eager.cc 46.5 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
/* Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved.
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
// disable numpy compile error
#include <Python.h>

#include <string>
#include <vector>

17
#include "paddle/fluid/eager/accumulation/accumulation_node.h"
18 19 20
#include "paddle/fluid/eager/api/all.h"
#include "paddle/fluid/eager/autograd_meta.h"
#include "paddle/fluid/eager/utils.h"
21
#include "paddle/fluid/framework/convert_utils.h"
22 23 24 25 26
#include "paddle/fluid/memory/allocation/allocator.h"
#include "paddle/fluid/memory/memcpy.h"
#include "paddle/fluid/platform/enforce.h"
#include "paddle/fluid/pybind/eager.h"
#include "paddle/fluid/pybind/eager_utils.h"
27 28 29
#include "paddle/phi/common/data_type.h"
#include "paddle/phi/core/compat/convert_utils.h"
#include "paddle/phi/core/dense_tensor.h"
30
#include "pybind11/detail/internals.h"
31 32
#include "pybind11/numpy.h"
#include "pybind11/pybind11.h"
33
#pragma GCC diagnostic ignored "-Wmissing-field-initializers"
34
#include "paddle/fluid/framework/python_headers.h"
35
#include "paddle/fluid/pybind/eager_op_function_impl.h"
36
#include "paddle/fluid/pybind/tensor_py.h"
37 38
#include "paddle/phi/api/lib/utils/storage.h"
#include "paddle/phi/api/lib/utils/tensor_utils.h"
J
Jack Zhou 已提交
39
#include "paddle/phi/core/string_tensor.h"
40 41 42 43 44
namespace paddle {
namespace pybind {

namespace py = ::pybind11;

45
PyTypeObject* p_tensor_type;
J
Jack Zhou 已提交
46
PyTypeObject* p_string_tensor_type;  // For StringTensor
47
extern PyTypeObject* g_vartype_pytype;
48
extern PyTypeObject* g_framework_tensor_pytype;
49

50
PyObject* TensorNew(PyTypeObject* type, PyObject* args, PyObject* kwargs) {
51 52
  PyObject* obj = type->tp_alloc(type, 0);
  if (obj) {
53 54
    auto v = reinterpret_cast<TensorObject*>(obj);
    new (&(v->tensor)) paddle::experimental::Tensor();
55 56 57 58
  }
  return obj;
}

59
// TODO(jiabin): Overload this once we need more constructor in Python
60 61
void EmptyTensorInitializer(TensorObject* self, const std::string& name,
                            const paddle::platform::Place& place,
62
                            bool persistable = false, int stop_gradient = -1,
63 64
                            framework::proto::VarType::Type dtype =
                                paddle::framework::proto::VarType::FP32,
65
                            const std::vector<int>& dims = {0},
66 67
                            framework::proto::VarType::Type var_type =
                                paddle::framework::proto::VarType::LOD_TENSOR) {
68
  auto ddims = phi::make_ddim(dims);
69 70
  self->tensor.set_name(name);
  auto autograd_meta = egr::EagerUtils::autograd_meta(&(self->tensor));
71
  autograd_meta->SetPersistable(persistable);
72 73 74
  if (stop_gradient != -1) {
    autograd_meta->SetStopGradient(static_cast<bool>(stop_gradient));
  }
75 76
  if (var_type == paddle::framework::proto::VarType::LOD_TENSOR) {
    // TODO(jiabin): Maybe support LOD later
77
    std::shared_ptr<phi::DenseTensor> dense_tensor = nullptr;
78
    if (dims.size() == 1 && dims[0] == 0) {
79 80 81 82 83 84 85 86 87 88 89 90
      std::shared_ptr<phi::Allocation> allocation_ptr = nullptr;
      dense_tensor = std::make_shared<phi::DenseTensor>(
          allocation_ptr,
          phi::DenseTensorMeta(paddle::framework::TransToPhiDataType(dtype),
                               ddims));
    } else {
      // TODO(dev): we need enhance check for ddims.
      dense_tensor = std::make_shared<phi::DenseTensor>(
          phi::make_intrusive<paddle::experimental::SharedStorage>(place),
          phi::DenseTensorMeta(paddle::framework::TransToPhiDataType(dtype),
                               ddims));
    }
91
    self->tensor.set_impl(dense_tensor);
92 93 94 95
  } else if (var_type == paddle::framework::proto::VarType::SELECTED_ROWS) {
    std::shared_ptr<phi::SelectedRows> tensor =
        std::make_shared<phi::SelectedRows>();
    self->tensor.set_impl(tensor);
96 97 98 99 100
  }

  if (!autograd_meta->GetMutableGradNode()) {
    VLOG(3) << "Tensor(" << name
            << ") have not GradNode, add GradNodeAccumulation for it.";
101 102
    autograd_meta->SetGradNode(
        std::make_shared<egr::GradNodeAccumulation>(autograd_meta));
103 104 105
  }
}

J
Jack Zhou 已提交
106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124
void EmptyStringTensorInitializer(TensorObject* self, const std::string& name,
                                  const paddle::platform::Place& place,
                                  const std::vector<int>& dims = {}) {
  auto ddims = phi::make_ddim(dims);
  self->tensor.set_name(name);
  // Note(zhoushunjie): Only support CPUPlace when create StringTensor
  auto actual_place = platform::CPUPlace();
  // Allocate memory
  const auto string_allocator =
      std::make_unique<paddle::experimental::DefaultAllocator>(actual_place);
  const auto alloc = string_allocator.get();
  std::shared_ptr<phi::StringTensor> string_tensor =
      std::make_shared<phi::StringTensor>(alloc, phi::StringTensorMeta{ddims});
  if (phi::product(ddims) > 0) {
    string_tensor->mutable_data(actual_place);
  }
  self->tensor.set_impl(string_tensor);
}

125
void InitTensorWithNumpyValue(TensorObject* self, const py::object& array,
126
                              const paddle::platform::Place& place,
127
                              bool zero_copy = false) {
128
  PADDLE_ENFORCE_EQ(
129
      self->tensor.defined(), true,
130
      paddle::platform::errors::Fatal(
131 132
          "Calling InitTensorWithNumpyValue of Eager Tensor without "
          "EmptyTensorInitializer is "
133 134
          "forbidden. Please check your code and make sure you new a "
          "eager tensor before init it with NumPy."));
135 136
  phi::DenseTensor* impl_ptr =
      static_cast<phi::DenseTensor*>(self->tensor.impl().get());
137
  if (platform::is_cpu_place(place)) {
138
    SetTensorFromPyArray<platform::CPUPlace>(impl_ptr, array, place, zero_copy);
139
  } else if (platform::is_xpu_place(place)) {
140
    SetTensorFromPyArray<platform::XPUPlace>(impl_ptr, array, place, zero_copy);
141
  } else if (platform::is_gpu_place(place)) {
142
    SetTensorFromPyArray<platform::CUDAPlace>(impl_ptr, array, place,
143
                                              zero_copy);
144
  } else if (platform::is_cuda_pinned_place(place)) {
145
    SetTensorFromPyArray<platform::CUDAPinnedPlace>(impl_ptr, array, place,
146
                                                    zero_copy);
147
  } else if (platform::is_npu_place(place)) {
148
    SetTensorFromPyArray<platform::NPUPlace>(impl_ptr, array, place, zero_copy);
149 150 151 152 153 154 155
  } else {
    PADDLE_THROW(platform::errors::InvalidArgument(
        "Place should be one of "
        "CPUPlace/XPUPlace/CUDAPlace/CUDAPinnedPlace/NPUPlace"));
  }
}

J
Jack Zhou 已提交
156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177
void InitStringTensorWithNumpyValue(TensorObject* self, const py::object& obj) {
  PADDLE_ENFORCE_EQ(
      self->tensor.defined(), true,
      paddle::platform::errors::Fatal(
          "Calling InitStringTensorWithNumpyValue of Eager StringTensor "
          "without "
          "EmptyStringTensorInitializer is "
          "forbidden. Please check your code and make sure you new a "
          "eager tensor before init it with NumPy."));
  phi::StringTensor* impl_ptr =
      static_cast<phi::StringTensor*>(self->tensor.impl().get());
  paddle::platform::Place place = impl_ptr->place();
  auto array = obj.cast<py::array>();
  if (platform::is_cpu_place(place)) {
    SetStringTensorFromPyArray<platform::CPUPlace>(impl_ptr, array, place);
  } else {
    PADDLE_THROW(platform::errors::InvalidArgument(
        "StringTensor only support CPUPlace now, but receive %s",
        place.DebugString()));
  }
}

178 179 180 181
void InitTensorWithTensor(TensorObject* self,
                          const paddle::experimental::Tensor& src,
                          const paddle::platform::Place& place,
                          const std::string& name) {
182
  self->tensor.set_name(name);
C
Chen Weihang 已提交
183
  if (place == src.place()) {
184
    auto impl = std::static_pointer_cast<phi::DenseTensor>(src.impl());
185
    self->tensor.set_impl(impl);
186 187
    VLOG(4) << "Same place, do ShareDataWith";
  } else {
188
    self->tensor.set_impl(src.copy_to(place, true).impl());
189 190 191
    VLOG(4) << "Different place, do TensorCopy";
  }
  if (src.get_autograd_meta()) {
192
    egr::EagerUtils::autograd_meta(&(self->tensor))
193 194 195
        ->SetPersistable(
            egr::EagerUtils::unsafe_autograd_meta(src)->Persistable());
  } else {
196
    egr::EagerUtils::autograd_meta(&(self->tensor))->SetPersistable(false);
197 198 199
  }
}

200 201 202 203
void InitTensorWithFrameworkTensor(TensorObject* self,
                                   const framework::Tensor& src,
                                   const paddle::platform::Place& place,
                                   const std::string& name) {
204
  self->tensor.set_name(name);
205
  if (place == src.place()) {
206
    self->tensor.set_impl(std::make_shared<phi::DenseTensor>(src));
207 208
    VLOG(4) << "Same place, do ShareDataWith";
  } else {
209
    auto temp =
210
        paddle::experimental::Tensor(std::make_shared<phi::DenseTensor>(src));
211
    self->tensor.set_impl(temp.copy_to(place, true).impl());
212 213
    VLOG(4) << "Different place, do TensorCopy";
  }
214
  egr::EagerUtils::autograd_meta(&(self->tensor))->SetPersistable(false);
215
}
216

J
Jack Zhou 已提交
217 218 219 220 221 222 223 224 225 226 227
void InitStringTensorWithStringTensor(TensorObject* self,
                                      const paddle::experimental::Tensor& src,
                                      const paddle::platform::Place& place,
                                      const std::string& name) {
  self->tensor.set_name(name);
  auto impl = std::static_pointer_cast<phi::StringTensor>(src.impl());
  self->tensor.set_impl(impl);
  VLOG(4)
      << "Do ShareDataWith when using StringTensor to initialize StringTensor";
}

228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273
py::object ParsePyArray(
    std::unordered_map<std::string, PyObject*> kws_map,
    std::unordered_map<std::string, Py_ssize_t> kw_order_map, PyObject* args,
    bool flag_kwargs, Py_ssize_t args_num) {
  py::object numpy_value = py::object();

  if (kw_order_map["value"] <= args_num) {
    numpy_value = py::object(
        py::handle(PyTuple_GET_ITEM(args, kw_order_map["value"] - 1)), true);
  } else {
    if (flag_kwargs && kws_map["value"] != NULL) {
      numpy_value = py::object(py::handle(kws_map["value"]), true);
    } else {
      PADDLE_THROW(platform::errors::InvalidArgument(
          "The first expected arguments is {value: PyArray}, "
          "but could not parse the first argument {value: PyArray} "
          "successfully. "
          "Please check your input first and make sure you are on the right "
          "way."));
    }
  }
  return numpy_value;
}

paddle::platform::Place ParsePlace(
    std::unordered_map<std::string, PyObject*> kws_map,
    std::unordered_map<std::string, Py_ssize_t> kw_order_map, PyObject* args,
    bool flag_kwargs, Py_ssize_t args_num) {
  paddle::platform::Place place =
      egr::Controller::Instance().GetExpectedPlace();

  if (kw_order_map["place"] <= args_num) {
    place = CastPyArg2Place(PyTuple_GET_ITEM(args, kw_order_map["place"] - 1),
                            kw_order_map["place"] - 1);
  } else {
    if (flag_kwargs && kws_map["place"] != NULL) {
      place = CastPyArg2Place(kws_map["place"], 0);
    } else {
      // default
      return place;
    }
  }
  return place;
}

// boolean arguments: zero_copy, stop_gradient, persistable
274 275 276 277 278
int ParseBooleanArgs(std::string key,
                     std::unordered_map<std::string, PyObject*> kws_map,
                     std::unordered_map<std::string, Py_ssize_t> kw_order_map,
                     PyObject* args, bool flag_kwargs, Py_ssize_t args_num) {
  int res = -1;
279 280

  if (kw_order_map[key] <= args_num) {
281 282
    res = static_cast<int>(CastPyArg2AttrBoolean(
        PyTuple_GET_ITEM(args, kw_order_map[key] - 1), kw_order_map[key] - 1));
283 284
  } else {
    if (flag_kwargs && kws_map[key] != NULL) {
285
      res = static_cast<int>(CastPyArg2AttrBoolean(kws_map[key], 0));
286 287 288 289 290 291 292
    }
  }
  return res;
}

std::string ParseName(std::unordered_map<std::string, PyObject*> kws_map,
                      std::unordered_map<std::string, Py_ssize_t> kw_order_map,
J
Jack Zhou 已提交
293 294
                      PyObject* args, bool flag_kwargs, Py_ssize_t args_num,
                      std::string unique_name_prefix = "generated_tensor") {
295 296 297 298 299
  std::string act_name = "";
  if (kw_order_map["name"] <= args_num) {
    PyObject* name_obj = PyTuple_GET_ITEM(args, kw_order_map["name"] - 1);
    if (name_obj == Py_None) {
      act_name =
J
Jack Zhou 已提交
300
          egr::Controller::Instance().GenerateUniqueName(unique_name_prefix);
301 302 303 304 305
    } else {
      act_name = CastPyArg2AttrString(name_obj, kw_order_map["name"] - 1);
    }
  } else {
    if (flag_kwargs) {
J
Jiabin Yang 已提交
306
      if ((kws_map["name"] == NULL) || (kws_map["name"] == Py_None)) {
307
        act_name =
J
Jack Zhou 已提交
308
            egr::Controller::Instance().GenerateUniqueName(unique_name_prefix);
309 310 311 312 313
      } else {
        act_name = CastPyArg2AttrString(kws_map["name"], 0);
      }
    } else {
      act_name =
J
Jack Zhou 已提交
314
          egr::Controller::Instance().GenerateUniqueName(unique_name_prefix);
315 316 317 318 319
    }
  }
  return act_name;
}

320
// initialize Tensor by PyArray(first argument is PyArray,
321
// mix args and kwargs) automatically.
322 323 324 325 326 327
void AutoInitTensorByPyArray(TensorObject* py_tensor_ptr,
                             std::unordered_map<std::string, PyObject*> kws_map,
                             PyObject* args, bool flag_kwargs,
                             Py_ssize_t args_num) {
  // The first argument of the Tensor constructor is PyArray,
  // there are 6 arguments to construct the new Tensor,
328 329 330 331 332 333 334 335 336 337 338 339 340 341
  // kw_order_map's key is every arguments of the constructor,
  // kw_order_map's value is the position of the arguments respectively.
  // If u want to update this constructor with new arguments,
  // need to update this map and to add or change related code.
  std::unordered_map<std::string, Py_ssize_t> kw_order_map{
      {"value", 1},     {"place", 2}, {"persistable", 3},
      {"zero_copy", 4}, {"name", 5},  {"stop_gradient", 6}};

  py::object numpy_value = py::object();
  paddle::platform::Place place =
      egr::Controller::Instance().GetExpectedPlace();
  bool persistable = false;
  bool zero_copy = false;
  std::string act_name = "";
342
  int stop_gradient = -1;
343 344 345 346

  numpy_value =
      ParsePyArray(kws_map, kw_order_map, args, flag_kwargs, args_num);
  place = ParsePlace(kws_map, kw_order_map, args, flag_kwargs, args_num);
347 348 349 350
  persistable = (1 == ParseBooleanArgs("persistable", kws_map, kw_order_map,
                                       args, flag_kwargs, args_num));
  zero_copy = (1 == ParseBooleanArgs("zero_copy", kws_map, kw_order_map, args,
                                     flag_kwargs, args_num));
351 352 353 354
  act_name = ParseName(kws_map, kw_order_map, args, flag_kwargs, args_num);
  stop_gradient = ParseBooleanArgs("stop_gradient", kws_map, kw_order_map, args,
                                   flag_kwargs, args_num);

355 356
  EmptyTensorInitializer(py_tensor_ptr, act_name, place, persistable,
                         stop_gradient);
357
  InitTensorWithNumpyValue(py_tensor_ptr, numpy_value, place, zero_copy);
358 359
}

360
// initialize Tensor by Tensor or framework::Tensor (mix args and
361
// kwargs) automatically.
362 363 364 365 366 367
void AutoInitTensorByTensor(TensorObject* py_tensor_ptr,
                            std::unordered_map<std::string, PyObject*> kws_map,
                            PyObject* args, bool flag_kwargs,
                            Py_ssize_t args_num,
                            bool init_by_egr_tensor = true) {
  // The first argument of the Tensor constructor is Tensor or
368
  // framework Tensor,
369
  // there are 3 arguments to construct the new Tensor,
370 371 372 373 374 375 376 377 378 379 380 381 382 383 384
  // kw_order_map's key is every arguments of the constructor,
  // kw_order_map's value is the position of the arguments respectively.
  // If u want to update this constructor with new arguments,
  // need to update this map and to add or change related code.
  std::unordered_map<std::string, Py_ssize_t> kw_order_map{
      {"value", 1}, {"place", 2}, {"name", 3}};

  paddle::platform::Place place =
      egr::Controller::Instance().GetExpectedPlace();
  std::string act_name = "";

  place = ParsePlace(kws_map, kw_order_map, args, flag_kwargs, args_num);
  act_name = ParseName(kws_map, kw_order_map, args, flag_kwargs, args_num);

  if (init_by_egr_tensor) {
385
    paddle::experimental::Tensor src_tensor;
386
    if (kw_order_map["value"] <= args_num) {
387 388 389
      src_tensor =
          CastPyArg2Tensor(PyTuple_GET_ITEM(args, kw_order_map["value"] - 1),
                           kw_order_map["value"] - 1);
390 391
    } else {
      if (flag_kwargs && kws_map["value"] != NULL) {
392
        src_tensor = CastPyArg2Tensor(kws_map["value"], 0);
393 394
      } else {
        PADDLE_THROW(platform::errors::InvalidArgument(
395 396
            "The first expected kwargs is {value: Tensor}, "
            "but could not parse the first argument {value: Tensor} "
397 398 399 400 401
            "successfully. "
            "Please check your input first and make sure you are on the right "
            "way."));
      }
    }
402
    InitTensorWithTensor(py_tensor_ptr, src_tensor, place, act_name);
403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421
  } else {
    // init by framework tensor
    framework::Tensor src_tensor;
    if (kw_order_map["value"] <= args_num) {
      src_tensor = CastPyArg2FrameworkTensor(
          PyTuple_GET_ITEM(args, kw_order_map["value"] - 1),
          kw_order_map["value"] - 1);
    } else {
      if (flag_kwargs && kws_map["value"] != NULL) {
        src_tensor = CastPyArg2FrameworkTensor(kws_map["value"], 0);
      } else {
        PADDLE_THROW(platform::errors::InvalidArgument(
            "The first expected arguments is {value: framework::Tensor}, "
            "but could not parse the first argument {value: framework::Tensor} "
            "successfully. "
            "Please check your input first and make sure you are on the right "
            "way."));
      }
    }
422
    InitTensorWithFrameworkTensor(py_tensor_ptr, src_tensor, place, act_name);
423 424 425
  }
}

J
Jack Zhou 已提交
426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489
void AutoInitStringTensorByPyArray(
    TensorObject* py_tensor_ptr,
    std::unordered_map<std::string, PyObject*> kws_map, PyObject* args,
    bool flag_kwargs, Py_ssize_t args_num) {
  // The first argument of the StringTensor constructor is PyArray,
  // there are 4 arguments to construct the new StringTensor,
  // kw_order_map's key is every arguments of the constructor,
  // kw_order_map's value is the position of the arguments respectively.
  // If u want to update this constructor with new arguments,
  // need to update this map and to add or change related code.
  std::unordered_map<std::string, Py_ssize_t> kw_order_map{{"value", 1},
                                                           {"name", 2}};
  py::object numpy_value = py::object();
  paddle::platform::Place place =
      egr::Controller::Instance().GetExpectedPlace();
  std::string act_name = "";

  numpy_value =
      ParsePyArray(kws_map, kw_order_map, args, flag_kwargs, args_num);
  act_name = ParseName(kws_map, kw_order_map, args, flag_kwargs, args_num,
                       "generated_string_tensor");
  EmptyStringTensorInitializer(py_tensor_ptr, act_name, place);
  InitStringTensorWithNumpyValue(py_tensor_ptr, numpy_value);
}

void AutoInitStringTensorByStringTensor(
    TensorObject* py_tensor_ptr,
    std::unordered_map<std::string, PyObject*> kws_map, PyObject* args,
    bool flag_kwargs, Py_ssize_t args_num) {
  // The first argument of the Tensor constructor is StringTensor,
  // there are 3 arguments to construct the new StringTensor,
  // kw_order_map's key is every arguments of the constructor,
  // kw_order_map's value is the position of the arguments respectively.
  // If u want to update this constructor with new arguments,
  // need to update this map and to add or change related code.
  std::unordered_map<std::string, Py_ssize_t> kw_order_map{{"value", 1},
                                                           {"name", 2}};

  paddle::platform::Place place =
      egr::Controller::Instance().GetExpectedPlace();
  std::string act_name = "";

  act_name = ParseName(kws_map, kw_order_map, args, flag_kwargs, args_num,
                       "generated_string_tensor");
  paddle::experimental::Tensor src_tensor;
  if (kw_order_map["value"] <= args_num) {
    src_tensor =
        CastPyArg2Tensor(PyTuple_GET_ITEM(args, kw_order_map["value"] - 1),
                         kw_order_map["value"] - 1);
  } else {
    if (flag_kwargs && kws_map["value"] != NULL) {
      src_tensor = CastPyArg2Tensor(kws_map["value"], 0);
    } else {
      PADDLE_THROW(platform::errors::InvalidArgument(
          "The first expected kwargs is {value: Tensor}, "
          "but could not parse the first argument {value: Tensor} "
          "successfully. "
          "Please check your input first and make sure you are on the right "
          "way."));
    }
  }
  InitStringTensorWithStringTensor(py_tensor_ptr, src_tensor, place, act_name);
}

490
/** We should have init function with signature:
491 492 493 494 495 496 497
   * 1.
   * def __init__ ()
   * 2.
   * def __init__ (
   * ** dtype: paddle::framework::proto::VarType::Type,
   * ** dims: vector<int>,
   * ** name: std::string,
498
   * ** type: paddle::framework::proto::VarType::LodTensor,
499
   * ** persistable: bool)
500 501 502
   * 3. (multi-place)
   * (should have at least one parameter, one parameter equals to case 4, zero
   * parameter equals to case 1)
503 504 505 506 507 508 509 510 511 512 513 514
   * def __init__ (
   * ** value: ndarray,
   * ** place: paddle::platform::Place,
   * ** persistable: bool,
   * ** zero_copy: bool,
   * ** name: std::string,
   * ** stop_gradient: bool)
   * 4.
   * def __init__ (
   * ** value: ndarray)
   * 5.
   * def __init__ (
515
   * ** tensor: Tensor)
516 517 518
   * 6. (multi-place)
   * (should have at least one parameter, one parameter equals to case 5, zero
   * parameter equals to case 1.)
519
   * def __init__ (
520
   * ** tensor: Tensor,
521 522
   * ** place: paddle::platform::Place,
   * ** name: std::string)
523 524
   * 7. (multi-place) (should have at least one parameter, one parameter similar
   * to case 5, zero parameter equals to case 1.)
525 526 527 528
   * def __init__ (
   * ** tensor: FrameworkTensor,
   * ** place: paddle::platform::Place,
   * ** name: std::string)
529
   *  **/
530
int TensorInit(PyObject* self, PyObject* args, PyObject* kwargs) {
0
0x45f 已提交
531
  EAGER_TRY
532 533 534 535 536 537 538 539 540
  // set a flag to record use kwargs or not
  bool flag_kwargs = false;
  if (kwargs) flag_kwargs = true;

  // all kwargs
  PyObject* kw_zero_copy = NULL;
  PyObject* kw_persistable = NULL;
  PyObject* kw_stop_gradient = NULL;

541
  PyObject* kw_value = NULL;  // receive PyArray or Tensor
542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587
  PyObject* kw_place = NULL;
  PyObject* kw_name = NULL;
  PyObject* kw_dims = NULL;
  PyObject* kw_dtype = NULL;
  PyObject* kw_type = NULL;

  // the keywords argument
  static char* kwlist[] = {
      const_cast<char*>("value"),       const_cast<char*>("place"),
      const_cast<char*>("persistable"), const_cast<char*>("zero_copy"),
      const_cast<char*>("name"),        const_cast<char*>("stop_gradient"),
      const_cast<char*>("dims"),        const_cast<char*>("dtype"),
      const_cast<char*>("type"),        NULL};

  // 'O' Store a Python object (without any conversion) in a C object pointer,
  // '|' Indicates that the remaining arguments in the Python argument list are
  // optional.
  // PyArg_ParseTupleAndKeywords can Parse the parameters of a function that
  // takes both positional and keyword parameters into local variables,
  // which enhance case2, case3, case4, case5, case6, case7.
  bool flag_ = PyArg_ParseTupleAndKeywords(
      args, kwargs, "|OOOOOOOOO", kwlist, &kw_value, &kw_place, &kw_persistable,
      &kw_zero_copy, &kw_name, &kw_stop_gradient, &kw_dims, &kw_dtype,
      &kw_type);

  // helper map
  std::unordered_map<std::string, PyObject*> kws_map{
      {"value", kw_value},
      {"place", kw_place},
      {"persistable", kw_persistable},
      {"zero_copy", kw_zero_copy},
      {"name", kw_name},
      {"stop_gradient", kw_stop_gradient},
      {"dims", kw_dims},
      {"dtype", kw_dtype},
      {"type", kw_type}};

  PADDLE_ENFORCE_EQ(flag_, true,
                    paddle::platform::errors::PreconditionNotMet(
                        "Could not parse args and kwargs successfully, "
                        "please check your input first and make"
                        "sure you are on the right way. "
                        "The expected arguments as follow: ("
                        "value, place, persistable, zero_copy, "
                        "name, stop_gradient, dims, dtype, type)"));

588 589 590 591 592 593
  PADDLE_ENFORCE_NOT_NULL(
      self, paddle::platform::errors::Fatal(
                "Calling __init__ of Eager Tensor without __new__ is "
                "forbidden. Please check your code and make sure you new a "
                "eager tensor before init it."));

594
  auto py_tensor_ptr = reinterpret_cast<TensorObject*>(self);
595 596

  Py_ssize_t args_num = PyTuple_Size(args);
597 598 599 600 601
  VLOG(6) << " args_num: " << args_num;

  // args_num = 0, means that there is no position arguments.
  if (args_num == (Py_ssize_t)0) {
    if (!flag_kwargs) {
602 603
      // case 1
      VLOG(6) << "Calling case1's initializer.";
604
      EmptyTensorInitializer(
605 606 607 608
          py_tensor_ptr,
          egr::Controller::Instance().GenerateUniqueName("generated_tensor"),
          egr::Controller::Instance().GetExpectedPlace());
      return 0;
609 610 611 612
    } else {  // no position args, all arguments are kwargs
      if (kw_value != NULL) {
        if (pybind11::detail::npy_api::get().PyArray_Check_(kw_value)) {
          VLOG(6) << "Calling case3's or case4's initializer";
613 614
          AutoInitTensorByPyArray(py_tensor_ptr, kws_map, args, flag_kwargs,
                                  args_num);
615
          return 0;
616 617
        } else if (PyObject_IsInstance(
                       kw_value, reinterpret_cast<PyObject*>(p_tensor_type))) {
618
          VLOG(6) << "Calling case5's or case6's initializer";
619 620
          AutoInitTensorByTensor(py_tensor_ptr, kws_map, args, flag_kwargs,
                                 args_num);
621 622 623 624 625
          return 0;
        } else if (PyObject_IsInstance(kw_value,
                                       reinterpret_cast<PyObject*>(
                                           g_framework_tensor_pytype))) {
          VLOG(6) << "Calling case7's initializer.";
626 627 628
          AutoInitTensorByTensor(py_tensor_ptr, kws_map, args, flag_kwargs,
                                 args_num,
                                 /* false means not init by egr tensor*/ false);
629
          return 0;
630
        } else {
631 632 633
          PADDLE_THROW(platform::errors::InvalidArgument(
              "Could not parse the first keyword argument successfully, "
              "the first keyword argument is value, but it should be PyArray "
634
              "or Tensor or framework::Tensor. "
635 636
              "Please check your input first and make sure you are on the "
              "right way."));
637
        }
638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674
      } else if (kw_dtype != NULL &&
                 PyObject_IsInstance(
                     kw_dtype, reinterpret_cast<PyObject*>(g_vartype_pytype))) {
        VLOG(6) << "Calling case2's initializer";

        PADDLE_ENFORCE_NOT_NULL(
            kw_dims,
            paddle::platform::errors::InvalidArgument(
                "Calling __init__ of Eager Tensor with NULL dims is "
                "forbidden. Please check your code and make sure you new a "
                "dims before calling this constructor."));

        PADDLE_ENFORCE_NOT_NULL(
            kw_name,
            paddle::platform::errors::InvalidArgument(
                "Calling __init__ of Eager Tensor with NULL name is "
                "forbidden. Please check your code and make sure you new a "
                "name before calling this constructor."));

        PADDLE_ENFORCE_NOT_NULL(
            kw_dtype,
            paddle::platform::errors::InvalidArgument(
                "Calling __init__ of Eager Tensor with NULL dtype is "
                "forbidden. Please check your code and make sure you new a "
                "dtype before calling this constructor."));

        PADDLE_ENFORCE_NOT_NULL(
            kw_persistable,
            paddle::platform::errors::InvalidArgument(
                "Calling __init__ of Eager Tensor with NULL persistable is "
                "forbidden. Please check your code and make sure you new a "
                "persistable before calling this constructor."));

        paddle::framework::proto::VarType::Type dtype =
            CastPyArg2ProtoType(kw_dtype, 0);
        std::vector<int> dims = CastPyArg2VectorOfInt(kw_dims, 0);

675
        std::string act_name = "";
676
        if (kw_name == Py_None) {
677 678 679
          act_name = egr::Controller::Instance().GenerateUniqueName(
              "generated_tensor");
        } else {
680
          act_name = CastPyArg2AttrString(kw_name, 0);
681
        }
682 683 684 685 686

        paddle::framework::proto::VarType::Type var_type =
            CastPyArg2ProtoType(kw_type, 0);
        bool persistable = CastPyArg2AttrBoolean(kw_persistable, 0);

687 688 689
        EmptyTensorInitializer(py_tensor_ptr, act_name,
                               egr::Controller::Instance().GetExpectedPlace(),
                               persistable,
690
                               /* stop_gradient */ -1, dtype, dims, var_type);
691

692
        return 0;
693 694
      } else {
        PADDLE_THROW(platform::errors::InvalidArgument(
695 696
            "We not only support construct Tensor from numpy value "
            "or tensor(Tensor or framework::Tensor) "
697
            "with python kwargs by this initializer, "
698
            "but also even support dtype to init a empty Tensor. "
699 700
            "Please check your input first and make sure you call the existed "
            "constructor."));
701
      }
702 703 704 705 706 707 708
    }
  } else if (args_num == (Py_ssize_t)1 || args_num == (Py_ssize_t)2 ||
             args_num == (Py_ssize_t)3) {
    // 1 to 3 position args, remainting arguments are kwargs
    PyObject* arg0_ptr = PyTuple_GET_ITEM(args, 0);
    if (pybind11::detail::npy_api::get().PyArray_Check_(arg0_ptr)) {
      VLOG(6) << "Calling case3's or case4's initializer.";
709 710
      AutoInitTensorByPyArray(py_tensor_ptr, kws_map, args, flag_kwargs,
                              args_num);
711
      return 0;
712 713
    } else if (PyObject_IsInstance(
                   arg0_ptr, reinterpret_cast<PyObject*>(p_tensor_type))) {
714
      VLOG(6) << "Calling case5's or case6's initializer.";
715 716
      AutoInitTensorByTensor(py_tensor_ptr, kws_map, args, flag_kwargs,
                             args_num);
717 718 719 720
      return 0;
    } else if (PyObject_IsInstance(arg0_ptr, reinterpret_cast<PyObject*>(
                                                 g_framework_tensor_pytype))) {
      VLOG(6) << "Calling case7's initializer.";
721 722 723
      AutoInitTensorByTensor(py_tensor_ptr, kws_map, args, flag_kwargs,
                             args_num,
                             /* false means not init by egr tensor*/ false);
724 725 726
      return 0;
    } else {
      PADDLE_THROW(platform::errors::InvalidArgument(
727 728
          "We support construct Tensor from numpy value "
          "or tensor(Tensor or framework::Tensor) "
729
          "with python args and kwargs by this initializer, "
730
          "but the first argument should be PyArray or Tensor or "
731 732 733
          "framework::Tensor. "
          "Please check your input first and make sure you call the existed "
          "constructor."));
734
    }
735 736 737 738 739
  } else if (args_num == (Py_ssize_t)4) {
    // 4 position args, remainting arguments are kwargs
    PyObject* arg0_ptr = PyTuple_GET_ITEM(args, 0);
    if (pybind11::detail::npy_api::get().PyArray_Check_(arg0_ptr)) {
      VLOG(6) << "Calling case3's or case4's initializer.";
740 741
      AutoInitTensorByPyArray(py_tensor_ptr, kws_map, args, flag_kwargs,
                              args_num);
742
      return 0;
743 744 745 746 747 748 749
    } else {
      PADDLE_THROW(platform::errors::InvalidArgument(
          "Incompatible constructor arguments, "
          "there are 4 position args and remainting arguments arg kwargs,"
          "but the first position args should be PyArray. "
          "Please check your code and make sure the first position args is "
          "PyArray."));
750
    }
751 752
  } else if (args_num == (Py_ssize_t)5) {
    if (!flag_kwargs) {
753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771
      PyObject* arg0_ptr = PyTuple_GET_ITEM(args, 0);
      if (PyObject_IsInstance(arg0_ptr,
                              reinterpret_cast<PyObject*>(g_vartype_pytype))) {
        VLOG(6) << "Calling case2's initializer.";
        paddle::framework::proto::VarType::Type dtype =
            CastPyArg2ProtoType(PyTuple_GET_ITEM(args, 0), 0);
        std::vector<int> dims =
            CastPyArg2VectorOfInt(PyTuple_GET_ITEM(args, 1), 1);
        std::string act_name = "";
        PyObject* name_obj = PyTuple_GET_ITEM(args, 2);
        if (name_obj == Py_None) {
          act_name = egr::Controller::Instance().GenerateUniqueName(
              "generated_tensor");
        } else {
          act_name = CastPyArg2AttrString(PyTuple_GET_ITEM(args, 2), 2);
        }
        paddle::framework::proto::VarType::Type var_type =
            CastPyArg2ProtoType(PyTuple_GET_ITEM(args, 3), 3);
        bool persistable = CastPyArg2AttrBoolean(PyTuple_GET_ITEM(args, 4), 4);
772 773
        EmptyTensorInitializer(py_tensor_ptr, act_name,
                               egr::Controller::Instance().GetExpectedPlace(),
774
                               persistable, -1, dtype, dims, var_type);
775
        return 0;
776 777
      } else if (pybind11::detail::npy_api::get().PyArray_Check_(arg0_ptr)) {
        VLOG(6) << "Calling case3's initializer.";
778 779
        AutoInitTensorByPyArray(py_tensor_ptr, kws_map, args, flag_kwargs,
                                args_num);
780 781 782
        return 0;
      } else {
        PADDLE_THROW(platform::errors::InvalidArgument(
783 784 785 786 787
            "Incompatible constructor arguments, "
            "there are only 5 position args,"
            "but the first position args should be PyArray or dtype. "
            "Please check your code and make sure you call the existed "
            "constructor."));
788
      }
789
    } else {  // five position args, remainting arguments are kwargs
790
      PyObject* arg0_ptr = PyTuple_GET_ITEM(args, 0);
791 792
      if (pybind11::detail::npy_api::get().PyArray_Check_(arg0_ptr)) {
        VLOG(6) << "Calling case3's or case4's initializer";
793 794
        AutoInitTensorByPyArray(py_tensor_ptr, kws_map, args, flag_kwargs,
                                args_num);
795
        return 0;
796
      } else {
797 798 799 800 801 802
        PADDLE_THROW(platform::errors::InvalidArgument(
            "Incompatible constructor arguments, "
            "there are 5 position args and remainting arguments are kwargs,"
            "but the first position args should be PyArray. "
            "Please check your code and make sure the first position args is "
            "PyArray."));
803 804
      }
    }
805 806 807 808
  } else if (args_num == (Py_ssize_t)6) {
    if (!flag_kwargs) {
      // case 3
      VLOG(6) << "Calling case3's initializer.";
809 810
      AutoInitTensorByPyArray(py_tensor_ptr, kws_map, args, flag_kwargs,
                              args_num);
811 812 813 814 815 816 817 818
      return 0;
    } else {  // six position args, remainting arguments are kwargs, but this
              // is not a right way
      PADDLE_THROW(platform::errors::InvalidArgument(
          "Incompatible constructor arguments, "
          "there are 6 position args and the remainting arguments are kwargs. "
          "Please check your code and make sure the first position args is "
          "PyArray."));
819
    }
820 821 822 823
  } else {
    PADDLE_THROW(platform::errors::Fatal(
        "Can't not find expected num of args, please check your call, and "
        "make sure u call the existed constructor."));
824
  }
825

0
0x45f 已提交
826 827
  return -1;
  EAGER_CATCH_AND_THROW_RETURN_NEG
828 829
}

J
Jack Zhou 已提交
830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027
/** We should have init function with signature:
   * 1.
   * def __init__ ()
   *
   * 2.
   * def __init__ (
   * ** dims: vector<int>,
   * ** name: std::string)
   *
   * 3.
   * (should have at least one parameter, one parameter equals to case 4, zero
   * parameter equals to case 1)
   * def __init__ (
   * ** value: ndarray,
   * ** zero_copy: bool,
   * ** name: std::string)
   *
   * 4.
   * def __init__ (
   * ** value: ndarray)
   *
   * 5.
   * def __init__ (
   * ** tensor: Tensor)
   *
   * 6.
   * (should have at least one parameter, one parameter equals to case 5, zero
   * parameter equals to case 1.)
   * def __init__ (
   * ** tensor: Tensor,
   * ** name: std::string)
   * **/
int StringTensorInit(PyObject* self, PyObject* args, PyObject* kwargs) {
  // set a flag to record use kwargs or not
  bool flag_kwargs = false;
  if (kwargs) flag_kwargs = true;

  // all kwargs
  PyObject* kw_zero_copy = NULL;

  PyObject* kw_value = NULL;  // receive PyArray or Tensor
  PyObject* kw_name = NULL;
  PyObject* kw_dims = NULL;

  // the keywords argument
  static char* kwlist[] = {
      const_cast<char*>("value"), const_cast<char*>("zero_copy"),
      const_cast<char*>("name"), const_cast<char*>("dims"), NULL};
  // 'O' Store a Python object (without any conversion) in a C object pointer,
  // '|' Indicates that the remaining arguments in the Python argument list are
  // optional.
  // PyArg_ParseTupleAndKeywords can Parse the parameters of a function that
  // takes both positional and keyword parameters into local variables,
  // which enhance case1, case2, case3, case4, case 5, case 6.
  bool flag_ =
      PyArg_ParseTupleAndKeywords(args, kwargs, "|OOOO", kwlist, &kw_value,
                                  &kw_zero_copy, &kw_name, &kw_dims);

  // helper map
  std::unordered_map<std::string, PyObject*> kws_map{
      {"value", kw_value},
      {"zero_copy", kw_zero_copy},
      {"name", kw_name},
      {"dims", kw_dims}};

  PADDLE_ENFORCE_EQ(flag_, true,
                    paddle::platform::errors::PreconditionNotMet(
                        "Could not parse args and kwargs successfully, "
                        "please check your input first and make"
                        "sure you are on the right way. "
                        "The expected arguments as follow: ("
                        "value, zero_copy, name, dims)"));

  PADDLE_ENFORCE_NOT_NULL(
      self, paddle::platform::errors::Fatal(
                "Calling __init__ of Eager Tensor without __new__ is "
                "forbidden. Please check your code and make sure you new a "
                "eager tensor before init it."));

  auto py_tensor_ptr = reinterpret_cast<TensorObject*>(self);

  Py_ssize_t args_num = PyTuple_Size(args);
  VLOG(6) << " args_num: " << args_num;
  // args_num = 0, means that there is no position arguments.
  if (args_num == (Py_ssize_t)0) {
    if (!flag_kwargs) {
      // case 1
      VLOG(6) << "Calling case1's string initializer.";
      EmptyStringTensorInitializer(
          py_tensor_ptr, egr::Controller::Instance().GenerateUniqueName(
                             "generated_string_tensor"),
          egr::Controller::Instance().GetExpectedPlace());
      return 0;
    } else {
      if (kw_value != NULL) {
        if (pybind11::detail::npy_api::get().PyArray_Check_(kw_value)) {
          VLOG(6) << "Calling case3's or case4's string initializer";
          AutoInitStringTensorByPyArray(py_tensor_ptr, kws_map, args,
                                        flag_kwargs, args_num);
          return 0;
        } else if (PyObject_IsInstance(kw_value, reinterpret_cast<PyObject*>(
                                                     p_string_tensor_type))) {
          VLOG(6) << "Calling case5's or case6's string initializer";
          AutoInitStringTensorByStringTensor(py_tensor_ptr, kws_map, args,
                                             flag_kwargs, args_num);
          return 0;
        } else {
          PADDLE_THROW(platform::errors::InvalidArgument(
              "Could not parse the first keyword argument successfully, "
              "the first keyword argument is value, but it should be PyArray "
              "or StringTensor."
              "Please check your input first and make sure you are on the "
              "right way."));
        }
      } else if (kw_dims != NULL) {
        VLOG(6) << "Calling case2's string initializer.";
        std::unordered_map<std::string, Py_ssize_t> kw_order_map{{"dims", 1},
                                                                 {"name", 2}};

        std::vector<int> dims = CastPyArg2VectorOfInt(kw_dims, 0);
        std::string act_name =
            ParseName(kws_map, kw_order_map, args, flag_kwargs, args_num,
                      "generated_string_tensor");
        EmptyStringTensorInitializer(
            py_tensor_ptr, act_name,
            egr::Controller::Instance().GetExpectedPlace(), dims);
        return 0;
      } else {
        PADDLE_THROW(platform::errors::InvalidArgument(
            "We not only support construct Tensor from numpy value "
            "or StringTensor with python kwargs by this initializer, "
            "but also even support dtype to init a empty StringTensor. "
            "Please check your input first and make sure you call the existed "
            "constructor."));
      }
    }
  } else if (args_num == (Py_ssize_t)1) {  // case 3 ~ 6
    // 1 position args, remainting arguments are kwargs
    PyObject* arg0_ptr = PyTuple_GET_ITEM(args, 0);
    if (pybind11::detail::npy_api::get().PyArray_Check_(arg0_ptr)) {
      VLOG(6) << "Calling case3's or case4's string initializer.";
      AutoInitStringTensorByPyArray(py_tensor_ptr, kws_map, args, flag_kwargs,
                                    args_num);
      return 0;
    } else if (PyObject_IsInstance(arg0_ptr, reinterpret_cast<PyObject*>(
                                                 p_string_tensor_type))) {
      VLOG(6) << "Calling case5's or case6's string initializer.";
      AutoInitStringTensorByStringTensor(py_tensor_ptr, kws_map, args,
                                         flag_kwargs, args_num);
      return 0;
    } else {
      PADDLE_THROW(platform::errors::InvalidArgument(
          "Could not parse the first keyword argument successfully, "
          "the first keyword argument is value, but it should be PyArray "
          "or StringTensor."
          "Please check your input first and make sure you are on the "
          "right way."));
    }
  } else if (args_num == (Py_ssize_t)2) {  // case 2
    // 2 position args
    if (!flag_kwargs) {
      PyObject* arg0_ptr = PyTuple_GET_ITEM(args, 0);
      if (PyObject_IsInstance(
              arg0_ptr, reinterpret_cast<PyObject*>(p_string_tensor_type))) {
        VLOG(6) << "Calling case6's string initializer.";
        AutoInitStringTensorByStringTensor(py_tensor_ptr, kws_map, args,
                                           flag_kwargs, args_num);
        return 0;
      } else if (pybind11::detail::npy_api::get().PyArray_Check_(arg0_ptr)) {
        VLOG(6) << "Calling case3's string initializer.";
        AutoInitStringTensorByPyArray(py_tensor_ptr, kws_map, args, flag_kwargs,
                                      args_num);
        return 0;
      } else {
        VLOG(6) << "Calling case2's string initializer.";
        std::vector<int> dims = CastPyArg2VectorOfInt(arg0_ptr, 0);
        std::string act_name = "";
        PyObject* name_obj = PyTuple_GET_ITEM(args, 1);
        if (name_obj == Py_None) {
          act_name = egr::Controller::Instance().GenerateUniqueName(
              "generated_string_tensor");
        } else {
          act_name = CastPyArg2AttrString(PyTuple_GET_ITEM(args, 1), 1);
        }
        EmptyStringTensorInitializer(
            py_tensor_ptr, act_name,
            egr::Controller::Instance().GetExpectedPlace(), dims);
        return 0;
      }
    } else {
      PADDLE_THROW(platform::errors::Fatal(
          "Can't not find expected num of args, please check your call, and "
          "make sure u call the existed constructor."));
    }
  }
  return 1;
}

1028
static void TensorDealloc(TensorObject* self) {
1029 1030
  if (self->weakrefs != NULL)
    PyObject_ClearWeakRefs(reinterpret_cast<PyObject*>(self));
1031
  self->tensor.~Tensor();
1032 1033 1034 1035
  Py_TYPE(self)->tp_free(reinterpret_cast<PyObject*>(self));
}

extern struct PyGetSetDef variable_properties[];
J
Jack Zhou 已提交
1036
extern struct PyGetSetDef string_tensor_variable_properties[];
1037 1038

extern PyMethodDef variable_methods[];
J
Jack Zhou 已提交
1039
extern PyMethodDef string_tensor_variable_methods[];
1040

W
wanghuancoder 已提交
1041 1042 1043 1044
PyNumberMethods number_methods;
PySequenceMethods sequence_methods;
PyMappingMethods mapping_methods;

1045 1046 1047
void BindEager(pybind11::module* module) {
  auto m = module->def_submodule("eager");

1048
  auto heap_type = reinterpret_cast<PyHeapTypeObject*>(
1049
      PyType_Type.tp_alloc(&PyType_Type, 0));
1050 1051
  heap_type->ht_name = ToPyObject("Tensor");
  heap_type->ht_qualname = ToPyObject("Tensor");
1052
  auto type = &heap_type->ht_type;
1053
  type->tp_name = "Tensor";
1054
  type->tp_basicsize = sizeof(TensorObject);
1055
  type->tp_dealloc = (destructor)TensorDealloc;
1056 1057 1058 1059 1060
  type->tp_as_number = &number_methods;
  type->tp_as_sequence = &sequence_methods;
  type->tp_as_mapping = &mapping_methods;
  type->tp_methods = variable_methods;
  type->tp_getset = variable_properties;
1061 1062
  type->tp_init = TensorInit;
  type->tp_new = TensorNew;
1063
  type->tp_weaklistoffset = offsetof(TensorObject, weakrefs);
1064 1065
  Py_INCREF(&PyBaseObject_Type);
  type->tp_base = reinterpret_cast<PyTypeObject*>(&PyBaseObject_Type);
1066 1067 1068 1069 1070
  type->tp_flags |=
      Py_TPFLAGS_DEFAULT | Py_TPFLAGS_BASETYPE | Py_TPFLAGS_HEAPTYPE;
#if PY_VERSION_HEX >= 0x03050000
  type->tp_as_async = &heap_type->as_async;
#endif
1071
  p_tensor_type = type;
1072 1073

  if (PyType_Ready(type) < 0) {
1074
    PADDLE_THROW(platform::errors::Fatal(
1075
        "Init Paddle error in BindEager(PyType_Ready)."));
1076 1077 1078
    return;
  }

1079
  Py_INCREF(type);
1080 1081
  if (PyModule_AddObject(m.ptr(), "Tensor", reinterpret_cast<PyObject*>(type)) <
      0) {
1082
    Py_DECREF(type);
1083 1084
    Py_DECREF(m.ptr());
    PADDLE_THROW(platform::errors::Fatal(
1085
        "Init Paddle error in BindEager(PyModule_AddObject)."));
1086 1087 1088 1089
    return;
  }

  BindFunctions(m.ptr());
W
wanghuancoder 已提交
1090
  BindEagerPyLayer(m.ptr());
1091
  BindEagerOpFunctions(&m);
1092 1093
}

J
Jack Zhou 已提交
1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137
void BindEagerStringTensor(pybind11::module* module) {
  auto m = module->def_submodule("eager");

  auto heap_type = reinterpret_cast<PyHeapTypeObject*>(
      PyType_Type.tp_alloc(&PyType_Type, 0));
  heap_type->ht_name = ToPyObject("StringTensor");
  heap_type->ht_qualname = ToPyObject("StringTensor");
  auto type = &heap_type->ht_type;
  type->tp_name = "StringTensor";
  type->tp_basicsize = sizeof(TensorObject);
  type->tp_dealloc = (destructor)TensorDealloc;
  type->tp_as_number = &number_methods;
  type->tp_as_sequence = &sequence_methods;
  type->tp_as_mapping = &mapping_methods;
  type->tp_methods = string_tensor_variable_methods;
  type->tp_getset = string_tensor_variable_properties;
  type->tp_init = StringTensorInit;
  type->tp_new = TensorNew;
  Py_INCREF(&PyBaseObject_Type);
  type->tp_base = reinterpret_cast<PyTypeObject*>(&PyBaseObject_Type);
  type->tp_flags |=
      Py_TPFLAGS_DEFAULT | Py_TPFLAGS_BASETYPE | Py_TPFLAGS_HEAPTYPE;
#if PY_VERSION_HEX >= 0x03050000
  type->tp_as_async = &heap_type->as_async;
#endif
  p_string_tensor_type = type;

  if (PyType_Ready(type) < 0) {
    PADDLE_THROW(platform::errors::Fatal(
        "Init Paddle error in BindEager(PyType_Ready)."));
    return;
  }

  Py_INCREF(type);
  if (PyModule_AddObject(m.ptr(), "StringTensor",
                         reinterpret_cast<PyObject*>(type)) < 0) {
    Py_DECREF(type);
    Py_DECREF(m.ptr());
    PADDLE_THROW(platform::errors::Fatal(
        "Init Paddle error in BindEagerStringTensor(PyModule_AddObject)."));
    return;
  }
}

1138 1139
}  // namespace pybind
}  // namespace paddle