eager.cc 46.6 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
/* Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved.
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
// disable numpy compile error
#include <Python.h>

#include <string>
#include <vector>

17
#include "paddle/fluid/eager/accumulation/accumulation_node.h"
18 19 20
#include "paddle/fluid/eager/api/all.h"
#include "paddle/fluid/eager/autograd_meta.h"
#include "paddle/fluid/eager/utils.h"
21
#include "paddle/fluid/framework/convert_utils.h"
22 23 24 25 26
#include "paddle/fluid/memory/allocation/allocator.h"
#include "paddle/fluid/memory/memcpy.h"
#include "paddle/fluid/platform/enforce.h"
#include "paddle/fluid/pybind/eager.h"
#include "paddle/fluid/pybind/eager_utils.h"
27 28 29
#include "paddle/phi/common/data_type.h"
#include "paddle/phi/core/compat/convert_utils.h"
#include "paddle/phi/core/dense_tensor.h"
30
#include "pybind11/detail/internals.h"
31 32
#include "pybind11/numpy.h"
#include "pybind11/pybind11.h"
33
#pragma GCC diagnostic ignored "-Wmissing-field-initializers"
34
#include "paddle/fluid/framework/python_headers.h"
35
#include "paddle/fluid/pybind/eager_op_function_impl.h"
36
#include "paddle/fluid/pybind/tensor_py.h"
37 38
#include "paddle/phi/api/lib/utils/storage.h"
#include "paddle/phi/api/lib/utils/tensor_utils.h"
J
Jack Zhou 已提交
39
#include "paddle/phi/core/string_tensor.h"
40 41 42 43 44
namespace paddle {
namespace pybind {

namespace py = ::pybind11;

45
PyTypeObject* p_tensor_type;
J
Jack Zhou 已提交
46
PyTypeObject* p_string_tensor_type;  // For StringTensor
47
extern PyTypeObject* g_vartype_pytype;
48
extern PyTypeObject* g_framework_tensor_pytype;
49

50
PyObject* TensorNew(PyTypeObject* type, PyObject* args, PyObject* kwargs) {
51 52
  PyObject* obj = type->tp_alloc(type, 0);
  if (obj) {
53 54
    auto v = reinterpret_cast<TensorObject*>(obj);
    new (&(v->tensor)) paddle::experimental::Tensor();
55 56 57 58
  }
  return obj;
}

59
// TODO(jiabin): Overload this once we need more constructor in Python
60 61
void EmptyTensorInitializer(TensorObject* self, const std::string& name,
                            const paddle::platform::Place& place,
62
                            bool persistable = false, int stop_gradient = -1,
63 64
                            framework::proto::VarType::Type dtype =
                                paddle::framework::proto::VarType::FP32,
65
                            const std::vector<int>& dims = {0},
66 67
                            framework::proto::VarType::Type var_type =
                                paddle::framework::proto::VarType::LOD_TENSOR) {
68
  auto ddims = phi::make_ddim(dims);
69 70
  self->tensor.set_name(name);
  auto autograd_meta = egr::EagerUtils::autograd_meta(&(self->tensor));
71
  autograd_meta->SetPersistable(persistable);
72 73 74
  if (stop_gradient != -1) {
    autograd_meta->SetStopGradient(static_cast<bool>(stop_gradient));
  }
75 76
  if (var_type == paddle::framework::proto::VarType::LOD_TENSOR) {
    // TODO(jiabin): Maybe support LOD later
77
    std::shared_ptr<phi::DenseTensor> dense_tensor = nullptr;
78
    if (dims.size() == 1 && dims[0] == 0) {
79 80 81 82 83 84 85 86 87 88 89 90
      std::shared_ptr<phi::Allocation> allocation_ptr = nullptr;
      dense_tensor = std::make_shared<phi::DenseTensor>(
          allocation_ptr,
          phi::DenseTensorMeta(paddle::framework::TransToPhiDataType(dtype),
                               ddims));
    } else {
      // TODO(dev): we need enhance check for ddims.
      dense_tensor = std::make_shared<phi::DenseTensor>(
          phi::make_intrusive<paddle::experimental::SharedStorage>(place),
          phi::DenseTensorMeta(paddle::framework::TransToPhiDataType(dtype),
                               ddims));
    }
91
    self->tensor.set_impl(dense_tensor);
92 93 94 95
  } else if (var_type == paddle::framework::proto::VarType::SELECTED_ROWS) {
    std::shared_ptr<phi::SelectedRows> tensor =
        std::make_shared<phi::SelectedRows>();
    self->tensor.set_impl(tensor);
96 97 98 99 100
  }

  if (!autograd_meta->GetMutableGradNode()) {
    VLOG(3) << "Tensor(" << name
            << ") have not GradNode, add GradNodeAccumulation for it.";
101 102
    autograd_meta->SetGradNode(
        std::make_shared<egr::GradNodeAccumulation>(autograd_meta));
103 104 105
  }
}

J
Jack Zhou 已提交
106 107 108 109 110 111 112 113
void EmptyStringTensorInitializer(TensorObject* self, const std::string& name,
                                  const paddle::platform::Place& place,
                                  const std::vector<int>& dims = {}) {
  auto ddims = phi::make_ddim(dims);
  self->tensor.set_name(name);
  // Note(zhoushunjie): Only support CPUPlace when create StringTensor
  auto actual_place = platform::CPUPlace();
  // Allocate memory
114
  paddle::experimental::DefaultAllocator string_allocator(actual_place);
J
Jack Zhou 已提交
115
  std::shared_ptr<phi::StringTensor> string_tensor =
116 117
      std::make_shared<phi::StringTensor>(&string_allocator,
                                          phi::StringTensorMeta{ddims});
J
Jack Zhou 已提交
118 119 120 121 122 123
  if (phi::product(ddims) > 0) {
    string_tensor->mutable_data(actual_place);
  }
  self->tensor.set_impl(string_tensor);
}

124
void InitTensorWithNumpyValue(TensorObject* self, const py::object& array,
125
                              const paddle::platform::Place& place,
126
                              bool zero_copy = false) {
127
  PADDLE_ENFORCE_EQ(
128
      self->tensor.defined(), true,
129
      paddle::platform::errors::Fatal(
130 131
          "Calling InitTensorWithNumpyValue of Eager Tensor without "
          "EmptyTensorInitializer is "
132 133
          "forbidden. Please check your code and make sure you new a "
          "eager tensor before init it with NumPy."));
134 135
  phi::DenseTensor* impl_ptr =
      static_cast<phi::DenseTensor*>(self->tensor.impl().get());
136
  if (platform::is_cpu_place(place)) {
137
    SetTensorFromPyArray<platform::CPUPlace>(impl_ptr, array, place, zero_copy);
138
  } else if (platform::is_xpu_place(place)) {
139
    SetTensorFromPyArray<platform::XPUPlace>(impl_ptr, array, place, zero_copy);
140
  } else if (platform::is_gpu_place(place)) {
141
    SetTensorFromPyArray<platform::CUDAPlace>(impl_ptr, array, place,
142
                                              zero_copy);
143
  } else if (platform::is_cuda_pinned_place(place)) {
144
    SetTensorFromPyArray<platform::CUDAPinnedPlace>(impl_ptr, array, place,
145
                                                    zero_copy);
146
  } else if (platform::is_npu_place(place)) {
147
    SetTensorFromPyArray<platform::NPUPlace>(impl_ptr, array, place, zero_copy);
148 149 150
  } else if (platform::is_custom_place(place)) {
    SetTensorFromPyArray<platform::CustomPlace>(impl_ptr, array, place,
                                                zero_copy);
151 152 153
  } else {
    PADDLE_THROW(platform::errors::InvalidArgument(
        "Place should be one of "
154
        "CPUPlace/XPUPlace/CUDAPlace/CUDAPinnedPlace/NPUPlace/CustomPlace"));
155 156 157
  }
}

J
Jack Zhou 已提交
158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179
void InitStringTensorWithNumpyValue(TensorObject* self, const py::object& obj) {
  PADDLE_ENFORCE_EQ(
      self->tensor.defined(), true,
      paddle::platform::errors::Fatal(
          "Calling InitStringTensorWithNumpyValue of Eager StringTensor "
          "without "
          "EmptyStringTensorInitializer is "
          "forbidden. Please check your code and make sure you new a "
          "eager tensor before init it with NumPy."));
  phi::StringTensor* impl_ptr =
      static_cast<phi::StringTensor*>(self->tensor.impl().get());
  paddle::platform::Place place = impl_ptr->place();
  auto array = obj.cast<py::array>();
  if (platform::is_cpu_place(place)) {
    SetStringTensorFromPyArray<platform::CPUPlace>(impl_ptr, array, place);
  } else {
    PADDLE_THROW(platform::errors::InvalidArgument(
        "StringTensor only support CPUPlace now, but receive %s",
        place.DebugString()));
  }
}

180 181 182 183
void InitTensorWithTensor(TensorObject* self,
                          const paddle::experimental::Tensor& src,
                          const paddle::platform::Place& place,
                          const std::string& name) {
184
  self->tensor.set_name(name);
C
Chen Weihang 已提交
185
  if (place == src.place()) {
186
    self->tensor.set_impl(src.impl());
187 188
    VLOG(4) << "Same place, do ShareDataWith";
  } else {
189
    self->tensor.set_impl(src.copy_to(place, true).impl());
190 191 192
    VLOG(4) << "Different place, do TensorCopy";
  }
  if (src.get_autograd_meta()) {
193
    egr::EagerUtils::autograd_meta(&(self->tensor))
194 195 196
        ->SetPersistable(
            egr::EagerUtils::unsafe_autograd_meta(src)->Persistable());
  } else {
197
    egr::EagerUtils::autograd_meta(&(self->tensor))->SetPersistable(false);
198 199 200
  }
}

201 202 203 204
void InitTensorWithFrameworkTensor(TensorObject* self,
                                   const framework::Tensor& src,
                                   const paddle::platform::Place& place,
                                   const std::string& name) {
205
  self->tensor.set_name(name);
206
  if (place == src.place()) {
207
    self->tensor.set_impl(std::make_shared<phi::DenseTensor>(src));
208 209
    VLOG(4) << "Same place, do ShareDataWith";
  } else {
210
    auto temp =
211
        paddle::experimental::Tensor(std::make_shared<phi::DenseTensor>(src));
212
    self->tensor.set_impl(temp.copy_to(place, true).impl());
213 214
    VLOG(4) << "Different place, do TensorCopy";
  }
215
  egr::EagerUtils::autograd_meta(&(self->tensor))->SetPersistable(false);
216
}
217

J
Jack Zhou 已提交
218 219 220 221 222 223 224 225 226 227 228
void InitStringTensorWithStringTensor(TensorObject* self,
                                      const paddle::experimental::Tensor& src,
                                      const paddle::platform::Place& place,
                                      const std::string& name) {
  self->tensor.set_name(name);
  auto impl = std::static_pointer_cast<phi::StringTensor>(src.impl());
  self->tensor.set_impl(impl);
  VLOG(4)
      << "Do ShareDataWith when using StringTensor to initialize StringTensor";
}

229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274
py::object ParsePyArray(
    std::unordered_map<std::string, PyObject*> kws_map,
    std::unordered_map<std::string, Py_ssize_t> kw_order_map, PyObject* args,
    bool flag_kwargs, Py_ssize_t args_num) {
  py::object numpy_value = py::object();

  if (kw_order_map["value"] <= args_num) {
    numpy_value = py::object(
        py::handle(PyTuple_GET_ITEM(args, kw_order_map["value"] - 1)), true);
  } else {
    if (flag_kwargs && kws_map["value"] != NULL) {
      numpy_value = py::object(py::handle(kws_map["value"]), true);
    } else {
      PADDLE_THROW(platform::errors::InvalidArgument(
          "The first expected arguments is {value: PyArray}, "
          "but could not parse the first argument {value: PyArray} "
          "successfully. "
          "Please check your input first and make sure you are on the right "
          "way."));
    }
  }
  return numpy_value;
}

paddle::platform::Place ParsePlace(
    std::unordered_map<std::string, PyObject*> kws_map,
    std::unordered_map<std::string, Py_ssize_t> kw_order_map, PyObject* args,
    bool flag_kwargs, Py_ssize_t args_num) {
  paddle::platform::Place place =
      egr::Controller::Instance().GetExpectedPlace();

  if (kw_order_map["place"] <= args_num) {
    place = CastPyArg2Place(PyTuple_GET_ITEM(args, kw_order_map["place"] - 1),
                            kw_order_map["place"] - 1);
  } else {
    if (flag_kwargs && kws_map["place"] != NULL) {
      place = CastPyArg2Place(kws_map["place"], 0);
    } else {
      // default
      return place;
    }
  }
  return place;
}

// boolean arguments: zero_copy, stop_gradient, persistable
275 276 277 278 279
int ParseBooleanArgs(std::string key,
                     std::unordered_map<std::string, PyObject*> kws_map,
                     std::unordered_map<std::string, Py_ssize_t> kw_order_map,
                     PyObject* args, bool flag_kwargs, Py_ssize_t args_num) {
  int res = -1;
280 281

  if (kw_order_map[key] <= args_num) {
282 283
    res = static_cast<int>(CastPyArg2AttrBoolean(
        PyTuple_GET_ITEM(args, kw_order_map[key] - 1), kw_order_map[key] - 1));
284 285
  } else {
    if (flag_kwargs && kws_map[key] != NULL) {
286
      res = static_cast<int>(CastPyArg2AttrBoolean(kws_map[key], 0));
287 288 289 290 291 292 293
    }
  }
  return res;
}

std::string ParseName(std::unordered_map<std::string, PyObject*> kws_map,
                      std::unordered_map<std::string, Py_ssize_t> kw_order_map,
J
Jack Zhou 已提交
294 295
                      PyObject* args, bool flag_kwargs, Py_ssize_t args_num,
                      std::string unique_name_prefix = "generated_tensor") {
296 297 298 299 300
  std::string act_name = "";
  if (kw_order_map["name"] <= args_num) {
    PyObject* name_obj = PyTuple_GET_ITEM(args, kw_order_map["name"] - 1);
    if (name_obj == Py_None) {
      act_name =
J
Jack Zhou 已提交
301
          egr::Controller::Instance().GenerateUniqueName(unique_name_prefix);
302 303 304 305 306
    } else {
      act_name = CastPyArg2AttrString(name_obj, kw_order_map["name"] - 1);
    }
  } else {
    if (flag_kwargs) {
J
Jiabin Yang 已提交
307
      if ((kws_map["name"] == NULL) || (kws_map["name"] == Py_None)) {
308
        act_name =
J
Jack Zhou 已提交
309
            egr::Controller::Instance().GenerateUniqueName(unique_name_prefix);
310 311 312 313 314
      } else {
        act_name = CastPyArg2AttrString(kws_map["name"], 0);
      }
    } else {
      act_name =
J
Jack Zhou 已提交
315
          egr::Controller::Instance().GenerateUniqueName(unique_name_prefix);
316 317 318 319 320
    }
  }
  return act_name;
}

321
// initialize Tensor by PyArray(first argument is PyArray,
322
// mix args and kwargs) automatically.
323 324 325 326 327 328
void AutoInitTensorByPyArray(TensorObject* py_tensor_ptr,
                             std::unordered_map<std::string, PyObject*> kws_map,
                             PyObject* args, bool flag_kwargs,
                             Py_ssize_t args_num) {
  // The first argument of the Tensor constructor is PyArray,
  // there are 6 arguments to construct the new Tensor,
329 330 331 332 333 334 335 336 337 338 339 340 341 342
  // kw_order_map's key is every arguments of the constructor,
  // kw_order_map's value is the position of the arguments respectively.
  // If u want to update this constructor with new arguments,
  // need to update this map and to add or change related code.
  std::unordered_map<std::string, Py_ssize_t> kw_order_map{
      {"value", 1},     {"place", 2}, {"persistable", 3},
      {"zero_copy", 4}, {"name", 5},  {"stop_gradient", 6}};

  py::object numpy_value = py::object();
  paddle::platform::Place place =
      egr::Controller::Instance().GetExpectedPlace();
  bool persistable = false;
  bool zero_copy = false;
  std::string act_name = "";
343
  int stop_gradient = -1;
344 345 346 347

  numpy_value =
      ParsePyArray(kws_map, kw_order_map, args, flag_kwargs, args_num);
  place = ParsePlace(kws_map, kw_order_map, args, flag_kwargs, args_num);
348 349 350 351
  persistable = (1 == ParseBooleanArgs("persistable", kws_map, kw_order_map,
                                       args, flag_kwargs, args_num));
  zero_copy = (1 == ParseBooleanArgs("zero_copy", kws_map, kw_order_map, args,
                                     flag_kwargs, args_num));
352 353 354 355
  act_name = ParseName(kws_map, kw_order_map, args, flag_kwargs, args_num);
  stop_gradient = ParseBooleanArgs("stop_gradient", kws_map, kw_order_map, args,
                                   flag_kwargs, args_num);

356 357
  EmptyTensorInitializer(py_tensor_ptr, act_name, place, persistable,
                         stop_gradient);
358
  InitTensorWithNumpyValue(py_tensor_ptr, numpy_value, place, zero_copy);
359 360
}

361
// initialize Tensor by Tensor or framework::Tensor (mix args and
362
// kwargs) automatically.
363 364 365 366 367 368
void AutoInitTensorByTensor(TensorObject* py_tensor_ptr,
                            std::unordered_map<std::string, PyObject*> kws_map,
                            PyObject* args, bool flag_kwargs,
                            Py_ssize_t args_num,
                            bool init_by_egr_tensor = true) {
  // The first argument of the Tensor constructor is Tensor or
369
  // framework Tensor,
370
  // there are 3 arguments to construct the new Tensor,
371 372 373 374 375 376 377 378 379 380 381 382 383 384 385
  // kw_order_map's key is every arguments of the constructor,
  // kw_order_map's value is the position of the arguments respectively.
  // If u want to update this constructor with new arguments,
  // need to update this map and to add or change related code.
  std::unordered_map<std::string, Py_ssize_t> kw_order_map{
      {"value", 1}, {"place", 2}, {"name", 3}};

  paddle::platform::Place place =
      egr::Controller::Instance().GetExpectedPlace();
  std::string act_name = "";

  place = ParsePlace(kws_map, kw_order_map, args, flag_kwargs, args_num);
  act_name = ParseName(kws_map, kw_order_map, args, flag_kwargs, args_num);

  if (init_by_egr_tensor) {
386
    paddle::experimental::Tensor src_tensor;
387
    if (kw_order_map["value"] <= args_num) {
388 389 390
      src_tensor =
          CastPyArg2Tensor(PyTuple_GET_ITEM(args, kw_order_map["value"] - 1),
                           kw_order_map["value"] - 1);
391 392
    } else {
      if (flag_kwargs && kws_map["value"] != NULL) {
393
        src_tensor = CastPyArg2Tensor(kws_map["value"], 0);
394 395
      } else {
        PADDLE_THROW(platform::errors::InvalidArgument(
396 397
            "The first expected kwargs is {value: Tensor}, "
            "but could not parse the first argument {value: Tensor} "
398 399 400 401 402
            "successfully. "
            "Please check your input first and make sure you are on the right "
            "way."));
      }
    }
403
    InitTensorWithTensor(py_tensor_ptr, src_tensor, place, act_name);
404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422
  } else {
    // init by framework tensor
    framework::Tensor src_tensor;
    if (kw_order_map["value"] <= args_num) {
      src_tensor = CastPyArg2FrameworkTensor(
          PyTuple_GET_ITEM(args, kw_order_map["value"] - 1),
          kw_order_map["value"] - 1);
    } else {
      if (flag_kwargs && kws_map["value"] != NULL) {
        src_tensor = CastPyArg2FrameworkTensor(kws_map["value"], 0);
      } else {
        PADDLE_THROW(platform::errors::InvalidArgument(
            "The first expected arguments is {value: framework::Tensor}, "
            "but could not parse the first argument {value: framework::Tensor} "
            "successfully. "
            "Please check your input first and make sure you are on the right "
            "way."));
      }
    }
423
    InitTensorWithFrameworkTensor(py_tensor_ptr, src_tensor, place, act_name);
424 425 426
  }
}

J
Jack Zhou 已提交
427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490
void AutoInitStringTensorByPyArray(
    TensorObject* py_tensor_ptr,
    std::unordered_map<std::string, PyObject*> kws_map, PyObject* args,
    bool flag_kwargs, Py_ssize_t args_num) {
  // The first argument of the StringTensor constructor is PyArray,
  // there are 4 arguments to construct the new StringTensor,
  // kw_order_map's key is every arguments of the constructor,
  // kw_order_map's value is the position of the arguments respectively.
  // If u want to update this constructor with new arguments,
  // need to update this map and to add or change related code.
  std::unordered_map<std::string, Py_ssize_t> kw_order_map{{"value", 1},
                                                           {"name", 2}};
  py::object numpy_value = py::object();
  paddle::platform::Place place =
      egr::Controller::Instance().GetExpectedPlace();
  std::string act_name = "";

  numpy_value =
      ParsePyArray(kws_map, kw_order_map, args, flag_kwargs, args_num);
  act_name = ParseName(kws_map, kw_order_map, args, flag_kwargs, args_num,
                       "generated_string_tensor");
  EmptyStringTensorInitializer(py_tensor_ptr, act_name, place);
  InitStringTensorWithNumpyValue(py_tensor_ptr, numpy_value);
}

void AutoInitStringTensorByStringTensor(
    TensorObject* py_tensor_ptr,
    std::unordered_map<std::string, PyObject*> kws_map, PyObject* args,
    bool flag_kwargs, Py_ssize_t args_num) {
  // The first argument of the Tensor constructor is StringTensor,
  // there are 3 arguments to construct the new StringTensor,
  // kw_order_map's key is every arguments of the constructor,
  // kw_order_map's value is the position of the arguments respectively.
  // If u want to update this constructor with new arguments,
  // need to update this map and to add or change related code.
  std::unordered_map<std::string, Py_ssize_t> kw_order_map{{"value", 1},
                                                           {"name", 2}};

  paddle::platform::Place place =
      egr::Controller::Instance().GetExpectedPlace();
  std::string act_name = "";

  act_name = ParseName(kws_map, kw_order_map, args, flag_kwargs, args_num,
                       "generated_string_tensor");
  paddle::experimental::Tensor src_tensor;
  if (kw_order_map["value"] <= args_num) {
    src_tensor =
        CastPyArg2Tensor(PyTuple_GET_ITEM(args, kw_order_map["value"] - 1),
                         kw_order_map["value"] - 1);
  } else {
    if (flag_kwargs && kws_map["value"] != NULL) {
      src_tensor = CastPyArg2Tensor(kws_map["value"], 0);
    } else {
      PADDLE_THROW(platform::errors::InvalidArgument(
          "The first expected kwargs is {value: Tensor}, "
          "but could not parse the first argument {value: Tensor} "
          "successfully. "
          "Please check your input first and make sure you are on the right "
          "way."));
    }
  }
  InitStringTensorWithStringTensor(py_tensor_ptr, src_tensor, place, act_name);
}

491
/** We should have init function with signature:
492 493 494 495 496 497 498
   * 1.
   * def __init__ ()
   * 2.
   * def __init__ (
   * ** dtype: paddle::framework::proto::VarType::Type,
   * ** dims: vector<int>,
   * ** name: std::string,
499
   * ** type: paddle::framework::proto::VarType::LodTensor,
500
   * ** persistable: bool)
501 502 503
   * 3. (multi-place)
   * (should have at least one parameter, one parameter equals to case 4, zero
   * parameter equals to case 1)
504 505 506 507 508 509 510 511 512 513 514 515
   * def __init__ (
   * ** value: ndarray,
   * ** place: paddle::platform::Place,
   * ** persistable: bool,
   * ** zero_copy: bool,
   * ** name: std::string,
   * ** stop_gradient: bool)
   * 4.
   * def __init__ (
   * ** value: ndarray)
   * 5.
   * def __init__ (
516
   * ** tensor: Tensor)
517 518 519
   * 6. (multi-place)
   * (should have at least one parameter, one parameter equals to case 5, zero
   * parameter equals to case 1.)
520
   * def __init__ (
521
   * ** tensor: Tensor,
522 523
   * ** place: paddle::platform::Place,
   * ** name: std::string)
524 525
   * 7. (multi-place) (should have at least one parameter, one parameter similar
   * to case 5, zero parameter equals to case 1.)
526 527 528 529
   * def __init__ (
   * ** tensor: FrameworkTensor,
   * ** place: paddle::platform::Place,
   * ** name: std::string)
530
   *  **/
531
int TensorInit(PyObject* self, PyObject* args, PyObject* kwargs) {
0
0x45f 已提交
532
  EAGER_TRY
533 534 535 536 537 538 539 540 541
  // set a flag to record use kwargs or not
  bool flag_kwargs = false;
  if (kwargs) flag_kwargs = true;

  // all kwargs
  PyObject* kw_zero_copy = NULL;
  PyObject* kw_persistable = NULL;
  PyObject* kw_stop_gradient = NULL;

542
  PyObject* kw_value = NULL;  // receive PyArray or Tensor
543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588
  PyObject* kw_place = NULL;
  PyObject* kw_name = NULL;
  PyObject* kw_dims = NULL;
  PyObject* kw_dtype = NULL;
  PyObject* kw_type = NULL;

  // the keywords argument
  static char* kwlist[] = {
      const_cast<char*>("value"),       const_cast<char*>("place"),
      const_cast<char*>("persistable"), const_cast<char*>("zero_copy"),
      const_cast<char*>("name"),        const_cast<char*>("stop_gradient"),
      const_cast<char*>("dims"),        const_cast<char*>("dtype"),
      const_cast<char*>("type"),        NULL};

  // 'O' Store a Python object (without any conversion) in a C object pointer,
  // '|' Indicates that the remaining arguments in the Python argument list are
  // optional.
  // PyArg_ParseTupleAndKeywords can Parse the parameters of a function that
  // takes both positional and keyword parameters into local variables,
  // which enhance case2, case3, case4, case5, case6, case7.
  bool flag_ = PyArg_ParseTupleAndKeywords(
      args, kwargs, "|OOOOOOOOO", kwlist, &kw_value, &kw_place, &kw_persistable,
      &kw_zero_copy, &kw_name, &kw_stop_gradient, &kw_dims, &kw_dtype,
      &kw_type);

  // helper map
  std::unordered_map<std::string, PyObject*> kws_map{
      {"value", kw_value},
      {"place", kw_place},
      {"persistable", kw_persistable},
      {"zero_copy", kw_zero_copy},
      {"name", kw_name},
      {"stop_gradient", kw_stop_gradient},
      {"dims", kw_dims},
      {"dtype", kw_dtype},
      {"type", kw_type}};

  PADDLE_ENFORCE_EQ(flag_, true,
                    paddle::platform::errors::PreconditionNotMet(
                        "Could not parse args and kwargs successfully, "
                        "please check your input first and make"
                        "sure you are on the right way. "
                        "The expected arguments as follow: ("
                        "value, place, persistable, zero_copy, "
                        "name, stop_gradient, dims, dtype, type)"));

589 590 591 592 593 594
  PADDLE_ENFORCE_NOT_NULL(
      self, paddle::platform::errors::Fatal(
                "Calling __init__ of Eager Tensor without __new__ is "
                "forbidden. Please check your code and make sure you new a "
                "eager tensor before init it."));

595
  auto py_tensor_ptr = reinterpret_cast<TensorObject*>(self);
596 597

  Py_ssize_t args_num = PyTuple_Size(args);
598 599 600 601 602
  VLOG(6) << " args_num: " << args_num;

  // args_num = 0, means that there is no position arguments.
  if (args_num == (Py_ssize_t)0) {
    if (!flag_kwargs) {
603 604
      // case 1
      VLOG(6) << "Calling case1's initializer.";
605
      EmptyTensorInitializer(
606 607 608 609
          py_tensor_ptr,
          egr::Controller::Instance().GenerateUniqueName("generated_tensor"),
          egr::Controller::Instance().GetExpectedPlace());
      return 0;
610 611 612 613
    } else {  // no position args, all arguments are kwargs
      if (kw_value != NULL) {
        if (pybind11::detail::npy_api::get().PyArray_Check_(kw_value)) {
          VLOG(6) << "Calling case3's or case4's initializer";
614 615
          AutoInitTensorByPyArray(py_tensor_ptr, kws_map, args, flag_kwargs,
                                  args_num);
616
          return 0;
617 618
        } else if (PyObject_IsInstance(
                       kw_value, reinterpret_cast<PyObject*>(p_tensor_type))) {
619
          VLOG(6) << "Calling case5's or case6's initializer";
620 621
          AutoInitTensorByTensor(py_tensor_ptr, kws_map, args, flag_kwargs,
                                 args_num);
622 623 624 625 626
          return 0;
        } else if (PyObject_IsInstance(kw_value,
                                       reinterpret_cast<PyObject*>(
                                           g_framework_tensor_pytype))) {
          VLOG(6) << "Calling case7's initializer.";
627 628 629
          AutoInitTensorByTensor(py_tensor_ptr, kws_map, args, flag_kwargs,
                                 args_num,
                                 /* false means not init by egr tensor*/ false);
630
          return 0;
631
        } else {
632 633 634
          PADDLE_THROW(platform::errors::InvalidArgument(
              "Could not parse the first keyword argument successfully, "
              "the first keyword argument is value, but it should be PyArray "
635
              "or Tensor or framework::Tensor. "
636 637
              "Please check your input first and make sure you are on the "
              "right way."));
638
        }
639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675
      } else if (kw_dtype != NULL &&
                 PyObject_IsInstance(
                     kw_dtype, reinterpret_cast<PyObject*>(g_vartype_pytype))) {
        VLOG(6) << "Calling case2's initializer";

        PADDLE_ENFORCE_NOT_NULL(
            kw_dims,
            paddle::platform::errors::InvalidArgument(
                "Calling __init__ of Eager Tensor with NULL dims is "
                "forbidden. Please check your code and make sure you new a "
                "dims before calling this constructor."));

        PADDLE_ENFORCE_NOT_NULL(
            kw_name,
            paddle::platform::errors::InvalidArgument(
                "Calling __init__ of Eager Tensor with NULL name is "
                "forbidden. Please check your code and make sure you new a "
                "name before calling this constructor."));

        PADDLE_ENFORCE_NOT_NULL(
            kw_dtype,
            paddle::platform::errors::InvalidArgument(
                "Calling __init__ of Eager Tensor with NULL dtype is "
                "forbidden. Please check your code and make sure you new a "
                "dtype before calling this constructor."));

        PADDLE_ENFORCE_NOT_NULL(
            kw_persistable,
            paddle::platform::errors::InvalidArgument(
                "Calling __init__ of Eager Tensor with NULL persistable is "
                "forbidden. Please check your code and make sure you new a "
                "persistable before calling this constructor."));

        paddle::framework::proto::VarType::Type dtype =
            CastPyArg2ProtoType(kw_dtype, 0);
        std::vector<int> dims = CastPyArg2VectorOfInt(kw_dims, 0);

676
        std::string act_name = "";
677
        if (kw_name == Py_None) {
678 679 680
          act_name = egr::Controller::Instance().GenerateUniqueName(
              "generated_tensor");
        } else {
681
          act_name = CastPyArg2AttrString(kw_name, 0);
682
        }
683 684 685 686 687

        paddle::framework::proto::VarType::Type var_type =
            CastPyArg2ProtoType(kw_type, 0);
        bool persistable = CastPyArg2AttrBoolean(kw_persistable, 0);

688 689 690
        EmptyTensorInitializer(py_tensor_ptr, act_name,
                               egr::Controller::Instance().GetExpectedPlace(),
                               persistable,
691
                               /* stop_gradient */ -1, dtype, dims, var_type);
692

693
        return 0;
694 695
      } else {
        PADDLE_THROW(platform::errors::InvalidArgument(
696 697
            "We not only support construct Tensor from numpy value "
            "or tensor(Tensor or framework::Tensor) "
698
            "with python kwargs by this initializer, "
699
            "but also even support dtype to init a empty Tensor. "
700 701
            "Please check your input first and make sure you call the existed "
            "constructor."));
702
      }
703 704 705 706 707 708 709
    }
  } else if (args_num == (Py_ssize_t)1 || args_num == (Py_ssize_t)2 ||
             args_num == (Py_ssize_t)3) {
    // 1 to 3 position args, remainting arguments are kwargs
    PyObject* arg0_ptr = PyTuple_GET_ITEM(args, 0);
    if (pybind11::detail::npy_api::get().PyArray_Check_(arg0_ptr)) {
      VLOG(6) << "Calling case3's or case4's initializer.";
710 711
      AutoInitTensorByPyArray(py_tensor_ptr, kws_map, args, flag_kwargs,
                              args_num);
712
      return 0;
713 714
    } else if (PyObject_IsInstance(
                   arg0_ptr, reinterpret_cast<PyObject*>(p_tensor_type))) {
715
      VLOG(6) << "Calling case5's or case6's initializer.";
716 717
      AutoInitTensorByTensor(py_tensor_ptr, kws_map, args, flag_kwargs,
                             args_num);
718 719 720 721
      return 0;
    } else if (PyObject_IsInstance(arg0_ptr, reinterpret_cast<PyObject*>(
                                                 g_framework_tensor_pytype))) {
      VLOG(6) << "Calling case7's initializer.";
722 723 724
      AutoInitTensorByTensor(py_tensor_ptr, kws_map, args, flag_kwargs,
                             args_num,
                             /* false means not init by egr tensor*/ false);
725 726 727
      return 0;
    } else {
      PADDLE_THROW(platform::errors::InvalidArgument(
728 729
          "We support construct Tensor from numpy value "
          "or tensor(Tensor or framework::Tensor) "
730
          "with python args and kwargs by this initializer, "
731
          "but the first argument should be PyArray or Tensor or "
732 733 734
          "framework::Tensor. "
          "Please check your input first and make sure you call the existed "
          "constructor."));
735
    }
736 737 738 739 740
  } else if (args_num == (Py_ssize_t)4) {
    // 4 position args, remainting arguments are kwargs
    PyObject* arg0_ptr = PyTuple_GET_ITEM(args, 0);
    if (pybind11::detail::npy_api::get().PyArray_Check_(arg0_ptr)) {
      VLOG(6) << "Calling case3's or case4's initializer.";
741 742
      AutoInitTensorByPyArray(py_tensor_ptr, kws_map, args, flag_kwargs,
                              args_num);
743
      return 0;
744 745 746 747 748 749 750
    } else {
      PADDLE_THROW(platform::errors::InvalidArgument(
          "Incompatible constructor arguments, "
          "there are 4 position args and remainting arguments arg kwargs,"
          "but the first position args should be PyArray. "
          "Please check your code and make sure the first position args is "
          "PyArray."));
751
    }
752 753
  } else if (args_num == (Py_ssize_t)5) {
    if (!flag_kwargs) {
754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772
      PyObject* arg0_ptr = PyTuple_GET_ITEM(args, 0);
      if (PyObject_IsInstance(arg0_ptr,
                              reinterpret_cast<PyObject*>(g_vartype_pytype))) {
        VLOG(6) << "Calling case2's initializer.";
        paddle::framework::proto::VarType::Type dtype =
            CastPyArg2ProtoType(PyTuple_GET_ITEM(args, 0), 0);
        std::vector<int> dims =
            CastPyArg2VectorOfInt(PyTuple_GET_ITEM(args, 1), 1);
        std::string act_name = "";
        PyObject* name_obj = PyTuple_GET_ITEM(args, 2);
        if (name_obj == Py_None) {
          act_name = egr::Controller::Instance().GenerateUniqueName(
              "generated_tensor");
        } else {
          act_name = CastPyArg2AttrString(PyTuple_GET_ITEM(args, 2), 2);
        }
        paddle::framework::proto::VarType::Type var_type =
            CastPyArg2ProtoType(PyTuple_GET_ITEM(args, 3), 3);
        bool persistable = CastPyArg2AttrBoolean(PyTuple_GET_ITEM(args, 4), 4);
773 774
        EmptyTensorInitializer(py_tensor_ptr, act_name,
                               egr::Controller::Instance().GetExpectedPlace(),
775
                               persistable, -1, dtype, dims, var_type);
776
        return 0;
777 778
      } else if (pybind11::detail::npy_api::get().PyArray_Check_(arg0_ptr)) {
        VLOG(6) << "Calling case3's initializer.";
779 780
        AutoInitTensorByPyArray(py_tensor_ptr, kws_map, args, flag_kwargs,
                                args_num);
781 782 783
        return 0;
      } else {
        PADDLE_THROW(platform::errors::InvalidArgument(
784 785 786 787 788
            "Incompatible constructor arguments, "
            "there are only 5 position args,"
            "but the first position args should be PyArray or dtype. "
            "Please check your code and make sure you call the existed "
            "constructor."));
789
      }
790
    } else {  // five position args, remainting arguments are kwargs
791
      PyObject* arg0_ptr = PyTuple_GET_ITEM(args, 0);
792 793
      if (pybind11::detail::npy_api::get().PyArray_Check_(arg0_ptr)) {
        VLOG(6) << "Calling case3's or case4's initializer";
794 795
        AutoInitTensorByPyArray(py_tensor_ptr, kws_map, args, flag_kwargs,
                                args_num);
796
        return 0;
797
      } else {
798 799 800 801 802 803
        PADDLE_THROW(platform::errors::InvalidArgument(
            "Incompatible constructor arguments, "
            "there are 5 position args and remainting arguments are kwargs,"
            "but the first position args should be PyArray. "
            "Please check your code and make sure the first position args is "
            "PyArray."));
804 805
      }
    }
806 807 808 809
  } else if (args_num == (Py_ssize_t)6) {
    if (!flag_kwargs) {
      // case 3
      VLOG(6) << "Calling case3's initializer.";
810 811
      AutoInitTensorByPyArray(py_tensor_ptr, kws_map, args, flag_kwargs,
                              args_num);
812 813 814 815 816 817 818 819
      return 0;
    } else {  // six position args, remainting arguments are kwargs, but this
              // is not a right way
      PADDLE_THROW(platform::errors::InvalidArgument(
          "Incompatible constructor arguments, "
          "there are 6 position args and the remainting arguments are kwargs. "
          "Please check your code and make sure the first position args is "
          "PyArray."));
820
    }
821 822 823 824
  } else {
    PADDLE_THROW(platform::errors::Fatal(
        "Can't not find expected num of args, please check your call, and "
        "make sure u call the existed constructor."));
825
  }
826

0
0x45f 已提交
827 828
  return -1;
  EAGER_CATCH_AND_THROW_RETURN_NEG
829 830
}

J
Jack Zhou 已提交
831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028
/** We should have init function with signature:
   * 1.
   * def __init__ ()
   *
   * 2.
   * def __init__ (
   * ** dims: vector<int>,
   * ** name: std::string)
   *
   * 3.
   * (should have at least one parameter, one parameter equals to case 4, zero
   * parameter equals to case 1)
   * def __init__ (
   * ** value: ndarray,
   * ** zero_copy: bool,
   * ** name: std::string)
   *
   * 4.
   * def __init__ (
   * ** value: ndarray)
   *
   * 5.
   * def __init__ (
   * ** tensor: Tensor)
   *
   * 6.
   * (should have at least one parameter, one parameter equals to case 5, zero
   * parameter equals to case 1.)
   * def __init__ (
   * ** tensor: Tensor,
   * ** name: std::string)
   * **/
int StringTensorInit(PyObject* self, PyObject* args, PyObject* kwargs) {
  // set a flag to record use kwargs or not
  bool flag_kwargs = false;
  if (kwargs) flag_kwargs = true;

  // all kwargs
  PyObject* kw_zero_copy = NULL;

  PyObject* kw_value = NULL;  // receive PyArray or Tensor
  PyObject* kw_name = NULL;
  PyObject* kw_dims = NULL;

  // the keywords argument
  static char* kwlist[] = {
      const_cast<char*>("value"), const_cast<char*>("zero_copy"),
      const_cast<char*>("name"), const_cast<char*>("dims"), NULL};
  // 'O' Store a Python object (without any conversion) in a C object pointer,
  // '|' Indicates that the remaining arguments in the Python argument list are
  // optional.
  // PyArg_ParseTupleAndKeywords can Parse the parameters of a function that
  // takes both positional and keyword parameters into local variables,
  // which enhance case1, case2, case3, case4, case 5, case 6.
  bool flag_ =
      PyArg_ParseTupleAndKeywords(args, kwargs, "|OOOO", kwlist, &kw_value,
                                  &kw_zero_copy, &kw_name, &kw_dims);

  // helper map
  std::unordered_map<std::string, PyObject*> kws_map{
      {"value", kw_value},
      {"zero_copy", kw_zero_copy},
      {"name", kw_name},
      {"dims", kw_dims}};

  PADDLE_ENFORCE_EQ(flag_, true,
                    paddle::platform::errors::PreconditionNotMet(
                        "Could not parse args and kwargs successfully, "
                        "please check your input first and make"
                        "sure you are on the right way. "
                        "The expected arguments as follow: ("
                        "value, zero_copy, name, dims)"));

  PADDLE_ENFORCE_NOT_NULL(
      self, paddle::platform::errors::Fatal(
                "Calling __init__ of Eager Tensor without __new__ is "
                "forbidden. Please check your code and make sure you new a "
                "eager tensor before init it."));

  auto py_tensor_ptr = reinterpret_cast<TensorObject*>(self);

  Py_ssize_t args_num = PyTuple_Size(args);
  VLOG(6) << " args_num: " << args_num;
  // args_num = 0, means that there is no position arguments.
  if (args_num == (Py_ssize_t)0) {
    if (!flag_kwargs) {
      // case 1
      VLOG(6) << "Calling case1's string initializer.";
      EmptyStringTensorInitializer(
          py_tensor_ptr, egr::Controller::Instance().GenerateUniqueName(
                             "generated_string_tensor"),
          egr::Controller::Instance().GetExpectedPlace());
      return 0;
    } else {
      if (kw_value != NULL) {
        if (pybind11::detail::npy_api::get().PyArray_Check_(kw_value)) {
          VLOG(6) << "Calling case3's or case4's string initializer";
          AutoInitStringTensorByPyArray(py_tensor_ptr, kws_map, args,
                                        flag_kwargs, args_num);
          return 0;
        } else if (PyObject_IsInstance(kw_value, reinterpret_cast<PyObject*>(
                                                     p_string_tensor_type))) {
          VLOG(6) << "Calling case5's or case6's string initializer";
          AutoInitStringTensorByStringTensor(py_tensor_ptr, kws_map, args,
                                             flag_kwargs, args_num);
          return 0;
        } else {
          PADDLE_THROW(platform::errors::InvalidArgument(
              "Could not parse the first keyword argument successfully, "
              "the first keyword argument is value, but it should be PyArray "
              "or StringTensor."
              "Please check your input first and make sure you are on the "
              "right way."));
        }
      } else if (kw_dims != NULL) {
        VLOG(6) << "Calling case2's string initializer.";
        std::unordered_map<std::string, Py_ssize_t> kw_order_map{{"dims", 1},
                                                                 {"name", 2}};

        std::vector<int> dims = CastPyArg2VectorOfInt(kw_dims, 0);
        std::string act_name =
            ParseName(kws_map, kw_order_map, args, flag_kwargs, args_num,
                      "generated_string_tensor");
        EmptyStringTensorInitializer(
            py_tensor_ptr, act_name,
            egr::Controller::Instance().GetExpectedPlace(), dims);
        return 0;
      } else {
        PADDLE_THROW(platform::errors::InvalidArgument(
            "We not only support construct Tensor from numpy value "
            "or StringTensor with python kwargs by this initializer, "
            "but also even support dtype to init a empty StringTensor. "
            "Please check your input first and make sure you call the existed "
            "constructor."));
      }
    }
  } else if (args_num == (Py_ssize_t)1) {  // case 3 ~ 6
    // 1 position args, remainting arguments are kwargs
    PyObject* arg0_ptr = PyTuple_GET_ITEM(args, 0);
    if (pybind11::detail::npy_api::get().PyArray_Check_(arg0_ptr)) {
      VLOG(6) << "Calling case3's or case4's string initializer.";
      AutoInitStringTensorByPyArray(py_tensor_ptr, kws_map, args, flag_kwargs,
                                    args_num);
      return 0;
    } else if (PyObject_IsInstance(arg0_ptr, reinterpret_cast<PyObject*>(
                                                 p_string_tensor_type))) {
      VLOG(6) << "Calling case5's or case6's string initializer.";
      AutoInitStringTensorByStringTensor(py_tensor_ptr, kws_map, args,
                                         flag_kwargs, args_num);
      return 0;
    } else {
      PADDLE_THROW(platform::errors::InvalidArgument(
          "Could not parse the first keyword argument successfully, "
          "the first keyword argument is value, but it should be PyArray "
          "or StringTensor."
          "Please check your input first and make sure you are on the "
          "right way."));
    }
  } else if (args_num == (Py_ssize_t)2) {  // case 2
    // 2 position args
    if (!flag_kwargs) {
      PyObject* arg0_ptr = PyTuple_GET_ITEM(args, 0);
      if (PyObject_IsInstance(
              arg0_ptr, reinterpret_cast<PyObject*>(p_string_tensor_type))) {
        VLOG(6) << "Calling case6's string initializer.";
        AutoInitStringTensorByStringTensor(py_tensor_ptr, kws_map, args,
                                           flag_kwargs, args_num);
        return 0;
      } else if (pybind11::detail::npy_api::get().PyArray_Check_(arg0_ptr)) {
        VLOG(6) << "Calling case3's string initializer.";
        AutoInitStringTensorByPyArray(py_tensor_ptr, kws_map, args, flag_kwargs,
                                      args_num);
        return 0;
      } else {
        VLOG(6) << "Calling case2's string initializer.";
        std::vector<int> dims = CastPyArg2VectorOfInt(arg0_ptr, 0);
        std::string act_name = "";
        PyObject* name_obj = PyTuple_GET_ITEM(args, 1);
        if (name_obj == Py_None) {
          act_name = egr::Controller::Instance().GenerateUniqueName(
              "generated_string_tensor");
        } else {
          act_name = CastPyArg2AttrString(PyTuple_GET_ITEM(args, 1), 1);
        }
        EmptyStringTensorInitializer(
            py_tensor_ptr, act_name,
            egr::Controller::Instance().GetExpectedPlace(), dims);
        return 0;
      }
    } else {
      PADDLE_THROW(platform::errors::Fatal(
          "Can't not find expected num of args, please check your call, and "
          "make sure u call the existed constructor."));
    }
  }
  return 1;
}

1029
static void TensorDealloc(TensorObject* self) {
1030 1031
  if (self->weakrefs != NULL)
    PyObject_ClearWeakRefs(reinterpret_cast<PyObject*>(self));
1032
  self->tensor.~Tensor();
1033 1034 1035 1036
  Py_TYPE(self)->tp_free(reinterpret_cast<PyObject*>(self));
}

extern struct PyGetSetDef variable_properties[];
J
Jack Zhou 已提交
1037
extern struct PyGetSetDef string_tensor_variable_properties[];
1038 1039

extern PyMethodDef variable_methods[];
J
Jack Zhou 已提交
1040
extern PyMethodDef string_tensor_variable_methods[];
1041

W
wanghuancoder 已提交
1042 1043 1044 1045
PyNumberMethods number_methods;
PySequenceMethods sequence_methods;
PyMappingMethods mapping_methods;

1046 1047 1048
void BindEager(pybind11::module* module) {
  auto m = module->def_submodule("eager");

1049
  auto heap_type = reinterpret_cast<PyHeapTypeObject*>(
1050
      PyType_Type.tp_alloc(&PyType_Type, 0));
1051 1052
  heap_type->ht_name = ToPyObject("Tensor");
  heap_type->ht_qualname = ToPyObject("Tensor");
1053
  auto type = &heap_type->ht_type;
1054
  type->tp_name = "Tensor";
1055
  type->tp_basicsize = sizeof(TensorObject);
1056
  type->tp_dealloc = (destructor)TensorDealloc;
1057 1058 1059 1060 1061
  type->tp_as_number = &number_methods;
  type->tp_as_sequence = &sequence_methods;
  type->tp_as_mapping = &mapping_methods;
  type->tp_methods = variable_methods;
  type->tp_getset = variable_properties;
1062 1063
  type->tp_init = TensorInit;
  type->tp_new = TensorNew;
1064
  type->tp_weaklistoffset = offsetof(TensorObject, weakrefs);
1065 1066
  Py_INCREF(&PyBaseObject_Type);
  type->tp_base = reinterpret_cast<PyTypeObject*>(&PyBaseObject_Type);
1067 1068 1069 1070 1071
  type->tp_flags |=
      Py_TPFLAGS_DEFAULT | Py_TPFLAGS_BASETYPE | Py_TPFLAGS_HEAPTYPE;
#if PY_VERSION_HEX >= 0x03050000
  type->tp_as_async = &heap_type->as_async;
#endif
1072
  p_tensor_type = type;
1073 1074

  if (PyType_Ready(type) < 0) {
1075
    PADDLE_THROW(platform::errors::Fatal(
1076
        "Init Paddle error in BindEager(PyType_Ready)."));
1077 1078 1079
    return;
  }

1080
  Py_INCREF(type);
1081 1082
  if (PyModule_AddObject(m.ptr(), "Tensor", reinterpret_cast<PyObject*>(type)) <
      0) {
1083
    Py_DECREF(type);
1084 1085
    Py_DECREF(m.ptr());
    PADDLE_THROW(platform::errors::Fatal(
1086
        "Init Paddle error in BindEager(PyModule_AddObject)."));
1087 1088 1089 1090
    return;
  }

  BindFunctions(m.ptr());
W
wanghuancoder 已提交
1091
  BindEagerPyLayer(m.ptr());
1092
  BindEagerOpFunctions(&m);
1093 1094
}

J
Jack Zhou 已提交
1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138
void BindEagerStringTensor(pybind11::module* module) {
  auto m = module->def_submodule("eager");

  auto heap_type = reinterpret_cast<PyHeapTypeObject*>(
      PyType_Type.tp_alloc(&PyType_Type, 0));
  heap_type->ht_name = ToPyObject("StringTensor");
  heap_type->ht_qualname = ToPyObject("StringTensor");
  auto type = &heap_type->ht_type;
  type->tp_name = "StringTensor";
  type->tp_basicsize = sizeof(TensorObject);
  type->tp_dealloc = (destructor)TensorDealloc;
  type->tp_as_number = &number_methods;
  type->tp_as_sequence = &sequence_methods;
  type->tp_as_mapping = &mapping_methods;
  type->tp_methods = string_tensor_variable_methods;
  type->tp_getset = string_tensor_variable_properties;
  type->tp_init = StringTensorInit;
  type->tp_new = TensorNew;
  Py_INCREF(&PyBaseObject_Type);
  type->tp_base = reinterpret_cast<PyTypeObject*>(&PyBaseObject_Type);
  type->tp_flags |=
      Py_TPFLAGS_DEFAULT | Py_TPFLAGS_BASETYPE | Py_TPFLAGS_HEAPTYPE;
#if PY_VERSION_HEX >= 0x03050000
  type->tp_as_async = &heap_type->as_async;
#endif
  p_string_tensor_type = type;

  if (PyType_Ready(type) < 0) {
    PADDLE_THROW(platform::errors::Fatal(
        "Init Paddle error in BindEager(PyType_Ready)."));
    return;
  }

  Py_INCREF(type);
  if (PyModule_AddObject(m.ptr(), "StringTensor",
                         reinterpret_cast<PyObject*>(type)) < 0) {
    Py_DECREF(type);
    Py_DECREF(m.ptr());
    PADDLE_THROW(platform::errors::Fatal(
        "Init Paddle error in BindEagerStringTensor(PyModule_AddObject)."));
    return;
  }
}

1139 1140
}  // namespace pybind
}  // namespace paddle