eager.cc 30.8 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
/* Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved.
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
// disable numpy compile error
#include <Python.h>

#include <string>
#include <vector>

17
#include "paddle/fluid/eager/accumulation/accumulation_node.h"
18 19 20
#include "paddle/fluid/eager/api/all.h"
#include "paddle/fluid/eager/autograd_meta.h"
#include "paddle/fluid/eager/utils.h"
21
#include "paddle/fluid/framework/convert_utils.h"
22 23 24 25 26
#include "paddle/fluid/memory/allocation/allocator.h"
#include "paddle/fluid/memory/memcpy.h"
#include "paddle/fluid/platform/enforce.h"
#include "paddle/fluid/pybind/eager.h"
#include "paddle/fluid/pybind/eager_utils.h"
27 28 29
#include "paddle/phi/common/data_type.h"
#include "paddle/phi/core/compat/convert_utils.h"
#include "paddle/phi/core/dense_tensor.h"
30
#include "pybind11/detail/internals.h"
31 32
#include "pybind11/numpy.h"
#include "pybind11/pybind11.h"
33
#pragma GCC diagnostic ignored "-Wmissing-field-initializers"
34
#include "paddle/fluid/framework/python_headers.h"
35
#include "paddle/fluid/pybind/eager_op_function_impl.h"
36
#include "paddle/fluid/pybind/tensor_py.h"
37 38
#include "paddle/phi/api/lib/utils/storage.h"
#include "paddle/phi/api/lib/utils/tensor_utils.h"
39 40 41 42 43
namespace paddle {
namespace pybind {

namespace py = ::pybind11;

44
PyTypeObject* p_tensor_type;
45
extern PyTypeObject* g_vartype_pytype;
46
extern PyTypeObject* g_framework_tensor_pytype;
47

48
PyObject* TensorNew(PyTypeObject* type, PyObject* args, PyObject* kwargs) {
49 50
  PyObject* obj = type->tp_alloc(type, 0);
  if (obj) {
51 52
    auto v = reinterpret_cast<TensorObject*>(obj);
    new (&(v->tensor)) paddle::experimental::Tensor();
53 54 55 56
  }
  return obj;
}

57
// TODO(jiabin): Overload this once we need more constructor in Python
58 59
void EmptyTensorInitializer(TensorObject* self, const std::string& name,
                            const paddle::platform::Place& place,
60
                            bool persistable = false, int stop_gradient = -1,
61 62 63 64 65
                            framework::proto::VarType::Type dtype =
                                paddle::framework::proto::VarType::FP32,
                            const std::vector<int>& dims = {},
                            framework::proto::VarType::Type var_type =
                                paddle::framework::proto::VarType::LOD_TENSOR) {
66
  auto ddims = phi::make_ddim(dims);
67 68
  self->tensor.set_name(name);
  auto autograd_meta = egr::EagerUtils::autograd_meta(&(self->tensor));
69
  autograd_meta->SetPersistable(persistable);
70 71 72
  if (stop_gradient != -1) {
    autograd_meta->SetStopGradient(static_cast<bool>(stop_gradient));
  }
73 74
  if (var_type == paddle::framework::proto::VarType::LOD_TENSOR) {
    // TODO(jiabin): Maybe support LOD later
75 76 77
    std::shared_ptr<phi::DenseTensor> dense_tensor =
        std::make_shared<phi::DenseTensor>(
            phi::make_intrusive<paddle::experimental::SharedStorage>(place),
78
            phi::DenseTensorMeta(paddle::framework::TransToPhiDataType(dtype),
79
                                 ddims));
80 81 82
    if (phi::product(ddims) > 0) {
      dense_tensor->mutable_data(place);
    }
83
    self->tensor.set_impl(dense_tensor);
84 85 86 87 88
  }

  if (!autograd_meta->GetMutableGradNode()) {
    VLOG(3) << "Tensor(" << name
            << ") have not GradNode, add GradNodeAccumulation for it.";
89 90
    autograd_meta->SetGradNode(
        std::make_shared<egr::GradNodeAccumulation>(autograd_meta));
91 92 93
  }
}

94 95
void InitTensorWithNumpyValue(TensorObject* self, const py::object& array,
                              bool zero_copy = false) {
96
  PADDLE_ENFORCE_EQ(
97
      self->tensor.defined(), true,
98
      paddle::platform::errors::Fatal(
99 100
          "Calling InitTensorWithNumpyValue of Eager Tensor without "
          "EmptyTensorInitializer is "
101 102
          "forbidden. Please check your code and make sure you new a "
          "eager tensor before init it with NumPy."));
103 104
  phi::DenseTensor* impl_ptr =
      static_cast<phi::DenseTensor*>(self->tensor.impl().get());
105 106
  paddle::platform::Place place = impl_ptr->place();
  if (platform::is_cpu_place(place)) {
107
    SetTensorFromPyArray<platform::CPUPlace>(impl_ptr, array, place, zero_copy);
108
  } else if (platform::is_xpu_place(place)) {
109
    SetTensorFromPyArray<platform::XPUPlace>(impl_ptr, array, place, zero_copy);
110
  } else if (platform::is_gpu_place(place)) {
111
    SetTensorFromPyArray<platform::CUDAPlace>(impl_ptr, array, place,
112
                                              zero_copy);
113
  } else if (platform::is_cuda_pinned_place(place)) {
114
    SetTensorFromPyArray<platform::CUDAPinnedPlace>(impl_ptr, array, place,
115
                                                    zero_copy);
116
  } else if (platform::is_npu_place(place)) {
117
    SetTensorFromPyArray<platform::NPUPlace>(impl_ptr, array, place, zero_copy);
118 119 120 121 122 123 124
  } else {
    PADDLE_THROW(platform::errors::InvalidArgument(
        "Place should be one of "
        "CPUPlace/XPUPlace/CUDAPlace/CUDAPinnedPlace/NPUPlace"));
  }
}

125 126 127 128
void InitTensorWithTensor(TensorObject* self,
                          const paddle::experimental::Tensor& src,
                          const paddle::platform::Place& place,
                          const std::string& name) {
129 130
  self->tensor.set_name(name);
  if (place == src.inner_place()) {
131
    auto impl = std::static_pointer_cast<phi::DenseTensor>(src.impl());
132
    self->tensor.set_impl(impl);
133 134
    VLOG(4) << "Same place, do ShareDataWith";
  } else {
135
    self->tensor.set_impl(src.copy_to(place, true).impl());
136 137 138
    VLOG(4) << "Different place, do TensorCopy";
  }
  if (src.get_autograd_meta()) {
139
    egr::EagerUtils::autograd_meta(&(self->tensor))
140 141 142
        ->SetPersistable(
            egr::EagerUtils::unsafe_autograd_meta(src)->Persistable());
  } else {
143
    egr::EagerUtils::autograd_meta(&(self->tensor))->SetPersistable(false);
144 145 146
  }
}

147 148 149 150
void InitTensorWithFrameworkTensor(TensorObject* self,
                                   const framework::Tensor& src,
                                   const paddle::platform::Place& place,
                                   const std::string& name) {
151
  self->tensor.set_name(name);
152
  if (place == src.place()) {
153
    self->tensor.set_impl(std::make_shared<phi::DenseTensor>(src));
154 155
    VLOG(4) << "Same place, do ShareDataWith";
  } else {
156
    auto temp =
157
        paddle::experimental::Tensor(std::make_shared<phi::DenseTensor>(src));
158
    self->tensor.set_impl(temp.copy_to(place, true).impl());
159 160
    VLOG(4) << "Different place, do TensorCopy";
  }
161
  egr::EagerUtils::autograd_meta(&(self->tensor))->SetPersistable(false);
162
}
163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209

py::object ParsePyArray(
    std::unordered_map<std::string, PyObject*> kws_map,
    std::unordered_map<std::string, Py_ssize_t> kw_order_map, PyObject* args,
    bool flag_kwargs, Py_ssize_t args_num) {
  py::object numpy_value = py::object();

  if (kw_order_map["value"] <= args_num) {
    numpy_value = py::object(
        py::handle(PyTuple_GET_ITEM(args, kw_order_map["value"] - 1)), true);
  } else {
    if (flag_kwargs && kws_map["value"] != NULL) {
      numpy_value = py::object(py::handle(kws_map["value"]), true);
    } else {
      PADDLE_THROW(platform::errors::InvalidArgument(
          "The first expected arguments is {value: PyArray}, "
          "but could not parse the first argument {value: PyArray} "
          "successfully. "
          "Please check your input first and make sure you are on the right "
          "way."));
    }
  }
  return numpy_value;
}

paddle::platform::Place ParsePlace(
    std::unordered_map<std::string, PyObject*> kws_map,
    std::unordered_map<std::string, Py_ssize_t> kw_order_map, PyObject* args,
    bool flag_kwargs, Py_ssize_t args_num) {
  paddle::platform::Place place =
      egr::Controller::Instance().GetExpectedPlace();

  if (kw_order_map["place"] <= args_num) {
    place = CastPyArg2Place(PyTuple_GET_ITEM(args, kw_order_map["place"] - 1),
                            kw_order_map["place"] - 1);
  } else {
    if (flag_kwargs && kws_map["place"] != NULL) {
      place = CastPyArg2Place(kws_map["place"], 0);
    } else {
      // default
      return place;
    }
  }
  return place;
}

// boolean arguments: zero_copy, stop_gradient, persistable
210 211 212 213 214
int ParseBooleanArgs(std::string key,
                     std::unordered_map<std::string, PyObject*> kws_map,
                     std::unordered_map<std::string, Py_ssize_t> kw_order_map,
                     PyObject* args, bool flag_kwargs, Py_ssize_t args_num) {
  int res = -1;
215 216

  if (kw_order_map[key] <= args_num) {
217 218
    res = static_cast<int>(CastPyArg2AttrBoolean(
        PyTuple_GET_ITEM(args, kw_order_map[key] - 1), kw_order_map[key] - 1));
219 220
  } else {
    if (flag_kwargs && kws_map[key] != NULL) {
221
      res = static_cast<int>(CastPyArg2AttrBoolean(kws_map[key], 0));
222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254
    }
  }
  return res;
}

std::string ParseName(std::unordered_map<std::string, PyObject*> kws_map,
                      std::unordered_map<std::string, Py_ssize_t> kw_order_map,
                      PyObject* args, bool flag_kwargs, Py_ssize_t args_num) {
  std::string act_name = "";
  if (kw_order_map["name"] <= args_num) {
    PyObject* name_obj = PyTuple_GET_ITEM(args, kw_order_map["name"] - 1);
    if (name_obj == Py_None) {
      act_name =
          egr::Controller::Instance().GenerateUniqueName("generated_tensor");
    } else {
      act_name = CastPyArg2AttrString(name_obj, kw_order_map["name"] - 1);
    }
  } else {
    if (flag_kwargs) {
      if (kws_map["name"] == NULL) {
        act_name =
            egr::Controller::Instance().GenerateUniqueName("generated_tensor");
      } else {
        act_name = CastPyArg2AttrString(kws_map["name"], 0);
      }
    } else {
      act_name =
          egr::Controller::Instance().GenerateUniqueName("generated_tensor");
    }
  }
  return act_name;
}

255
// initialize Tensor by PyArray(first argument is PyArray,
256
// mix args and kwargs) automatically.
257 258 259 260 261 262
void AutoInitTensorByPyArray(TensorObject* py_tensor_ptr,
                             std::unordered_map<std::string, PyObject*> kws_map,
                             PyObject* args, bool flag_kwargs,
                             Py_ssize_t args_num) {
  // The first argument of the Tensor constructor is PyArray,
  // there are 6 arguments to construct the new Tensor,
263 264 265 266 267 268 269 270 271 272 273 274 275 276
  // kw_order_map's key is every arguments of the constructor,
  // kw_order_map's value is the position of the arguments respectively.
  // If u want to update this constructor with new arguments,
  // need to update this map and to add or change related code.
  std::unordered_map<std::string, Py_ssize_t> kw_order_map{
      {"value", 1},     {"place", 2}, {"persistable", 3},
      {"zero_copy", 4}, {"name", 5},  {"stop_gradient", 6}};

  py::object numpy_value = py::object();
  paddle::platform::Place place =
      egr::Controller::Instance().GetExpectedPlace();
  bool persistable = false;
  bool zero_copy = false;
  std::string act_name = "";
277
  int stop_gradient = -1;
278 279 280 281

  numpy_value =
      ParsePyArray(kws_map, kw_order_map, args, flag_kwargs, args_num);
  place = ParsePlace(kws_map, kw_order_map, args, flag_kwargs, args_num);
282 283 284 285
  persistable = (1 == ParseBooleanArgs("persistable", kws_map, kw_order_map,
                                       args, flag_kwargs, args_num));
  zero_copy = (1 == ParseBooleanArgs("zero_copy", kws_map, kw_order_map, args,
                                     flag_kwargs, args_num));
286 287 288 289
  act_name = ParseName(kws_map, kw_order_map, args, flag_kwargs, args_num);
  stop_gradient = ParseBooleanArgs("stop_gradient", kws_map, kw_order_map, args,
                                   flag_kwargs, args_num);

290 291 292
  EmptyTensorInitializer(py_tensor_ptr, act_name, place, persistable,
                         stop_gradient);
  InitTensorWithNumpyValue(py_tensor_ptr, numpy_value, zero_copy);
293 294
}

295
// initialize Tensor by Tensor or framework::Tensor (mix args and
296
// kwargs) automatically.
297 298 299 300 301 302
void AutoInitTensorByTensor(TensorObject* py_tensor_ptr,
                            std::unordered_map<std::string, PyObject*> kws_map,
                            PyObject* args, bool flag_kwargs,
                            Py_ssize_t args_num,
                            bool init_by_egr_tensor = true) {
  // The first argument of the Tensor constructor is Tensor or
303
  // framework Tensor,
304
  // there are 3 arguments to construct the new Tensor,
305 306 307 308 309 310 311 312 313 314 315 316 317 318 319
  // kw_order_map's key is every arguments of the constructor,
  // kw_order_map's value is the position of the arguments respectively.
  // If u want to update this constructor with new arguments,
  // need to update this map and to add or change related code.
  std::unordered_map<std::string, Py_ssize_t> kw_order_map{
      {"value", 1}, {"place", 2}, {"name", 3}};

  paddle::platform::Place place =
      egr::Controller::Instance().GetExpectedPlace();
  std::string act_name = "";

  place = ParsePlace(kws_map, kw_order_map, args, flag_kwargs, args_num);
  act_name = ParseName(kws_map, kw_order_map, args, flag_kwargs, args_num);

  if (init_by_egr_tensor) {
320
    paddle::experimental::Tensor src_tensor;
321
    if (kw_order_map["value"] <= args_num) {
322 323 324
      src_tensor =
          CastPyArg2Tensor(PyTuple_GET_ITEM(args, kw_order_map["value"] - 1),
                           kw_order_map["value"] - 1);
325 326
    } else {
      if (flag_kwargs && kws_map["value"] != NULL) {
327
        src_tensor = CastPyArg2Tensor(kws_map["value"], 0);
328 329
      } else {
        PADDLE_THROW(platform::errors::InvalidArgument(
330 331
            "The first expected kwargs is {value: Tensor}, "
            "but could not parse the first argument {value: Tensor} "
332 333 334 335 336
            "successfully. "
            "Please check your input first and make sure you are on the right "
            "way."));
      }
    }
337
    InitTensorWithTensor(py_tensor_ptr, src_tensor, place, act_name);
338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356
  } else {
    // init by framework tensor
    framework::Tensor src_tensor;
    if (kw_order_map["value"] <= args_num) {
      src_tensor = CastPyArg2FrameworkTensor(
          PyTuple_GET_ITEM(args, kw_order_map["value"] - 1),
          kw_order_map["value"] - 1);
    } else {
      if (flag_kwargs && kws_map["value"] != NULL) {
        src_tensor = CastPyArg2FrameworkTensor(kws_map["value"], 0);
      } else {
        PADDLE_THROW(platform::errors::InvalidArgument(
            "The first expected arguments is {value: framework::Tensor}, "
            "but could not parse the first argument {value: framework::Tensor} "
            "successfully. "
            "Please check your input first and make sure you are on the right "
            "way."));
      }
    }
357
    InitTensorWithFrameworkTensor(py_tensor_ptr, src_tensor, place, act_name);
358 359 360 361
  }
}

/** We should have init function with signature:
362 363 364 365 366 367 368
   * 1.
   * def __init__ ()
   * 2.
   * def __init__ (
   * ** dtype: paddle::framework::proto::VarType::Type,
   * ** dims: vector<int>,
   * ** name: std::string,
369
   * ** type: paddle::framework::proto::VarType::LodTensor,
370
   * ** persistable: bool)
371 372 373
   * 3. (multi-place)
   * (should have at least one parameter, one parameter equals to case 4, zero
   * parameter equals to case 1)
374 375 376 377 378 379 380 381 382 383 384 385
   * def __init__ (
   * ** value: ndarray,
   * ** place: paddle::platform::Place,
   * ** persistable: bool,
   * ** zero_copy: bool,
   * ** name: std::string,
   * ** stop_gradient: bool)
   * 4.
   * def __init__ (
   * ** value: ndarray)
   * 5.
   * def __init__ (
386
   * ** tensor: Tensor)
387 388 389
   * 6. (multi-place)
   * (should have at least one parameter, one parameter equals to case 5, zero
   * parameter equals to case 1.)
390
   * def __init__ (
391
   * ** tensor: Tensor,
392 393
   * ** place: paddle::platform::Place,
   * ** name: std::string)
394 395
   * 7. (multi-place) (should have at least one parameter, one parameter similar
   * to case 5, zero parameter equals to case 1.)
396 397 398 399
   * def __init__ (
   * ** tensor: FrameworkTensor,
   * ** place: paddle::platform::Place,
   * ** name: std::string)
400
   *  **/
401
int TensorInit(PyObject* self, PyObject* args, PyObject* kwargs) {
402 403 404 405 406 407 408 409 410
  // set a flag to record use kwargs or not
  bool flag_kwargs = false;
  if (kwargs) flag_kwargs = true;

  // all kwargs
  PyObject* kw_zero_copy = NULL;
  PyObject* kw_persistable = NULL;
  PyObject* kw_stop_gradient = NULL;

411
  PyObject* kw_value = NULL;  // receive PyArray or Tensor
412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457
  PyObject* kw_place = NULL;
  PyObject* kw_name = NULL;
  PyObject* kw_dims = NULL;
  PyObject* kw_dtype = NULL;
  PyObject* kw_type = NULL;

  // the keywords argument
  static char* kwlist[] = {
      const_cast<char*>("value"),       const_cast<char*>("place"),
      const_cast<char*>("persistable"), const_cast<char*>("zero_copy"),
      const_cast<char*>("name"),        const_cast<char*>("stop_gradient"),
      const_cast<char*>("dims"),        const_cast<char*>("dtype"),
      const_cast<char*>("type"),        NULL};

  // 'O' Store a Python object (without any conversion) in a C object pointer,
  // '|' Indicates that the remaining arguments in the Python argument list are
  // optional.
  // PyArg_ParseTupleAndKeywords can Parse the parameters of a function that
  // takes both positional and keyword parameters into local variables,
  // which enhance case2, case3, case4, case5, case6, case7.
  bool flag_ = PyArg_ParseTupleAndKeywords(
      args, kwargs, "|OOOOOOOOO", kwlist, &kw_value, &kw_place, &kw_persistable,
      &kw_zero_copy, &kw_name, &kw_stop_gradient, &kw_dims, &kw_dtype,
      &kw_type);

  // helper map
  std::unordered_map<std::string, PyObject*> kws_map{
      {"value", kw_value},
      {"place", kw_place},
      {"persistable", kw_persistable},
      {"zero_copy", kw_zero_copy},
      {"name", kw_name},
      {"stop_gradient", kw_stop_gradient},
      {"dims", kw_dims},
      {"dtype", kw_dtype},
      {"type", kw_type}};

  PADDLE_ENFORCE_EQ(flag_, true,
                    paddle::platform::errors::PreconditionNotMet(
                        "Could not parse args and kwargs successfully, "
                        "please check your input first and make"
                        "sure you are on the right way. "
                        "The expected arguments as follow: ("
                        "value, place, persistable, zero_copy, "
                        "name, stop_gradient, dims, dtype, type)"));

458 459 460 461 462 463
  PADDLE_ENFORCE_NOT_NULL(
      self, paddle::platform::errors::Fatal(
                "Calling __init__ of Eager Tensor without __new__ is "
                "forbidden. Please check your code and make sure you new a "
                "eager tensor before init it."));

464
  auto py_tensor_ptr = reinterpret_cast<TensorObject*>(self);
465 466

  Py_ssize_t args_num = PyTuple_Size(args);
467 468 469 470 471
  VLOG(6) << " args_num: " << args_num;

  // args_num = 0, means that there is no position arguments.
  if (args_num == (Py_ssize_t)0) {
    if (!flag_kwargs) {
472 473
      // case 1
      VLOG(6) << "Calling case1's initializer.";
474
      EmptyTensorInitializer(
475 476 477 478
          py_tensor_ptr,
          egr::Controller::Instance().GenerateUniqueName("generated_tensor"),
          egr::Controller::Instance().GetExpectedPlace());
      return 0;
479 480 481 482
    } else {  // no position args, all arguments are kwargs
      if (kw_value != NULL) {
        if (pybind11::detail::npy_api::get().PyArray_Check_(kw_value)) {
          VLOG(6) << "Calling case3's or case4's initializer";
483 484
          AutoInitTensorByPyArray(py_tensor_ptr, kws_map, args, flag_kwargs,
                                  args_num);
485
          return 0;
486 487
        } else if (PyObject_IsInstance(
                       kw_value, reinterpret_cast<PyObject*>(p_tensor_type))) {
488
          VLOG(6) << "Calling case5's or case6's initializer";
489 490
          AutoInitTensorByTensor(py_tensor_ptr, kws_map, args, flag_kwargs,
                                 args_num);
491 492 493 494 495
          return 0;
        } else if (PyObject_IsInstance(kw_value,
                                       reinterpret_cast<PyObject*>(
                                           g_framework_tensor_pytype))) {
          VLOG(6) << "Calling case7's initializer.";
496 497 498
          AutoInitTensorByTensor(py_tensor_ptr, kws_map, args, flag_kwargs,
                                 args_num,
                                 /* false means not init by egr tensor*/ false);
499
          return 0;
500
        } else {
501 502 503
          PADDLE_THROW(platform::errors::InvalidArgument(
              "Could not parse the first keyword argument successfully, "
              "the first keyword argument is value, but it should be PyArray "
504
              "or Tensor or framework::Tensor. "
505 506
              "Please check your input first and make sure you are on the "
              "right way."));
507
        }
508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544
      } else if (kw_dtype != NULL &&
                 PyObject_IsInstance(
                     kw_dtype, reinterpret_cast<PyObject*>(g_vartype_pytype))) {
        VLOG(6) << "Calling case2's initializer";

        PADDLE_ENFORCE_NOT_NULL(
            kw_dims,
            paddle::platform::errors::InvalidArgument(
                "Calling __init__ of Eager Tensor with NULL dims is "
                "forbidden. Please check your code and make sure you new a "
                "dims before calling this constructor."));

        PADDLE_ENFORCE_NOT_NULL(
            kw_name,
            paddle::platform::errors::InvalidArgument(
                "Calling __init__ of Eager Tensor with NULL name is "
                "forbidden. Please check your code and make sure you new a "
                "name before calling this constructor."));

        PADDLE_ENFORCE_NOT_NULL(
            kw_dtype,
            paddle::platform::errors::InvalidArgument(
                "Calling __init__ of Eager Tensor with NULL dtype is "
                "forbidden. Please check your code and make sure you new a "
                "dtype before calling this constructor."));

        PADDLE_ENFORCE_NOT_NULL(
            kw_persistable,
            paddle::platform::errors::InvalidArgument(
                "Calling __init__ of Eager Tensor with NULL persistable is "
                "forbidden. Please check your code and make sure you new a "
                "persistable before calling this constructor."));

        paddle::framework::proto::VarType::Type dtype =
            CastPyArg2ProtoType(kw_dtype, 0);
        std::vector<int> dims = CastPyArg2VectorOfInt(kw_dims, 0);

545
        std::string act_name = "";
546
        if (kw_name == Py_None) {
547 548 549
          act_name = egr::Controller::Instance().GenerateUniqueName(
              "generated_tensor");
        } else {
550
          act_name = CastPyArg2AttrString(kw_name, 0);
551
        }
552 553 554 555 556

        paddle::framework::proto::VarType::Type var_type =
            CastPyArg2ProtoType(kw_type, 0);
        bool persistable = CastPyArg2AttrBoolean(kw_persistable, 0);

557 558 559
        EmptyTensorInitializer(py_tensor_ptr, act_name,
                               egr::Controller::Instance().GetExpectedPlace(),
                               persistable,
560
                               /* stop_gradient */ -1, dtype, dims, var_type);
561

562
        return 0;
563 564
      } else {
        PADDLE_THROW(platform::errors::InvalidArgument(
565 566
            "We not only support construct Tensor from numpy value "
            "or tensor(Tensor or framework::Tensor) "
567
            "with python kwargs by this initializer, "
568
            "but also even support dtype to init a empty Tensor. "
569 570
            "Please check your input first and make sure you call the existed "
            "constructor."));
571
      }
572 573 574 575 576 577 578
    }
  } else if (args_num == (Py_ssize_t)1 || args_num == (Py_ssize_t)2 ||
             args_num == (Py_ssize_t)3) {
    // 1 to 3 position args, remainting arguments are kwargs
    PyObject* arg0_ptr = PyTuple_GET_ITEM(args, 0);
    if (pybind11::detail::npy_api::get().PyArray_Check_(arg0_ptr)) {
      VLOG(6) << "Calling case3's or case4's initializer.";
579 580
      AutoInitTensorByPyArray(py_tensor_ptr, kws_map, args, flag_kwargs,
                              args_num);
581
      return 0;
582 583
    } else if (PyObject_IsInstance(
                   arg0_ptr, reinterpret_cast<PyObject*>(p_tensor_type))) {
584
      VLOG(6) << "Calling case5's or case6's initializer.";
585 586
      AutoInitTensorByTensor(py_tensor_ptr, kws_map, args, flag_kwargs,
                             args_num);
587 588 589 590
      return 0;
    } else if (PyObject_IsInstance(arg0_ptr, reinterpret_cast<PyObject*>(
                                                 g_framework_tensor_pytype))) {
      VLOG(6) << "Calling case7's initializer.";
591 592 593
      AutoInitTensorByTensor(py_tensor_ptr, kws_map, args, flag_kwargs,
                             args_num,
                             /* false means not init by egr tensor*/ false);
594 595 596
      return 0;
    } else {
      PADDLE_THROW(platform::errors::InvalidArgument(
597 598
          "We support construct Tensor from numpy value "
          "or tensor(Tensor or framework::Tensor) "
599
          "with python args and kwargs by this initializer, "
600
          "but the first argument should be PyArray or Tensor or "
601 602 603
          "framework::Tensor. "
          "Please check your input first and make sure you call the existed "
          "constructor."));
604
    }
605 606 607 608 609
  } else if (args_num == (Py_ssize_t)4) {
    // 4 position args, remainting arguments are kwargs
    PyObject* arg0_ptr = PyTuple_GET_ITEM(args, 0);
    if (pybind11::detail::npy_api::get().PyArray_Check_(arg0_ptr)) {
      VLOG(6) << "Calling case3's or case4's initializer.";
610 611
      AutoInitTensorByPyArray(py_tensor_ptr, kws_map, args, flag_kwargs,
                              args_num);
612
      return 0;
613 614 615 616 617 618 619
    } else {
      PADDLE_THROW(platform::errors::InvalidArgument(
          "Incompatible constructor arguments, "
          "there are 4 position args and remainting arguments arg kwargs,"
          "but the first position args should be PyArray. "
          "Please check your code and make sure the first position args is "
          "PyArray."));
620
    }
621 622
  } else if (args_num == (Py_ssize_t)5) {
    if (!flag_kwargs) {
623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641
      PyObject* arg0_ptr = PyTuple_GET_ITEM(args, 0);
      if (PyObject_IsInstance(arg0_ptr,
                              reinterpret_cast<PyObject*>(g_vartype_pytype))) {
        VLOG(6) << "Calling case2's initializer.";
        paddle::framework::proto::VarType::Type dtype =
            CastPyArg2ProtoType(PyTuple_GET_ITEM(args, 0), 0);
        std::vector<int> dims =
            CastPyArg2VectorOfInt(PyTuple_GET_ITEM(args, 1), 1);
        std::string act_name = "";
        PyObject* name_obj = PyTuple_GET_ITEM(args, 2);
        if (name_obj == Py_None) {
          act_name = egr::Controller::Instance().GenerateUniqueName(
              "generated_tensor");
        } else {
          act_name = CastPyArg2AttrString(PyTuple_GET_ITEM(args, 2), 2);
        }
        paddle::framework::proto::VarType::Type var_type =
            CastPyArg2ProtoType(PyTuple_GET_ITEM(args, 3), 3);
        bool persistable = CastPyArg2AttrBoolean(PyTuple_GET_ITEM(args, 4), 4);
642 643
        EmptyTensorInitializer(py_tensor_ptr, act_name,
                               egr::Controller::Instance().GetExpectedPlace(),
644
                               persistable, -1, dtype, dims, var_type);
645
        return 0;
646 647
      } else if (pybind11::detail::npy_api::get().PyArray_Check_(arg0_ptr)) {
        VLOG(6) << "Calling case3's initializer.";
648 649
        AutoInitTensorByPyArray(py_tensor_ptr, kws_map, args, flag_kwargs,
                                args_num);
650 651 652
        return 0;
      } else {
        PADDLE_THROW(platform::errors::InvalidArgument(
653 654 655 656 657
            "Incompatible constructor arguments, "
            "there are only 5 position args,"
            "but the first position args should be PyArray or dtype. "
            "Please check your code and make sure you call the existed "
            "constructor."));
658
      }
659
    } else {  // five position args, remainting arguments are kwargs
660
      PyObject* arg0_ptr = PyTuple_GET_ITEM(args, 0);
661 662
      if (pybind11::detail::npy_api::get().PyArray_Check_(arg0_ptr)) {
        VLOG(6) << "Calling case3's or case4's initializer";
663 664
        AutoInitTensorByPyArray(py_tensor_ptr, kws_map, args, flag_kwargs,
                                args_num);
665
        return 0;
666
      } else {
667 668 669 670 671 672
        PADDLE_THROW(platform::errors::InvalidArgument(
            "Incompatible constructor arguments, "
            "there are 5 position args and remainting arguments are kwargs,"
            "but the first position args should be PyArray. "
            "Please check your code and make sure the first position args is "
            "PyArray."));
673 674
      }
    }
675 676 677 678
  } else if (args_num == (Py_ssize_t)6) {
    if (!flag_kwargs) {
      // case 3
      VLOG(6) << "Calling case3's initializer.";
679 680
      AutoInitTensorByPyArray(py_tensor_ptr, kws_map, args, flag_kwargs,
                              args_num);
681 682 683 684 685 686 687 688
      return 0;
    } else {  // six position args, remainting arguments are kwargs, but this
              // is not a right way
      PADDLE_THROW(platform::errors::InvalidArgument(
          "Incompatible constructor arguments, "
          "there are 6 position args and the remainting arguments are kwargs. "
          "Please check your code and make sure the first position args is "
          "PyArray."));
689
    }
690 691 692 693
  } else {
    PADDLE_THROW(platform::errors::Fatal(
        "Can't not find expected num of args, please check your call, and "
        "make sure u call the existed constructor."));
694
  }
695 696

  return 1;
697 698
}

699
static void TensorDealloc(TensorObject* self) {
700
  self->tensor.~Tensor();
701 702 703 704 705 706 707
  Py_TYPE(self)->tp_free(reinterpret_cast<PyObject*>(self));
}

extern struct PyGetSetDef variable_properties[];

extern PyMethodDef variable_methods[];

W
wanghuancoder 已提交
708 709 710 711
PyNumberMethods number_methods;
PySequenceMethods sequence_methods;
PyMappingMethods mapping_methods;

712 713 714
void BindEager(pybind11::module* module) {
  auto m = module->def_submodule("eager");

715
  auto heap_type = reinterpret_cast<PyHeapTypeObject*>(
716
      PyType_Type.tp_alloc(&PyType_Type, 0));
717 718
  heap_type->ht_name = ToPyObject("Tensor");
  heap_type->ht_qualname = ToPyObject("Tensor");
719
  auto type = &heap_type->ht_type;
720
  type->tp_name = "Tensor";
721
  type->tp_basicsize = sizeof(TensorObject);
722
  type->tp_dealloc = (destructor)TensorDealloc;
723 724 725 726 727
  type->tp_as_number = &number_methods;
  type->tp_as_sequence = &sequence_methods;
  type->tp_as_mapping = &mapping_methods;
  type->tp_methods = variable_methods;
  type->tp_getset = variable_properties;
728 729
  type->tp_init = TensorInit;
  type->tp_new = TensorNew;
730 731
  Py_INCREF(&PyBaseObject_Type);
  type->tp_base = reinterpret_cast<PyTypeObject*>(&PyBaseObject_Type);
732 733 734 735 736
  type->tp_flags |=
      Py_TPFLAGS_DEFAULT | Py_TPFLAGS_BASETYPE | Py_TPFLAGS_HEAPTYPE;
#if PY_VERSION_HEX >= 0x03050000
  type->tp_as_async = &heap_type->as_async;
#endif
737
  p_tensor_type = type;
738 739

  if (PyType_Ready(type) < 0) {
740
    PADDLE_THROW(platform::errors::Fatal(
741
        "Init Paddle error in BindEager(PyType_Ready)."));
742 743 744
    return;
  }

745
  Py_INCREF(type);
746 747
  if (PyModule_AddObject(m.ptr(), "Tensor", reinterpret_cast<PyObject*>(type)) <
      0) {
748
    Py_DECREF(type);
749 750
    Py_DECREF(m.ptr());
    PADDLE_THROW(platform::errors::Fatal(
751
        "Init Paddle error in BindEager(PyModule_AddObject)."));
752 753 754 755
    return;
  }

  BindFunctions(m.ptr());
756
  BindEagerOpFunctions(&m);
757 758 759 760
}

}  // namespace pybind
}  // namespace paddle