.labels_spec = self._validate_spec(labels_spec)
67
        self.cluster = cluster
68 69
        if self.cluster is None:
            self.cluster = get_default_cluster()
70
        self.strategy = strategy
71 72
        if self.strategy is None:
            self.strategy = fleet.DistributedStrategy()
73
        self._user_tuning_config = user_tuning_config
74

75
        self._executor = None
76 77 78 79 80
        self._cur_rank = paddle.distributed.get_rank()
        self._nranks = paddle.distributed.get_world_size()
        self._saver = DistributedSaver()
        self._logger = get_logger(logging.INFO)

81 82
        self._orig_main_prog = static.default_main_program()
        self._orig_startup_prog = static.default_startup_program()
83
        self._orig_dist_context = get_default_distributed_context()
84
        self._dist_contexts = {}
85 86
        self._serial_main_progs = {}
        self._serial_startup_progs = {}
87 88 89 90
        self._dist_main_progs = defaultdict(dict)  # dist main programs
        self._dist_startup_progs = defaultdict(dict)  # dist startup programs
        self._feed_vars = {}
        self._fetch_vars = {}
91
        self._planners = {}
92 93 94 95 96
        self._mode_init_states = {
            "train": False,
            "eval": False,
            "predict": False
        }
97
        self._dygraph_mode = False
98 99 100 101

    def prepare(self,
                optimizer=None,
                loss=None,
102
                gradient_scale=True,
103 104
                metrics=None,
                all_ranks=False):
105 106 107
        if optimizer and not isinstance(
                optimizer,
            (paddle.optimizer.Optimizer, paddle.fluid.optimizer.Optimizer)):
108 109 110 111
            raise TypeError(
                    "'optimizer' must be object of class `paddle.optimizer.Optimizer`" \
                        " or `paddle.fluid.optimizer.Optimizer`."
                )
112
        self._optimizer = optimizer
113
        self._all_ranks = all_ranks
114 115 116 117 118 119

        if loss and not isinstance(loss,
                                   paddle.nn.Layer) and not callable(loss):
            raise TypeError(
                "'loss' must be sub classes of `paddle.nn.Layer` or any callable function."
            )
120
        self._loss = loss
121 122 123 124 125 126

        metrics = metrics or []
        for metric in to_list(metrics):
            assert isinstance(metric, Metric), \
                "{} is not sub class of Metric".format(
                    metric.__class__.__name__)
127
        self._metrics = to_list(metrics)
128
        self._gradient_scale = gradient_scale
129
        self._planned_mode = None
130
        self._prepare_single_mode("train")
131

132
    def _prepare_single_mode(self, mode):
133 134 135 136 137 138 139 140 141 142 143 144 145 146 147

        self._build(mode)
        # Do the planning process
        self._plan(mode)

        # Do the Optimization tuning
        if self._user_tuning_config and mode == "train":
            self._optimization_tuning(mode)

        # Do the parallel process
        self._parallel(mode, self._all_ranks)

        # Init comm and startup program
        self._initialize(mode)
        self._mode_init_states[mode] = True
148

149
    def _build(self, mode):
150
        if _non_static_mode() or self._dygraph_mode:
151
            paddle.disable_static()
152 153 154
            self._dygraph_mode = True
            self._logger.info("Building model with 'to_static' method.")

155 156 157
            program_helper = ProgramHelper(self.model, self._loss,
                                           self._metrics, self.inputs_spec,
                                           self.labels_spec)
158
            # build forward main program
159
            program_helper.build_program(mode)
160

161 162 163
            self.concrete_program = program_helper.concrete_program
            serial_main_prog = program_helper.main_program
            serial_startup_prog = program_helper.startup_program
164

165 166 167 168 169
            inputs = program_helper.input_vars
            outputs = program_helper.output_vars
            labels = program_helper.label_vars
            losses = program_helper.loss_vars
            metrics = program_helper.metric_vars
170

171
            paddle.enable_static()
172 173 174 175 176 177 178 179 180 181
        else:
            # build program in static mode
            serial_main_prog = self._serial_main_progs.get(mode, None)
            if serial_main_prog is not None:
                return

            losses = []
            metrics = []
            serial_main_prog = self._orig_main_prog.clone()
            serial_startup_prog = self._orig_startup_prog.clone()
182
            # FIXME to support grad clip
183 184 185 186 187 188 189 190 191 192 193 194 195 196
            with static.program_guard(serial_main_prog, serial_startup_prog), \
                utils.unique_name.guard():
                inputs_spec = self.inputs_spec
                labels_spec = self.labels_spec if self.labels_spec else []
                inputs = [s._create_feed_layer() for s in inputs_spec]
                labels = [s._create_feed_layer() for s in labels_spec]
                outputs = to_list(self.model(*inputs))
                if mode != "predict" and self._loss:
                    losses = to_list(self._loss(*(outputs + labels)))

                if mode != "predict":
                    for metric in self._metrics:
                        metrics.extend(
                            to_list(metric.compute(*(outputs + labels))))
197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212

        default_ctx = get_default_distributed_context()
        if not default_ctx.has_annotation:
            # We build the world process group because the data parallel
            # needs all ranks by default.
            new_process_group(list(range(self._nranks)))
            default_ctx.data_parallel = True

        feed_vars = {"inputs": inputs, "labels": labels}

        fetch_vars = {
            "outputs": flatten(outputs),
            "loss": losses,
            "metrics": metrics
        }

213
        self._set_recompute_ckpts()
214 215 216 217
        self._dist_contexts[mode] = DistributedContext(
            serial_main_prog, serial_startup_prog, self._optimizer, losses,
            feed_vars, fetch_vars, self.cluster, self.strategy)
        self._dist_contexts[mode].gradient_scale = self._gradient_scale
218
        self._dist_contexts[mode]._dygraph_mode = self._dygraph_mode
219

220 221 222 223 224 225 226
    def _optimization_tuning(self, mode):

        self.mode = mode
        assert "batch_size" in self._user_tuning_config, "Optimization Tuning should provide with batch size."
        assert "dataset" in self._user_tuning_config, "Optimization Tuning should provide with dataset."
        batch_size = self._user_tuning_config["batch_size"]
        dataset = self._user_tuning_config["dataset"]
227 228
        dataset.dp_world_size = self._input_split_size
        dataset.dp_rank = self._input_split_rank
229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247

        from .tuner.optimization_tuner import OptimizationTuner
        self._optimization_tuner = OptimizationTuner(self._user_tuning_config,
                                                     self._dist_contexts[mode],
                                                     dataset,
                                                     self.inputs_spec,
                                                     self.labels_spec,
                                                     batch_size=batch_size,
                                                     rank=self._cur_rank)

        self._optimization_tuner.tune()

        if self._user_tuning_config["run_after_tuning"]:
            # update the strategy
            self._dist_contexts[
                mode]._strategy = self._optimization_tuner.get_best_config()
        else:
            return

248 249 250 251 252 253
    def _plan(self, mode):
        if self._planned_mode is None:
            self._planned_mode = mode
        else:
            self._init_dist_context(mode)

254 255
        self._planners[mode] = Planner(mode, self._dist_contexts[mode])
        self._planners[mode].plan()
256

257 258 259 260 261 262 263 264 265
        # infer data parallel info
        inputs_var = self._dist_contexts[mode].serial_feed_vars["inputs"]
        labels_var = self._dist_contexts[mode].serial_feed_vars["labels"]
        block = self._dist_contexts[mode].serial_main_program.global_block()
        feed_list = []
        for var in inputs_var + labels_var:
            if var.name in block.vars:
                feed_list.append(block.vars[var.name])

266
        self._input_split_size, self._input_split_rank = self._get_input_split_info(
267 268
            feed_list[0], self._dist_contexts[mode])

269
    def _parallel(self, mode, all_ranks):
270 271 272
        # Parallelize program based on the planner's results
        # For now, the completer has to be passed to the planner,
        # because we may use it to complete the annotation of the backwarkward and update.
273
        parallelizer = Parallelizer(mode, self._planners[mode].completer,
274 275 276 277 278
                                    self._dist_contexts[mode])
        if not all_ranks:
            parallelizer.parallel(self._cur_rank)
        else:
            parallelizer.parallel_all()
279 280

    def _init_dist_context(self, mode):
281
        # Init dist_context['mode'] with the first planned dist_context
282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298
        # to guarantee that train/eval/predict mode have same parallel strategy
        dist_context = self._dist_contexts[mode]
        origin_main_prog = dist_context._original_serial_main_program
        ref_mode = self._planned_mode
        ref_dist_context = self._dist_contexts[ref_mode]
        ref_origin_main_prog = ref_dist_context._original_serial_main_program
        ref_blocks = ref_origin_main_prog.blocks
        for ib, block in enumerate(origin_main_prog.blocks):
            for iop, op in enumerate(block.ops):
                ref_op = ref_blocks[ib].ops[iop]
                assert op.type == ref_op.type, \
                    "'{}' mode op '{}' is different with '{}' op '{}'. ".format(mode, op.type, ref_mode, ref_op.type)
                ref_op_dist_attr = ref_dist_context.get_op_dist_attr_for_program(
                    ref_op)
                dist_context.set_op_dist_attr_for_program(op, ref_op_dist_attr)

    def _initialize(self, mode):
299
        # Get the current content from the distributed context
300 301 302 303
        self._serial_main_progs[mode] = self._dist_contexts[
            mode].serial_main_program
        self._serial_startup_progs[mode] = self._dist_contexts[
            mode].serial_startup_program
304 305 306 307
        self._dist_main_progs[mode] = self._dist_contexts[
            mode].dist_main_programs
        self._dist_startup_progs[mode] = self._dist_contexts[
            mode].dist_startup_programs
308 309
        self._feed_vars[mode] = self._dist_contexts[mode].serial_feed_vars
        self._fetch_vars[mode] = self._dist_contexts[mode].serial_fetch_vars
310
        self._optimizer = self._dist_contexts[mode].serial_optimizer
311

312 313 314 315
        if self._nranks > 1:
            # Traverse different rank programs and traverse each op of them,
            # instantiate communication by process_mapping.
            all_process_groups = get_all_process_groups()
316

317
            # NOTE: add the comm init control in the future for auto search
318 319 320 321
            for process_group in all_process_groups:
                if self._cur_rank not in process_group.ranks:
                    continue
                process_group.instantiate()
322 323 324 325

        self._place = _get_device()
        if isinstance(self._place, fluid.CUDAPlace):
            self._place = fluid.CUDAPlace(ParallelEnv().dev_id)
326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354

        if self._dygraph_mode:
            paddle.disable_static()
            main_program = self._dist_main_progs[mode][self._cur_rank]
            for param in self.concrete_program.parameters:
                # create var in scope and share parameters to scope
                if param.name not in main_program.global_block().vars:
                    continue
                # get param_var's dist_attr
                var = main_program.global_block().vars[param.name]
                var_dist_attr = self._dist_contexts[
                    mode].get_tensor_dist_attr_for_program(var)
                dist_attr = {
                    "dims_mapping": var_dist_attr.dims_mapping,
                    "process_shape": var_dist_attr.process_mesh.topology,
                    "process_group": var_dist_attr.process_mesh.processes
                }
                # slice param_value with dist_attr
                # share sliced_param_value with param_tensor in global_scope
                from .converter import Converter
                param_tensor = global_scope().var(param.name).get_tensor()
                sliced_param = Converter.slice_with_dist_attr(
                    param.numpy(), dist_attr)
                shared_tensor = paddle.to_tensor(sliced_param,
                                                 place=self._place)
                param_tensor._share_data_with(
                    shared_tensor.value().get_tensor())
            paddle.enable_static()

355 356
        if self._executor is None:
            self._executor = paddle.static.Executor(self._place)
357 358 359 360 361 362 363 364 365 366
            uninitialized = []
            dist_startup_prog = self._dist_startup_progs[mode][self._cur_rank]
            for var in dist_startup_prog.list_vars():
                scope_var = global_scope().find_var(var.name)
                if scope_var and scope_var.get_tensor()._is_initialized():
                    continue
                uninitialized.append(var)
            if uninitialized:
                prune_startup_prog = dist_startup_prog._prune(uninitialized)
                self._executor.run(prune_startup_prog)
367

368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401
            if self.strategy.amp and self.strategy.amp_configs['use_pure_fp16']:
                # from paddle.fluid.contrib.mixed_precision.fp16_utils import cast_parameters_to_fp16
                def cast_parameters_to_fp16(place,
                                            program,
                                            scope=None,
                                            to_fp16_var_names=None):
                    """
                    Traverse all parameters in the whole model and set them to the FP16 data type.
                    Whereas, this function will keep parameters of batchnorms in FP32.
                    Args:
                        place(fluid.CPUPlace|fluid.CUDAPlace): `place` is used to restore the FP16 weight tensors.
                        program (Program): The used program.
                        scope(fluid.Scope, optional): `scope` is used to get the FP32 weight tensor values.
                                                    Default is None.
                        to_fp16_var_names(set|list, optional): The data types of vars in `to_fp16_var_names`
                                                            will be set to FP16. Usually, it is the returned
                                                            value of `cast_model_to_fp16` API.
                    """
                    from paddle.framework import core
                    import numpy as np
                    all_parameters = []
                    for block in program.blocks:
                        all_parameters.extend(block.all_parameters())

                    var_scope = scope if scope else paddle.static.global_scope()
                    for param in all_parameters:
                        if param.dtype == core.VarDesc.VarType.FP16:
                            param_t = var_scope.find_var(
                                param.name).get_tensor()
                            data = np.array(param_t)
                            param_t.set(np.float16(data), place)

                cast_parameters_to_fp16(self._place, prune_startup_prog)

402 403 404 405
    def fit(self,
            train_data,
            batch_size=1,
            epochs=1,
406
            fetches=None,
407
            steps_per_epoch=None,
408 409
            collate_fn=None,
            use_cache=False,
410
            return_numpy=True):
411 412
        # TODO: callbacks
        # TODO: evaluate after training
413 414 415 416 417 418

        if not self._mode_init_states['train']:
            raise Exception(
                "train program is not initialized yet, please call engine.prepare() before calling fit() funtion."
            )

419
        self.mode = 'train'
420
        assert self.mode in self._dist_main_progs, \
421
            "train model is not ready, please call `engine.prepare()` first."
422
        train_dataloader = self._create_dataloader(train_data, batch_size,
423 424
                                                   epochs, steps_per_epoch,
                                                   collate_fn)
425

426 427
        usr_fetch = self._validate_fetches(fetches)
        fetch_loss = self._validate_fetches(self.fetch_vars["loss"])
428
        fetch_list, fetch_map = self._fetch_map(fetch_loss, usr_fetch)
429 430
        lr_scheduler = self.get_lr_scheduler(self.main_program)

431
        for epoch in range(epochs):
432 433 434 435
            train_logs = {"epoch": epoch}
            for step, _ in enumerate(train_dataloader):
                outs = self._executor.run(self.main_program,
                                          fetch_list=fetch_list,
436
                                          use_program_cache=use_cache,
437
                                          return_numpy=return_numpy)
438 439 440
                if lr_scheduler is not None:
                    lr_scheduler.step()
                    train_logs["lr"] = self._optimizer.get_lr()
441 442 443 444 445 446 447 448
                train_logs["step"] = step
                # inner fetches
                if fetch_loss:
                    train_logs["train_loss"] = outs[0][0]
                # user fetches
                user_outs = outs[len(fetch_loss):]
                user_fetch_list = fetch_list[len(fetch_loss):]
                for i, out in enumerate(user_outs):
449
                    train_logs["train_" + fetch_map[user_fetch_list[i]]] = out
450
                self._logger.info(train_logs)
451

452 453 454
    def evaluate(self,
                 eval_data,
                 batch_size=1,
455
                 fetches=None,
456 457
                 collate_fn=None,
                 use_cache=False,
458
                 return_numpy=True):
459
        self.mode = 'eval'
460 461 462
        if not self._mode_init_states[self.mode]:
            self._prepare_single_mode(self.mode)

463
        assert self.mode in self._dist_main_progs, \
464
            "eval model is not ready, please call `engine.prepare()` first."
465 466 467
        eval_dataloader = self._create_dataloader(eval_data,
                                                  batch_size,
                                                  collate_fn=collate_fn)
468

469 470 471
        usr_fetch = self._validate_fetches(fetches)
        fetch_loss = self._validate_fetches(self.fetch_vars["loss"])
        fetch_metrics = self._validate_fetches(self.fetch_vars["metrics"])
472 473 474 475 476 477 478
        inner_fetch = dict(fetch_loss, **fetch_metrics)
        fetch_list, fetch_map = self._fetch_map(inner_fetch, usr_fetch)

        for step, _ in enumerate(eval_dataloader):
            eval_logs = {"step": step}
            outs = self._executor.run(self.main_program,
                                      fetch_list=fetch_list,
479
                                      use_program_cache=use_cache,
480 481 482
                                      return_numpy=return_numpy)
            # inner fetches
            if fetch_loss:
483
                eval_logs["eval_loss"] = outs[0][0]
484 485 486 487 488 489 490 491 492
            # Metric
            if fetch_metrics:
                metric_out = outs[len(fetch_loss):len(inner_fetch)]
                for metric in self._metrics:
                    metric.update(*metric_out)
                    results = metric.accumulate()
                    for i, res in enumerate(to_list(results)):
                        eval_logs["eval_" + metric.name()[i]] = res
            # usr fetches
493
            usr_outs = outs[len(inner_fetch):]
494
            usr_fetch_list = fetch_list[len(inner_fetch):]
495
            for i, out in enumerate(usr_outs):
496 497
                eval_logs["eval_" + fetch_map[usr_fetch_list[i]]] = out
            # logger
498
            self._logger.info(eval_logs)
499

500 501 502
    def predict(self,
                test_data,
                batch_size=1,
503
                fetches=None,
504 505
                collate_fn=None,
                use_cache=False,
506
                return_numpy=True):
507
        self.mode = 'predict'
508 509 510
        if not self._mode_init_states[self.mode]:
            self._prepare_single_mode(self.mode)

511
        assert self.mode in self._dist_main_progs, \
512
            "predict model is not ready, please call `engine.prepare()` first."
513 514 515
        test_dataloader = self._create_dataloader(test_data,
                                                  batch_size,
                                                  collate_fn=collate_fn)
516

517 518
        usr_fetch = self._validate_fetches(fetches)
        fetch_outputs = self._validate_fetches(self.fetch_vars["outputs"])
519
        fetch_list, fetch_map = self._fetch_map(fetch_outputs, usr_fetch)
520 521

        outputs = []
522 523 524 525
        for step, _ in enumerate(test_dataloader):
            predict_logs = {"step": step}
            outs = self._executor.run(self.main_program,
                                      fetch_list=fetch_list,
526
                                      use_program_cache=use_cache,
527 528 529
                                      return_numpy=return_numpy)
            outputs.append(outs[:len(fetch_outputs)])
            for i, out in enumerate(outs):
530
                predict_logs["pred_" + fetch_map[fetch_list[i]]] = out
531
            self._logger.info(predict_logs)
532

533
        return outputs
534

535 536 537 538
    def _create_dataloader(self,
                           dataset,
                           batch_size,
                           epochs=1,
539 540
                           steps_per_epoch=None,
                           collate_fn=None):
541 542 543 544
        dist_main_prog = self._dist_main_progs[self.mode][self._cur_rank]
        dist_startup_prog = self._dist_startup_progs[self.mode][self._cur_rank]
        dist_context = self._dist_contexts[self.mode]
        dist_main_block = dist_main_prog.global_block()
545

546
        # NOTE: Get feed_list from dist_program, then insert dataloader op
547 548
        # with sharded var shape. Because predict_program does not contain
        # labels var, so we will filter dataset's value with length of feed_list.
549 550 551 552 553 554 555 556
        inputs_var = self._feed_vars[self.mode]["inputs"]
        labels_var = self._feed_vars[self.mode]["labels"]
        feed_list = []
        for var in inputs_var + labels_var:
            if var.name in dist_main_block.vars:
                feed_list.append(dist_main_block.vars[var.name])

        # remove the first three ops if multi run fit/evaluate/predict
557
        op_size = len(dist_main_block.ops)
558 559 560 561
        if dist_main_block.ops[0].type == 'create_py_reader':
            op_size -= 3
            for _ in range(3):
                dist_main_block._remove_op(0, sync=False)
562 563

        # insert read op at the end of program
564
        places = paddle.static.cuda_places()
565
        with static.program_guard(dist_main_prog, dist_startup_prog):
566
            dataloader = NonIterableGeneratorLoader(
567 568 569 570 571 572
                dataset,
                feed_list,
                places,
                batch_size,
                epochs,
                steps_per_epoch,
573
                collate_fn,
574 575
                data_parallel_world_size=self._input_split_size,
                data_parallel_rank=self._input_split_rank)
576 577

        # move read op from the end of program to the start of program
578
        new_op_size = len(dist_main_block.ops)
579
        for _ in range(new_op_size - 1, op_size - 1, -1):
580 581 582
            op = dist_main_block.ops[new_op_size - 1]
            new_op_desc = dist_main_block.desc._prepend_op()
            new_op_desc.copy_from(op.desc)
583 584 585
            new_op = Operator(dist_main_block,
                              new_op_desc,
                              type=new_op_desc.type())
586 587 588 589 590 591 592 593
            dist_main_block.ops.insert(0, new_op)
            dist_op = DistributedOperator(new_op)
            dist_context.add_dist_op_for_program(dist_op)
        for _ in range(new_op_size - op_size):
            dist_main_block._remove_op(new_op_size, sync=False)
        dist_main_block._sync_with_cpp()
        return dataloader

594 595 596 597 598 599 600 601 602 603 604
    def _validate_spec(self, specs):
        specs = to_list(specs)
        if specs is not None:
            for i, spec in enumerate(specs):
                assert isinstance(spec, InputSpec)
                if spec.name is None:
                    raise ValueError(
                        "Requires Input[{}].name != None, but receive `None` with {}."
                        .format(i, spec))
        return specs

605 606 607 608 609 610 611 612 613 614 615 616 617 618 619
    def _is_local_var(self, var):
        var_name = _to_name_str(var)
        return var_name in self.main_program.global_block().vars

    def _validate_fetches(self, fetches):
        # 1. Check user-defined fetches type
        # 2. Prepare fetches_dict like {user_defined_name: var_name}
        if not fetches:
            return {}
        if isinstance(fetches, dict):
            fetch_var_names = list(map(_to_name_str, fetches.values()))
            fetches_dict = dict(zip(fetch_var_names, list(fetches.keys())))
        elif isinstance(fetches, list):
            fetch_var_names = list(map(_to_name_str, fetches))
            fetches_dict = dict(zip(fetch_var_names, fetch_var_names))
620
        else:
621 622 623 624 625 626 627 628 629 630 631 632 633
            raise TypeError("'fetches' only support 'dict' and 'list', "
                            "but got '{}'".format(str(type(fetches))))
        return dict(
            filter(lambda x: self._is_local_var(x[0]), fetches_dict.items()))

    def _fetch_map(self, inner_fetch, usr_fetch):
        # replace inner fetch name if usr set for it
        for iname in inner_fetch:
            if iname in usr_fetch:
                inner_fetch[iname] = usr_fetch[iname]
                usr_fetch.pop(iname)
        fetches = dict(inner_fetch, **usr_fetch)
        return list(fetches.keys()), fetches
634

635 636
    def _get_input_split_info(self, var, dist_context):
        # deduce how the input data is split among the cluster
637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657
        from .utils import _get_comm_group, _get_corresponding_rank

        tensor_dist_attr = dist_context.get_tensor_dist_attr_for_program(var)
        process_mesh = tensor_dist_attr.process_mesh
        dims_mapping = tensor_dist_attr.dims_mapping

        if self._cur_rank not in process_mesh.processes:
            rank_id = _get_corresponding_rank(dist_context, process_mesh,
                                              self._cur_rank)
        else:
            rank_id = self._cur_rank

        batch_size_axis = dims_mapping[0]
        if batch_size_axis > -1 and process_mesh.topology[batch_size_axis] > 1:
            group_ranks = _get_comm_group(process_mesh.processes,
                                          process_mesh.topology,
                                          batch_size_axis, rank_id)
            return len(group_ranks), group_ranks.index(rank_id)

        return None, None

658 659 660 661 662 663 664 665 666
    def _set_recompute_ckpts(self):
        # NOTE hack to enable recompute in engine api for GPT-3
        # TODO support more PaddleNLP/CV models here

        config = self.strategy.recompute_configs

        # extract ckpts by specific model
        if isinstance(self.model, paddle.nn.Layer):
            if hasattr(
667 668 669
                    self.model, "gpt"
            ) and self.model.__class__.__name__ == 'GPTForPretraining':
                exact_ckpts = self.model.gpt.checkpoints
670 671 672 673 674 675 676 677
        else:
            exact_ckpts = config["checkpoints"]

        # modify strategy
        if self.strategy.recompute:
            config["checkpoints"] = exact_ckpts[:]
            self.strategy.recompute_configs = config
            logs = {
678
                'Model Class': self.model.__class__.__name__,
679 680 681 682
                'Applied Recompute ckpts': exact_ckpts
            }
            self._logger.info(logs)

683 684 685 686 687
    def save(self, path, training=True, mode=None):
        if not mode:
            mode = self.mode

        if training:
688 689
            assert 'train' in self._serial_main_progs, \
                "training model is not ready, please call `engine.prepare()` first."
690 691 692
            serial_program = self._serial_main_progs["train"]
            dist_main_prog = self._dist_main_progs["train"][self._cur_rank]
            dist_context = self._dist_contexts["train"]
693 694 695 696
            self._saver.save(path,
                             serial_program=serial_program,
                             dist_main_program=dist_main_prog,
                             dist_context=dist_context)
697 698 699 700 701
        else:
            assert mode, "Please set the 'mode' you want to save."
            feed_vars = self._feed_vars[mode]['inputs']
            fetch_vars = self._fetch_vars[mode]['outputs']
            dist_main_prog = self._dist_main_progs[mode][self._cur_rank]
702 703 704 705 706
            self._saver.save_inference_model(path,
                                             feed_vars,
                                             fetch_vars,
                                             self._executor,
                                             program=dist_main_prog)
707

708 709 710 711
    def load(self, path, strict=True, load_optimizer=True, mode=None):
        if not mode:
            mode = self.mode
        assert mode, "Please set the 'mode' you want to load."
712

713 714 715 716
        dist_main_prog = self._dist_main_progs[mode][self._cur_rank]
        dist_context = self._dist_contexts[mode]
        self._saver.load(path, dist_main_prog, dist_context, strict,
                         load_optimizer)
717

718 719 720 721 722 723 724 725 726
    @staticmethod
    def get_lr_scheduler(program):
        lr_sheduler = None
        if hasattr(program, 'lr_sheduler'):
            from paddle.optimizer.lr import LRScheduler
            lr_sheduler = program.lr_sheduler
            assert isinstance(lr_sheduler, LRScheduler), "must be LRScheduler"
        return lr_sheduler

727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753
    @property
    def mode(self):
        return self._mode

    @mode.setter
    def mode(self, mode):
        self._mode = mode

    @property
    def main_program(self):
        return self._dist_main_progs[self.mode][self._cur_rank]

    @property
    def startup_program(self):
        return self._dist_startup_progs[self.mode][self._cur_rank]

    @property
    def dist_context(self):
        return self._dist_contexts[self.mode]

    @property
    def serial_main_program(self):
        return self._serial_main_progs[self.mode]

    @property
    def serial_startup_program(self):
        return self._serial_startup_progs[self.mode]
754 755 756 757

    @property
    def fetch_vars(self):
        return self._fetch_vars[self.mode]