eager.cc 23.7 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
/* Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved.
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
// disable numpy compile error
#include <Python.h>

#include <string>
#include <vector>

17
#include "paddle/fluid/eager/accumulation/accumulation_node.h"
18 19 20 21 22 23 24 25 26 27 28 29
#include "paddle/fluid/eager/api/all.h"
#include "paddle/fluid/eager/autograd_meta.h"
#include "paddle/fluid/eager/utils.h"
#include "paddle/fluid/memory/allocation/allocator.h"
#include "paddle/fluid/memory/memcpy.h"
#include "paddle/fluid/platform/enforce.h"
#include "paddle/fluid/pybind/eager.h"
#include "paddle/fluid/pybind/eager_utils.h"
#include "paddle/pten/common/data_type.h"
#include "paddle/pten/core/convert_utils.h"
#include "paddle/pten/core/dense_tensor.h"
#include "paddle/pten/include/core.h"
30 31
#include "pybind11/numpy.h"
#include "pybind11/pybind11.h"
32
#pragma GCC diagnostic ignored "-Wmissing-field-initializers"
33
#include "paddle/fluid/framework/python_headers.h"
34
#include "paddle/fluid/pybind/eager_op_function_impl.h"
35 36 37
#include "paddle/fluid/pybind/tensor_py.h"
#include "paddle/pten/api/lib/utils/storage.h"
#include "paddle/pten/api/lib/utils/tensor_utils.h"
38 39 40 41 42 43
namespace paddle {
namespace pybind {

namespace py = ::pybind11;

PyTypeObject* p_eager_tensor_type;
44
extern PyTypeObject* g_vartype_pytype;
45

J
Jiabin Yang 已提交
46
PyObject* EagerTensorNew(PyTypeObject* type, PyObject* args, PyObject* kwargs) {
47 48 49
  PyObject* obj = type->tp_alloc(type, 0);
  if (obj) {
    auto v = reinterpret_cast<EagerTensorObject*>(obj);
J
Jiabin Yang 已提交
50
    new (&(v->eager_tensor)) egr::EagerTensor();
51 52 53 54
  }
  return obj;
}

55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75
// TODO(jiabin): Overload this once we need more constructor in Python
void EmptyEagerTensorInitializer(
    EagerTensorObject* self, const std::string& name,
    const paddle::platform::Place& place, bool persistable = false,
    bool stop_gradient = true, framework::proto::VarType::Type dtype =
                                   paddle::framework::proto::VarType::FP32,
    const std::vector<int>& dims = {},
    framework::proto::VarType::Type var_type =
        paddle::framework::proto::VarType::LOD_TENSOR) {
  self->eager_tensor.set_name(name);
  auto autograd_meta = egr::EagerUtils::autograd_meta(&(self->eager_tensor));
  autograd_meta->SetPersistable(persistable);
  autograd_meta->SetStopGradient(stop_gradient);
  if (var_type == paddle::framework::proto::VarType::LOD_TENSOR) {
    // TODO(jiabin): Maybe support LOD later
    std::shared_ptr<pten::DenseTensor> dense_tensor =
        std::make_shared<pten::DenseTensor>(
            pten::make_intrusive<paddle::experimental::SharedStorage>(place),
            pten::DenseTensorMeta(pten::TransToPtenDataType(dtype),
                                  paddle::framework::make_ddim(dims)));
    self->eager_tensor.set_impl(dense_tensor);
76 77 78 79 80 81 82 83 84 85 86
  } else {
    PADDLE_THROW(platform::errors::InvalidArgument(
        "We only support LoDTensor to be constructed by this initializer, "
        "please check your var type first and make sure you are going to "
        "construct LoDTensor."));
  }

  if (!autograd_meta->GetMutableGradNode()) {
    VLOG(3) << "Tensor(" << name
            << ") have not GradNode, add GradNodeAccumulation for it.";
    autograd_meta->SetGradNode(std::make_shared<egr::GradNodeAccumulation>());
87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460
  }
}

void InitEagerTensorWithNumpyValue(EagerTensorObject* self,
                                   const py::object& array,
                                   bool zero_copy = false) {
  PADDLE_ENFORCE_EQ(
      self->eager_tensor.defined(), true,
      paddle::platform::errors::Fatal(
          "Calling InitEagerTensorWithNumpyValue of Eager Tensor without "
          "EmptyEagerTensorInitializer is "
          "forbidden. Please check your code and make sure you new a "
          "eager tensor before init it with NumPy."));
  pten::DenseTensor* impl_ptr =
      static_cast<pten::DenseTensor*>(self->eager_tensor.impl().get());
  paddle::platform::Place place = impl_ptr->place();
  paddle::framework::LoDTensor temp_tensor = paddle::framework::LoDTensor();
  if (platform::is_cpu_place(place)) {
    SetTensorFromPyArray<platform::CPUPlace>(
        &temp_tensor, array, BOOST_GET_CONST(platform::CPUPlace, place),
        zero_copy);
  } else if (platform::is_xpu_place(place)) {
    SetTensorFromPyArray<platform::XPUPlace>(
        &temp_tensor, array, BOOST_GET_CONST(platform::XPUPlace, place),
        zero_copy);
  } else if (platform::is_gpu_place(place)) {
    SetTensorFromPyArray<platform::CUDAPlace>(
        &temp_tensor, array, BOOST_GET_CONST(platform::CUDAPlace, place),
        zero_copy);
  } else if (platform::is_cuda_pinned_place(place)) {
    SetTensorFromPyArray<platform::CUDAPinnedPlace>(
        &temp_tensor, array, BOOST_GET_CONST(platform::CUDAPinnedPlace, place),
        zero_copy);
  } else if (platform::is_npu_place(place)) {
    SetTensorFromPyArray<platform::NPUPlace>(
        &temp_tensor, array, BOOST_GET_CONST(platform::NPUPlace, place),
        zero_copy);
  } else {
    PADDLE_THROW(platform::errors::InvalidArgument(
        "Place should be one of "
        "CPUPlace/XPUPlace/CUDAPlace/CUDAPinnedPlace/NPUPlace"));
  }
  paddle::experimental::ReMakePtenDenseTensor(temp_tensor, impl_ptr);
}

void InitEagerTensorWithEagerTensor(EagerTensorObject* self,
                                    const egr::EagerTensor& src,
                                    const paddle::platform::Place& place,
                                    const std::string& name) {
  self->eager_tensor.set_name(name);
  if (place == src.place()) {
    auto impl = std::static_pointer_cast<pten::DenseTensor>(src.impl());
    self->eager_tensor.set_impl(impl);
    VLOG(4) << "Same place, do ShareDataWith";
  } else {
    self->eager_tensor.set_impl(
        src.copy_to(pten::TransToPtenBackend(place), true).impl());
    VLOG(4) << "Different place, do TensorCopy";
  }
  egr::EagerUtils::autograd_meta(&(self->eager_tensor))->SetStopGradient(true);
  if (src.get_autograd_meta()) {
    egr::EagerUtils::unsafe_autograd_meta(self->eager_tensor)
        ->SetPersistable(
            egr::EagerUtils::unsafe_autograd_meta(src)->Persistable());
  } else {
    egr::EagerUtils::unsafe_autograd_meta(self->eager_tensor)
        ->SetPersistable(false);
  }
}

// TODO(jiabin): We have to do some ugly work, refactor this method using
// PyArg_ParseTuple(),PyArg_ParseTupleAndKeywords() and PyArg_Parse() later to
// support kwargs.
int EagerTensorInit(PyObject* self, PyObject* args, PyObject* kwds) {
  /** We should have init function with signature:
   * 1.
   * def __init__ ()
   * 2.
   * def __init__ (
   * ** dtype: paddle::framework::proto::VarType::Type,
   * ** dims: vector<int>,
   * ** name: std::string,
   * ** type: paddle::framework::proto::VarType::Type,
   * ** persistable: bool)
   * 3. (multi-place) (must have first 2 parameter)
   * def __init__ (
   * ** value: ndarray,
   * ** place: paddle::platform::Place,
   * ** persistable: bool,
   * ** zero_copy: bool,
   * ** name: std::string,
   * ** stop_gradient: bool)
   * 4.
   * def __init__ (
   * ** value: ndarray)
   * 5.
   * def __init__ (
   * ** tensor: EagerTensor)
   * 6. (multi-place) (must have first 2 parameter)
   * def __init__ (
   * ** tensor: EagerTensor,
   * ** place: paddle::platform::Place,
   * ** name: std::string)
   *  **/
  PADDLE_ENFORCE_NOT_NULL(
      self, paddle::platform::errors::Fatal(
                "Calling __init__ of Eager Tensor without __new__ is "
                "forbidden. Please check your code and make sure you new a "
                "eager tensor before init it."));

  auto py_tensor_ptr = reinterpret_cast<EagerTensorObject*>(self);

  // TODO(jiabin): Only support case 2 for now
  Py_ssize_t args_num = PyTuple_Size(args);
  switch (args_num) {
    case (Py_ssize_t)0: {
      // case 1
      VLOG(6) << "Calling case1's initializer.";
      EmptyEagerTensorInitializer(
          py_tensor_ptr,
          egr::Controller::Instance().GenerateUniqueName("generated_tensor"),
          egr::Controller::Instance().GetExpectedPlace());
      return 0;
    }
    case (Py_ssize_t)1: {
      // case 4, 5
      PyObject* arg0_ptr = PyTuple_GET_ITEM(args, 0);
      if (pybind11::detail::npy_api::get().PyArray_Check_(arg0_ptr)) {
        VLOG(6) << "Calling case4's initializer.";
        PADDLE_ENFORCE_EQ(
            pybind11::detail::npy_api::get().PyArray_Check_(arg0_ptr), true,
            paddle::platform::errors::Fatal(
                "We expected initial parametes list like: \n **value: ndarray. "
                "But got value with wrong type: %s",
                reinterpret_cast<PyTypeObject*>(arg0_ptr->ob_type)->tp_name));
        py::object numpy_value = py::object(py::handle(arg0_ptr), true);
        EmptyEagerTensorInitializer(
            py_tensor_ptr,
            egr::Controller::Instance().GenerateUniqueName("generated_tensor"),
            egr::Controller::Instance().GetExpectedPlace());
        InitEagerTensorWithNumpyValue(py_tensor_ptr, numpy_value,
                                      /** zero copy **/ false);
        return 0;
      } else if (PyObject_IsInstance(arg0_ptr, reinterpret_cast<PyObject*>(
                                                   p_eager_tensor_type))) {
        VLOG(6) << "Calling case5's initializer.";
        auto src_tensor = CastPyArg2EagerTensor(arg0_ptr, 0);
        InitEagerTensorWithEagerTensor(
            py_tensor_ptr, src_tensor,
            egr::Controller::Instance().GetExpectedPlace(),
            egr::Controller::Instance().GenerateUniqueName("generated_tensor"));
        return 0;
      } else {
        PADDLE_THROW(platform::errors::InvalidArgument(
            "We only support construct tensor from numpy value or tensor with "
            "python args by this initializer, "
            "please check your input first and make sure you are on the right "
            "way."));
      }
      return 0;
    }
    case (Py_ssize_t)2: {
      PyObject* arg0_ptr = PyTuple_GET_ITEM(args, 0);
      if (pybind11::detail::npy_api::get().PyArray_Check_(arg0_ptr)) {
        VLOG(6) << "Calling case3's initializer.";
        PADDLE_ENFORCE_EQ(
            pybind11::detail::npy_api::get().PyArray_Check_(arg0_ptr), true,
            paddle::platform::errors::Fatal(
                "We expected initial parametes list like: \n **value: ndarray. "
                "But got value with wrong type: %s",
                reinterpret_cast<PyTypeObject*>(arg0_ptr->ob_type)->tp_name));
        py::object numpy_value = py::object(py::handle(arg0_ptr), true);
        paddle::platform::Place place =
            CastPyArg2Place(PyTuple_GET_ITEM(args, 1), 1);
        EmptyEagerTensorInitializer(
            py_tensor_ptr,
            egr::Controller::Instance().GenerateUniqueName("generated_tensor"),
            place);
        InitEagerTensorWithNumpyValue(py_tensor_ptr, numpy_value,
                                      /** zero copy **/ false);
        return 0;
      } else if (PyObject_IsInstance(arg0_ptr, reinterpret_cast<PyObject*>(
                                                   p_eager_tensor_type))) {
        VLOG(6) << "Calling case6's initializer.";
        auto src_tensor = CastPyArg2EagerTensor(arg0_ptr, 0);
        paddle::platform::Place place =
            CastPyArg2Place(PyTuple_GET_ITEM(args, 1), 1);
        InitEagerTensorWithEagerTensor(
            py_tensor_ptr, src_tensor, place,
            egr::Controller::Instance().GenerateUniqueName("generated_tensor"));
        return 0;
      } else {
        PADDLE_THROW(platform::errors::InvalidArgument(
            "We only support construct tensor from numpy value or tensor with "
            "python args by this initializer, "
            "please check your input first and make sure you are on the right "
            "way."));
      }
    }
    case (Py_ssize_t)3: {
      PyObject* arg0_ptr = PyTuple_GET_ITEM(args, 0);
      if (pybind11::detail::npy_api::get().PyArray_Check_(arg0_ptr)) {
        VLOG(6) << "Calling case3's initializer.";
        PADDLE_ENFORCE_EQ(
            pybind11::detail::npy_api::get().PyArray_Check_(arg0_ptr), true,
            paddle::platform::errors::Fatal(
                "We expected initial parametes list like: \n **value: ndarray. "
                "But got value with wrong type: %s",
                reinterpret_cast<PyTypeObject*>(arg0_ptr->ob_type)->tp_name));
        py::object numpy_value = py::object(py::handle(arg0_ptr), true);
        paddle::platform::Place place =
            CastPyArg2Place(PyTuple_GET_ITEM(args, 1), 1);
        bool persistable = CastPyArg2AttrBoolean(PyTuple_GET_ITEM(args, 2), 2);
        EmptyEagerTensorInitializer(
            py_tensor_ptr,
            egr::Controller::Instance().GenerateUniqueName("generated_tensor"),
            place, persistable);
        InitEagerTensorWithNumpyValue(py_tensor_ptr, numpy_value,
                                      /** zero copy **/ false);
        return 0;
      } else if (PyObject_IsInstance(arg0_ptr, reinterpret_cast<PyObject*>(
                                                   p_eager_tensor_type))) {
        VLOG(6) << "Calling case6's initializer.";
        auto src_tensor = CastPyArg2EagerTensor(arg0_ptr, 0);
        paddle::platform::Place place =
            CastPyArg2Place(PyTuple_GET_ITEM(args, 1), 1);
        std::string act_name = "";
        PyObject* name_obj = PyTuple_GET_ITEM(args, 2);
        if (name_obj == Py_None) {
          act_name = egr::Controller::Instance().GenerateUniqueName(
              "generated_tensor");
        } else {
          act_name = CastPyArg2AttrString(name_obj, 2);
        }
        InitEagerTensorWithEagerTensor(py_tensor_ptr, src_tensor, place,
                                       act_name);
        return 0;
      } else {
        PADDLE_THROW(platform::errors::InvalidArgument(
            "We only support construct tensor from numpy value or tensor with "
            "python args by this initializer, "
            "please check your input first and make sure you are on the right "
            "way."));
      }
    }
    case (Py_ssize_t)4: {
      VLOG(6) << "Calling case3's initializer.";
      PyObject* arg0_ptr = PyTuple_GET_ITEM(args, 0);
      PADDLE_ENFORCE_EQ(
          pybind11::detail::npy_api::get().PyArray_Check_(arg0_ptr), true,
          paddle::platform::errors::Fatal(
              "We expected initial parametes list like: \n **value: ndarray, "
              "\n ** place: paddle::platform::Place, \n ** persistable: bool, "
              "\n ** zero_copy: bool, \n ** name: std::string, \n ** "
              "stop_gradient: bool. But got value with wrong type: %s",
              reinterpret_cast<PyTypeObject*>(arg0_ptr->ob_type)->tp_name));
      py::object numpy_value =
          py::object(py::handle(PyTuple_GET_ITEM(args, 0)), true);
      paddle::platform::Place place =
          CastPyArg2Place(PyTuple_GET_ITEM(args, 1), 1);
      bool persistable = CastPyArg2AttrBoolean(PyTuple_GET_ITEM(args, 2), 2);
      bool zero_copy = CastPyArg2AttrBoolean(PyTuple_GET_ITEM(args, 3), 3);
      EmptyEagerTensorInitializer(
          py_tensor_ptr,
          egr::Controller::Instance().GenerateUniqueName("generated_tensor"),
          place, persistable);
      InitEagerTensorWithNumpyValue(py_tensor_ptr, numpy_value, zero_copy);
      return 0;
    }
    case (Py_ssize_t)5: {
      // case 2
      PyObject* arg0_ptr = PyTuple_GET_ITEM(args, 0);
      if (PyObject_IsInstance(arg0_ptr,
                              reinterpret_cast<PyObject*>(g_vartype_pytype))) {
        VLOG(6) << "Calling case2's initializer.";
        paddle::framework::proto::VarType::Type dtype =
            CastPyArg2ProtoType(PyTuple_GET_ITEM(args, 0), 0);
        std::vector<int> dims =

            CastPyArg2VectorOfInt(PyTuple_GET_ITEM(args, 1), 1);
        std::string act_name = "";
        PyObject* name_obj = PyTuple_GET_ITEM(args, 2);
        if (name_obj == Py_None) {
          act_name = egr::Controller::Instance().GenerateUniqueName(
              "generated_tensor");
        } else {
          act_name = CastPyArg2AttrString(PyTuple_GET_ITEM(args, 2), 2);
        }
        paddle::framework::proto::VarType::Type var_type =
            CastPyArg2ProtoType(PyTuple_GET_ITEM(args, 3), 3);
        bool persistable = CastPyArg2AttrBoolean(PyTuple_GET_ITEM(args, 4), 4);
        EmptyEagerTensorInitializer(
            py_tensor_ptr, act_name,
            egr::Controller::Instance().GetExpectedPlace(), persistable, true,
            dtype, dims, var_type);
        return 0;
      } else if (PyObject_IsInstance(arg0_ptr, reinterpret_cast<PyObject*>(
                                                   p_eager_tensor_type))) {
        PADDLE_ENFORCE_EQ(
            pybind11::detail::npy_api::get().PyArray_Check_(arg0_ptr), true,
            paddle::platform::errors::Fatal(
                "We expected initial parametes list like: \n **value: ndarray, "
                "\n ** place: paddle::platform::Place, \n ** persistable: "
                "bool, \n ** zero_copy: bool, \n ** name: std::string, \n ** "
                "stop_gradient: bool. But got value with wrong type: %s",
                reinterpret_cast<PyTypeObject*>(arg0_ptr->ob_type)->tp_name));
        py::object numpy_value =
            py::object(py::handle(PyTuple_GET_ITEM(args, 0)), true);
        paddle::platform::Place place =
            CastPyArg2Place(PyTuple_GET_ITEM(args, 1), 1);
        bool persistable = CastPyArg2AttrBoolean(PyTuple_GET_ITEM(args, 2), 2);
        bool zero_copy = CastPyArg2AttrBoolean(PyTuple_GET_ITEM(args, 3), 3);
        std::string act_name = "";
        PyObject* name_obj = PyTuple_GET_ITEM(args, 4);
        if (name_obj == Py_None) {
          act_name = egr::Controller::Instance().GenerateUniqueName(
              "generated_tensor");
        } else {
          act_name = CastPyArg2AttrString(PyTuple_GET_ITEM(args, 4), 4);
        }
        EmptyEagerTensorInitializer(py_tensor_ptr, act_name, place,
                                    persistable);
        InitEagerTensorWithNumpyValue(py_tensor_ptr, numpy_value, zero_copy);
        return 0;
      } else {
        PADDLE_THROW(platform::errors::InvalidArgument(
            "We only support construct tensor from numpy value or dtype with "
            "python args by this initializer, "
            "please check your input first and make sure you are on the right "
            "way."));
      }
      return 0;
    }
    case (Py_ssize_t)6: {
      // case 3
      VLOG(6) << "Calling case3's initializer.";
      PyObject* arg0_ptr = PyTuple_GET_ITEM(args, 0);
      PADDLE_ENFORCE_EQ(
          pybind11::detail::npy_api::get().PyArray_Check_(arg0_ptr), true,
          paddle::platform::errors::Fatal(
              "We expected initial parametes list like: \n **value: ndarray, "
              "\n ** place: paddle::platform::Place, \n ** persistable: bool, "
              "\n ** zero_copy: bool, \n ** name: std::string, \n ** "
              "stop_gradient: bool. But got value with wrong type: %s",
              reinterpret_cast<PyTypeObject*>(arg0_ptr->ob_type)->tp_name));
      py::object numpy_value =
          py::object(py::handle(PyTuple_GET_ITEM(args, 0)), true);
      paddle::platform::Place place =
          CastPyArg2Place(PyTuple_GET_ITEM(args, 1), 1);
      bool persistable = CastPyArg2AttrBoolean(PyTuple_GET_ITEM(args, 2), 2);
      bool zero_copy = CastPyArg2AttrBoolean(PyTuple_GET_ITEM(args, 3), 3);
      std::string act_name = "";
      PyObject* name_obj = PyTuple_GET_ITEM(args, 4);
      if (name_obj == Py_None) {
        act_name =
            egr::Controller::Instance().GenerateUniqueName("generated_tensor");
      } else {
        act_name = CastPyArg2AttrString(name_obj, 4);
      }
      bool stop_gradient = CastPyArg2AttrBoolean(PyTuple_GET_ITEM(args, 5), 5);
      EmptyEagerTensorInitializer(py_tensor_ptr, act_name, place, persistable,
                                  stop_gradient);
      InitEagerTensorWithNumpyValue(py_tensor_ptr, numpy_value, zero_copy);
      return 0;
    }
    default: {
      PADDLE_THROW(platform::errors::Fatal(
          "Can't not find expected num of args, please check your call, and "
          "make sure u call the existed constructor."));
      return 1;
    }
  }
}

461
static void eagertensor_dealloc(EagerTensorObject* self) {
J
Jiabin Yang 已提交
462
  self->eager_tensor.~EagerTensor();
463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505
  Py_TYPE(self)->tp_free(reinterpret_cast<PyObject*>(self));
}

extern struct PyGetSetDef variable_properties[];

extern PyMethodDef variable_methods[];

PyTypeObject eager_tensor_type = {
    PyVarObject_HEAD_INIT(NULL, 0) "core_avx.eager.EagerTensor", /* tp_name */
    sizeof(EagerTensorObject),       /* tp_basicsize */
    0,                               /* tp_itemsize */
    (destructor)eagertensor_dealloc, /* tp_dealloc */
    0,                               /* tp_vectorcall_offset */
    0,                               /* tp_getattr */
    0,                               /* tp_setattr */
    0,                               /* tp_reserved */
    0,                               /* tp_repr */
    0,                               /* tp_as_number */
    0,                               /* tp_as_sequence */
    0,                               /* tp_as_mapping */
    0,                               /* tp_hash  */
    0,                               /* tp_call */
    0,                               /* tp_str */
    0,                               /* tp_getattro */
    0,                               /* tp_setattro */
    0,                               /* tp_as_buffer */
    Py_TPFLAGS_DEFAULT | Py_TPFLAGS_BASETYPE |
        Py_TPFLAGS_HEAPTYPE, /* tp_flags */
    0,                       /* tp_doc */
    0,                       /* tp_traverse */
    0,                       /* tp_clear */
    0,                       /* tp_richcompare */
    0,                       /* tp_weaklistoffset */
    0,                       /* tp_iter */
    0,                       /* tp_iternext */
    variable_methods,        /* tp_methods */
    0,                       /* tp_members */
    variable_properties,     /* tp_getset */
    0,                       /* tp_base */
    0,                       /* tp_dict */
    0,                       /* tp_descr_get */
    0,                       /* tp_descr_set */
    0,                       /* tp_dictoffset */
506
    EagerTensorInit,         /* tp_init */
507
    0,                       /* tp_alloc */
J
Jiabin Yang 已提交
508
    EagerTensorNew,          /* tp_new */
509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541
    0,                       /* tp_free */
    0,                       /* tp_is_gc */
    0,                       /* tp_bases */
    0,                       /* tp_mro */
    0,                       /* tp_cache */
    0,                       /* tp_subclasses */
    0,                       /* tp_weaklist */
    0,                       /* tp_del */
    0,                       /* tp_version_tag */
    0                        /* tp_finalize */
};

void BindEager(pybind11::module* module) {
  auto m = module->def_submodule("eager");

  p_eager_tensor_type = &eager_tensor_type;
  if (PyType_Ready(&eager_tensor_type) < 0) {
    PADDLE_THROW(platform::errors::Fatal(
        "Init Paddle erroe in BindEager(PyType_Ready)."));
    return;
  }

  Py_INCREF(&eager_tensor_type);
  if (PyModule_AddObject(m.ptr(), "EagerTensor",
                         reinterpret_cast<PyObject*>(&eager_tensor_type)) < 0) {
    Py_DECREF(&eager_tensor_type);
    Py_DECREF(m.ptr());
    PADDLE_THROW(platform::errors::Fatal(
        "Init Paddle erroe in BindEager(PyModule_AddObject)."));
    return;
  }

  BindFunctions(m.ptr());
542
  BindEagerOpFunctions(&m);
543 544 545 546
}

}  // namespace pybind
}  // namespace paddle