eager.cc 46.7 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
/* Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved.
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
// disable numpy compile error
#include <Python.h>

#include <string>
#include <vector>

17
#include "paddle/fluid/eager/accumulation/accumulation_node.h"
18 19 20
#include "paddle/fluid/eager/api/all.h"
#include "paddle/fluid/eager/autograd_meta.h"
#include "paddle/fluid/eager/utils.h"
21
#include "paddle/fluid/framework/convert_utils.h"
22 23 24 25 26
#include "paddle/fluid/memory/allocation/allocator.h"
#include "paddle/fluid/memory/memcpy.h"
#include "paddle/fluid/platform/enforce.h"
#include "paddle/fluid/pybind/eager.h"
#include "paddle/fluid/pybind/eager_utils.h"
27 28 29
#include "paddle/phi/common/data_type.h"
#include "paddle/phi/core/compat/convert_utils.h"
#include "paddle/phi/core/dense_tensor.h"
30
#include "pybind11/detail/internals.h"
31 32
#include "pybind11/numpy.h"
#include "pybind11/pybind11.h"
33
#pragma GCC diagnostic ignored "-Wmissing-field-initializers"
34
#include "paddle/fluid/framework/python_headers.h"
35
#include "paddle/fluid/pybind/eager_op_function_impl.h"
36
#include "paddle/fluid/pybind/tensor_py.h"
37 38
#include "paddle/phi/api/lib/utils/storage.h"
#include "paddle/phi/api/lib/utils/tensor_utils.h"
J
Jack Zhou 已提交
39
#include "paddle/phi/core/string_tensor.h"
40 41 42 43 44
namespace paddle {
namespace pybind {

namespace py = ::pybind11;

45
PyTypeObject* p_tensor_type;
J
Jack Zhou 已提交
46
PyTypeObject* p_string_tensor_type;  // For StringTensor
47
extern PyTypeObject* g_vartype_pytype;
48
extern PyTypeObject* g_framework_tensor_pytype;
49

50
PyObject* TensorNew(PyTypeObject* type, PyObject* args, PyObject* kwargs) {
51 52
  PyObject* obj = type->tp_alloc(type, 0);
  if (obj) {
53 54
    auto v = reinterpret_cast<TensorObject*>(obj);
    new (&(v->tensor)) paddle::experimental::Tensor();
55 56 57 58
  }
  return obj;
}

59
// TODO(jiabin): Overload this once we need more constructor in Python
60 61
void EmptyTensorInitializer(TensorObject* self, const std::string& name,
                            const paddle::platform::Place& place,
62
                            bool persistable = false, int stop_gradient = -1,
63 64
                            framework::proto::VarType::Type dtype =
                                paddle::framework::proto::VarType::FP32,
65
                            const std::vector<int>& dims = {0},
66 67
                            framework::proto::VarType::Type var_type =
                                paddle::framework::proto::VarType::LOD_TENSOR) {
68
  auto ddims = phi::make_ddim(dims);
69 70
  self->tensor.set_name(name);
  auto autograd_meta = egr::EagerUtils::autograd_meta(&(self->tensor));
71
  autograd_meta->SetPersistable(persistable);
72 73 74
  if (stop_gradient != -1) {
    autograd_meta->SetStopGradient(static_cast<bool>(stop_gradient));
  }
75 76
  if (var_type == paddle::framework::proto::VarType::LOD_TENSOR) {
    // TODO(jiabin): Maybe support LOD later
77
    std::shared_ptr<phi::DenseTensor> dense_tensor = nullptr;
78
    if (dims.size() == 1 && dims[0] == 0) {
79 80 81 82 83 84 85 86 87 88 89 90
      std::shared_ptr<phi::Allocation> allocation_ptr = nullptr;
      dense_tensor = std::make_shared<phi::DenseTensor>(
          allocation_ptr,
          phi::DenseTensorMeta(paddle::framework::TransToPhiDataType(dtype),
                               ddims));
    } else {
      // TODO(dev): we need enhance check for ddims.
      dense_tensor = std::make_shared<phi::DenseTensor>(
          phi::make_intrusive<paddle::experimental::SharedStorage>(place),
          phi::DenseTensorMeta(paddle::framework::TransToPhiDataType(dtype),
                               ddims));
    }
91
    self->tensor.set_impl(dense_tensor);
92 93 94 95
  } else if (var_type == paddle::framework::proto::VarType::SELECTED_ROWS) {
    std::shared_ptr<phi::SelectedRows> tensor =
        std::make_shared<phi::SelectedRows>();
    self->tensor.set_impl(tensor);
96 97 98 99 100
  }

  if (!autograd_meta->GetMutableGradNode()) {
    VLOG(3) << "Tensor(" << name
            << ") have not GradNode, add GradNodeAccumulation for it.";
101 102
    autograd_meta->SetGradNode(
        std::make_shared<egr::GradNodeAccumulation>(autograd_meta));
103 104 105
  }
}

J
Jack Zhou 已提交
106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124
void EmptyStringTensorInitializer(TensorObject* self, const std::string& name,
                                  const paddle::platform::Place& place,
                                  const std::vector<int>& dims = {}) {
  auto ddims = phi::make_ddim(dims);
  self->tensor.set_name(name);
  // Note(zhoushunjie): Only support CPUPlace when create StringTensor
  auto actual_place = platform::CPUPlace();
  // Allocate memory
  const auto string_allocator =
      std::make_unique<paddle::experimental::DefaultAllocator>(actual_place);
  const auto alloc = string_allocator.get();
  std::shared_ptr<phi::StringTensor> string_tensor =
      std::make_shared<phi::StringTensor>(alloc, phi::StringTensorMeta{ddims});
  if (phi::product(ddims) > 0) {
    string_tensor->mutable_data(actual_place);
  }
  self->tensor.set_impl(string_tensor);
}

125
void InitTensorWithNumpyValue(TensorObject* self, const py::object& array,
126
                              const paddle::platform::Place& place,
127
                              bool zero_copy = false) {
128
  PADDLE_ENFORCE_EQ(
129
      self->tensor.defined(), true,
130
      paddle::platform::errors::Fatal(
131 132
          "Calling InitTensorWithNumpyValue of Eager Tensor without "
          "EmptyTensorInitializer is "
133 134
          "forbidden. Please check your code and make sure you new a "
          "eager tensor before init it with NumPy."));
135 136
  phi::DenseTensor* impl_ptr =
      static_cast<phi::DenseTensor*>(self->tensor.impl().get());
137
  if (platform::is_cpu_place(place)) {
138
    SetTensorFromPyArray<platform::CPUPlace>(impl_ptr, array, place, zero_copy);
139
  } else if (platform::is_xpu_place(place)) {
140
    SetTensorFromPyArray<platform::XPUPlace>(impl_ptr, array, place, zero_copy);
141
  } else if (platform::is_gpu_place(place)) {
142
    SetTensorFromPyArray<platform::CUDAPlace>(impl_ptr, array, place,
143
                                              zero_copy);
144
  } else if (platform::is_cuda_pinned_place(place)) {
145
    SetTensorFromPyArray<platform::CUDAPinnedPlace>(impl_ptr, array, place,
146
                                                    zero_copy);
147
  } else if (platform::is_npu_place(place)) {
148
    SetTensorFromPyArray<platform::NPUPlace>(impl_ptr, array, place, zero_copy);
149 150 151
  } else if (platform::is_custom_place(place)) {
    SetTensorFromPyArray<platform::CustomPlace>(impl_ptr, array, place,
                                                zero_copy);
152 153 154
  } else {
    PADDLE_THROW(platform::errors::InvalidArgument(
        "Place should be one of "
155
        "CPUPlace/XPUPlace/CUDAPlace/CUDAPinnedPlace/NPUPlace/CustomPlace"));
156 157 158
  }
}

J
Jack Zhou 已提交
159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180
void InitStringTensorWithNumpyValue(TensorObject* self, const py::object& obj) {
  PADDLE_ENFORCE_EQ(
      self->tensor.defined(), true,
      paddle::platform::errors::Fatal(
          "Calling InitStringTensorWithNumpyValue of Eager StringTensor "
          "without "
          "EmptyStringTensorInitializer is "
          "forbidden. Please check your code and make sure you new a "
          "eager tensor before init it with NumPy."));
  phi::StringTensor* impl_ptr =
      static_cast<phi::StringTensor*>(self->tensor.impl().get());
  paddle::platform::Place place = impl_ptr->place();
  auto array = obj.cast<py::array>();
  if (platform::is_cpu_place(place)) {
    SetStringTensorFromPyArray<platform::CPUPlace>(impl_ptr, array, place);
  } else {
    PADDLE_THROW(platform::errors::InvalidArgument(
        "StringTensor only support CPUPlace now, but receive %s",
        place.DebugString()));
  }
}

181 182 183 184
void InitTensorWithTensor(TensorObject* self,
                          const paddle::experimental::Tensor& src,
                          const paddle::platform::Place& place,
                          const std::string& name) {
185
  self->tensor.set_name(name);
C
Chen Weihang 已提交
186
  if (place == src.place()) {
187
    auto impl = std::static_pointer_cast<phi::DenseTensor>(src.impl());
188
    self->tensor.set_impl(impl);
189 190
    VLOG(4) << "Same place, do ShareDataWith";
  } else {
191
    self->tensor.set_impl(src.copy_to(place, true).impl());
192 193 194
    VLOG(4) << "Different place, do TensorCopy";
  }
  if (src.get_autograd_meta()) {
195
    egr::EagerUtils::autograd_meta(&(self->tensor))
196 197 198
        ->SetPersistable(
            egr::EagerUtils::unsafe_autograd_meta(src)->Persistable());
  } else {
199
    egr::EagerUtils::autograd_meta(&(self->tensor))->SetPersistable(false);
200 201 202
  }
}

203 204 205 206
void InitTensorWithFrameworkTensor(TensorObject* self,
                                   const framework::Tensor& src,
                                   const paddle::platform::Place& place,
                                   const std::string& name) {
207
  self->tensor.set_name(name);
208
  if (place == src.place()) {
209
    self->tensor.set_impl(std::make_shared<phi::DenseTensor>(src));
210 211
    VLOG(4) << "Same place, do ShareDataWith";
  } else {
212
    auto temp =
213
        paddle::experimental::Tensor(std::make_shared<phi::DenseTensor>(src));
214
    self->tensor.set_impl(temp.copy_to(place, true).impl());
215 216
    VLOG(4) << "Different place, do TensorCopy";
  }
217
  egr::EagerUtils::autograd_meta(&(self->tensor))->SetPersistable(false);
218
}
219

J
Jack Zhou 已提交
220 221 222 223 224 225 226 227 228 229 230
void InitStringTensorWithStringTensor(TensorObject* self,
                                      const paddle::experimental::Tensor& src,
                                      const paddle::platform::Place& place,
                                      const std::string& name) {
  self->tensor.set_name(name);
  auto impl = std::static_pointer_cast<phi::StringTensor>(src.impl());
  self->tensor.set_impl(impl);
  VLOG(4)
      << "Do ShareDataWith when using StringTensor to initialize StringTensor";
}

231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276
py::object ParsePyArray(
    std::unordered_map<std::string, PyObject*> kws_map,
    std::unordered_map<std::string, Py_ssize_t> kw_order_map, PyObject* args,
    bool flag_kwargs, Py_ssize_t args_num) {
  py::object numpy_value = py::object();

  if (kw_order_map["value"] <= args_num) {
    numpy_value = py::object(
        py::handle(PyTuple_GET_ITEM(args, kw_order_map["value"] - 1)), true);
  } else {
    if (flag_kwargs && kws_map["value"] != NULL) {
      numpy_value = py::object(py::handle(kws_map["value"]), true);
    } else {
      PADDLE_THROW(platform::errors::InvalidArgument(
          "The first expected arguments is {value: PyArray}, "
          "but could not parse the first argument {value: PyArray} "
          "successfully. "
          "Please check your input first and make sure you are on the right "
          "way."));
    }
  }
  return numpy_value;
}

paddle::platform::Place ParsePlace(
    std::unordered_map<std::string, PyObject*> kws_map,
    std::unordered_map<std::string, Py_ssize_t> kw_order_map, PyObject* args,
    bool flag_kwargs, Py_ssize_t args_num) {
  paddle::platform::Place place =
      egr::Controller::Instance().GetExpectedPlace();

  if (kw_order_map["place"] <= args_num) {
    place = CastPyArg2Place(PyTuple_GET_ITEM(args, kw_order_map["place"] - 1),
                            kw_order_map["place"] - 1);
  } else {
    if (flag_kwargs && kws_map["place"] != NULL) {
      place = CastPyArg2Place(kws_map["place"], 0);
    } else {
      // default
      return place;
    }
  }
  return place;
}

// boolean arguments: zero_copy, stop_gradient, persistable
277 278 279 280 281
int ParseBooleanArgs(std::string key,
                     std::unordered_map<std::string, PyObject*> kws_map,
                     std::unordered_map<std::string, Py_ssize_t> kw_order_map,
                     PyObject* args, bool flag_kwargs, Py_ssize_t args_num) {
  int res = -1;
282 283

  if (kw_order_map[key] <= args_num) {
284 285
    res = static_cast<int>(CastPyArg2AttrBoolean(
        PyTuple_GET_ITEM(args, kw_order_map[key] - 1), kw_order_map[key] - 1));
286 287
  } else {
    if (flag_kwargs && kws_map[key] != NULL) {
288
      res = static_cast<int>(CastPyArg2AttrBoolean(kws_map[key], 0));
289 290 291 292 293 294 295
    }
  }
  return res;
}

std::string ParseName(std::unordered_map<std::string, PyObject*> kws_map,
                      std::unordered_map<std::string, Py_ssize_t> kw_order_map,
J
Jack Zhou 已提交
296 297
                      PyObject* args, bool flag_kwargs, Py_ssize_t args_num,
                      std::string unique_name_prefix = "generated_tensor") {
298 299 300 301 302
  std::string act_name = "";
  if (kw_order_map["name"] <= args_num) {
    PyObject* name_obj = PyTuple_GET_ITEM(args, kw_order_map["name"] - 1);
    if (name_obj == Py_None) {
      act_name =
J
Jack Zhou 已提交
303
          egr::Controller::Instance().GenerateUniqueName(unique_name_prefix);
304 305 306 307 308
    } else {
      act_name = CastPyArg2AttrString(name_obj, kw_order_map["name"] - 1);
    }
  } else {
    if (flag_kwargs) {
J
Jiabin Yang 已提交
309
      if ((kws_map["name"] == NULL) || (kws_map["name"] == Py_None)) {
310
        act_name =
J
Jack Zhou 已提交
311
            egr::Controller::Instance().GenerateUniqueName(unique_name_prefix);
312 313 314 315 316
      } else {
        act_name = CastPyArg2AttrString(kws_map["name"], 0);
      }
    } else {
      act_name =
J
Jack Zhou 已提交
317
          egr::Controller::Instance().GenerateUniqueName(unique_name_prefix);
318 319 320 321 322
    }
  }
  return act_name;
}

323
// initialize Tensor by PyArray(first argument is PyArray,
324
// mix args and kwargs) automatically.
325 326 327 328 329 330
void AutoInitTensorByPyArray(TensorObject* py_tensor_ptr,
                             std::unordered_map<std::string, PyObject*> kws_map,
                             PyObject* args, bool flag_kwargs,
                             Py_ssize_t args_num) {
  // The first argument of the Tensor constructor is PyArray,
  // there are 6 arguments to construct the new Tensor,
331 332 333 334 335 336 337 338 339 340 341 342 343 344
  // kw_order_map's key is every arguments of the constructor,
  // kw_order_map's value is the position of the arguments respectively.
  // If u want to update this constructor with new arguments,
  // need to update this map and to add or change related code.
  std::unordered_map<std::string, Py_ssize_t> kw_order_map{
      {"value", 1},     {"place", 2}, {"persistable", 3},
      {"zero_copy", 4}, {"name", 5},  {"stop_gradient", 6}};

  py::object numpy_value = py::object();
  paddle::platform::Place place =
      egr::Controller::Instance().GetExpectedPlace();
  bool persistable = false;
  bool zero_copy = false;
  std::string act_name = "";
345
  int stop_gradient = -1;
346 347 348 349

  numpy_value =
      ParsePyArray(kws_map, kw_order_map, args, flag_kwargs, args_num);
  place = ParsePlace(kws_map, kw_order_map, args, flag_kwargs, args_num);
350 351 352 353
  persistable = (1 == ParseBooleanArgs("persistable", kws_map, kw_order_map,
                                       args, flag_kwargs, args_num));
  zero_copy = (1 == ParseBooleanArgs("zero_copy", kws_map, kw_order_map, args,
                                     flag_kwargs, args_num));
354 355 356 357
  act_name = ParseName(kws_map, kw_order_map, args, flag_kwargs, args_num);
  stop_gradient = ParseBooleanArgs("stop_gradient", kws_map, kw_order_map, args,
                                   flag_kwargs, args_num);

358 359
  EmptyTensorInitializer(py_tensor_ptr, act_name, place, persistable,
                         stop_gradient);
360
  InitTensorWithNumpyValue(py_tensor_ptr, numpy_value, place, zero_copy);
361 362
}

363
// initialize Tensor by Tensor or framework::Tensor (mix args and
364
// kwargs) automatically.
365 366 367 368 369 370
void AutoInitTensorByTensor(TensorObject* py_tensor_ptr,
                            std::unordered_map<std::string, PyObject*> kws_map,
                            PyObject* args, bool flag_kwargs,
                            Py_ssize_t args_num,
                            bool init_by_egr_tensor = true) {
  // The first argument of the Tensor constructor is Tensor or
371
  // framework Tensor,
372
  // there are 3 arguments to construct the new Tensor,
373 374 375 376 377 378 379 380 381 382 383 384 385 386 387
  // kw_order_map's key is every arguments of the constructor,
  // kw_order_map's value is the position of the arguments respectively.
  // If u want to update this constructor with new arguments,
  // need to update this map and to add or change related code.
  std::unordered_map<std::string, Py_ssize_t> kw_order_map{
      {"value", 1}, {"place", 2}, {"name", 3}};

  paddle::platform::Place place =
      egr::Controller::Instance().GetExpectedPlace();
  std::string act_name = "";

  place = ParsePlace(kws_map, kw_order_map, args, flag_kwargs, args_num);
  act_name = ParseName(kws_map, kw_order_map, args, flag_kwargs, args_num);

  if (init_by_egr_tensor) {
388
    paddle::experimental::Tensor src_tensor;
389
    if (kw_order_map["value"] <= args_num) {
390 391 392
      src_tensor =
          CastPyArg2Tensor(PyTuple_GET_ITEM(args, kw_order_map["value"] - 1),
                           kw_order_map["value"] - 1);
393 394
    } else {
      if (flag_kwargs && kws_map["value"] != NULL) {
395
        src_tensor = CastPyArg2Tensor(kws_map["value"], 0);
396 397
      } else {
        PADDLE_THROW(platform::errors::InvalidArgument(
398 399
            "The first expected kwargs is {value: Tensor}, "
            "but could not parse the first argument {value: Tensor} "
400 401 402 403 404
            "successfully. "
            "Please check your input first and make sure you are on the right "
            "way."));
      }
    }
405
    InitTensorWithTensor(py_tensor_ptr, src_tensor, place, act_name);
406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424
  } else {
    // init by framework tensor
    framework::Tensor src_tensor;
    if (kw_order_map["value"] <= args_num) {
      src_tensor = CastPyArg2FrameworkTensor(
          PyTuple_GET_ITEM(args, kw_order_map["value"] - 1),
          kw_order_map["value"] - 1);
    } else {
      if (flag_kwargs && kws_map["value"] != NULL) {
        src_tensor = CastPyArg2FrameworkTensor(kws_map["value"], 0);
      } else {
        PADDLE_THROW(platform::errors::InvalidArgument(
            "The first expected arguments is {value: framework::Tensor}, "
            "but could not parse the first argument {value: framework::Tensor} "
            "successfully. "
            "Please check your input first and make sure you are on the right "
            "way."));
      }
    }
425
    InitTensorWithFrameworkTensor(py_tensor_ptr, src_tensor, place, act_name);
426 427 428
  }
}

J
Jack Zhou 已提交
429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492
void AutoInitStringTensorByPyArray(
    TensorObject* py_tensor_ptr,
    std::unordered_map<std::string, PyObject*> kws_map, PyObject* args,
    bool flag_kwargs, Py_ssize_t args_num) {
  // The first argument of the StringTensor constructor is PyArray,
  // there are 4 arguments to construct the new StringTensor,
  // kw_order_map's key is every arguments of the constructor,
  // kw_order_map's value is the position of the arguments respectively.
  // If u want to update this constructor with new arguments,
  // need to update this map and to add or change related code.
  std::unordered_map<std::string, Py_ssize_t> kw_order_map{{"value", 1},
                                                           {"name", 2}};
  py::object numpy_value = py::object();
  paddle::platform::Place place =
      egr::Controller::Instance().GetExpectedPlace();
  std::string act_name = "";

  numpy_value =
      ParsePyArray(kws_map, kw_order_map, args, flag_kwargs, args_num);
  act_name = ParseName(kws_map, kw_order_map, args, flag_kwargs, args_num,
                       "generated_string_tensor");
  EmptyStringTensorInitializer(py_tensor_ptr, act_name, place);
  InitStringTensorWithNumpyValue(py_tensor_ptr, numpy_value);
}

void AutoInitStringTensorByStringTensor(
    TensorObject* py_tensor_ptr,
    std::unordered_map<std::string, PyObject*> kws_map, PyObject* args,
    bool flag_kwargs, Py_ssize_t args_num) {
  // The first argument of the Tensor constructor is StringTensor,
  // there are 3 arguments to construct the new StringTensor,
  // kw_order_map's key is every arguments of the constructor,
  // kw_order_map's value is the position of the arguments respectively.
  // If u want to update this constructor with new arguments,
  // need to update this map and to add or change related code.
  std::unordered_map<std::string, Py_ssize_t> kw_order_map{{"value", 1},
                                                           {"name", 2}};

  paddle::platform::Place place =
      egr::Controller::Instance().GetExpectedPlace();
  std::string act_name = "";

  act_name = ParseName(kws_map, kw_order_map, args, flag_kwargs, args_num,
                       "generated_string_tensor");
  paddle::experimental::Tensor src_tensor;
  if (kw_order_map["value"] <= args_num) {
    src_tensor =
        CastPyArg2Tensor(PyTuple_GET_ITEM(args, kw_order_map["value"] - 1),
                         kw_order_map["value"] - 1);
  } else {
    if (flag_kwargs && kws_map["value"] != NULL) {
      src_tensor = CastPyArg2Tensor(kws_map["value"], 0);
    } else {
      PADDLE_THROW(platform::errors::InvalidArgument(
          "The first expected kwargs is {value: Tensor}, "
          "but could not parse the first argument {value: Tensor} "
          "successfully. "
          "Please check your input first and make sure you are on the right "
          "way."));
    }
  }
  InitStringTensorWithStringTensor(py_tensor_ptr, src_tensor, place, act_name);
}

493
/** We should have init function with signature:
494 495 496 497 498 499 500
   * 1.
   * def __init__ ()
   * 2.
   * def __init__ (
   * ** dtype: paddle::framework::proto::VarType::Type,
   * ** dims: vector<int>,
   * ** name: std::string,
501
   * ** type: paddle::framework::proto::VarType::LodTensor,
502
   * ** persistable: bool)
503 504 505
   * 3. (multi-place)
   * (should have at least one parameter, one parameter equals to case 4, zero
   * parameter equals to case 1)
506 507 508 509 510 511 512 513 514 515 516 517
   * def __init__ (
   * ** value: ndarray,
   * ** place: paddle::platform::Place,
   * ** persistable: bool,
   * ** zero_copy: bool,
   * ** name: std::string,
   * ** stop_gradient: bool)
   * 4.
   * def __init__ (
   * ** value: ndarray)
   * 5.
   * def __init__ (
518
   * ** tensor: Tensor)
519 520 521
   * 6. (multi-place)
   * (should have at least one parameter, one parameter equals to case 5, zero
   * parameter equals to case 1.)
522
   * def __init__ (
523
   * ** tensor: Tensor,
524 525
   * ** place: paddle::platform::Place,
   * ** name: std::string)
526 527
   * 7. (multi-place) (should have at least one parameter, one parameter similar
   * to case 5, zero parameter equals to case 1.)
528 529 530 531
   * def __init__ (
   * ** tensor: FrameworkTensor,
   * ** place: paddle::platform::Place,
   * ** name: std::string)
532
   *  **/
533
int TensorInit(PyObject* self, PyObject* args, PyObject* kwargs) {
0
0x45f 已提交
534
  EAGER_TRY
535 536 537 538 539 540 541 542 543
  // set a flag to record use kwargs or not
  bool flag_kwargs = false;
  if (kwargs) flag_kwargs = true;

  // all kwargs
  PyObject* kw_zero_copy = NULL;
  PyObject* kw_persistable = NULL;
  PyObject* kw_stop_gradient = NULL;

544
  PyObject* kw_value = NULL;  // receive PyArray or Tensor
545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590
  PyObject* kw_place = NULL;
  PyObject* kw_name = NULL;
  PyObject* kw_dims = NULL;
  PyObject* kw_dtype = NULL;
  PyObject* kw_type = NULL;

  // the keywords argument
  static char* kwlist[] = {
      const_cast<char*>("value"),       const_cast<char*>("place"),
      const_cast<char*>("persistable"), const_cast<char*>("zero_copy"),
      const_cast<char*>("name"),        const_cast<char*>("stop_gradient"),
      const_cast<char*>("dims"),        const_cast<char*>("dtype"),
      const_cast<char*>("type"),        NULL};

  // 'O' Store a Python object (without any conversion) in a C object pointer,
  // '|' Indicates that the remaining arguments in the Python argument list are
  // optional.
  // PyArg_ParseTupleAndKeywords can Parse the parameters of a function that
  // takes both positional and keyword parameters into local variables,
  // which enhance case2, case3, case4, case5, case6, case7.
  bool flag_ = PyArg_ParseTupleAndKeywords(
      args, kwargs, "|OOOOOOOOO", kwlist, &kw_value, &kw_place, &kw_persistable,
      &kw_zero_copy, &kw_name, &kw_stop_gradient, &kw_dims, &kw_dtype,
      &kw_type);

  // helper map
  std::unordered_map<std::string, PyObject*> kws_map{
      {"value", kw_value},
      {"place", kw_place},
      {"persistable", kw_persistable},
      {"zero_copy", kw_zero_copy},
      {"name", kw_name},
      {"stop_gradient", kw_stop_gradient},
      {"dims", kw_dims},
      {"dtype", kw_dtype},
      {"type", kw_type}};

  PADDLE_ENFORCE_EQ(flag_, true,
                    paddle::platform::errors::PreconditionNotMet(
                        "Could not parse args and kwargs successfully, "
                        "please check your input first and make"
                        "sure you are on the right way. "
                        "The expected arguments as follow: ("
                        "value, place, persistable, zero_copy, "
                        "name, stop_gradient, dims, dtype, type)"));

591 592 593 594 595 596
  PADDLE_ENFORCE_NOT_NULL(
      self, paddle::platform::errors::Fatal(
                "Calling __init__ of Eager Tensor without __new__ is "
                "forbidden. Please check your code and make sure you new a "
                "eager tensor before init it."));

597
  auto py_tensor_ptr = reinterpret_cast<TensorObject*>(self);
598 599

  Py_ssize_t args_num = PyTuple_Size(args);
600 601 602 603 604
  VLOG(6) << " args_num: " << args_num;

  // args_num = 0, means that there is no position arguments.
  if (args_num == (Py_ssize_t)0) {
    if (!flag_kwargs) {
605 606
      // case 1
      VLOG(6) << "Calling case1's initializer.";
607
      EmptyTensorInitializer(
608 609 610 611
          py_tensor_ptr,
          egr::Controller::Instance().GenerateUniqueName("generated_tensor"),
          egr::Controller::Instance().GetExpectedPlace());
      return 0;
612 613 614 615
    } else {  // no position args, all arguments are kwargs
      if (kw_value != NULL) {
        if (pybind11::detail::npy_api::get().PyArray_Check_(kw_value)) {
          VLOG(6) << "Calling case3's or case4's initializer";
616 617
          AutoInitTensorByPyArray(py_tensor_ptr, kws_map, args, flag_kwargs,
                                  args_num);
618
          return 0;
619 620
        } else if (PyObject_IsInstance(
                       kw_value, reinterpret_cast<PyObject*>(p_tensor_type))) {
621
          VLOG(6) << "Calling case5's or case6's initializer";
622 623
          AutoInitTensorByTensor(py_tensor_ptr, kws_map, args, flag_kwargs,
                                 args_num);
624 625 626 627 628
          return 0;
        } else if (PyObject_IsInstance(kw_value,
                                       reinterpret_cast<PyObject*>(
                                           g_framework_tensor_pytype))) {
          VLOG(6) << "Calling case7's initializer.";
629 630 631
          AutoInitTensorByTensor(py_tensor_ptr, kws_map, args, flag_kwargs,
                                 args_num,
                                 /* false means not init by egr tensor*/ false);
632
          return 0;
633
        } else {
634 635 636
          PADDLE_THROW(platform::errors::InvalidArgument(
              "Could not parse the first keyword argument successfully, "
              "the first keyword argument is value, but it should be PyArray "
637
              "or Tensor or framework::Tensor. "
638 639
              "Please check your input first and make sure you are on the "
              "right way."));
640
        }
641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677
      } else if (kw_dtype != NULL &&
                 PyObject_IsInstance(
                     kw_dtype, reinterpret_cast<PyObject*>(g_vartype_pytype))) {
        VLOG(6) << "Calling case2's initializer";

        PADDLE_ENFORCE_NOT_NULL(
            kw_dims,
            paddle::platform::errors::InvalidArgument(
                "Calling __init__ of Eager Tensor with NULL dims is "
                "forbidden. Please check your code and make sure you new a "
                "dims before calling this constructor."));

        PADDLE_ENFORCE_NOT_NULL(
            kw_name,
            paddle::platform::errors::InvalidArgument(
                "Calling __init__ of Eager Tensor with NULL name is "
                "forbidden. Please check your code and make sure you new a "
                "name before calling this constructor."));

        PADDLE_ENFORCE_NOT_NULL(
            kw_dtype,
            paddle::platform::errors::InvalidArgument(
                "Calling __init__ of Eager Tensor with NULL dtype is "
                "forbidden. Please check your code and make sure you new a "
                "dtype before calling this constructor."));

        PADDLE_ENFORCE_NOT_NULL(
            kw_persistable,
            paddle::platform::errors::InvalidArgument(
                "Calling __init__ of Eager Tensor with NULL persistable is "
                "forbidden. Please check your code and make sure you new a "
                "persistable before calling this constructor."));

        paddle::framework::proto::VarType::Type dtype =
            CastPyArg2ProtoType(kw_dtype, 0);
        std::vector<int> dims = CastPyArg2VectorOfInt(kw_dims, 0);

678
        std::string act_name = "";
679
        if (kw_name == Py_None) {
680 681 682
          act_name = egr::Controller::Instance().GenerateUniqueName(
              "generated_tensor");
        } else {
683
          act_name = CastPyArg2AttrString(kw_name, 0);
684
        }
685 686 687 688 689

        paddle::framework::proto::VarType::Type var_type =
            CastPyArg2ProtoType(kw_type, 0);
        bool persistable = CastPyArg2AttrBoolean(kw_persistable, 0);

690 691 692
        EmptyTensorInitializer(py_tensor_ptr, act_name,
                               egr::Controller::Instance().GetExpectedPlace(),
                               persistable,
693
                               /* stop_gradient */ -1, dtype, dims, var_type);
694

695
        return 0;
696 697
      } else {
        PADDLE_THROW(platform::errors::InvalidArgument(
698 699
            "We not only support construct Tensor from numpy value "
            "or tensor(Tensor or framework::Tensor) "
700
            "with python kwargs by this initializer, "
701
            "but also even support dtype to init a empty Tensor. "
702 703
            "Please check your input first and make sure you call the existed "
            "constructor."));
704
      }
705 706 707 708 709 710 711
    }
  } else if (args_num == (Py_ssize_t)1 || args_num == (Py_ssize_t)2 ||
             args_num == (Py_ssize_t)3) {
    // 1 to 3 position args, remainting arguments are kwargs
    PyObject* arg0_ptr = PyTuple_GET_ITEM(args, 0);
    if (pybind11::detail::npy_api::get().PyArray_Check_(arg0_ptr)) {
      VLOG(6) << "Calling case3's or case4's initializer.";
712 713
      AutoInitTensorByPyArray(py_tensor_ptr, kws_map, args, flag_kwargs,
                              args_num);
714
      return 0;
715 716
    } else if (PyObject_IsInstance(
                   arg0_ptr, reinterpret_cast<PyObject*>(p_tensor_type))) {
717
      VLOG(6) << "Calling case5's or case6's initializer.";
718 719
      AutoInitTensorByTensor(py_tensor_ptr, kws_map, args, flag_kwargs,
                             args_num);
720 721 722 723
      return 0;
    } else if (PyObject_IsInstance(arg0_ptr, reinterpret_cast<PyObject*>(
                                                 g_framework_tensor_pytype))) {
      VLOG(6) << "Calling case7's initializer.";
724 725 726
      AutoInitTensorByTensor(py_tensor_ptr, kws_map, args, flag_kwargs,
                             args_num,
                             /* false means not init by egr tensor*/ false);
727 728 729
      return 0;
    } else {
      PADDLE_THROW(platform::errors::InvalidArgument(
730 731
          "We support construct Tensor from numpy value "
          "or tensor(Tensor or framework::Tensor) "
732
          "with python args and kwargs by this initializer, "
733
          "but the first argument should be PyArray or Tensor or "
734 735 736
          "framework::Tensor. "
          "Please check your input first and make sure you call the existed "
          "constructor."));
737
    }
738 739 740 741 742
  } else if (args_num == (Py_ssize_t)4) {
    // 4 position args, remainting arguments are kwargs
    PyObject* arg0_ptr = PyTuple_GET_ITEM(args, 0);
    if (pybind11::detail::npy_api::get().PyArray_Check_(arg0_ptr)) {
      VLOG(6) << "Calling case3's or case4's initializer.";
743 744
      AutoInitTensorByPyArray(py_tensor_ptr, kws_map, args, flag_kwargs,
                              args_num);
745
      return 0;
746 747 748 749 750 751 752
    } else {
      PADDLE_THROW(platform::errors::InvalidArgument(
          "Incompatible constructor arguments, "
          "there are 4 position args and remainting arguments arg kwargs,"
          "but the first position args should be PyArray. "
          "Please check your code and make sure the first position args is "
          "PyArray."));
753
    }
754 755
  } else if (args_num == (Py_ssize_t)5) {
    if (!flag_kwargs) {
756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774
      PyObject* arg0_ptr = PyTuple_GET_ITEM(args, 0);
      if (PyObject_IsInstance(arg0_ptr,
                              reinterpret_cast<PyObject*>(g_vartype_pytype))) {
        VLOG(6) << "Calling case2's initializer.";
        paddle::framework::proto::VarType::Type dtype =
            CastPyArg2ProtoType(PyTuple_GET_ITEM(args, 0), 0);
        std::vector<int> dims =
            CastPyArg2VectorOfInt(PyTuple_GET_ITEM(args, 1), 1);
        std::string act_name = "";
        PyObject* name_obj = PyTuple_GET_ITEM(args, 2);
        if (name_obj == Py_None) {
          act_name = egr::Controller::Instance().GenerateUniqueName(
              "generated_tensor");
        } else {
          act_name = CastPyArg2AttrString(PyTuple_GET_ITEM(args, 2), 2);
        }
        paddle::framework::proto::VarType::Type var_type =
            CastPyArg2ProtoType(PyTuple_GET_ITEM(args, 3), 3);
        bool persistable = CastPyArg2AttrBoolean(PyTuple_GET_ITEM(args, 4), 4);
775 776
        EmptyTensorInitializer(py_tensor_ptr, act_name,
                               egr::Controller::Instance().GetExpectedPlace(),
777
                               persistable, -1, dtype, dims, var_type);
778
        return 0;
779 780
      } else if (pybind11::detail::npy_api::get().PyArray_Check_(arg0_ptr)) {
        VLOG(6) << "Calling case3's initializer.";
781 782
        AutoInitTensorByPyArray(py_tensor_ptr, kws_map, args, flag_kwargs,
                                args_num);
783 784 785
        return 0;
      } else {
        PADDLE_THROW(platform::errors::InvalidArgument(
786 787 788 789 790
            "Incompatible constructor arguments, "
            "there are only 5 position args,"
            "but the first position args should be PyArray or dtype. "
            "Please check your code and make sure you call the existed "
            "constructor."));
791
      }
792
    } else {  // five position args, remainting arguments are kwargs
793
      PyObject* arg0_ptr = PyTuple_GET_ITEM(args, 0);
794 795
      if (pybind11::detail::npy_api::get().PyArray_Check_(arg0_ptr)) {
        VLOG(6) << "Calling case3's or case4's initializer";
796 797
        AutoInitTensorByPyArray(py_tensor_ptr, kws_map, args, flag_kwargs,
                                args_num);
798
        return 0;
799
      } else {
800 801 802 803 804 805
        PADDLE_THROW(platform::errors::InvalidArgument(
            "Incompatible constructor arguments, "
            "there are 5 position args and remainting arguments are kwargs,"
            "but the first position args should be PyArray. "
            "Please check your code and make sure the first position args is "
            "PyArray."));
806 807
      }
    }
808 809 810 811
  } else if (args_num == (Py_ssize_t)6) {
    if (!flag_kwargs) {
      // case 3
      VLOG(6) << "Calling case3's initializer.";
812 813
      AutoInitTensorByPyArray(py_tensor_ptr, kws_map, args, flag_kwargs,
                              args_num);
814 815 816 817 818 819 820 821
      return 0;
    } else {  // six position args, remainting arguments are kwargs, but this
              // is not a right way
      PADDLE_THROW(platform::errors::InvalidArgument(
          "Incompatible constructor arguments, "
          "there are 6 position args and the remainting arguments are kwargs. "
          "Please check your code and make sure the first position args is "
          "PyArray."));
822
    }
823 824 825 826
  } else {
    PADDLE_THROW(platform::errors::Fatal(
        "Can't not find expected num of args, please check your call, and "
        "make sure u call the existed constructor."));
827
  }
828

0
0x45f 已提交
829 830
  return -1;
  EAGER_CATCH_AND_THROW_RETURN_NEG
831 832
}

J
Jack Zhou 已提交
833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030
/** We should have init function with signature:
   * 1.
   * def __init__ ()
   *
   * 2.
   * def __init__ (
   * ** dims: vector<int>,
   * ** name: std::string)
   *
   * 3.
   * (should have at least one parameter, one parameter equals to case 4, zero
   * parameter equals to case 1)
   * def __init__ (
   * ** value: ndarray,
   * ** zero_copy: bool,
   * ** name: std::string)
   *
   * 4.
   * def __init__ (
   * ** value: ndarray)
   *
   * 5.
   * def __init__ (
   * ** tensor: Tensor)
   *
   * 6.
   * (should have at least one parameter, one parameter equals to case 5, zero
   * parameter equals to case 1.)
   * def __init__ (
   * ** tensor: Tensor,
   * ** name: std::string)
   * **/
int StringTensorInit(PyObject* self, PyObject* args, PyObject* kwargs) {
  // set a flag to record use kwargs or not
  bool flag_kwargs = false;
  if (kwargs) flag_kwargs = true;

  // all kwargs
  PyObject* kw_zero_copy = NULL;

  PyObject* kw_value = NULL;  // receive PyArray or Tensor
  PyObject* kw_name = NULL;
  PyObject* kw_dims = NULL;

  // the keywords argument
  static char* kwlist[] = {
      const_cast<char*>("value"), const_cast<char*>("zero_copy"),
      const_cast<char*>("name"), const_cast<char*>("dims"), NULL};
  // 'O' Store a Python object (without any conversion) in a C object pointer,
  // '|' Indicates that the remaining arguments in the Python argument list are
  // optional.
  // PyArg_ParseTupleAndKeywords can Parse the parameters of a function that
  // takes both positional and keyword parameters into local variables,
  // which enhance case1, case2, case3, case4, case 5, case 6.
  bool flag_ =
      PyArg_ParseTupleAndKeywords(args, kwargs, "|OOOO", kwlist, &kw_value,
                                  &kw_zero_copy, &kw_name, &kw_dims);

  // helper map
  std::unordered_map<std::string, PyObject*> kws_map{
      {"value", kw_value},
      {"zero_copy", kw_zero_copy},
      {"name", kw_name},
      {"dims", kw_dims}};

  PADDLE_ENFORCE_EQ(flag_, true,
                    paddle::platform::errors::PreconditionNotMet(
                        "Could not parse args and kwargs successfully, "
                        "please check your input first and make"
                        "sure you are on the right way. "
                        "The expected arguments as follow: ("
                        "value, zero_copy, name, dims)"));

  PADDLE_ENFORCE_NOT_NULL(
      self, paddle::platform::errors::Fatal(
                "Calling __init__ of Eager Tensor without __new__ is "
                "forbidden. Please check your code and make sure you new a "
                "eager tensor before init it."));

  auto py_tensor_ptr = reinterpret_cast<TensorObject*>(self);

  Py_ssize_t args_num = PyTuple_Size(args);
  VLOG(6) << " args_num: " << args_num;
  // args_num = 0, means that there is no position arguments.
  if (args_num == (Py_ssize_t)0) {
    if (!flag_kwargs) {
      // case 1
      VLOG(6) << "Calling case1's string initializer.";
      EmptyStringTensorInitializer(
          py_tensor_ptr, egr::Controller::Instance().GenerateUniqueName(
                             "generated_string_tensor"),
          egr::Controller::Instance().GetExpectedPlace());
      return 0;
    } else {
      if (kw_value != NULL) {
        if (pybind11::detail::npy_api::get().PyArray_Check_(kw_value)) {
          VLOG(6) << "Calling case3's or case4's string initializer";
          AutoInitStringTensorByPyArray(py_tensor_ptr, kws_map, args,
                                        flag_kwargs, args_num);
          return 0;
        } else if (PyObject_IsInstance(kw_value, reinterpret_cast<PyObject*>(
                                                     p_string_tensor_type))) {
          VLOG(6) << "Calling case5's or case6's string initializer";
          AutoInitStringTensorByStringTensor(py_tensor_ptr, kws_map, args,
                                             flag_kwargs, args_num);
          return 0;
        } else {
          PADDLE_THROW(platform::errors::InvalidArgument(
              "Could not parse the first keyword argument successfully, "
              "the first keyword argument is value, but it should be PyArray "
              "or StringTensor."
              "Please check your input first and make sure you are on the "
              "right way."));
        }
      } else if (kw_dims != NULL) {
        VLOG(6) << "Calling case2's string initializer.";
        std::unordered_map<std::string, Py_ssize_t> kw_order_map{{"dims", 1},
                                                                 {"name", 2}};

        std::vector<int> dims = CastPyArg2VectorOfInt(kw_dims, 0);
        std::string act_name =
            ParseName(kws_map, kw_order_map, args, flag_kwargs, args_num,
                      "generated_string_tensor");
        EmptyStringTensorInitializer(
            py_tensor_ptr, act_name,
            egr::Controller::Instance().GetExpectedPlace(), dims);
        return 0;
      } else {
        PADDLE_THROW(platform::errors::InvalidArgument(
            "We not only support construct Tensor from numpy value "
            "or StringTensor with python kwargs by this initializer, "
            "but also even support dtype to init a empty StringTensor. "
            "Please check your input first and make sure you call the existed "
            "constructor."));
      }
    }
  } else if (args_num == (Py_ssize_t)1) {  // case 3 ~ 6
    // 1 position args, remainting arguments are kwargs
    PyObject* arg0_ptr = PyTuple_GET_ITEM(args, 0);
    if (pybind11::detail::npy_api::get().PyArray_Check_(arg0_ptr)) {
      VLOG(6) << "Calling case3's or case4's string initializer.";
      AutoInitStringTensorByPyArray(py_tensor_ptr, kws_map, args, flag_kwargs,
                                    args_num);
      return 0;
    } else if (PyObject_IsInstance(arg0_ptr, reinterpret_cast<PyObject*>(
                                                 p_string_tensor_type))) {
      VLOG(6) << "Calling case5's or case6's string initializer.";
      AutoInitStringTensorByStringTensor(py_tensor_ptr, kws_map, args,
                                         flag_kwargs, args_num);
      return 0;
    } else {
      PADDLE_THROW(platform::errors::InvalidArgument(
          "Could not parse the first keyword argument successfully, "
          "the first keyword argument is value, but it should be PyArray "
          "or StringTensor."
          "Please check your input first and make sure you are on the "
          "right way."));
    }
  } else if (args_num == (Py_ssize_t)2) {  // case 2
    // 2 position args
    if (!flag_kwargs) {
      PyObject* arg0_ptr = PyTuple_GET_ITEM(args, 0);
      if (PyObject_IsInstance(
              arg0_ptr, reinterpret_cast<PyObject*>(p_string_tensor_type))) {
        VLOG(6) << "Calling case6's string initializer.";
        AutoInitStringTensorByStringTensor(py_tensor_ptr, kws_map, args,
                                           flag_kwargs, args_num);
        return 0;
      } else if (pybind11::detail::npy_api::get().PyArray_Check_(arg0_ptr)) {
        VLOG(6) << "Calling case3's string initializer.";
        AutoInitStringTensorByPyArray(py_tensor_ptr, kws_map, args, flag_kwargs,
                                      args_num);
        return 0;
      } else {
        VLOG(6) << "Calling case2's string initializer.";
        std::vector<int> dims = CastPyArg2VectorOfInt(arg0_ptr, 0);
        std::string act_name = "";
        PyObject* name_obj = PyTuple_GET_ITEM(args, 1);
        if (name_obj == Py_None) {
          act_name = egr::Controller::Instance().GenerateUniqueName(
              "generated_string_tensor");
        } else {
          act_name = CastPyArg2AttrString(PyTuple_GET_ITEM(args, 1), 1);
        }
        EmptyStringTensorInitializer(
            py_tensor_ptr, act_name,
            egr::Controller::Instance().GetExpectedPlace(), dims);
        return 0;
      }
    } else {
      PADDLE_THROW(platform::errors::Fatal(
          "Can't not find expected num of args, please check your call, and "
          "make sure u call the existed constructor."));
    }
  }
  return 1;
}

1031
static void TensorDealloc(TensorObject* self) {
1032 1033
  if (self->weakrefs != NULL)
    PyObject_ClearWeakRefs(reinterpret_cast<PyObject*>(self));
1034
  self->tensor.~Tensor();
1035 1036 1037 1038
  Py_TYPE(self)->tp_free(reinterpret_cast<PyObject*>(self));
}

extern struct PyGetSetDef variable_properties[];
J
Jack Zhou 已提交
1039
extern struct PyGetSetDef string_tensor_variable_properties[];
1040 1041

extern PyMethodDef variable_methods[];
J
Jack Zhou 已提交
1042
extern PyMethodDef string_tensor_variable_methods[];
1043

W
wanghuancoder 已提交
1044 1045 1046 1047
PyNumberMethods number_methods;
PySequenceMethods sequence_methods;
PyMappingMethods mapping_methods;

1048 1049 1050
void BindEager(pybind11::module* module) {
  auto m = module->def_submodule("eager");

1051
  auto heap_type = reinterpret_cast<PyHeapTypeObject*>(
1052
      PyType_Type.tp_alloc(&PyType_Type, 0));
1053 1054
  heap_type->ht_name = ToPyObject("Tensor");
  heap_type->ht_qualname = ToPyObject("Tensor");
1055
  auto type = &heap_type->ht_type;
1056
  type->tp_name = "Tensor";
1057
  type->tp_basicsize = sizeof(TensorObject);
1058
  type->tp_dealloc = (destructor)TensorDealloc;
1059 1060 1061 1062 1063
  type->tp_as_number = &number_methods;
  type->tp_as_sequence = &sequence_methods;
  type->tp_as_mapping = &mapping_methods;
  type->tp_methods = variable_methods;
  type->tp_getset = variable_properties;
1064 1065
  type->tp_init = TensorInit;
  type->tp_new = TensorNew;
1066
  type->tp_weaklistoffset = offsetof(TensorObject, weakrefs);
1067 1068
  Py_INCREF(&PyBaseObject_Type);
  type->tp_base = reinterpret_cast<PyTypeObject*>(&PyBaseObject_Type);
1069 1070 1071 1072 1073
  type->tp_flags |=
      Py_TPFLAGS_DEFAULT | Py_TPFLAGS_BASETYPE | Py_TPFLAGS_HEAPTYPE;
#if PY_VERSION_HEX >= 0x03050000
  type->tp_as_async = &heap_type->as_async;
#endif
1074
  p_tensor_type = type;
1075 1076

  if (PyType_Ready(type) < 0) {
1077
    PADDLE_THROW(platform::errors::Fatal(
1078
        "Init Paddle error in BindEager(PyType_Ready)."));
1079 1080 1081
    return;
  }

1082
  Py_INCREF(type);
1083 1084
  if (PyModule_AddObject(m.ptr(), "Tensor", reinterpret_cast<PyObject*>(type)) <
      0) {
1085
    Py_DECREF(type);
1086 1087
    Py_DECREF(m.ptr());
    PADDLE_THROW(platform::errors::Fatal(
1088
        "Init Paddle error in BindEager(PyModule_AddObject)."));
1089 1090 1091 1092
    return;
  }

  BindFunctions(m.ptr());
W
wanghuancoder 已提交
1093
  BindEagerPyLayer(m.ptr());
1094
  BindEagerOpFunctions(&m);
1095 1096
}

J
Jack Zhou 已提交
1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140
void BindEagerStringTensor(pybind11::module* module) {
  auto m = module->def_submodule("eager");

  auto heap_type = reinterpret_cast<PyHeapTypeObject*>(
      PyType_Type.tp_alloc(&PyType_Type, 0));
  heap_type->ht_name = ToPyObject("StringTensor");
  heap_type->ht_qualname = ToPyObject("StringTensor");
  auto type = &heap_type->ht_type;
  type->tp_name = "StringTensor";
  type->tp_basicsize = sizeof(TensorObject);
  type->tp_dealloc = (destructor)TensorDealloc;
  type->tp_as_number = &number_methods;
  type->tp_as_sequence = &sequence_methods;
  type->tp_as_mapping = &mapping_methods;
  type->tp_methods = string_tensor_variable_methods;
  type->tp_getset = string_tensor_variable_properties;
  type->tp_init = StringTensorInit;
  type->tp_new = TensorNew;
  Py_INCREF(&PyBaseObject_Type);
  type->tp_base = reinterpret_cast<PyTypeObject*>(&PyBaseObject_Type);
  type->tp_flags |=
      Py_TPFLAGS_DEFAULT | Py_TPFLAGS_BASETYPE | Py_TPFLAGS_HEAPTYPE;
#if PY_VERSION_HEX >= 0x03050000
  type->tp_as_async = &heap_type->as_async;
#endif
  p_string_tensor_type = type;

  if (PyType_Ready(type) < 0) {
    PADDLE_THROW(platform::errors::Fatal(
        "Init Paddle error in BindEager(PyType_Ready)."));
    return;
  }

  Py_INCREF(type);
  if (PyModule_AddObject(m.ptr(), "StringTensor",
                         reinterpret_cast<PyObject*>(type)) < 0) {
    Py_DECREF(type);
    Py_DECREF(m.ptr());
    PADDLE_THROW(platform::errors::Fatal(
        "Init Paddle error in BindEagerStringTensor(PyModule_AddObject)."));
    return;
  }
}

1141 1142
}  // namespace pybind
}  // namespace paddle