eager.cc 54.8 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11
/* Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved.
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
// disable numpy compile error
12 13
#include "paddle/fluid/pybind/eager.h"

14
#include <Python.h>
15 16 17 18
// Avoid a problem with copysign defined in pyconfig.h on Windows.
#ifdef copysign
#undef copysign
#endif
19 20 21 22

#include <string>
#include <vector>

23
#include "paddle/fluid/eager/accumulation/accumulation_node.h"
24 25 26
#include "paddle/fluid/eager/api/all.h"
#include "paddle/fluid/eager/autograd_meta.h"
#include "paddle/fluid/eager/utils.h"
27
#include "paddle/fluid/framework/convert_utils.h"
28 29 30 31
#include "paddle/fluid/memory/allocation/allocator.h"
#include "paddle/fluid/memory/memcpy.h"
#include "paddle/fluid/platform/enforce.h"
#include "paddle/fluid/pybind/eager_utils.h"
32 33 34
#include "paddle/phi/common/data_type.h"
#include "paddle/phi/core/compat/convert_utils.h"
#include "paddle/phi/core/dense_tensor.h"
35
#include "pybind11/detail/internals.h"
36 37
#include "pybind11/numpy.h"
#include "pybind11/pybind11.h"
38
#pragma GCC diagnostic ignored "-Wmissing-field-initializers"
39
#include "paddle/fluid/framework/phi_utils.h"
40
#include "paddle/fluid/framework/python_headers.h"
41
#include "paddle/fluid/pybind/exception.h"
42
#include "paddle/fluid/pybind/tensor_py.h"
J
Jack Zhou 已提交
43
#include "paddle/phi/core/string_tensor.h"
L
LiYuRio 已提交
44 45 46 47 48 49 50 51

#ifdef PADDLE_WITH_DISTRIBUTE
#include "paddle/phi/core/distributed/auto_parallel/dist_attr.h"
#include "paddle/phi/core/distributed/auto_parallel/dist_tensor.h"
using phi::distributed::auto_parallel::DistTensor;
using phi::distributed::auto_parallel::TensorDistAttr;
#endif

52 53 54 55 56
namespace paddle {
namespace pybind {

namespace py = ::pybind11;

57 58
extern PyTypeObject* p_tensor_type;
extern PyTypeObject* p_string_tensor_type;  // For StringTensor
59
extern PyTypeObject* g_vartype_pytype;
60
extern PyTypeObject* g_framework_tensor_pytype;
61

62
PyObject* TensorNew(PyTypeObject* type, PyObject* args, PyObject* kwargs) {
63 64
  PyObject* obj = type->tp_alloc(type, 0);
  if (obj) {
65
    auto v = reinterpret_cast<TensorObject*>(obj);
66
    new (&(v->tensor)) paddle::Tensor();
67 68 69 70
  }
  return obj;
}

L
LiYuRio 已提交
71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116
#ifdef PADDLE_WITH_DISTRIBUTE
void EmptyDistTensorInitializer(
    TensorObject* self,
    const std::string& name,
    const paddle::platform::Place& place,
    const std::shared_ptr<TensorDistAttr>& dist_attr,
    bool persistable = false,
    int stop_gradient = -1,
    framework::proto::VarType::Type dtype =
        paddle::framework::proto::VarType::FP32,
    const std::vector<int>& dims = {0}) {
  auto ddims = phi::make_ddim(dims);
  self->tensor.set_name(name);
  auto autograd_meta = egr::EagerUtils::autograd_meta(&(self->tensor));
  autograd_meta->SetPersistable(persistable);
  if (stop_gradient != -1) {
    autograd_meta->SetStopGradient(static_cast<bool>(stop_gradient));
  }

  std::shared_ptr<DistTensor> dist_tensor = nullptr;
  if (dims.size() == 1 && dims[0] == 0) {
    std::shared_ptr<phi::Allocation> allocation_ptr = nullptr;
    dist_tensor = std::make_shared<DistTensor>(
        allocation_ptr,
        phi::DenseTensorMeta(paddle::framework::TransToPhiDataType(dtype),
                             ddims),
        dist_attr);
  } else {
    dist_tensor = std::make_shared<DistTensor>(
        std::make_shared<phi::Allocation>(),
        phi::DenseTensorMeta(paddle::framework::TransToPhiDataType(dtype),
                             ddims),
        dist_attr);
  }
  self->tensor.set_impl(dist_tensor);

  if (!autograd_meta->GetMutableGradNode()) {
    autograd_meta->SetGradNode(
        std::make_shared<egr::GradNodeAccumulation>(autograd_meta));
    VLOG(3) << "Tensor(" << name
            << ") have not GradNode, add GradNodeAccumulation"
            << autograd_meta->GradNode() << " for it.";
  }
}
#endif

117
// TODO(jiabin): Overload this once we need more constructor in Python
118 119
void EmptyTensorInitializer(TensorObject* self,
                            const std::string& name,
120
                            const paddle::platform::Place& place,
121 122
                            bool persistable = false,
                            int stop_gradient = -1,
123 124
                            framework::proto::VarType::Type dtype =
                                paddle::framework::proto::VarType::FP32,
125
                            const std::vector<int>& dims = {0},
126 127
                            framework::proto::VarType::Type var_type =
                                paddle::framework::proto::VarType::LOD_TENSOR) {
128
  auto ddims = phi::make_ddim(dims);
129 130
  self->tensor.set_name(name);
  auto autograd_meta = egr::EagerUtils::autograd_meta(&(self->tensor));
131
  autograd_meta->SetPersistable(persistable);
132 133 134
  if (stop_gradient != -1) {
    autograd_meta->SetStopGradient(static_cast<bool>(stop_gradient));
  }
135 136
  if (var_type == paddle::framework::proto::VarType::LOD_TENSOR) {
    // TODO(jiabin): Maybe support LOD later
137
    std::shared_ptr<phi::DenseTensor> dense_tensor = nullptr;
138
    if (dims.size() == 1 && dims[0] == 0) {
L
LiYuRio 已提交
139
      VLOG(0) << "Create dense tensor with dims[0] equal to 0";
140 141 142 143 144 145 146 147
      std::shared_ptr<phi::Allocation> allocation_ptr = nullptr;
      dense_tensor = std::make_shared<phi::DenseTensor>(
          allocation_ptr,
          phi::DenseTensorMeta(paddle::framework::TransToPhiDataType(dtype),
                               ddims));
    } else {
      // TODO(dev): we need enhance check for ddims.
      dense_tensor = std::make_shared<phi::DenseTensor>(
Z
zyfncg 已提交
148
          std::make_shared<phi::Allocation>(),
149 150 151
          phi::DenseTensorMeta(paddle::framework::TransToPhiDataType(dtype),
                               ddims));
    }
152
    self->tensor.set_impl(dense_tensor);
153 154 155 156
  } else if (var_type == paddle::framework::proto::VarType::SELECTED_ROWS) {
    std::shared_ptr<phi::SelectedRows> tensor =
        std::make_shared<phi::SelectedRows>();
    self->tensor.set_impl(tensor);
157 158 159
  }

  if (!autograd_meta->GetMutableGradNode()) {
160 161
    autograd_meta->SetGradNode(
        std::make_shared<egr::GradNodeAccumulation>(autograd_meta));
162 163 164
    VLOG(3) << "Tensor(" << name
            << ") have not GradNode, add GradNodeAccumulation"
            << autograd_meta->GradNode() << " for it.";
165 166 167
  }
}

168 169
void EmptyStringTensorInitializer(TensorObject* self,
                                  const std::string& name,
J
Jack Zhou 已提交
170 171 172 173 174 175 176
                                  const paddle::platform::Place& place,
                                  const std::vector<int>& dims = {}) {
  auto ddims = phi::make_ddim(dims);
  self->tensor.set_name(name);
  // Note(zhoushunjie): Only support CPUPlace when create StringTensor
  auto actual_place = platform::CPUPlace();
  // Allocate memory
177
  paddle::experimental::DefaultAllocator string_allocator(actual_place);
J
Jack Zhou 已提交
178
  std::shared_ptr<phi::StringTensor> string_tensor =
179 180
      std::make_shared<phi::StringTensor>(&string_allocator,
                                          phi::StringTensorMeta{ddims});
J
Jack Zhou 已提交
181 182 183 184 185 186
  if (phi::product(ddims) > 0) {
    string_tensor->mutable_data(actual_place);
  }
  self->tensor.set_impl(string_tensor);
}

L
LiYuRio 已提交
187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228
#ifdef PADDLE_WITH_DISTRIBUTE
void InitDistTensorWithNumpyValue(TensorObject* self,
                                  const py::object& array,
                                  const paddle::platform::Place& place,
                                  bool zero_copy = false) {
  PADDLE_ENFORCE_EQ(
      self->tensor.defined(),
      true,
      paddle::platform::errors::Fatal(
          "Calling InitDistTensorWithNumpyValue of Eager Tensor without "
          "EmptyDistTensorInitializer is "
          "forbidden. Please check your code and make sure you new a "
          "eager tensor before init it with NumPy."));
  DistTensor* dist_tensor_ptr =
      static_cast<DistTensor*>(self->tensor.impl().get());
  phi::DenseTensor* impl_ptr =
      static_cast<phi::DenseTensor*>(dist_tensor_ptr->mutable_value());

  if (platform::is_cpu_place(place)) {
    SetTensorFromPyArray<platform::CPUPlace>(impl_ptr, array, place, zero_copy);
  } else if (platform::is_xpu_place(place)) {
    SetTensorFromPyArray<platform::XPUPlace>(impl_ptr, array, place, zero_copy);
  } else if (platform::is_gpu_place(place)) {
    SetTensorFromPyArray<platform::CUDAPlace>(
        impl_ptr, array, place, zero_copy);
  } else if (platform::is_cuda_pinned_place(place)) {
    SetTensorFromPyArray<platform::CUDAPinnedPlace>(
        impl_ptr, array, place, zero_copy);
  } else if (platform::is_custom_place(place)) {
    SetTensorFromPyArray<platform::CustomPlace>(
        impl_ptr, array, place, zero_copy);
  } else {
    PADDLE_THROW(platform::errors::InvalidArgument(
        "Place should be one of "
        "CPUPlace/XPUPlace/CUDAPlace/CUDAPinnedPlace/CustomPlace"));
  }

  // TODO(dev): dist_tensor meta is not equal to dense tensor meta
  dist_tensor_ptr->set_meta(impl_ptr->meta());
}
#endif

229 230
void InitTensorWithNumpyValue(TensorObject* self,
                              const py::object& array,
231
                              const paddle::platform::Place& place,
232
                              bool zero_copy = false) {
233
  PADDLE_ENFORCE_EQ(
234 235
      self->tensor.defined(),
      true,
236
      paddle::platform::errors::Fatal(
237 238
          "Calling InitTensorWithNumpyValue of Eager Tensor without "
          "EmptyTensorInitializer is "
239 240
          "forbidden. Please check your code and make sure you new a "
          "eager tensor before init it with NumPy."));
241 242
  phi::DenseTensor* impl_ptr =
      static_cast<phi::DenseTensor*>(self->tensor.impl().get());
L
LiYuRio 已提交
243

244
  if (platform::is_cpu_place(place)) {
245
    SetTensorFromPyArray<platform::CPUPlace>(impl_ptr, array, place, zero_copy);
246
  } else if (platform::is_xpu_place(place)) {
247
    SetTensorFromPyArray<platform::XPUPlace>(impl_ptr, array, place, zero_copy);
248
  } else if (platform::is_gpu_place(place)) {
249 250
    SetTensorFromPyArray<platform::CUDAPlace>(
        impl_ptr, array, place, zero_copy);
251
  } else if (platform::is_cuda_pinned_place(place)) {
252 253
    SetTensorFromPyArray<platform::CUDAPinnedPlace>(
        impl_ptr, array, place, zero_copy);
254
  } else if (platform::is_custom_place(place)) {
255 256
    SetTensorFromPyArray<platform::CustomPlace>(
        impl_ptr, array, place, zero_copy);
257 258 259
  } else {
    PADDLE_THROW(platform::errors::InvalidArgument(
        "Place should be one of "
张春乔 已提交
260
        "CPUPlace/XPUPlace/CUDAPlace/CUDAPinnedPlace/CustomPlace"));
261 262 263
  }
}

J
Jack Zhou 已提交
264 265
void InitStringTensorWithNumpyValue(TensorObject* self, const py::object& obj) {
  PADDLE_ENFORCE_EQ(
266 267
      self->tensor.defined(),
      true,
J
Jack Zhou 已提交
268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286
      paddle::platform::errors::Fatal(
          "Calling InitStringTensorWithNumpyValue of Eager StringTensor "
          "without "
          "EmptyStringTensorInitializer is "
          "forbidden. Please check your code and make sure you new a "
          "eager tensor before init it with NumPy."));
  phi::StringTensor* impl_ptr =
      static_cast<phi::StringTensor*>(self->tensor.impl().get());
  paddle::platform::Place place = impl_ptr->place();
  auto array = obj.cast<py::array>();
  if (platform::is_cpu_place(place)) {
    SetStringTensorFromPyArray<platform::CPUPlace>(impl_ptr, array, place);
  } else {
    PADDLE_THROW(platform::errors::InvalidArgument(
        "StringTensor only support CPUPlace now, but receive %s",
        place.DebugString()));
  }
}

L
LiYuRio 已提交
287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319
#ifdef PADDLE_WITH_DISTRIBUTE
void InitDistTensorWithTensor(
    TensorObject* self,
    const paddle::Tensor& src,
    const paddle::platform::Place& place,
    const std::string& name,
    const std::shared_ptr<TensorDistAttr>& dist_attr) {
  PADDLE_ENFORCE(src.is_dense_tensor(),
                 paddle::platform::errors::InvalidArgument(
                     "DistTensor can only initialize by DenseTensor"));
  self->tensor.set_name(name);
  if (place == src.place()) {
    std::shared_ptr<phi::DenseTensor> tensor =
        std::static_pointer_cast<phi::DenseTensor>(src.impl());
    self->tensor.set_impl(std::make_shared<DistTensor>(tensor, dist_attr));
    VLOG(4) << "Same place, do ShareDataWith";
  } else {
    std::shared_ptr<phi::DenseTensor> tensor =
        std::static_pointer_cast<phi::DenseTensor>(
            src.copy_to(place, true).impl());
    self->tensor.set_impl(std::make_shared<DistTensor>(tensor, dist_attr));
    VLOG(4) << "Different place, do TensorCopy";
  }
  if (src.get_autograd_meta()) {
    egr::EagerUtils::autograd_meta(&(self->tensor))
        ->SetPersistable(
            egr::EagerUtils::unsafe_autograd_meta(src)->Persistable());
  } else {
    egr::EagerUtils::autograd_meta(&(self->tensor))->SetPersistable(false);
  }
}
#endif

320
void InitTensorWithTensor(TensorObject* self,
321
                          const paddle::Tensor& src,
322 323
                          const paddle::platform::Place& place,
                          const std::string& name) {
324
  self->tensor.set_name(name);
C
Chen Weihang 已提交
325
  if (place == src.place()) {
326
    self->tensor.set_impl(src.impl());
327 328
    VLOG(4) << "Same place, do ShareDataWith";
  } else {
329
    self->tensor.set_impl(src.copy_to(place, true).impl());
330 331 332
    VLOG(4) << "Different place, do TensorCopy";
  }
  if (src.get_autograd_meta()) {
333
    egr::EagerUtils::autograd_meta(&(self->tensor))
334 335 336
        ->SetPersistable(
            egr::EagerUtils::unsafe_autograd_meta(src)->Persistable());
  } else {
337
    egr::EagerUtils::autograd_meta(&(self->tensor))->SetPersistable(false);
338 339 340
  }
}

341
void InitTensorWithFrameworkTensor(TensorObject* self,
342
                                   const phi::DenseTensor& src,
343 344
                                   const paddle::platform::Place& place,
                                   const std::string& name) {
345
  self->tensor.set_name(name);
346
  if (place == src.place()) {
347
    self->tensor.set_impl(std::make_shared<phi::DenseTensor>(src));
348 349
    VLOG(4) << "Same place, do ShareDataWith";
  } else {
350
    auto temp = paddle::Tensor(std::make_shared<phi::DenseTensor>(src));
351
    self->tensor.set_impl(temp.copy_to(place, true).impl());
352 353
    VLOG(4) << "Different place, do TensorCopy";
  }
354
  egr::EagerUtils::autograd_meta(&(self->tensor))->SetPersistable(false);
355
}
356

J
Jack Zhou 已提交
357
void InitStringTensorWithStringTensor(TensorObject* self,
358
                                      const paddle::Tensor& src,
J
Jack Zhou 已提交
359 360 361 362 363 364 365 366 367
                                      const paddle::platform::Place& place,
                                      const std::string& name) {
  self->tensor.set_name(name);
  auto impl = std::static_pointer_cast<phi::StringTensor>(src.impl());
  self->tensor.set_impl(impl);
  VLOG(4)
      << "Do ShareDataWith when using StringTensor to initialize StringTensor";
}

368 369
py::object ParsePyArray(
    std::unordered_map<std::string, PyObject*> kws_map,
370 371 372 373
    std::unordered_map<std::string, Py_ssize_t> kw_order_map,
    PyObject* args,
    bool flag_kwargs,
    Py_ssize_t args_num) {
374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395
  py::object numpy_value = py::object();

  if (kw_order_map["value"] <= args_num) {
    numpy_value = py::object(
        py::handle(PyTuple_GET_ITEM(args, kw_order_map["value"] - 1)), true);
  } else {
    if (flag_kwargs && kws_map["value"] != NULL) {
      numpy_value = py::object(py::handle(kws_map["value"]), true);
    } else {
      PADDLE_THROW(platform::errors::InvalidArgument(
          "The first expected arguments is {value: PyArray}, "
          "but could not parse the first argument {value: PyArray} "
          "successfully. "
          "Please check your input first and make sure you are on the right "
          "way."));
    }
  }
  return numpy_value;
}

paddle::platform::Place ParsePlace(
    std::unordered_map<std::string, PyObject*> kws_map,
396 397 398 399
    std::unordered_map<std::string, Py_ssize_t> kw_order_map,
    PyObject* args,
    bool flag_kwargs,
    Py_ssize_t args_num) {
400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416
  paddle::platform::Place place =
      egr::Controller::Instance().GetExpectedPlace();

  if (kw_order_map["place"] <= args_num) {
    place = CastPyArg2Place(PyTuple_GET_ITEM(args, kw_order_map["place"] - 1),
                            kw_order_map["place"] - 1);
  } else {
    if (flag_kwargs && kws_map["place"] != NULL) {
      place = CastPyArg2Place(kws_map["place"], 0);
    } else {
      // default
      return place;
    }
  }
  return place;
}

L
LiYuRio 已提交
417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435
#ifdef PADDLE_WITH_DISTRIBUTE
std::shared_ptr<TensorDistAttr> ParseDistAttrArgs(
    std::unordered_map<std::string, PyObject*> kws_map,
    std::unordered_map<std::string, Py_ssize_t> kw_order_map,
    PyObject* args,
    bool flag_kwargs,
    Py_ssize_t args_num) {
  std::shared_ptr<TensorDistAttr> dist_attr = nullptr;
  if (kw_order_map["dist_attr"] <= args_num) {
    dist_attr = CastPyArg2DistAttr(
        PyTuple_GET_ITEM(args, kw_order_map["dist_attr"] - 1),
        kw_order_map["dist_attr"] - 1);
  } else if (flag_kwargs && kws_map["dist_attr"] != NULL) {
    dist_attr = CastPyArg2DistAttr(kws_map["dist_attr"], 0);
  }
  return dist_attr;
}
#endif

436
// boolean arguments: zero_copy, stop_gradient, persistable
437 438 439
int ParseBooleanArgs(std::string key,
                     std::unordered_map<std::string, PyObject*> kws_map,
                     std::unordered_map<std::string, Py_ssize_t> kw_order_map,
440 441 442
                     PyObject* args,
                     bool flag_kwargs,
                     Py_ssize_t args_num) {
443
  int res = -1;
444 445

  if (kw_order_map[key] <= args_num) {
446 447
    res = static_cast<int>(CastPyArg2AttrBoolean(
        PyTuple_GET_ITEM(args, kw_order_map[key] - 1), kw_order_map[key] - 1));
448 449
  } else {
    if (flag_kwargs && kws_map[key] != NULL) {
450
      res = static_cast<int>(CastPyArg2AttrBoolean(kws_map[key], 0));
451 452 453 454 455 456 457
    }
  }
  return res;
}

std::string ParseName(std::unordered_map<std::string, PyObject*> kws_map,
                      std::unordered_map<std::string, Py_ssize_t> kw_order_map,
458 459 460
                      PyObject* args,
                      bool flag_kwargs,
                      Py_ssize_t args_num,
J
Jack Zhou 已提交
461
                      std::string unique_name_prefix = "generated_tensor") {
462 463 464 465 466
  std::string act_name = "";
  if (kw_order_map["name"] <= args_num) {
    PyObject* name_obj = PyTuple_GET_ITEM(args, kw_order_map["name"] - 1);
    if (name_obj == Py_None) {
      act_name =
J
Jack Zhou 已提交
467
          egr::Controller::Instance().GenerateUniqueName(unique_name_prefix);
468 469 470 471 472
    } else {
      act_name = CastPyArg2AttrString(name_obj, kw_order_map["name"] - 1);
    }
  } else {
    if (flag_kwargs) {
J
Jiabin Yang 已提交
473
      if ((kws_map["name"] == NULL) || (kws_map["name"] == Py_None)) {
474
        act_name =
J
Jack Zhou 已提交
475
            egr::Controller::Instance().GenerateUniqueName(unique_name_prefix);
476 477 478 479 480
      } else {
        act_name = CastPyArg2AttrString(kws_map["name"], 0);
      }
    } else {
      act_name =
J
Jack Zhou 已提交
481
          egr::Controller::Instance().GenerateUniqueName(unique_name_prefix);
482 483 484 485 486
    }
  }
  return act_name;
}

487
// initialize Tensor by PyArray(first argument is PyArray,
488
// mix args and kwargs) automatically.
489 490
void AutoInitTensorByPyArray(TensorObject* py_tensor_ptr,
                             std::unordered_map<std::string, PyObject*> kws_map,
491 492
                             PyObject* args,
                             bool flag_kwargs,
493 494 495
                             Py_ssize_t args_num) {
  // The first argument of the Tensor constructor is PyArray,
  // there are 6 arguments to construct the new Tensor,
496 497 498 499
  // kw_order_map's key is every arguments of the constructor,
  // kw_order_map's value is the position of the arguments respectively.
  // If u want to update this constructor with new arguments,
  // need to update this map and to add or change related code.
L
LiYuRio 已提交
500 501 502 503 504 505 506
  std::unordered_map<std::string, Py_ssize_t> kw_order_map{{"value", 1},
                                                           {"place", 2},
                                                           {"persistable", 3},
                                                           {"zero_copy", 4},
                                                           {"name", 5},
                                                           {"stop_gradient", 6},
                                                           {"dist_attr", 7}};
507 508 509 510 511 512 513

  py::object numpy_value = py::object();
  paddle::platform::Place place =
      egr::Controller::Instance().GetExpectedPlace();
  bool persistable = false;
  bool zero_copy = false;
  std::string act_name = "";
514
  int stop_gradient = -1;
515 516 517 518

  numpy_value =
      ParsePyArray(kws_map, kw_order_map, args, flag_kwargs, args_num);
  place = ParsePlace(kws_map, kw_order_map, args, flag_kwargs, args_num);
519 520 521 522 523 524 525 526
  persistable =
      (1 ==
       ParseBooleanArgs(
           "persistable", kws_map, kw_order_map, args, flag_kwargs, args_num));
  zero_copy =
      (1 ==
       ParseBooleanArgs(
           "zero_copy", kws_map, kw_order_map, args, flag_kwargs, args_num));
527
  act_name = ParseName(kws_map, kw_order_map, args, flag_kwargs, args_num);
528 529
  stop_gradient = ParseBooleanArgs(
      "stop_gradient", kws_map, kw_order_map, args, flag_kwargs, args_num);
530

L
LiYuRio 已提交
531 532 533 534 535 536 537 538 539 540 541 542
#ifdef PADDLE_WITH_DISTRIBUTE
  std::shared_ptr<TensorDistAttr> dist_attr =
      ParseDistAttrArgs(kws_map, kw_order_map, args, flag_kwargs, args_num);

  if (dist_attr) {
    EmptyDistTensorInitializer(
        py_tensor_ptr, act_name, place, dist_attr, persistable, stop_gradient);
    InitDistTensorWithNumpyValue(py_tensor_ptr, numpy_value, place, zero_copy);
    return;
  }
#endif

543 544
  EmptyTensorInitializer(
      py_tensor_ptr, act_name, place, persistable, stop_gradient);
545
  InitTensorWithNumpyValue(py_tensor_ptr, numpy_value, place, zero_copy);
546 547
}

548
// initialize Tensor by Tensor or phi::DenseTensor (mix args and
549
// kwargs) automatically.
550 551
void AutoInitTensorByTensor(TensorObject* py_tensor_ptr,
                            std::unordered_map<std::string, PyObject*> kws_map,
552 553
                            PyObject* args,
                            bool flag_kwargs,
554 555 556
                            Py_ssize_t args_num,
                            bool init_by_egr_tensor = true) {
  // The first argument of the Tensor constructor is Tensor or
557
  // framework Tensor,
558
  // there are 3 arguments to construct the new Tensor,
559 560 561 562 563
  // kw_order_map's key is every arguments of the constructor,
  // kw_order_map's value is the position of the arguments respectively.
  // If u want to update this constructor with new arguments,
  // need to update this map and to add or change related code.
  std::unordered_map<std::string, Py_ssize_t> kw_order_map{
L
LiYuRio 已提交
564
      {"value", 1}, {"place", 2}, {"name", 3}, {"dist_attr", 4}};
565 566 567 568 569 570 571 572

  paddle::platform::Place place =
      egr::Controller::Instance().GetExpectedPlace();
  std::string act_name = "";

  place = ParsePlace(kws_map, kw_order_map, args, flag_kwargs, args_num);
  act_name = ParseName(kws_map, kw_order_map, args, flag_kwargs, args_num);

L
LiYuRio 已提交
573 574 575 576 577
#ifdef PADDLE_WITH_DISTRIBUTE
  std::shared_ptr<TensorDistAttr> dist_attr =
      ParseDistAttrArgs(kws_map, kw_order_map, args, flag_kwargs, args_num);
#endif

578
  if (init_by_egr_tensor) {
579
    paddle::Tensor src_tensor;
580
    if (kw_order_map["value"] <= args_num) {
581 582 583
      src_tensor =
          CastPyArg2Tensor(PyTuple_GET_ITEM(args, kw_order_map["value"] - 1),
                           kw_order_map["value"] - 1);
584 585
    } else {
      if (flag_kwargs && kws_map["value"] != NULL) {
586
        src_tensor = CastPyArg2Tensor(kws_map["value"], 0);
587 588
      } else {
        PADDLE_THROW(platform::errors::InvalidArgument(
589 590
            "The first expected kwargs is {value: Tensor}, "
            "but could not parse the first argument {value: Tensor} "
591 592 593 594 595
            "successfully. "
            "Please check your input first and make sure you are on the right "
            "way."));
      }
    }
L
LiYuRio 已提交
596 597 598 599 600 601 602 603
#ifdef PADDLE_WITH_DISTRIBUTE
    if (dist_attr) {
      InitDistTensorWithTensor(
          py_tensor_ptr, src_tensor, place, act_name, dist_attr);
    } else {
      InitTensorWithTensor(py_tensor_ptr, src_tensor, place, act_name);
    }
#else
604
    InitTensorWithTensor(py_tensor_ptr, src_tensor, place, act_name);
L
LiYuRio 已提交
605
#endif
606 607
  } else {
    // init by framework tensor
608
    phi::DenseTensor src_tensor;
609 610 611 612 613 614 615 616 617
    if (kw_order_map["value"] <= args_num) {
      src_tensor = CastPyArg2FrameworkTensor(
          PyTuple_GET_ITEM(args, kw_order_map["value"] - 1),
          kw_order_map["value"] - 1);
    } else {
      if (flag_kwargs && kws_map["value"] != NULL) {
        src_tensor = CastPyArg2FrameworkTensor(kws_map["value"], 0);
      } else {
        PADDLE_THROW(platform::errors::InvalidArgument(
618 619
            "The first expected arguments is {value: phi::DenseTensor}, "
            "but could not parse the first argument {value: phi::DenseTensor} "
620 621 622 623 624
            "successfully. "
            "Please check your input first and make sure you are on the right "
            "way."));
      }
    }
625
    InitTensorWithFrameworkTensor(py_tensor_ptr, src_tensor, place, act_name);
626 627 628
  }
}

J
Jack Zhou 已提交
629 630
void AutoInitStringTensorByPyArray(
    TensorObject* py_tensor_ptr,
631 632 633 634
    std::unordered_map<std::string, PyObject*> kws_map,
    PyObject* args,
    bool flag_kwargs,
    Py_ssize_t args_num) {
J
Jack Zhou 已提交
635 636 637 638 639 640 641 642 643 644 645 646 647 648 649
  // The first argument of the StringTensor constructor is PyArray,
  // there are 4 arguments to construct the new StringTensor,
  // kw_order_map's key is every arguments of the constructor,
  // kw_order_map's value is the position of the arguments respectively.
  // If u want to update this constructor with new arguments,
  // need to update this map and to add or change related code.
  std::unordered_map<std::string, Py_ssize_t> kw_order_map{{"value", 1},
                                                           {"name", 2}};
  py::object numpy_value = py::object();
  paddle::platform::Place place =
      egr::Controller::Instance().GetExpectedPlace();
  std::string act_name = "";

  numpy_value =
      ParsePyArray(kws_map, kw_order_map, args, flag_kwargs, args_num);
650 651 652 653 654
  act_name = ParseName(kws_map,
                       kw_order_map,
                       args,
                       flag_kwargs,
                       args_num,
J
Jack Zhou 已提交
655 656 657 658 659 660 661
                       "generated_string_tensor");
  EmptyStringTensorInitializer(py_tensor_ptr, act_name, place);
  InitStringTensorWithNumpyValue(py_tensor_ptr, numpy_value);
}

void AutoInitStringTensorByStringTensor(
    TensorObject* py_tensor_ptr,
662 663 664 665
    std::unordered_map<std::string, PyObject*> kws_map,
    PyObject* args,
    bool flag_kwargs,
    Py_ssize_t args_num) {
J
Jack Zhou 已提交
666 667 668 669 670 671 672 673 674 675 676 677 678
  // The first argument of the Tensor constructor is StringTensor,
  // there are 3 arguments to construct the new StringTensor,
  // kw_order_map's key is every arguments of the constructor,
  // kw_order_map's value is the position of the arguments respectively.
  // If u want to update this constructor with new arguments,
  // need to update this map and to add or change related code.
  std::unordered_map<std::string, Py_ssize_t> kw_order_map{{"value", 1},
                                                           {"name", 2}};

  paddle::platform::Place place =
      egr::Controller::Instance().GetExpectedPlace();
  std::string act_name = "";

679 680 681 682 683
  act_name = ParseName(kws_map,
                       kw_order_map,
                       args,
                       flag_kwargs,
                       args_num,
J
Jack Zhou 已提交
684
                       "generated_string_tensor");
685
  paddle::Tensor src_tensor;
J
Jack Zhou 已提交
686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704
  if (kw_order_map["value"] <= args_num) {
    src_tensor =
        CastPyArg2Tensor(PyTuple_GET_ITEM(args, kw_order_map["value"] - 1),
                         kw_order_map["value"] - 1);
  } else {
    if (flag_kwargs && kws_map["value"] != NULL) {
      src_tensor = CastPyArg2Tensor(kws_map["value"], 0);
    } else {
      PADDLE_THROW(platform::errors::InvalidArgument(
          "The first expected kwargs is {value: Tensor}, "
          "but could not parse the first argument {value: Tensor} "
          "successfully. "
          "Please check your input first and make sure you are on the right "
          "way."));
    }
  }
  InitStringTensorWithStringTensor(py_tensor_ptr, src_tensor, place, act_name);
}

705
/** We should have init function with signature:
706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723
 * 1.
 * def __init__ ()
 * 2.
 * def __init__ (
 * ** dtype: paddle::framework::proto::VarType::Type,
 * ** dims: vector<int>,
 * ** name: std::string,
 * ** type: paddle::framework::proto::VarType::LodTensor,
 * ** persistable: bool)
 * 3. (multi-place)
 * (should have at least one parameter, one parameter equals to case 4, zero
 * parameter equals to case 1)
 * def __init__ (
 * ** value: ndarray,
 * ** place: paddle::platform::Place,
 * ** persistable: bool,
 * ** zero_copy: bool,
 * ** name: std::string,
L
LiYuRio 已提交
724 725
 * ** stop_gradient: bool,
 * ** dist_attr: phi::distributed::TensorDistAttr)
726 727 728 729 730 731 732 733 734 735 736 737
 * 4.
 * def __init__ (
 * ** value: ndarray)
 * 5.
 * def __init__ (
 * ** tensor: Tensor)
 * 6. (multi-place)
 * (should have at least one parameter, one parameter equals to case 5, zero
 * parameter equals to case 1.)
 * def __init__ (
 * ** tensor: Tensor,
 * ** place: paddle::platform::Place,
L
LiYuRio 已提交
738 739
 * ** name: std::string,
 * ** dist_attr: phi::distributed::TensorDistAttr)
740 741 742 743 744 745 746
 * 7. (multi-place) (should have at least one parameter, one parameter similar
 * to case 5, zero parameter equals to case 1.)
 * def __init__ (
 * ** tensor: FrameworkTensor,
 * ** place: paddle::platform::Place,
 * ** name: std::string)
 *  **/
747
int TensorInit(PyObject* self, PyObject* args, PyObject* kwargs) {
0
0x45f 已提交
748
  EAGER_TRY
749 750 751 752 753 754 755 756 757
  // set a flag to record use kwargs or not
  bool flag_kwargs = false;
  if (kwargs) flag_kwargs = true;

  // all kwargs
  PyObject* kw_zero_copy = NULL;
  PyObject* kw_persistable = NULL;
  PyObject* kw_stop_gradient = NULL;

758
  PyObject* kw_value = NULL;  // receive PyArray or Tensor
759 760 761 762 763
  PyObject* kw_place = NULL;
  PyObject* kw_name = NULL;
  PyObject* kw_dims = NULL;
  PyObject* kw_dtype = NULL;
  PyObject* kw_type = NULL;
L
LiYuRio 已提交
764
  PyObject* kw_dist_attr = NULL;
765 766

  // the keywords argument
767 768 769 770 771 772 773 774 775
  static char* kwlist[] = {const_cast<char*>("value"),
                           const_cast<char*>("place"),
                           const_cast<char*>("persistable"),
                           const_cast<char*>("zero_copy"),
                           const_cast<char*>("name"),
                           const_cast<char*>("stop_gradient"),
                           const_cast<char*>("dims"),
                           const_cast<char*>("dtype"),
                           const_cast<char*>("type"),
L
LiYuRio 已提交
776
                           const_cast<char*>("dist_attr"),
777
                           NULL};
778 779 780 781 782 783 784

  // 'O' Store a Python object (without any conversion) in a C object pointer,
  // '|' Indicates that the remaining arguments in the Python argument list are
  // optional.
  // PyArg_ParseTupleAndKeywords can Parse the parameters of a function that
  // takes both positional and keyword parameters into local variables,
  // which enhance case2, case3, case4, case5, case6, case7.
785 786
  bool flag_ = PyArg_ParseTupleAndKeywords(args,
                                           kwargs,
L
LiYuRio 已提交
787
                                           "|OOOOOOOOOO",
788 789 790 791 792 793 794 795 796
                                           kwlist,
                                           &kw_value,
                                           &kw_place,
                                           &kw_persistable,
                                           &kw_zero_copy,
                                           &kw_name,
                                           &kw_stop_gradient,
                                           &kw_dims,
                                           &kw_dtype,
L
LiYuRio 已提交
797 798
                                           &kw_type,
                                           &kw_dist_attr);
799 800 801 802 803 804 805 806 807 808 809

  // helper map
  std::unordered_map<std::string, PyObject*> kws_map{
      {"value", kw_value},
      {"place", kw_place},
      {"persistable", kw_persistable},
      {"zero_copy", kw_zero_copy},
      {"name", kw_name},
      {"stop_gradient", kw_stop_gradient},
      {"dims", kw_dims},
      {"dtype", kw_dtype},
L
LiYuRio 已提交
810 811
      {"type", kw_type},
      {"dist_attr", kw_dist_attr}};
812

813 814
  PADDLE_ENFORCE_EQ(flag_,
                    true,
815 816 817 818 819 820
                    paddle::platform::errors::PreconditionNotMet(
                        "Could not parse args and kwargs successfully, "
                        "please check your input first and make"
                        "sure you are on the right way. "
                        "The expected arguments as follow: ("
                        "value, place, persistable, zero_copy, "
L
LiYuRio 已提交
821
                        "name, stop_gradient, dims, dtype, type, dist_attr)"));
822

823
  PADDLE_ENFORCE_NOT_NULL(
824 825 826 827 828
      self,
      paddle::platform::errors::Fatal(
          "Calling __init__ of Eager Tensor without __new__ is "
          "forbidden. Please check your code and make sure you new a "
          "eager tensor before init it."));
829

830
  auto py_tensor_ptr = reinterpret_cast<TensorObject*>(self);
831 832

  Py_ssize_t args_num = PyTuple_Size(args);
833 834 835 836 837
  VLOG(6) << " args_num: " << args_num;

  // args_num = 0, means that there is no position arguments.
  if (args_num == (Py_ssize_t)0) {
    if (!flag_kwargs) {
838 839
      // case 1
      VLOG(6) << "Calling case1's initializer.";
840
      EmptyTensorInitializer(
841 842 843 844
          py_tensor_ptr,
          egr::Controller::Instance().GenerateUniqueName("generated_tensor"),
          egr::Controller::Instance().GetExpectedPlace());
      return 0;
845 846 847 848
    } else {  // no position args, all arguments are kwargs
      if (kw_value != NULL) {
        if (pybind11::detail::npy_api::get().PyArray_Check_(kw_value)) {
          VLOG(6) << "Calling case3's or case4's initializer";
849 850
          AutoInitTensorByPyArray(
              py_tensor_ptr, kws_map, args, flag_kwargs, args_num);
851
          return 0;
852
        } else if (PyObject_TypeCheck(kw_value, p_tensor_type)) {
853
          VLOG(6) << "Calling case5's or case6's initializer";
854 855
          AutoInitTensorByTensor(
              py_tensor_ptr, kws_map, args, flag_kwargs, args_num);
856
          return 0;
857
        } else if (PyObject_TypeCheck(kw_value, g_framework_tensor_pytype)) {
858
          VLOG(6) << "Calling case7's initializer.";
859 860 861 862
          AutoInitTensorByTensor(py_tensor_ptr,
                                 kws_map,
                                 args,
                                 flag_kwargs,
863 864
                                 args_num,
                                 /* false means not init by egr tensor*/ false);
865
          return 0;
866
        } else {
867 868 869
          PADDLE_THROW(platform::errors::InvalidArgument(
              "Could not parse the first keyword argument successfully, "
              "the first keyword argument is value, but it should be PyArray "
870
              "or Tensor or phi::DenseTensor. "
871 872
              "Please check your input first and make sure you are on the "
              "right way."));
873
        }
874
      } else if (kw_dtype != NULL &&
875
                 PyObject_TypeCheck(kw_dtype, g_vartype_pytype)) {
876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909
        VLOG(6) << "Calling case2's initializer";

        PADDLE_ENFORCE_NOT_NULL(
            kw_dims,
            paddle::platform::errors::InvalidArgument(
                "Calling __init__ of Eager Tensor with NULL dims is "
                "forbidden. Please check your code and make sure you new a "
                "dims before calling this constructor."));

        PADDLE_ENFORCE_NOT_NULL(
            kw_name,
            paddle::platform::errors::InvalidArgument(
                "Calling __init__ of Eager Tensor with NULL name is "
                "forbidden. Please check your code and make sure you new a "
                "name before calling this constructor."));

        PADDLE_ENFORCE_NOT_NULL(
            kw_dtype,
            paddle::platform::errors::InvalidArgument(
                "Calling __init__ of Eager Tensor with NULL dtype is "
                "forbidden. Please check your code and make sure you new a "
                "dtype before calling this constructor."));

        PADDLE_ENFORCE_NOT_NULL(
            kw_persistable,
            paddle::platform::errors::InvalidArgument(
                "Calling __init__ of Eager Tensor with NULL persistable is "
                "forbidden. Please check your code and make sure you new a "
                "persistable before calling this constructor."));

        paddle::framework::proto::VarType::Type dtype =
            CastPyArg2ProtoType(kw_dtype, 0);
        std::vector<int> dims = CastPyArg2VectorOfInt(kw_dims, 0);

910
        std::string act_name = "";
911
        if (kw_name == Py_None) {
912 913 914
          act_name = egr::Controller::Instance().GenerateUniqueName(
              "generated_tensor");
        } else {
915
          act_name = CastPyArg2AttrString(kw_name, 0);
916
        }
917 918 919 920 921

        paddle::framework::proto::VarType::Type var_type =
            CastPyArg2ProtoType(kw_type, 0);
        bool persistable = CastPyArg2AttrBoolean(kw_persistable, 0);

922 923
        EmptyTensorInitializer(py_tensor_ptr,
                               act_name,
924 925
                               egr::Controller::Instance().GetExpectedPlace(),
                               persistable,
926 927 928 929
                               /* stop_gradient */ -1,
                               dtype,
                               dims,
                               var_type);
930

931
        return 0;
932 933
      } else {
        PADDLE_THROW(platform::errors::InvalidArgument(
934
            "We not only support construct Tensor from numpy value "
935
            "or tensor(Tensor or phi::DenseTensor) "
936
            "with python kwargs by this initializer, "
937
            "but also even support dtype to init a empty Tensor. "
938 939
            "Please check your input first and make sure you call the existed "
            "constructor."));
940
      }
941 942 943
    }
  } else if (args_num == (Py_ssize_t)1 || args_num == (Py_ssize_t)2 ||
             args_num == (Py_ssize_t)3) {
C
co63oc 已提交
944
    // 1 to 3 position args, remaining arguments are kwargs
945 946 947
    PyObject* arg0_ptr = PyTuple_GET_ITEM(args, 0);
    if (pybind11::detail::npy_api::get().PyArray_Check_(arg0_ptr)) {
      VLOG(6) << "Calling case3's or case4's initializer.";
948 949
      AutoInitTensorByPyArray(
          py_tensor_ptr, kws_map, args, flag_kwargs, args_num);
950
      return 0;
951
    } else if (PyObject_TypeCheck(arg0_ptr, p_tensor_type)) {
952
      VLOG(6) << "Calling case5's or case6's initializer.";
953 954
      AutoInitTensorByTensor(
          py_tensor_ptr, kws_map, args, flag_kwargs, args_num);
955
      return 0;
956
    } else if (PyObject_TypeCheck(arg0_ptr, g_framework_tensor_pytype)) {
957
      VLOG(6) << "Calling case7's initializer.";
958 959 960 961
      AutoInitTensorByTensor(py_tensor_ptr,
                             kws_map,
                             args,
                             flag_kwargs,
962 963
                             args_num,
                             /* false means not init by egr tensor*/ false);
964 965 966
      return 0;
    } else {
      PADDLE_THROW(platform::errors::InvalidArgument(
967
          "We support construct Tensor from numpy value "
968
          "or tensor(Tensor or phi::DenseTensor) "
969
          "with python args and kwargs by this initializer, "
970
          "but the first argument should be PyArray or Tensor or "
971
          "phi::DenseTensor. "
972 973
          "Please check your input first and make sure you call the existed "
          "constructor."));
974
    }
975
  } else if (args_num == (Py_ssize_t)4) {
C
co63oc 已提交
976
    // 4 position args, remaining arguments are kwargs
977 978 979
    PyObject* arg0_ptr = PyTuple_GET_ITEM(args, 0);
    if (pybind11::detail::npy_api::get().PyArray_Check_(arg0_ptr)) {
      VLOG(6) << "Calling case3's or case4's initializer.";
980 981
      AutoInitTensorByPyArray(
          py_tensor_ptr, kws_map, args, flag_kwargs, args_num);
982
      return 0;
983 984 985
    } else {
      PADDLE_THROW(platform::errors::InvalidArgument(
          "Incompatible constructor arguments, "
C
co63oc 已提交
986
          "there are 4 position args and remaining arguments arg kwargs,"
987 988 989
          "but the first position args should be PyArray. "
          "Please check your code and make sure the first position args is "
          "PyArray."));
990
    }
991 992
  } else if (args_num == (Py_ssize_t)5) {
    if (!flag_kwargs) {
993
      PyObject* arg0_ptr = PyTuple_GET_ITEM(args, 0);
994
      if (PyObject_TypeCheck(arg0_ptr, g_vartype_pytype)) {
995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010
        VLOG(6) << "Calling case2's initializer.";
        paddle::framework::proto::VarType::Type dtype =
            CastPyArg2ProtoType(PyTuple_GET_ITEM(args, 0), 0);
        std::vector<int> dims =
            CastPyArg2VectorOfInt(PyTuple_GET_ITEM(args, 1), 1);
        std::string act_name = "";
        PyObject* name_obj = PyTuple_GET_ITEM(args, 2);
        if (name_obj == Py_None) {
          act_name = egr::Controller::Instance().GenerateUniqueName(
              "generated_tensor");
        } else {
          act_name = CastPyArg2AttrString(PyTuple_GET_ITEM(args, 2), 2);
        }
        paddle::framework::proto::VarType::Type var_type =
            CastPyArg2ProtoType(PyTuple_GET_ITEM(args, 3), 3);
        bool persistable = CastPyArg2AttrBoolean(PyTuple_GET_ITEM(args, 4), 4);
1011 1012
        EmptyTensorInitializer(py_tensor_ptr,
                               act_name,
1013
                               egr::Controller::Instance().GetExpectedPlace(),
1014 1015 1016 1017 1018
                               persistable,
                               -1,
                               dtype,
                               dims,
                               var_type);
1019
        return 0;
1020 1021
      } else if (pybind11::detail::npy_api::get().PyArray_Check_(arg0_ptr)) {
        VLOG(6) << "Calling case3's initializer.";
1022 1023
        AutoInitTensorByPyArray(
            py_tensor_ptr, kws_map, args, flag_kwargs, args_num);
1024 1025 1026
        return 0;
      } else {
        PADDLE_THROW(platform::errors::InvalidArgument(
1027 1028 1029 1030 1031
            "Incompatible constructor arguments, "
            "there are only 5 position args,"
            "but the first position args should be PyArray or dtype. "
            "Please check your code and make sure you call the existed "
            "constructor."));
1032
      }
C
co63oc 已提交
1033
    } else {  // five position args, remaining arguments are kwargs
1034
      PyObject* arg0_ptr = PyTuple_GET_ITEM(args, 0);
1035 1036
      if (pybind11::detail::npy_api::get().PyArray_Check_(arg0_ptr)) {
        VLOG(6) << "Calling case3's or case4's initializer";
1037 1038
        AutoInitTensorByPyArray(
            py_tensor_ptr, kws_map, args, flag_kwargs, args_num);
1039
        return 0;
1040
      } else {
1041 1042
        PADDLE_THROW(platform::errors::InvalidArgument(
            "Incompatible constructor arguments, "
C
co63oc 已提交
1043
            "there are 5 position args and remaining arguments are kwargs,"
1044 1045 1046
            "but the first position args should be PyArray. "
            "Please check your code and make sure the first position args is "
            "PyArray."));
1047 1048
      }
    }
1049 1050 1051 1052
  } else if (args_num == (Py_ssize_t)6) {
    if (!flag_kwargs) {
      // case 3
      VLOG(6) << "Calling case3's initializer.";
1053 1054
      AutoInitTensorByPyArray(
          py_tensor_ptr, kws_map, args, flag_kwargs, args_num);
1055
      return 0;
C
co63oc 已提交
1056
    } else {  // six position args, remaining arguments are kwargs, but this
1057 1058 1059
              // is not a right way
      PADDLE_THROW(platform::errors::InvalidArgument(
          "Incompatible constructor arguments, "
C
co63oc 已提交
1060
          "there are 6 position args and the remaining arguments are kwargs. "
1061 1062
          "Please check your code and make sure the first position args is "
          "PyArray."));
1063
    }
1064 1065 1066 1067
  } else {
    PADDLE_THROW(platform::errors::Fatal(
        "Can't not find expected num of args, please check your call, and "
        "make sure u call the existed constructor."));
1068
  }
1069

0
0x45f 已提交
1070 1071
  return -1;
  EAGER_CATCH_AND_THROW_RETURN_NEG
1072 1073
}

J
Jack Zhou 已提交
1074
/** We should have init function with signature:
1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105
 * 1.
 * def __init__ ()
 *
 * 2.
 * def __init__ (
 * ** dims: vector<int>,
 * ** name: std::string)
 *
 * 3.
 * (should have at least one parameter, one parameter equals to case 4, zero
 * parameter equals to case 1)
 * def __init__ (
 * ** value: ndarray,
 * ** zero_copy: bool,
 * ** name: std::string)
 *
 * 4.
 * def __init__ (
 * ** value: ndarray)
 *
 * 5.
 * def __init__ (
 * ** tensor: Tensor)
 *
 * 6.
 * (should have at least one parameter, one parameter equals to case 5, zero
 * parameter equals to case 1.)
 * def __init__ (
 * ** tensor: Tensor,
 * ** name: std::string)
 * **/
J
Jack Zhou 已提交
1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118
int StringTensorInit(PyObject* self, PyObject* args, PyObject* kwargs) {
  // set a flag to record use kwargs or not
  bool flag_kwargs = false;
  if (kwargs) flag_kwargs = true;

  // all kwargs
  PyObject* kw_zero_copy = NULL;

  PyObject* kw_value = NULL;  // receive PyArray or Tensor
  PyObject* kw_name = NULL;
  PyObject* kw_dims = NULL;

  // the keywords argument
1119 1120 1121 1122 1123
  static char* kwlist[] = {const_cast<char*>("value"),
                           const_cast<char*>("zero_copy"),
                           const_cast<char*>("name"),
                           const_cast<char*>("dims"),
                           NULL};
J
Jack Zhou 已提交
1124 1125 1126 1127 1128 1129
  // 'O' Store a Python object (without any conversion) in a C object pointer,
  // '|' Indicates that the remaining arguments in the Python argument list are
  // optional.
  // PyArg_ParseTupleAndKeywords can Parse the parameters of a function that
  // takes both positional and keyword parameters into local variables,
  // which enhance case1, case2, case3, case4, case 5, case 6.
1130 1131 1132 1133 1134 1135 1136 1137
  bool flag_ = PyArg_ParseTupleAndKeywords(args,
                                           kwargs,
                                           "|OOOO",
                                           kwlist,
                                           &kw_value,
                                           &kw_zero_copy,
                                           &kw_name,
                                           &kw_dims);
J
Jack Zhou 已提交
1138 1139 1140 1141 1142 1143 1144 1145

  // helper map
  std::unordered_map<std::string, PyObject*> kws_map{
      {"value", kw_value},
      {"zero_copy", kw_zero_copy},
      {"name", kw_name},
      {"dims", kw_dims}};

1146 1147
  PADDLE_ENFORCE_EQ(flag_,
                    true,
J
Jack Zhou 已提交
1148 1149 1150 1151 1152 1153 1154 1155
                    paddle::platform::errors::PreconditionNotMet(
                        "Could not parse args and kwargs successfully, "
                        "please check your input first and make"
                        "sure you are on the right way. "
                        "The expected arguments as follow: ("
                        "value, zero_copy, name, dims)"));

  PADDLE_ENFORCE_NOT_NULL(
1156 1157 1158 1159 1160
      self,
      paddle::platform::errors::Fatal(
          "Calling __init__ of Eager Tensor without __new__ is "
          "forbidden. Please check your code and make sure you new a "
          "eager tensor before init it."));
J
Jack Zhou 已提交
1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171

  auto py_tensor_ptr = reinterpret_cast<TensorObject*>(self);

  Py_ssize_t args_num = PyTuple_Size(args);
  VLOG(6) << " args_num: " << args_num;
  // args_num = 0, means that there is no position arguments.
  if (args_num == (Py_ssize_t)0) {
    if (!flag_kwargs) {
      // case 1
      VLOG(6) << "Calling case1's string initializer.";
      EmptyStringTensorInitializer(
1172 1173 1174
          py_tensor_ptr,
          egr::Controller::Instance().GenerateUniqueName(
              "generated_string_tensor"),
J
Jack Zhou 已提交
1175 1176 1177 1178 1179 1180
          egr::Controller::Instance().GetExpectedPlace());
      return 0;
    } else {
      if (kw_value != NULL) {
        if (pybind11::detail::npy_api::get().PyArray_Check_(kw_value)) {
          VLOG(6) << "Calling case3's or case4's string initializer";
1181 1182
          AutoInitStringTensorByPyArray(
              py_tensor_ptr, kws_map, args, flag_kwargs, args_num);
J
Jack Zhou 已提交
1183
          return 0;
1184
        } else if (PyObject_TypeCheck(kw_value, p_string_tensor_type)) {
J
Jack Zhou 已提交
1185
          VLOG(6) << "Calling case5's or case6's string initializer";
1186 1187
          AutoInitStringTensorByStringTensor(
              py_tensor_ptr, kws_map, args, flag_kwargs, args_num);
J
Jack Zhou 已提交
1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202
          return 0;
        } else {
          PADDLE_THROW(platform::errors::InvalidArgument(
              "Could not parse the first keyword argument successfully, "
              "the first keyword argument is value, but it should be PyArray "
              "or StringTensor."
              "Please check your input first and make sure you are on the "
              "right way."));
        }
      } else if (kw_dims != NULL) {
        VLOG(6) << "Calling case2's string initializer.";
        std::unordered_map<std::string, Py_ssize_t> kw_order_map{{"dims", 1},
                                                                 {"name", 2}};

        std::vector<int> dims = CastPyArg2VectorOfInt(kw_dims, 0);
1203 1204 1205 1206 1207 1208
        std::string act_name = ParseName(kws_map,
                                         kw_order_map,
                                         args,
                                         flag_kwargs,
                                         args_num,
                                         "generated_string_tensor");
J
Jack Zhou 已提交
1209
        EmptyStringTensorInitializer(
1210 1211 1212 1213
            py_tensor_ptr,
            act_name,
            egr::Controller::Instance().GetExpectedPlace(),
            dims);
J
Jack Zhou 已提交
1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224
        return 0;
      } else {
        PADDLE_THROW(platform::errors::InvalidArgument(
            "We not only support construct Tensor from numpy value "
            "or StringTensor with python kwargs by this initializer, "
            "but also even support dtype to init a empty StringTensor. "
            "Please check your input first and make sure you call the existed "
            "constructor."));
      }
    }
  } else if (args_num == (Py_ssize_t)1) {  // case 3 ~ 6
C
co63oc 已提交
1225
    // 1 position args, remaining arguments are kwargs
J
Jack Zhou 已提交
1226 1227 1228
    PyObject* arg0_ptr = PyTuple_GET_ITEM(args, 0);
    if (pybind11::detail::npy_api::get().PyArray_Check_(arg0_ptr)) {
      VLOG(6) << "Calling case3's or case4's string initializer.";
1229 1230
      AutoInitStringTensorByPyArray(
          py_tensor_ptr, kws_map, args, flag_kwargs, args_num);
J
Jack Zhou 已提交
1231
      return 0;
1232
    } else if (PyObject_TypeCheck(arg0_ptr, p_string_tensor_type)) {
J
Jack Zhou 已提交
1233
      VLOG(6) << "Calling case5's or case6's string initializer.";
1234 1235
      AutoInitStringTensorByStringTensor(
          py_tensor_ptr, kws_map, args, flag_kwargs, args_num);
J
Jack Zhou 已提交
1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248
      return 0;
    } else {
      PADDLE_THROW(platform::errors::InvalidArgument(
          "Could not parse the first keyword argument successfully, "
          "the first keyword argument is value, but it should be PyArray "
          "or StringTensor."
          "Please check your input first and make sure you are on the "
          "right way."));
    }
  } else if (args_num == (Py_ssize_t)2) {  // case 2
    // 2 position args
    if (!flag_kwargs) {
      PyObject* arg0_ptr = PyTuple_GET_ITEM(args, 0);
1249
      if (PyObject_TypeCheck(arg0_ptr, p_string_tensor_type)) {
J
Jack Zhou 已提交
1250
        VLOG(6) << "Calling case6's string initializer.";
1251 1252
        AutoInitStringTensorByStringTensor(
            py_tensor_ptr, kws_map, args, flag_kwargs, args_num);
J
Jack Zhou 已提交
1253 1254 1255
        return 0;
      } else if (pybind11::detail::npy_api::get().PyArray_Check_(arg0_ptr)) {
        VLOG(6) << "Calling case3's string initializer.";
1256 1257
        AutoInitStringTensorByPyArray(
            py_tensor_ptr, kws_map, args, flag_kwargs, args_num);
J
Jack Zhou 已提交
1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270
        return 0;
      } else {
        VLOG(6) << "Calling case2's string initializer.";
        std::vector<int> dims = CastPyArg2VectorOfInt(arg0_ptr, 0);
        std::string act_name = "";
        PyObject* name_obj = PyTuple_GET_ITEM(args, 1);
        if (name_obj == Py_None) {
          act_name = egr::Controller::Instance().GenerateUniqueName(
              "generated_string_tensor");
        } else {
          act_name = CastPyArg2AttrString(PyTuple_GET_ITEM(args, 1), 1);
        }
        EmptyStringTensorInitializer(
1271 1272 1273 1274
            py_tensor_ptr,
            act_name,
            egr::Controller::Instance().GetExpectedPlace(),
            dims);
J
Jack Zhou 已提交
1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285
        return 0;
      }
    } else {
      PADDLE_THROW(platform::errors::Fatal(
          "Can't not find expected num of args, please check your call, and "
          "make sure u call the existed constructor."));
    }
  }
  return 1;
}

1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299
void AddPyMethodDefs(std::vector<PyMethodDef>* vector, PyMethodDef* methods) {
  if (!vector->empty()) {
    // remove nullptr terminator
    vector->pop_back();
  }
  while (true) {
    vector->push_back(*methods);
    if (!methods->ml_name) {
      break;
    }
    methods++;
  }
}

1300
static void TensorDealloc(TensorObject* self) {
1301 1302
  if (self->weakrefs != NULL)
    PyObject_ClearWeakRefs(reinterpret_cast<PyObject*>(self));
1303
  self->tensor.~Tensor();
1304 1305 1306 1307
  Py_TYPE(self)->tp_free(reinterpret_cast<PyObject*>(self));
}

extern struct PyGetSetDef variable_properties[];
J
Jack Zhou 已提交
1308
extern struct PyGetSetDef string_tensor_variable_properties[];
1309 1310

extern PyMethodDef variable_methods[];
1311
extern PyMethodDef math_op_patch_methods[];
J
Jack Zhou 已提交
1312
extern PyMethodDef string_tensor_variable_methods[];
1313

W
wanghuancoder 已提交
1314 1315 1316 1317
PyNumberMethods number_methods;
PySequenceMethods sequence_methods;
PyMappingMethods mapping_methods;

1318 1319 1320
void BindEager(pybind11::module* module) {
  auto m = module->def_submodule("eager");

1321 1322 1323 1324
  static std::vector<PyMethodDef> methods;
  AddPyMethodDefs(&methods, variable_methods);
  AddPyMethodDefs(&methods, math_op_patch_methods);

1325
  auto heap_type = reinterpret_cast<PyHeapTypeObject*>(
1326
      PyType_Type.tp_alloc(&PyType_Type, 0));
1327 1328
  heap_type->ht_name = ToPyObject("Tensor");
  heap_type->ht_qualname = ToPyObject("Tensor");
1329
  auto type = &heap_type->ht_type;
1330
  type->tp_name = "Tensor";
1331
  type->tp_basicsize = sizeof(TensorObject);
1332
  type->tp_dealloc = (destructor)TensorDealloc;
1333 1334 1335
  type->tp_as_number = &number_methods;
  type->tp_as_sequence = &sequence_methods;
  type->tp_as_mapping = &mapping_methods;
1336
  type->tp_methods = methods.data();
1337
  type->tp_getset = variable_properties;
1338 1339
  type->tp_init = TensorInit;
  type->tp_new = TensorNew;
1340
  type->tp_weaklistoffset = offsetof(TensorObject, weakrefs);
1341 1342
  Py_INCREF(&PyBaseObject_Type);
  type->tp_base = reinterpret_cast<PyTypeObject*>(&PyBaseObject_Type);
1343 1344 1345 1346 1347
  type->tp_flags |=
      Py_TPFLAGS_DEFAULT | Py_TPFLAGS_BASETYPE | Py_TPFLAGS_HEAPTYPE;
#if PY_VERSION_HEX >= 0x03050000
  type->tp_as_async = &heap_type->as_async;
#endif
1348
  p_tensor_type = type;
1349 1350

  if (PyType_Ready(type) < 0) {
1351
    PADDLE_THROW(platform::errors::Fatal(
1352
        "Init Paddle error in BindEager(PyType_Ready)."));
1353 1354 1355
    return;
  }

1356
  Py_INCREF(type);
1357 1358
  if (PyModule_AddObject(m.ptr(), "Tensor", reinterpret_cast<PyObject*>(type)) <
      0) {
1359
    Py_DECREF(type);
1360 1361
    Py_DECREF(m.ptr());
    PADDLE_THROW(platform::errors::Fatal(
1362
        "Init Paddle error in BindEager(PyModule_AddObject)."));
1363 1364 1365 1366
    return;
  }

  BindFunctions(m.ptr());
W
wanghuancoder 已提交
1367
  BindEagerPyLayer(m.ptr());
1368
  BindEagerOpFunctions(&m);
1369 1370
}

J
Jack Zhou 已提交
1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404
void BindEagerStringTensor(pybind11::module* module) {
  auto m = module->def_submodule("eager");

  auto heap_type = reinterpret_cast<PyHeapTypeObject*>(
      PyType_Type.tp_alloc(&PyType_Type, 0));
  heap_type->ht_name = ToPyObject("StringTensor");
  heap_type->ht_qualname = ToPyObject("StringTensor");
  auto type = &heap_type->ht_type;
  type->tp_name = "StringTensor";
  type->tp_basicsize = sizeof(TensorObject);
  type->tp_dealloc = (destructor)TensorDealloc;
  type->tp_as_number = &number_methods;
  type->tp_as_sequence = &sequence_methods;
  type->tp_as_mapping = &mapping_methods;
  type->tp_methods = string_tensor_variable_methods;
  type->tp_getset = string_tensor_variable_properties;
  type->tp_init = StringTensorInit;
  type->tp_new = TensorNew;
  Py_INCREF(&PyBaseObject_Type);
  type->tp_base = reinterpret_cast<PyTypeObject*>(&PyBaseObject_Type);
  type->tp_flags |=
      Py_TPFLAGS_DEFAULT | Py_TPFLAGS_BASETYPE | Py_TPFLAGS_HEAPTYPE;
#if PY_VERSION_HEX >= 0x03050000
  type->tp_as_async = &heap_type->as_async;
#endif
  p_string_tensor_type = type;

  if (PyType_Ready(type) < 0) {
    PADDLE_THROW(platform::errors::Fatal(
        "Init Paddle error in BindEager(PyType_Ready)."));
    return;
  }

  Py_INCREF(type);
1405 1406
  if (PyModule_AddObject(
          m.ptr(), "StringTensor", reinterpret_cast<PyObject*>(type)) < 0) {
J
Jack Zhou 已提交
1407 1408 1409 1410 1411 1412 1413 1414
    Py_DECREF(type);
    Py_DECREF(m.ptr());
    PADDLE_THROW(platform::errors::Fatal(
        "Init Paddle error in BindEagerStringTensor(PyModule_AddObject)."));
    return;
  }
}

1415 1416
}  // namespace pybind
}  // namespace paddle