eager.cc 30.8 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
/* Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved.
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
// disable numpy compile error
#include <Python.h>

#include <string>
#include <vector>

17
#include "paddle/fluid/eager/accumulation/accumulation_node.h"
18 19 20
#include "paddle/fluid/eager/api/all.h"
#include "paddle/fluid/eager/autograd_meta.h"
#include "paddle/fluid/eager/utils.h"
21
#include "paddle/fluid/framework/convert_utils.h"
22 23 24 25 26
#include "paddle/fluid/memory/allocation/allocator.h"
#include "paddle/fluid/memory/memcpy.h"
#include "paddle/fluid/platform/enforce.h"
#include "paddle/fluid/pybind/eager.h"
#include "paddle/fluid/pybind/eager_utils.h"
27 28 29
#include "paddle/phi/common/data_type.h"
#include "paddle/phi/core/compat/convert_utils.h"
#include "paddle/phi/core/dense_tensor.h"
30
#include "pybind11/detail/internals.h"
31 32
#include "pybind11/numpy.h"
#include "pybind11/pybind11.h"
33
#pragma GCC diagnostic ignored "-Wmissing-field-initializers"
34
#include "paddle/fluid/framework/python_headers.h"
35
#include "paddle/fluid/pybind/eager_op_function_impl.h"
36
#include "paddle/fluid/pybind/tensor_py.h"
37 38
#include "paddle/phi/api/lib/utils/storage.h"
#include "paddle/phi/api/lib/utils/tensor_utils.h"
39 40 41 42 43
namespace paddle {
namespace pybind {

namespace py = ::pybind11;

44
PyTypeObject* p_tensor_type;
45
extern PyTypeObject* g_vartype_pytype;
46
extern PyTypeObject* g_framework_tensor_pytype;
47

48
PyObject* TensorNew(PyTypeObject* type, PyObject* args, PyObject* kwargs) {
49 50
  PyObject* obj = type->tp_alloc(type, 0);
  if (obj) {
51 52
    auto v = reinterpret_cast<TensorObject*>(obj);
    new (&(v->tensor)) paddle::experimental::Tensor();
53 54 55 56
  }
  return obj;
}

57
// TODO(jiabin): Overload this once we need more constructor in Python
58 59
void EmptyTensorInitializer(TensorObject* self, const std::string& name,
                            const paddle::platform::Place& place,
60
                            bool persistable = false, int stop_gradient = -1,
61 62 63 64 65
                            framework::proto::VarType::Type dtype =
                                paddle::framework::proto::VarType::FP32,
                            const std::vector<int>& dims = {},
                            framework::proto::VarType::Type var_type =
                                paddle::framework::proto::VarType::LOD_TENSOR) {
66
  auto ddims = phi::make_ddim(dims);
67 68
  self->tensor.set_name(name);
  auto autograd_meta = egr::EagerUtils::autograd_meta(&(self->tensor));
69
  autograd_meta->SetPersistable(persistable);
70 71 72
  if (stop_gradient != -1) {
    autograd_meta->SetStopGradient(static_cast<bool>(stop_gradient));
  }
73 74
  if (var_type == paddle::framework::proto::VarType::LOD_TENSOR) {
    // TODO(jiabin): Maybe support LOD later
75 76 77
    std::shared_ptr<phi::DenseTensor> dense_tensor =
        std::make_shared<phi::DenseTensor>(
            phi::make_intrusive<paddle::experimental::SharedStorage>(place),
78
            phi::DenseTensorMeta(paddle::framework::TransToPhiDataType(dtype),
79
                                 ddims));
80
    self->tensor.set_impl(dense_tensor);
81 82 83 84 85
  }

  if (!autograd_meta->GetMutableGradNode()) {
    VLOG(3) << "Tensor(" << name
            << ") have not GradNode, add GradNodeAccumulation for it.";
86 87
    autograd_meta->SetGradNode(
        std::make_shared<egr::GradNodeAccumulation>(autograd_meta));
88 89 90
  }
}

91
void InitTensorWithNumpyValue(TensorObject* self, const py::object& array,
92
                              const paddle::platform::Place& place,
93
                              bool zero_copy = false) {
94
  PADDLE_ENFORCE_EQ(
95
      self->tensor.defined(), true,
96
      paddle::platform::errors::Fatal(
97 98
          "Calling InitTensorWithNumpyValue of Eager Tensor without "
          "EmptyTensorInitializer is "
99 100
          "forbidden. Please check your code and make sure you new a "
          "eager tensor before init it with NumPy."));
101 102
  phi::DenseTensor* impl_ptr =
      static_cast<phi::DenseTensor*>(self->tensor.impl().get());
103
  if (platform::is_cpu_place(place)) {
104
    SetTensorFromPyArray<platform::CPUPlace>(impl_ptr, array, place, zero_copy);
105
  } else if (platform::is_xpu_place(place)) {
106
    SetTensorFromPyArray<platform::XPUPlace>(impl_ptr, array, place, zero_copy);
107
  } else if (platform::is_gpu_place(place)) {
108
    SetTensorFromPyArray<platform::CUDAPlace>(impl_ptr, array, place,
109
                                              zero_copy);
110
  } else if (platform::is_cuda_pinned_place(place)) {
111
    SetTensorFromPyArray<platform::CUDAPinnedPlace>(impl_ptr, array, place,
112
                                                    zero_copy);
113
  } else if (platform::is_npu_place(place)) {
114
    SetTensorFromPyArray<platform::NPUPlace>(impl_ptr, array, place, zero_copy);
115 116 117 118 119 120 121
  } else {
    PADDLE_THROW(platform::errors::InvalidArgument(
        "Place should be one of "
        "CPUPlace/XPUPlace/CUDAPlace/CUDAPinnedPlace/NPUPlace"));
  }
}

122 123 124 125
void InitTensorWithTensor(TensorObject* self,
                          const paddle::experimental::Tensor& src,
                          const paddle::platform::Place& place,
                          const std::string& name) {
126 127
  self->tensor.set_name(name);
  if (place == src.inner_place()) {
128
    auto impl = std::static_pointer_cast<phi::DenseTensor>(src.impl());
129
    self->tensor.set_impl(impl);
130 131
    VLOG(4) << "Same place, do ShareDataWith";
  } else {
132
    self->tensor.set_impl(src.copy_to(place, true).impl());
133 134 135
    VLOG(4) << "Different place, do TensorCopy";
  }
  if (src.get_autograd_meta()) {
136
    egr::EagerUtils::autograd_meta(&(self->tensor))
137 138 139
        ->SetPersistable(
            egr::EagerUtils::unsafe_autograd_meta(src)->Persistable());
  } else {
140
    egr::EagerUtils::autograd_meta(&(self->tensor))->SetPersistable(false);
141 142 143
  }
}

144 145 146 147
void InitTensorWithFrameworkTensor(TensorObject* self,
                                   const framework::Tensor& src,
                                   const paddle::platform::Place& place,
                                   const std::string& name) {
148
  self->tensor.set_name(name);
149
  if (place == src.place()) {
150
    self->tensor.set_impl(std::make_shared<phi::DenseTensor>(src));
151 152
    VLOG(4) << "Same place, do ShareDataWith";
  } else {
153
    auto temp =
154
        paddle::experimental::Tensor(std::make_shared<phi::DenseTensor>(src));
155
    self->tensor.set_impl(temp.copy_to(place, true).impl());
156 157
    VLOG(4) << "Different place, do TensorCopy";
  }
158
  egr::EagerUtils::autograd_meta(&(self->tensor))->SetPersistable(false);
159
}
160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206

py::object ParsePyArray(
    std::unordered_map<std::string, PyObject*> kws_map,
    std::unordered_map<std::string, Py_ssize_t> kw_order_map, PyObject* args,
    bool flag_kwargs, Py_ssize_t args_num) {
  py::object numpy_value = py::object();

  if (kw_order_map["value"] <= args_num) {
    numpy_value = py::object(
        py::handle(PyTuple_GET_ITEM(args, kw_order_map["value"] - 1)), true);
  } else {
    if (flag_kwargs && kws_map["value"] != NULL) {
      numpy_value = py::object(py::handle(kws_map["value"]), true);
    } else {
      PADDLE_THROW(platform::errors::InvalidArgument(
          "The first expected arguments is {value: PyArray}, "
          "but could not parse the first argument {value: PyArray} "
          "successfully. "
          "Please check your input first and make sure you are on the right "
          "way."));
    }
  }
  return numpy_value;
}

paddle::platform::Place ParsePlace(
    std::unordered_map<std::string, PyObject*> kws_map,
    std::unordered_map<std::string, Py_ssize_t> kw_order_map, PyObject* args,
    bool flag_kwargs, Py_ssize_t args_num) {
  paddle::platform::Place place =
      egr::Controller::Instance().GetExpectedPlace();

  if (kw_order_map["place"] <= args_num) {
    place = CastPyArg2Place(PyTuple_GET_ITEM(args, kw_order_map["place"] - 1),
                            kw_order_map["place"] - 1);
  } else {
    if (flag_kwargs && kws_map["place"] != NULL) {
      place = CastPyArg2Place(kws_map["place"], 0);
    } else {
      // default
      return place;
    }
  }
  return place;
}

// boolean arguments: zero_copy, stop_gradient, persistable
207 208 209 210 211
int ParseBooleanArgs(std::string key,
                     std::unordered_map<std::string, PyObject*> kws_map,
                     std::unordered_map<std::string, Py_ssize_t> kw_order_map,
                     PyObject* args, bool flag_kwargs, Py_ssize_t args_num) {
  int res = -1;
212 213

  if (kw_order_map[key] <= args_num) {
214 215
    res = static_cast<int>(CastPyArg2AttrBoolean(
        PyTuple_GET_ITEM(args, kw_order_map[key] - 1), kw_order_map[key] - 1));
216 217
  } else {
    if (flag_kwargs && kws_map[key] != NULL) {
218
      res = static_cast<int>(CastPyArg2AttrBoolean(kws_map[key], 0));
219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237
    }
  }
  return res;
}

std::string ParseName(std::unordered_map<std::string, PyObject*> kws_map,
                      std::unordered_map<std::string, Py_ssize_t> kw_order_map,
                      PyObject* args, bool flag_kwargs, Py_ssize_t args_num) {
  std::string act_name = "";
  if (kw_order_map["name"] <= args_num) {
    PyObject* name_obj = PyTuple_GET_ITEM(args, kw_order_map["name"] - 1);
    if (name_obj == Py_None) {
      act_name =
          egr::Controller::Instance().GenerateUniqueName("generated_tensor");
    } else {
      act_name = CastPyArg2AttrString(name_obj, kw_order_map["name"] - 1);
    }
  } else {
    if (flag_kwargs) {
J
Jiabin Yang 已提交
238
      if ((kws_map["name"] == NULL) || (kws_map["name"] == Py_None)) {
239 240 241 242 243 244 245 246 247 248 249 250 251
        act_name =
            egr::Controller::Instance().GenerateUniqueName("generated_tensor");
      } else {
        act_name = CastPyArg2AttrString(kws_map["name"], 0);
      }
    } else {
      act_name =
          egr::Controller::Instance().GenerateUniqueName("generated_tensor");
    }
  }
  return act_name;
}

252
// initialize Tensor by PyArray(first argument is PyArray,
253
// mix args and kwargs) automatically.
254 255 256 257 258 259
void AutoInitTensorByPyArray(TensorObject* py_tensor_ptr,
                             std::unordered_map<std::string, PyObject*> kws_map,
                             PyObject* args, bool flag_kwargs,
                             Py_ssize_t args_num) {
  // The first argument of the Tensor constructor is PyArray,
  // there are 6 arguments to construct the new Tensor,
260 261 262 263 264 265 266 267 268 269 270 271 272 273
  // kw_order_map's key is every arguments of the constructor,
  // kw_order_map's value is the position of the arguments respectively.
  // If u want to update this constructor with new arguments,
  // need to update this map and to add or change related code.
  std::unordered_map<std::string, Py_ssize_t> kw_order_map{
      {"value", 1},     {"place", 2}, {"persistable", 3},
      {"zero_copy", 4}, {"name", 5},  {"stop_gradient", 6}};

  py::object numpy_value = py::object();
  paddle::platform::Place place =
      egr::Controller::Instance().GetExpectedPlace();
  bool persistable = false;
  bool zero_copy = false;
  std::string act_name = "";
274
  int stop_gradient = -1;
275 276 277 278

  numpy_value =
      ParsePyArray(kws_map, kw_order_map, args, flag_kwargs, args_num);
  place = ParsePlace(kws_map, kw_order_map, args, flag_kwargs, args_num);
279 280 281 282
  persistable = (1 == ParseBooleanArgs("persistable", kws_map, kw_order_map,
                                       args, flag_kwargs, args_num));
  zero_copy = (1 == ParseBooleanArgs("zero_copy", kws_map, kw_order_map, args,
                                     flag_kwargs, args_num));
283 284 285 286
  act_name = ParseName(kws_map, kw_order_map, args, flag_kwargs, args_num);
  stop_gradient = ParseBooleanArgs("stop_gradient", kws_map, kw_order_map, args,
                                   flag_kwargs, args_num);

287 288
  EmptyTensorInitializer(py_tensor_ptr, act_name, place, persistable,
                         stop_gradient);
289
  InitTensorWithNumpyValue(py_tensor_ptr, numpy_value, place, zero_copy);
290 291
}

292
// initialize Tensor by Tensor or framework::Tensor (mix args and
293
// kwargs) automatically.
294 295 296 297 298 299
void AutoInitTensorByTensor(TensorObject* py_tensor_ptr,
                            std::unordered_map<std::string, PyObject*> kws_map,
                            PyObject* args, bool flag_kwargs,
                            Py_ssize_t args_num,
                            bool init_by_egr_tensor = true) {
  // The first argument of the Tensor constructor is Tensor or
300
  // framework Tensor,
301
  // there are 3 arguments to construct the new Tensor,
302 303 304 305 306 307 308 309 310 311 312 313 314 315 316
  // kw_order_map's key is every arguments of the constructor,
  // kw_order_map's value is the position of the arguments respectively.
  // If u want to update this constructor with new arguments,
  // need to update this map and to add or change related code.
  std::unordered_map<std::string, Py_ssize_t> kw_order_map{
      {"value", 1}, {"place", 2}, {"name", 3}};

  paddle::platform::Place place =
      egr::Controller::Instance().GetExpectedPlace();
  std::string act_name = "";

  place = ParsePlace(kws_map, kw_order_map, args, flag_kwargs, args_num);
  act_name = ParseName(kws_map, kw_order_map, args, flag_kwargs, args_num);

  if (init_by_egr_tensor) {
317
    paddle::experimental::Tensor src_tensor;
318
    if (kw_order_map["value"] <= args_num) {
319 320 321
      src_tensor =
          CastPyArg2Tensor(PyTuple_GET_ITEM(args, kw_order_map["value"] - 1),
                           kw_order_map["value"] - 1);
322 323
    } else {
      if (flag_kwargs && kws_map["value"] != NULL) {
324
        src_tensor = CastPyArg2Tensor(kws_map["value"], 0);
325 326
      } else {
        PADDLE_THROW(platform::errors::InvalidArgument(
327 328
            "The first expected kwargs is {value: Tensor}, "
            "but could not parse the first argument {value: Tensor} "
329 330 331 332 333
            "successfully. "
            "Please check your input first and make sure you are on the right "
            "way."));
      }
    }
334
    InitTensorWithTensor(py_tensor_ptr, src_tensor, place, act_name);
335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353
  } else {
    // init by framework tensor
    framework::Tensor src_tensor;
    if (kw_order_map["value"] <= args_num) {
      src_tensor = CastPyArg2FrameworkTensor(
          PyTuple_GET_ITEM(args, kw_order_map["value"] - 1),
          kw_order_map["value"] - 1);
    } else {
      if (flag_kwargs && kws_map["value"] != NULL) {
        src_tensor = CastPyArg2FrameworkTensor(kws_map["value"], 0);
      } else {
        PADDLE_THROW(platform::errors::InvalidArgument(
            "The first expected arguments is {value: framework::Tensor}, "
            "but could not parse the first argument {value: framework::Tensor} "
            "successfully. "
            "Please check your input first and make sure you are on the right "
            "way."));
      }
    }
354
    InitTensorWithFrameworkTensor(py_tensor_ptr, src_tensor, place, act_name);
355 356 357 358
  }
}

/** We should have init function with signature:
359 360 361 362 363 364 365
   * 1.
   * def __init__ ()
   * 2.
   * def __init__ (
   * ** dtype: paddle::framework::proto::VarType::Type,
   * ** dims: vector<int>,
   * ** name: std::string,
366
   * ** type: paddle::framework::proto::VarType::LodTensor,
367
   * ** persistable: bool)
368 369 370
   * 3. (multi-place)
   * (should have at least one parameter, one parameter equals to case 4, zero
   * parameter equals to case 1)
371 372 373 374 375 376 377 378 379 380 381 382
   * def __init__ (
   * ** value: ndarray,
   * ** place: paddle::platform::Place,
   * ** persistable: bool,
   * ** zero_copy: bool,
   * ** name: std::string,
   * ** stop_gradient: bool)
   * 4.
   * def __init__ (
   * ** value: ndarray)
   * 5.
   * def __init__ (
383
   * ** tensor: Tensor)
384 385 386
   * 6. (multi-place)
   * (should have at least one parameter, one parameter equals to case 5, zero
   * parameter equals to case 1.)
387
   * def __init__ (
388
   * ** tensor: Tensor,
389 390
   * ** place: paddle::platform::Place,
   * ** name: std::string)
391 392
   * 7. (multi-place) (should have at least one parameter, one parameter similar
   * to case 5, zero parameter equals to case 1.)
393 394 395 396
   * def __init__ (
   * ** tensor: FrameworkTensor,
   * ** place: paddle::platform::Place,
   * ** name: std::string)
397
   *  **/
398
int TensorInit(PyObject* self, PyObject* args, PyObject* kwargs) {
399 400 401 402 403 404 405 406 407
  // set a flag to record use kwargs or not
  bool flag_kwargs = false;
  if (kwargs) flag_kwargs = true;

  // all kwargs
  PyObject* kw_zero_copy = NULL;
  PyObject* kw_persistable = NULL;
  PyObject* kw_stop_gradient = NULL;

408
  PyObject* kw_value = NULL;  // receive PyArray or Tensor
409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454
  PyObject* kw_place = NULL;
  PyObject* kw_name = NULL;
  PyObject* kw_dims = NULL;
  PyObject* kw_dtype = NULL;
  PyObject* kw_type = NULL;

  // the keywords argument
  static char* kwlist[] = {
      const_cast<char*>("value"),       const_cast<char*>("place"),
      const_cast<char*>("persistable"), const_cast<char*>("zero_copy"),
      const_cast<char*>("name"),        const_cast<char*>("stop_gradient"),
      const_cast<char*>("dims"),        const_cast<char*>("dtype"),
      const_cast<char*>("type"),        NULL};

  // 'O' Store a Python object (without any conversion) in a C object pointer,
  // '|' Indicates that the remaining arguments in the Python argument list are
  // optional.
  // PyArg_ParseTupleAndKeywords can Parse the parameters of a function that
  // takes both positional and keyword parameters into local variables,
  // which enhance case2, case3, case4, case5, case6, case7.
  bool flag_ = PyArg_ParseTupleAndKeywords(
      args, kwargs, "|OOOOOOOOO", kwlist, &kw_value, &kw_place, &kw_persistable,
      &kw_zero_copy, &kw_name, &kw_stop_gradient, &kw_dims, &kw_dtype,
      &kw_type);

  // helper map
  std::unordered_map<std::string, PyObject*> kws_map{
      {"value", kw_value},
      {"place", kw_place},
      {"persistable", kw_persistable},
      {"zero_copy", kw_zero_copy},
      {"name", kw_name},
      {"stop_gradient", kw_stop_gradient},
      {"dims", kw_dims},
      {"dtype", kw_dtype},
      {"type", kw_type}};

  PADDLE_ENFORCE_EQ(flag_, true,
                    paddle::platform::errors::PreconditionNotMet(
                        "Could not parse args and kwargs successfully, "
                        "please check your input first and make"
                        "sure you are on the right way. "
                        "The expected arguments as follow: ("
                        "value, place, persistable, zero_copy, "
                        "name, stop_gradient, dims, dtype, type)"));

455 456 457 458 459 460
  PADDLE_ENFORCE_NOT_NULL(
      self, paddle::platform::errors::Fatal(
                "Calling __init__ of Eager Tensor without __new__ is "
                "forbidden. Please check your code and make sure you new a "
                "eager tensor before init it."));

461
  auto py_tensor_ptr = reinterpret_cast<TensorObject*>(self);
462 463

  Py_ssize_t args_num = PyTuple_Size(args);
464 465 466 467 468
  VLOG(6) << " args_num: " << args_num;

  // args_num = 0, means that there is no position arguments.
  if (args_num == (Py_ssize_t)0) {
    if (!flag_kwargs) {
469 470
      // case 1
      VLOG(6) << "Calling case1's initializer.";
471
      EmptyTensorInitializer(
472 473 474 475
          py_tensor_ptr,
          egr::Controller::Instance().GenerateUniqueName("generated_tensor"),
          egr::Controller::Instance().GetExpectedPlace());
      return 0;
476 477 478 479
    } else {  // no position args, all arguments are kwargs
      if (kw_value != NULL) {
        if (pybind11::detail::npy_api::get().PyArray_Check_(kw_value)) {
          VLOG(6) << "Calling case3's or case4's initializer";
480 481
          AutoInitTensorByPyArray(py_tensor_ptr, kws_map, args, flag_kwargs,
                                  args_num);
482
          return 0;
483 484
        } else if (PyObject_IsInstance(
                       kw_value, reinterpret_cast<PyObject*>(p_tensor_type))) {
485
          VLOG(6) << "Calling case5's or case6's initializer";
486 487
          AutoInitTensorByTensor(py_tensor_ptr, kws_map, args, flag_kwargs,
                                 args_num);
488 489 490 491 492
          return 0;
        } else if (PyObject_IsInstance(kw_value,
                                       reinterpret_cast<PyObject*>(
                                           g_framework_tensor_pytype))) {
          VLOG(6) << "Calling case7's initializer.";
493 494 495
          AutoInitTensorByTensor(py_tensor_ptr, kws_map, args, flag_kwargs,
                                 args_num,
                                 /* false means not init by egr tensor*/ false);
496
          return 0;
497
        } else {
498 499 500
          PADDLE_THROW(platform::errors::InvalidArgument(
              "Could not parse the first keyword argument successfully, "
              "the first keyword argument is value, but it should be PyArray "
501
              "or Tensor or framework::Tensor. "
502 503
              "Please check your input first and make sure you are on the "
              "right way."));
504
        }
505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541
      } else if (kw_dtype != NULL &&
                 PyObject_IsInstance(
                     kw_dtype, reinterpret_cast<PyObject*>(g_vartype_pytype))) {
        VLOG(6) << "Calling case2's initializer";

        PADDLE_ENFORCE_NOT_NULL(
            kw_dims,
            paddle::platform::errors::InvalidArgument(
                "Calling __init__ of Eager Tensor with NULL dims is "
                "forbidden. Please check your code and make sure you new a "
                "dims before calling this constructor."));

        PADDLE_ENFORCE_NOT_NULL(
            kw_name,
            paddle::platform::errors::InvalidArgument(
                "Calling __init__ of Eager Tensor with NULL name is "
                "forbidden. Please check your code and make sure you new a "
                "name before calling this constructor."));

        PADDLE_ENFORCE_NOT_NULL(
            kw_dtype,
            paddle::platform::errors::InvalidArgument(
                "Calling __init__ of Eager Tensor with NULL dtype is "
                "forbidden. Please check your code and make sure you new a "
                "dtype before calling this constructor."));

        PADDLE_ENFORCE_NOT_NULL(
            kw_persistable,
            paddle::platform::errors::InvalidArgument(
                "Calling __init__ of Eager Tensor with NULL persistable is "
                "forbidden. Please check your code and make sure you new a "
                "persistable before calling this constructor."));

        paddle::framework::proto::VarType::Type dtype =
            CastPyArg2ProtoType(kw_dtype, 0);
        std::vector<int> dims = CastPyArg2VectorOfInt(kw_dims, 0);

542
        std::string act_name = "";
543
        if (kw_name == Py_None) {
544 545 546
          act_name = egr::Controller::Instance().GenerateUniqueName(
              "generated_tensor");
        } else {
547
          act_name = CastPyArg2AttrString(kw_name, 0);
548
        }
549 550 551 552 553

        paddle::framework::proto::VarType::Type var_type =
            CastPyArg2ProtoType(kw_type, 0);
        bool persistable = CastPyArg2AttrBoolean(kw_persistable, 0);

554 555 556
        EmptyTensorInitializer(py_tensor_ptr, act_name,
                               egr::Controller::Instance().GetExpectedPlace(),
                               persistable,
557
                               /* stop_gradient */ -1, dtype, dims, var_type);
558

559
        return 0;
560 561
      } else {
        PADDLE_THROW(platform::errors::InvalidArgument(
562 563
            "We not only support construct Tensor from numpy value "
            "or tensor(Tensor or framework::Tensor) "
564
            "with python kwargs by this initializer, "
565
            "but also even support dtype to init a empty Tensor. "
566 567
            "Please check your input first and make sure you call the existed "
            "constructor."));
568
      }
569 570 571 572 573 574 575
    }
  } else if (args_num == (Py_ssize_t)1 || args_num == (Py_ssize_t)2 ||
             args_num == (Py_ssize_t)3) {
    // 1 to 3 position args, remainting arguments are kwargs
    PyObject* arg0_ptr = PyTuple_GET_ITEM(args, 0);
    if (pybind11::detail::npy_api::get().PyArray_Check_(arg0_ptr)) {
      VLOG(6) << "Calling case3's or case4's initializer.";
576 577
      AutoInitTensorByPyArray(py_tensor_ptr, kws_map, args, flag_kwargs,
                              args_num);
578
      return 0;
579 580
    } else if (PyObject_IsInstance(
                   arg0_ptr, reinterpret_cast<PyObject*>(p_tensor_type))) {
581
      VLOG(6) << "Calling case5's or case6's initializer.";
582 583
      AutoInitTensorByTensor(py_tensor_ptr, kws_map, args, flag_kwargs,
                             args_num);
584 585 586 587
      return 0;
    } else if (PyObject_IsInstance(arg0_ptr, reinterpret_cast<PyObject*>(
                                                 g_framework_tensor_pytype))) {
      VLOG(6) << "Calling case7's initializer.";
588 589 590
      AutoInitTensorByTensor(py_tensor_ptr, kws_map, args, flag_kwargs,
                             args_num,
                             /* false means not init by egr tensor*/ false);
591 592 593
      return 0;
    } else {
      PADDLE_THROW(platform::errors::InvalidArgument(
594 595
          "We support construct Tensor from numpy value "
          "or tensor(Tensor or framework::Tensor) "
596
          "with python args and kwargs by this initializer, "
597
          "but the first argument should be PyArray or Tensor or "
598 599 600
          "framework::Tensor. "
          "Please check your input first and make sure you call the existed "
          "constructor."));
601
    }
602 603 604 605 606
  } else if (args_num == (Py_ssize_t)4) {
    // 4 position args, remainting arguments are kwargs
    PyObject* arg0_ptr = PyTuple_GET_ITEM(args, 0);
    if (pybind11::detail::npy_api::get().PyArray_Check_(arg0_ptr)) {
      VLOG(6) << "Calling case3's or case4's initializer.";
607 608
      AutoInitTensorByPyArray(py_tensor_ptr, kws_map, args, flag_kwargs,
                              args_num);
609
      return 0;
610 611 612 613 614 615 616
    } else {
      PADDLE_THROW(platform::errors::InvalidArgument(
          "Incompatible constructor arguments, "
          "there are 4 position args and remainting arguments arg kwargs,"
          "but the first position args should be PyArray. "
          "Please check your code and make sure the first position args is "
          "PyArray."));
617
    }
618 619
  } else if (args_num == (Py_ssize_t)5) {
    if (!flag_kwargs) {
620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638
      PyObject* arg0_ptr = PyTuple_GET_ITEM(args, 0);
      if (PyObject_IsInstance(arg0_ptr,
                              reinterpret_cast<PyObject*>(g_vartype_pytype))) {
        VLOG(6) << "Calling case2's initializer.";
        paddle::framework::proto::VarType::Type dtype =
            CastPyArg2ProtoType(PyTuple_GET_ITEM(args, 0), 0);
        std::vector<int> dims =
            CastPyArg2VectorOfInt(PyTuple_GET_ITEM(args, 1), 1);
        std::string act_name = "";
        PyObject* name_obj = PyTuple_GET_ITEM(args, 2);
        if (name_obj == Py_None) {
          act_name = egr::Controller::Instance().GenerateUniqueName(
              "generated_tensor");
        } else {
          act_name = CastPyArg2AttrString(PyTuple_GET_ITEM(args, 2), 2);
        }
        paddle::framework::proto::VarType::Type var_type =
            CastPyArg2ProtoType(PyTuple_GET_ITEM(args, 3), 3);
        bool persistable = CastPyArg2AttrBoolean(PyTuple_GET_ITEM(args, 4), 4);
639 640
        EmptyTensorInitializer(py_tensor_ptr, act_name,
                               egr::Controller::Instance().GetExpectedPlace(),
641
                               persistable, -1, dtype, dims, var_type);
642
        return 0;
643 644
      } else if (pybind11::detail::npy_api::get().PyArray_Check_(arg0_ptr)) {
        VLOG(6) << "Calling case3's initializer.";
645 646
        AutoInitTensorByPyArray(py_tensor_ptr, kws_map, args, flag_kwargs,
                                args_num);
647 648 649
        return 0;
      } else {
        PADDLE_THROW(platform::errors::InvalidArgument(
650 651 652 653 654
            "Incompatible constructor arguments, "
            "there are only 5 position args,"
            "but the first position args should be PyArray or dtype. "
            "Please check your code and make sure you call the existed "
            "constructor."));
655
      }
656
    } else {  // five position args, remainting arguments are kwargs
657
      PyObject* arg0_ptr = PyTuple_GET_ITEM(args, 0);
658 659
      if (pybind11::detail::npy_api::get().PyArray_Check_(arg0_ptr)) {
        VLOG(6) << "Calling case3's or case4's initializer";
660 661
        AutoInitTensorByPyArray(py_tensor_ptr, kws_map, args, flag_kwargs,
                                args_num);
662
        return 0;
663
      } else {
664 665 666 667 668 669
        PADDLE_THROW(platform::errors::InvalidArgument(
            "Incompatible constructor arguments, "
            "there are 5 position args and remainting arguments are kwargs,"
            "but the first position args should be PyArray. "
            "Please check your code and make sure the first position args is "
            "PyArray."));
670 671
      }
    }
672 673 674 675
  } else if (args_num == (Py_ssize_t)6) {
    if (!flag_kwargs) {
      // case 3
      VLOG(6) << "Calling case3's initializer.";
676 677
      AutoInitTensorByPyArray(py_tensor_ptr, kws_map, args, flag_kwargs,
                              args_num);
678 679 680 681 682 683 684 685
      return 0;
    } else {  // six position args, remainting arguments are kwargs, but this
              // is not a right way
      PADDLE_THROW(platform::errors::InvalidArgument(
          "Incompatible constructor arguments, "
          "there are 6 position args and the remainting arguments are kwargs. "
          "Please check your code and make sure the first position args is "
          "PyArray."));
686
    }
687 688 689 690
  } else {
    PADDLE_THROW(platform::errors::Fatal(
        "Can't not find expected num of args, please check your call, and "
        "make sure u call the existed constructor."));
691
  }
692 693

  return 1;
694 695
}

696
static void TensorDealloc(TensorObject* self) {
697
  self->tensor.~Tensor();
698 699 700 701 702 703 704
  Py_TYPE(self)->tp_free(reinterpret_cast<PyObject*>(self));
}

extern struct PyGetSetDef variable_properties[];

extern PyMethodDef variable_methods[];

W
wanghuancoder 已提交
705 706 707 708
PyNumberMethods number_methods;
PySequenceMethods sequence_methods;
PyMappingMethods mapping_methods;

709 710 711
void BindEager(pybind11::module* module) {
  auto m = module->def_submodule("eager");

712
  auto heap_type = reinterpret_cast<PyHeapTypeObject*>(
713
      PyType_Type.tp_alloc(&PyType_Type, 0));
714 715
  heap_type->ht_name = ToPyObject("Tensor");
  heap_type->ht_qualname = ToPyObject("Tensor");
716
  auto type = &heap_type->ht_type;
717
  type->tp_name = "Tensor";
718
  type->tp_basicsize = sizeof(TensorObject);
719
  type->tp_dealloc = (destructor)TensorDealloc;
720 721 722 723 724
  type->tp_as_number = &number_methods;
  type->tp_as_sequence = &sequence_methods;
  type->tp_as_mapping = &mapping_methods;
  type->tp_methods = variable_methods;
  type->tp_getset = variable_properties;
725 726
  type->tp_init = TensorInit;
  type->tp_new = TensorNew;
727 728
  Py_INCREF(&PyBaseObject_Type);
  type->tp_base = reinterpret_cast<PyTypeObject*>(&PyBaseObject_Type);
729 730 731 732 733
  type->tp_flags |=
      Py_TPFLAGS_DEFAULT | Py_TPFLAGS_BASETYPE | Py_TPFLAGS_HEAPTYPE;
#if PY_VERSION_HEX >= 0x03050000
  type->tp_as_async = &heap_type->as_async;
#endif
734
  p_tensor_type = type;
735 736

  if (PyType_Ready(type) < 0) {
737
    PADDLE_THROW(platform::errors::Fatal(
738
        "Init Paddle error in BindEager(PyType_Ready)."));
739 740 741
    return;
  }

742
  Py_INCREF(type);
743 744
  if (PyModule_AddObject(m.ptr(), "Tensor", reinterpret_cast<PyObject*>(type)) <
      0) {
745
    Py_DECREF(type);
746 747
    Py_DECREF(m.ptr());
    PADDLE_THROW(platform::errors::Fatal(
748
        "Init Paddle error in BindEager(PyModule_AddObject)."));
749 750 751 752
    return;
  }

  BindFunctions(m.ptr());
W
wanghuancoder 已提交
753
  BindEagerPyLayer(m.ptr());
754
  BindEagerOpFunctions(&m);
755 756 757 758
}

}  // namespace pybind
}  // namespace paddle