eager.cc 30.9 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
/* Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved.
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
// disable numpy compile error
#include <Python.h>

#include <string>
#include <vector>

17
#include "paddle/fluid/eager/accumulation/accumulation_node.h"
18 19 20
#include "paddle/fluid/eager/api/all.h"
#include "paddle/fluid/eager/autograd_meta.h"
#include "paddle/fluid/eager/utils.h"
21
#include "paddle/fluid/framework/convert_utils.h"
22 23 24 25 26
#include "paddle/fluid/memory/allocation/allocator.h"
#include "paddle/fluid/memory/memcpy.h"
#include "paddle/fluid/platform/enforce.h"
#include "paddle/fluid/pybind/eager.h"
#include "paddle/fluid/pybind/eager_utils.h"
27 28 29
#include "paddle/phi/common/data_type.h"
#include "paddle/phi/core/compat/convert_utils.h"
#include "paddle/phi/core/dense_tensor.h"
30
#include "pybind11/detail/internals.h"
31 32
#include "pybind11/numpy.h"
#include "pybind11/pybind11.h"
33
#pragma GCC diagnostic ignored "-Wmissing-field-initializers"
34
#include "paddle/fluid/framework/python_headers.h"
35
#include "paddle/fluid/pybind/eager_op_function_impl.h"
36
#include "paddle/fluid/pybind/tensor_py.h"
37 38
#include "paddle/phi/api/lib/utils/storage.h"
#include "paddle/phi/api/lib/utils/tensor_utils.h"
39 40 41 42 43
namespace paddle {
namespace pybind {

namespace py = ::pybind11;

44
PyTypeObject* p_tensor_type;
45
extern PyTypeObject* g_vartype_pytype;
46
extern PyTypeObject* g_framework_tensor_pytype;
47

48
PyObject* TensorNew(PyTypeObject* type, PyObject* args, PyObject* kwargs) {
49 50
  PyObject* obj = type->tp_alloc(type, 0);
  if (obj) {
51 52
    auto v = reinterpret_cast<TensorObject*>(obj);
    new (&(v->tensor)) paddle::experimental::Tensor();
53 54 55 56
  }
  return obj;
}

57
// TODO(jiabin): Overload this once we need more constructor in Python
58 59
void EmptyTensorInitializer(TensorObject* self, const std::string& name,
                            const paddle::platform::Place& place,
60
                            bool persistable = false, int stop_gradient = -1,
61 62 63 64 65
                            framework::proto::VarType::Type dtype =
                                paddle::framework::proto::VarType::FP32,
                            const std::vector<int>& dims = {},
                            framework::proto::VarType::Type var_type =
                                paddle::framework::proto::VarType::LOD_TENSOR) {
66
  auto ddims = phi::make_ddim(dims);
67 68
  self->tensor.set_name(name);
  auto autograd_meta = egr::EagerUtils::autograd_meta(&(self->tensor));
69
  autograd_meta->SetPersistable(persistable);
70 71 72
  if (stop_gradient != -1) {
    autograd_meta->SetStopGradient(static_cast<bool>(stop_gradient));
  }
73 74
  if (var_type == paddle::framework::proto::VarType::LOD_TENSOR) {
    // TODO(jiabin): Maybe support LOD later
75 76 77 78 79
    std::shared_ptr<phi::DenseTensor> dense_tensor =
        std::make_shared<phi::DenseTensor>(
            phi::make_intrusive<paddle::experimental::SharedStorage>(place),
            phi::DenseTensorMeta(paddle::framework::TransToPtenDataType(dtype),
                                 ddims));
80 81 82
    if (phi::product(ddims) > 0) {
      dense_tensor->mutable_data(place);
    }
83
    self->tensor.set_impl(dense_tensor);
84 85 86 87 88 89
  }

  if (!autograd_meta->GetMutableGradNode()) {
    VLOG(3) << "Tensor(" << name
            << ") have not GradNode, add GradNodeAccumulation for it.";
    autograd_meta->SetGradNode(std::make_shared<egr::GradNodeAccumulation>());
90 91 92
  }
}

93 94
void InitTensorWithNumpyValue(TensorObject* self, const py::object& array,
                              bool zero_copy = false) {
95
  PADDLE_ENFORCE_EQ(
96
      self->tensor.defined(), true,
97
      paddle::platform::errors::Fatal(
98 99
          "Calling InitTensorWithNumpyValue of Eager Tensor without "
          "EmptyTensorInitializer is "
100 101
          "forbidden. Please check your code and make sure you new a "
          "eager tensor before init it with NumPy."));
102 103
  phi::DenseTensor* impl_ptr =
      static_cast<phi::DenseTensor*>(self->tensor.impl().get());
104 105
  paddle::platform::Place place = impl_ptr->place();
  if (platform::is_cpu_place(place)) {
106
    SetTensorFromPyArray<platform::CPUPlace>(impl_ptr, array, place, zero_copy);
107
  } else if (platform::is_xpu_place(place)) {
108
    SetTensorFromPyArray<platform::XPUPlace>(impl_ptr, array, place, zero_copy);
109
  } else if (platform::is_gpu_place(place)) {
110
    SetTensorFromPyArray<platform::CUDAPlace>(impl_ptr, array, place,
111
                                              zero_copy);
112
  } else if (platform::is_cuda_pinned_place(place)) {
113
    SetTensorFromPyArray<platform::CUDAPinnedPlace>(impl_ptr, array, place,
114
                                                    zero_copy);
115
  } else if (platform::is_npu_place(place)) {
116
    SetTensorFromPyArray<platform::NPUPlace>(impl_ptr, array, place, zero_copy);
117 118 119 120 121 122 123
  } else {
    PADDLE_THROW(platform::errors::InvalidArgument(
        "Place should be one of "
        "CPUPlace/XPUPlace/CUDAPlace/CUDAPinnedPlace/NPUPlace"));
  }
}

124 125 126 127
void InitTensorWithTensor(TensorObject* self,
                          const paddle::experimental::Tensor& src,
                          const paddle::platform::Place& place,
                          const std::string& name) {
128 129
  self->tensor.set_name(name);
  if (place == src.inner_place()) {
130
    auto impl = std::static_pointer_cast<phi::DenseTensor>(src.impl());
131
    self->tensor.set_impl(impl);
132 133
    VLOG(4) << "Same place, do ShareDataWith";
  } else {
134
    self->tensor.set_impl(
135
        src.copy_to(phi::TransToPtenBackend(place), true).impl());
136 137 138
    VLOG(4) << "Different place, do TensorCopy";
  }
  if (src.get_autograd_meta()) {
139
    egr::EagerUtils::autograd_meta(&(self->tensor))
140 141 142
        ->SetPersistable(
            egr::EagerUtils::unsafe_autograd_meta(src)->Persistable());
  } else {
143
    egr::EagerUtils::autograd_meta(&(self->tensor))->SetPersistable(false);
144 145 146
  }
}

147 148 149 150
void InitTensorWithFrameworkTensor(TensorObject* self,
                                   const framework::Tensor& src,
                                   const paddle::platform::Place& place,
                                   const std::string& name) {
151
  self->tensor.set_name(name);
152
  if (place == src.place()) {
153
    self->tensor.set_impl(std::make_shared<phi::DenseTensor>(src));
154 155
    VLOG(4) << "Same place, do ShareDataWith";
  } else {
156
    auto temp =
157
        paddle::experimental::Tensor(std::make_shared<phi::DenseTensor>(src));
158
    self->tensor.set_impl(
159
        temp.copy_to(phi::TransToPtenBackend(place), true).impl());
160 161
    VLOG(4) << "Different place, do TensorCopy";
  }
162
  egr::EagerUtils::autograd_meta(&(self->tensor))->SetPersistable(false);
163
}
164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210

py::object ParsePyArray(
    std::unordered_map<std::string, PyObject*> kws_map,
    std::unordered_map<std::string, Py_ssize_t> kw_order_map, PyObject* args,
    bool flag_kwargs, Py_ssize_t args_num) {
  py::object numpy_value = py::object();

  if (kw_order_map["value"] <= args_num) {
    numpy_value = py::object(
        py::handle(PyTuple_GET_ITEM(args, kw_order_map["value"] - 1)), true);
  } else {
    if (flag_kwargs && kws_map["value"] != NULL) {
      numpy_value = py::object(py::handle(kws_map["value"]), true);
    } else {
      PADDLE_THROW(platform::errors::InvalidArgument(
          "The first expected arguments is {value: PyArray}, "
          "but could not parse the first argument {value: PyArray} "
          "successfully. "
          "Please check your input first and make sure you are on the right "
          "way."));
    }
  }
  return numpy_value;
}

paddle::platform::Place ParsePlace(
    std::unordered_map<std::string, PyObject*> kws_map,
    std::unordered_map<std::string, Py_ssize_t> kw_order_map, PyObject* args,
    bool flag_kwargs, Py_ssize_t args_num) {
  paddle::platform::Place place =
      egr::Controller::Instance().GetExpectedPlace();

  if (kw_order_map["place"] <= args_num) {
    place = CastPyArg2Place(PyTuple_GET_ITEM(args, kw_order_map["place"] - 1),
                            kw_order_map["place"] - 1);
  } else {
    if (flag_kwargs && kws_map["place"] != NULL) {
      place = CastPyArg2Place(kws_map["place"], 0);
    } else {
      // default
      return place;
    }
  }
  return place;
}

// boolean arguments: zero_copy, stop_gradient, persistable
211 212 213 214 215
int ParseBooleanArgs(std::string key,
                     std::unordered_map<std::string, PyObject*> kws_map,
                     std::unordered_map<std::string, Py_ssize_t> kw_order_map,
                     PyObject* args, bool flag_kwargs, Py_ssize_t args_num) {
  int res = -1;
216 217

  if (kw_order_map[key] <= args_num) {
218 219
    res = static_cast<int>(CastPyArg2AttrBoolean(
        PyTuple_GET_ITEM(args, kw_order_map[key] - 1), kw_order_map[key] - 1));
220 221
  } else {
    if (flag_kwargs && kws_map[key] != NULL) {
222
      res = static_cast<int>(CastPyArg2AttrBoolean(kws_map[key], 0));
223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255
    }
  }
  return res;
}

std::string ParseName(std::unordered_map<std::string, PyObject*> kws_map,
                      std::unordered_map<std::string, Py_ssize_t> kw_order_map,
                      PyObject* args, bool flag_kwargs, Py_ssize_t args_num) {
  std::string act_name = "";
  if (kw_order_map["name"] <= args_num) {
    PyObject* name_obj = PyTuple_GET_ITEM(args, kw_order_map["name"] - 1);
    if (name_obj == Py_None) {
      act_name =
          egr::Controller::Instance().GenerateUniqueName("generated_tensor");
    } else {
      act_name = CastPyArg2AttrString(name_obj, kw_order_map["name"] - 1);
    }
  } else {
    if (flag_kwargs) {
      if (kws_map["name"] == NULL) {
        act_name =
            egr::Controller::Instance().GenerateUniqueName("generated_tensor");
      } else {
        act_name = CastPyArg2AttrString(kws_map["name"], 0);
      }
    } else {
      act_name =
          egr::Controller::Instance().GenerateUniqueName("generated_tensor");
    }
  }
  return act_name;
}

256
// initialize Tensor by PyArray(first argument is PyArray,
257
// mix args and kwargs) automatically.
258 259 260 261 262 263
void AutoInitTensorByPyArray(TensorObject* py_tensor_ptr,
                             std::unordered_map<std::string, PyObject*> kws_map,
                             PyObject* args, bool flag_kwargs,
                             Py_ssize_t args_num) {
  // The first argument of the Tensor constructor is PyArray,
  // there are 6 arguments to construct the new Tensor,
264 265 266 267 268 269 270 271 272 273 274 275 276 277
  // kw_order_map's key is every arguments of the constructor,
  // kw_order_map's value is the position of the arguments respectively.
  // If u want to update this constructor with new arguments,
  // need to update this map and to add or change related code.
  std::unordered_map<std::string, Py_ssize_t> kw_order_map{
      {"value", 1},     {"place", 2}, {"persistable", 3},
      {"zero_copy", 4}, {"name", 5},  {"stop_gradient", 6}};

  py::object numpy_value = py::object();
  paddle::platform::Place place =
      egr::Controller::Instance().GetExpectedPlace();
  bool persistable = false;
  bool zero_copy = false;
  std::string act_name = "";
278
  int stop_gradient = -1;
279 280 281 282

  numpy_value =
      ParsePyArray(kws_map, kw_order_map, args, flag_kwargs, args_num);
  place = ParsePlace(kws_map, kw_order_map, args, flag_kwargs, args_num);
283 284 285 286
  persistable = (1 == ParseBooleanArgs("persistable", kws_map, kw_order_map,
                                       args, flag_kwargs, args_num));
  zero_copy = (1 == ParseBooleanArgs("zero_copy", kws_map, kw_order_map, args,
                                     flag_kwargs, args_num));
287 288 289 290
  act_name = ParseName(kws_map, kw_order_map, args, flag_kwargs, args_num);
  stop_gradient = ParseBooleanArgs("stop_gradient", kws_map, kw_order_map, args,
                                   flag_kwargs, args_num);

291 292 293
  EmptyTensorInitializer(py_tensor_ptr, act_name, place, persistable,
                         stop_gradient);
  InitTensorWithNumpyValue(py_tensor_ptr, numpy_value, zero_copy);
294 295
}

296
// initialize Tensor by Tensor or framework::Tensor (mix args and
297
// kwargs) automatically.
298 299 300 301 302 303
void AutoInitTensorByTensor(TensorObject* py_tensor_ptr,
                            std::unordered_map<std::string, PyObject*> kws_map,
                            PyObject* args, bool flag_kwargs,
                            Py_ssize_t args_num,
                            bool init_by_egr_tensor = true) {
  // The first argument of the Tensor constructor is Tensor or
304
  // framework Tensor,
305
  // there are 3 arguments to construct the new Tensor,
306 307 308 309 310 311 312 313 314 315 316 317 318 319 320
  // kw_order_map's key is every arguments of the constructor,
  // kw_order_map's value is the position of the arguments respectively.
  // If u want to update this constructor with new arguments,
  // need to update this map and to add or change related code.
  std::unordered_map<std::string, Py_ssize_t> kw_order_map{
      {"value", 1}, {"place", 2}, {"name", 3}};

  paddle::platform::Place place =
      egr::Controller::Instance().GetExpectedPlace();
  std::string act_name = "";

  place = ParsePlace(kws_map, kw_order_map, args, flag_kwargs, args_num);
  act_name = ParseName(kws_map, kw_order_map, args, flag_kwargs, args_num);

  if (init_by_egr_tensor) {
321
    paddle::experimental::Tensor src_tensor;
322
    if (kw_order_map["value"] <= args_num) {
323 324 325
      src_tensor =
          CastPyArg2Tensor(PyTuple_GET_ITEM(args, kw_order_map["value"] - 1),
                           kw_order_map["value"] - 1);
326 327
    } else {
      if (flag_kwargs && kws_map["value"] != NULL) {
328
        src_tensor = CastPyArg2Tensor(kws_map["value"], 0);
329 330
      } else {
        PADDLE_THROW(platform::errors::InvalidArgument(
331 332
            "The first expected kwargs is {value: Tensor}, "
            "but could not parse the first argument {value: Tensor} "
333 334 335 336 337
            "successfully. "
            "Please check your input first and make sure you are on the right "
            "way."));
      }
    }
338
    InitTensorWithTensor(py_tensor_ptr, src_tensor, place, act_name);
339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357
  } else {
    // init by framework tensor
    framework::Tensor src_tensor;
    if (kw_order_map["value"] <= args_num) {
      src_tensor = CastPyArg2FrameworkTensor(
          PyTuple_GET_ITEM(args, kw_order_map["value"] - 1),
          kw_order_map["value"] - 1);
    } else {
      if (flag_kwargs && kws_map["value"] != NULL) {
        src_tensor = CastPyArg2FrameworkTensor(kws_map["value"], 0);
      } else {
        PADDLE_THROW(platform::errors::InvalidArgument(
            "The first expected arguments is {value: framework::Tensor}, "
            "but could not parse the first argument {value: framework::Tensor} "
            "successfully. "
            "Please check your input first and make sure you are on the right "
            "way."));
      }
    }
358
    InitTensorWithFrameworkTensor(py_tensor_ptr, src_tensor, place, act_name);
359 360 361 362
  }
}

/** We should have init function with signature:
363 364 365 366 367 368 369
   * 1.
   * def __init__ ()
   * 2.
   * def __init__ (
   * ** dtype: paddle::framework::proto::VarType::Type,
   * ** dims: vector<int>,
   * ** name: std::string,
370
   * ** type: paddle::framework::proto::VarType::LodTensor,
371
   * ** persistable: bool)
372 373 374
   * 3. (multi-place)
   * (should have at least one parameter, one parameter equals to case 4, zero
   * parameter equals to case 1)
375 376 377 378 379 380 381 382 383 384 385 386
   * def __init__ (
   * ** value: ndarray,
   * ** place: paddle::platform::Place,
   * ** persistable: bool,
   * ** zero_copy: bool,
   * ** name: std::string,
   * ** stop_gradient: bool)
   * 4.
   * def __init__ (
   * ** value: ndarray)
   * 5.
   * def __init__ (
387
   * ** tensor: Tensor)
388 389 390
   * 6. (multi-place)
   * (should have at least one parameter, one parameter equals to case 5, zero
   * parameter equals to case 1.)
391
   * def __init__ (
392
   * ** tensor: Tensor,
393 394
   * ** place: paddle::platform::Place,
   * ** name: std::string)
395 396
   * 7. (multi-place) (should have at least one parameter, one parameter similar
   * to case 5, zero parameter equals to case 1.)
397 398 399 400
   * def __init__ (
   * ** tensor: FrameworkTensor,
   * ** place: paddle::platform::Place,
   * ** name: std::string)
401
   *  **/
402
int TensorInit(PyObject* self, PyObject* args, PyObject* kwargs) {
403 404 405 406 407 408 409 410 411
  // set a flag to record use kwargs or not
  bool flag_kwargs = false;
  if (kwargs) flag_kwargs = true;

  // all kwargs
  PyObject* kw_zero_copy = NULL;
  PyObject* kw_persistable = NULL;
  PyObject* kw_stop_gradient = NULL;

412
  PyObject* kw_value = NULL;  // receive PyArray or Tensor
413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458
  PyObject* kw_place = NULL;
  PyObject* kw_name = NULL;
  PyObject* kw_dims = NULL;
  PyObject* kw_dtype = NULL;
  PyObject* kw_type = NULL;

  // the keywords argument
  static char* kwlist[] = {
      const_cast<char*>("value"),       const_cast<char*>("place"),
      const_cast<char*>("persistable"), const_cast<char*>("zero_copy"),
      const_cast<char*>("name"),        const_cast<char*>("stop_gradient"),
      const_cast<char*>("dims"),        const_cast<char*>("dtype"),
      const_cast<char*>("type"),        NULL};

  // 'O' Store a Python object (without any conversion) in a C object pointer,
  // '|' Indicates that the remaining arguments in the Python argument list are
  // optional.
  // PyArg_ParseTupleAndKeywords can Parse the parameters of a function that
  // takes both positional and keyword parameters into local variables,
  // which enhance case2, case3, case4, case5, case6, case7.
  bool flag_ = PyArg_ParseTupleAndKeywords(
      args, kwargs, "|OOOOOOOOO", kwlist, &kw_value, &kw_place, &kw_persistable,
      &kw_zero_copy, &kw_name, &kw_stop_gradient, &kw_dims, &kw_dtype,
      &kw_type);

  // helper map
  std::unordered_map<std::string, PyObject*> kws_map{
      {"value", kw_value},
      {"place", kw_place},
      {"persistable", kw_persistable},
      {"zero_copy", kw_zero_copy},
      {"name", kw_name},
      {"stop_gradient", kw_stop_gradient},
      {"dims", kw_dims},
      {"dtype", kw_dtype},
      {"type", kw_type}};

  PADDLE_ENFORCE_EQ(flag_, true,
                    paddle::platform::errors::PreconditionNotMet(
                        "Could not parse args and kwargs successfully, "
                        "please check your input first and make"
                        "sure you are on the right way. "
                        "The expected arguments as follow: ("
                        "value, place, persistable, zero_copy, "
                        "name, stop_gradient, dims, dtype, type)"));

459 460 461 462 463 464
  PADDLE_ENFORCE_NOT_NULL(
      self, paddle::platform::errors::Fatal(
                "Calling __init__ of Eager Tensor without __new__ is "
                "forbidden. Please check your code and make sure you new a "
                "eager tensor before init it."));

465
  auto py_tensor_ptr = reinterpret_cast<TensorObject*>(self);
466 467

  Py_ssize_t args_num = PyTuple_Size(args);
468 469 470 471 472
  VLOG(6) << " args_num: " << args_num;

  // args_num = 0, means that there is no position arguments.
  if (args_num == (Py_ssize_t)0) {
    if (!flag_kwargs) {
473 474
      // case 1
      VLOG(6) << "Calling case1's initializer.";
475
      EmptyTensorInitializer(
476 477 478 479
          py_tensor_ptr,
          egr::Controller::Instance().GenerateUniqueName("generated_tensor"),
          egr::Controller::Instance().GetExpectedPlace());
      return 0;
480 481 482 483
    } else {  // no position args, all arguments are kwargs
      if (kw_value != NULL) {
        if (pybind11::detail::npy_api::get().PyArray_Check_(kw_value)) {
          VLOG(6) << "Calling case3's or case4's initializer";
484 485
          AutoInitTensorByPyArray(py_tensor_ptr, kws_map, args, flag_kwargs,
                                  args_num);
486
          return 0;
487 488
        } else if (PyObject_IsInstance(
                       kw_value, reinterpret_cast<PyObject*>(p_tensor_type))) {
489
          VLOG(6) << "Calling case5's or case6's initializer";
490 491
          AutoInitTensorByTensor(py_tensor_ptr, kws_map, args, flag_kwargs,
                                 args_num);
492 493 494 495 496
          return 0;
        } else if (PyObject_IsInstance(kw_value,
                                       reinterpret_cast<PyObject*>(
                                           g_framework_tensor_pytype))) {
          VLOG(6) << "Calling case7's initializer.";
497 498 499
          AutoInitTensorByTensor(py_tensor_ptr, kws_map, args, flag_kwargs,
                                 args_num,
                                 /* false means not init by egr tensor*/ false);
500
          return 0;
501
        } else {
502 503 504
          PADDLE_THROW(platform::errors::InvalidArgument(
              "Could not parse the first keyword argument successfully, "
              "the first keyword argument is value, but it should be PyArray "
505
              "or Tensor or framework::Tensor. "
506 507
              "Please check your input first and make sure you are on the "
              "right way."));
508
        }
509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545
      } else if (kw_dtype != NULL &&
                 PyObject_IsInstance(
                     kw_dtype, reinterpret_cast<PyObject*>(g_vartype_pytype))) {
        VLOG(6) << "Calling case2's initializer";

        PADDLE_ENFORCE_NOT_NULL(
            kw_dims,
            paddle::platform::errors::InvalidArgument(
                "Calling __init__ of Eager Tensor with NULL dims is "
                "forbidden. Please check your code and make sure you new a "
                "dims before calling this constructor."));

        PADDLE_ENFORCE_NOT_NULL(
            kw_name,
            paddle::platform::errors::InvalidArgument(
                "Calling __init__ of Eager Tensor with NULL name is "
                "forbidden. Please check your code and make sure you new a "
                "name before calling this constructor."));

        PADDLE_ENFORCE_NOT_NULL(
            kw_dtype,
            paddle::platform::errors::InvalidArgument(
                "Calling __init__ of Eager Tensor with NULL dtype is "
                "forbidden. Please check your code and make sure you new a "
                "dtype before calling this constructor."));

        PADDLE_ENFORCE_NOT_NULL(
            kw_persistable,
            paddle::platform::errors::InvalidArgument(
                "Calling __init__ of Eager Tensor with NULL persistable is "
                "forbidden. Please check your code and make sure you new a "
                "persistable before calling this constructor."));

        paddle::framework::proto::VarType::Type dtype =
            CastPyArg2ProtoType(kw_dtype, 0);
        std::vector<int> dims = CastPyArg2VectorOfInt(kw_dims, 0);

546
        std::string act_name = "";
547
        if (kw_name == Py_None) {
548 549 550
          act_name = egr::Controller::Instance().GenerateUniqueName(
              "generated_tensor");
        } else {
551
          act_name = CastPyArg2AttrString(kw_name, 0);
552
        }
553 554 555 556 557

        paddle::framework::proto::VarType::Type var_type =
            CastPyArg2ProtoType(kw_type, 0);
        bool persistable = CastPyArg2AttrBoolean(kw_persistable, 0);

558 559 560
        EmptyTensorInitializer(py_tensor_ptr, act_name,
                               egr::Controller::Instance().GetExpectedPlace(),
                               persistable,
561
                               /* stop_gradient */ -1, dtype, dims, var_type);
562

563
        return 0;
564 565
      } else {
        PADDLE_THROW(platform::errors::InvalidArgument(
566 567
            "We not only support construct Tensor from numpy value "
            "or tensor(Tensor or framework::Tensor) "
568
            "with python kwargs by this initializer, "
569
            "but also even support dtype to init a empty Tensor. "
570 571
            "Please check your input first and make sure you call the existed "
            "constructor."));
572
      }
573 574 575 576 577 578 579
    }
  } else if (args_num == (Py_ssize_t)1 || args_num == (Py_ssize_t)2 ||
             args_num == (Py_ssize_t)3) {
    // 1 to 3 position args, remainting arguments are kwargs
    PyObject* arg0_ptr = PyTuple_GET_ITEM(args, 0);
    if (pybind11::detail::npy_api::get().PyArray_Check_(arg0_ptr)) {
      VLOG(6) << "Calling case3's or case4's initializer.";
580 581
      AutoInitTensorByPyArray(py_tensor_ptr, kws_map, args, flag_kwargs,
                              args_num);
582
      return 0;
583 584
    } else if (PyObject_IsInstance(
                   arg0_ptr, reinterpret_cast<PyObject*>(p_tensor_type))) {
585
      VLOG(6) << "Calling case5's or case6's initializer.";
586 587
      AutoInitTensorByTensor(py_tensor_ptr, kws_map, args, flag_kwargs,
                             args_num);
588 589 590 591
      return 0;
    } else if (PyObject_IsInstance(arg0_ptr, reinterpret_cast<PyObject*>(
                                                 g_framework_tensor_pytype))) {
      VLOG(6) << "Calling case7's initializer.";
592 593 594
      AutoInitTensorByTensor(py_tensor_ptr, kws_map, args, flag_kwargs,
                             args_num,
                             /* false means not init by egr tensor*/ false);
595 596 597
      return 0;
    } else {
      PADDLE_THROW(platform::errors::InvalidArgument(
598 599
          "We support construct Tensor from numpy value "
          "or tensor(Tensor or framework::Tensor) "
600
          "with python args and kwargs by this initializer, "
601
          "but the first argument should be PyArray or Tensor or "
602 603 604
          "framework::Tensor. "
          "Please check your input first and make sure you call the existed "
          "constructor."));
605
    }
606 607 608 609 610
  } else if (args_num == (Py_ssize_t)4) {
    // 4 position args, remainting arguments are kwargs
    PyObject* arg0_ptr = PyTuple_GET_ITEM(args, 0);
    if (pybind11::detail::npy_api::get().PyArray_Check_(arg0_ptr)) {
      VLOG(6) << "Calling case3's or case4's initializer.";
611 612
      AutoInitTensorByPyArray(py_tensor_ptr, kws_map, args, flag_kwargs,
                              args_num);
613
      return 0;
614 615 616 617 618 619 620
    } else {
      PADDLE_THROW(platform::errors::InvalidArgument(
          "Incompatible constructor arguments, "
          "there are 4 position args and remainting arguments arg kwargs,"
          "but the first position args should be PyArray. "
          "Please check your code and make sure the first position args is "
          "PyArray."));
621
    }
622 623
  } else if (args_num == (Py_ssize_t)5) {
    if (!flag_kwargs) {
624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642
      PyObject* arg0_ptr = PyTuple_GET_ITEM(args, 0);
      if (PyObject_IsInstance(arg0_ptr,
                              reinterpret_cast<PyObject*>(g_vartype_pytype))) {
        VLOG(6) << "Calling case2's initializer.";
        paddle::framework::proto::VarType::Type dtype =
            CastPyArg2ProtoType(PyTuple_GET_ITEM(args, 0), 0);
        std::vector<int> dims =
            CastPyArg2VectorOfInt(PyTuple_GET_ITEM(args, 1), 1);
        std::string act_name = "";
        PyObject* name_obj = PyTuple_GET_ITEM(args, 2);
        if (name_obj == Py_None) {
          act_name = egr::Controller::Instance().GenerateUniqueName(
              "generated_tensor");
        } else {
          act_name = CastPyArg2AttrString(PyTuple_GET_ITEM(args, 2), 2);
        }
        paddle::framework::proto::VarType::Type var_type =
            CastPyArg2ProtoType(PyTuple_GET_ITEM(args, 3), 3);
        bool persistable = CastPyArg2AttrBoolean(PyTuple_GET_ITEM(args, 4), 4);
643 644
        EmptyTensorInitializer(py_tensor_ptr, act_name,
                               egr::Controller::Instance().GetExpectedPlace(),
645
                               persistable, -1, dtype, dims, var_type);
646
        return 0;
647 648
      } else if (pybind11::detail::npy_api::get().PyArray_Check_(arg0_ptr)) {
        VLOG(6) << "Calling case3's initializer.";
649 650
        AutoInitTensorByPyArray(py_tensor_ptr, kws_map, args, flag_kwargs,
                                args_num);
651 652 653
        return 0;
      } else {
        PADDLE_THROW(platform::errors::InvalidArgument(
654 655 656 657 658
            "Incompatible constructor arguments, "
            "there are only 5 position args,"
            "but the first position args should be PyArray or dtype. "
            "Please check your code and make sure you call the existed "
            "constructor."));
659
      }
660
    } else {  // five position args, remainting arguments are kwargs
661
      PyObject* arg0_ptr = PyTuple_GET_ITEM(args, 0);
662 663
      if (pybind11::detail::npy_api::get().PyArray_Check_(arg0_ptr)) {
        VLOG(6) << "Calling case3's or case4's initializer";
664 665
        AutoInitTensorByPyArray(py_tensor_ptr, kws_map, args, flag_kwargs,
                                args_num);
666
        return 0;
667
      } else {
668 669 670 671 672 673
        PADDLE_THROW(platform::errors::InvalidArgument(
            "Incompatible constructor arguments, "
            "there are 5 position args and remainting arguments are kwargs,"
            "but the first position args should be PyArray. "
            "Please check your code and make sure the first position args is "
            "PyArray."));
674 675
      }
    }
676 677 678 679
  } else if (args_num == (Py_ssize_t)6) {
    if (!flag_kwargs) {
      // case 3
      VLOG(6) << "Calling case3's initializer.";
680 681
      AutoInitTensorByPyArray(py_tensor_ptr, kws_map, args, flag_kwargs,
                              args_num);
682 683 684 685 686 687 688 689
      return 0;
    } else {  // six position args, remainting arguments are kwargs, but this
              // is not a right way
      PADDLE_THROW(platform::errors::InvalidArgument(
          "Incompatible constructor arguments, "
          "there are 6 position args and the remainting arguments are kwargs. "
          "Please check your code and make sure the first position args is "
          "PyArray."));
690
    }
691 692 693 694
  } else {
    PADDLE_THROW(platform::errors::Fatal(
        "Can't not find expected num of args, please check your call, and "
        "make sure u call the existed constructor."));
695
  }
696 697

  return 1;
698 699
}

700
static void TensorDealloc(TensorObject* self) {
701
  self->tensor.~Tensor();
702 703 704 705 706 707 708
  Py_TYPE(self)->tp_free(reinterpret_cast<PyObject*>(self));
}

extern struct PyGetSetDef variable_properties[];

extern PyMethodDef variable_methods[];

W
wanghuancoder 已提交
709 710 711 712
PyNumberMethods number_methods;
PySequenceMethods sequence_methods;
PyMappingMethods mapping_methods;

713 714 715
void BindEager(pybind11::module* module) {
  auto m = module->def_submodule("eager");

716
  auto heap_type = reinterpret_cast<PyHeapTypeObject*>(
717
      PyType_Type.tp_alloc(&PyType_Type, 0));
718 719
  heap_type->ht_name = ToPyObject("Tensor");
  heap_type->ht_qualname = ToPyObject("Tensor");
720
  auto type = &heap_type->ht_type;
721
  type->tp_name = "Tensor";
722
  type->tp_basicsize = sizeof(TensorObject);
723
  type->tp_dealloc = (destructor)TensorDealloc;
724 725 726 727 728
  type->tp_as_number = &number_methods;
  type->tp_as_sequence = &sequence_methods;
  type->tp_as_mapping = &mapping_methods;
  type->tp_methods = variable_methods;
  type->tp_getset = variable_properties;
729 730
  type->tp_init = TensorInit;
  type->tp_new = TensorNew;
731 732
  Py_INCREF(&PyBaseObject_Type);
  type->tp_base = reinterpret_cast<PyTypeObject*>(&PyBaseObject_Type);
733 734 735 736 737
  type->tp_flags |=
      Py_TPFLAGS_DEFAULT | Py_TPFLAGS_BASETYPE | Py_TPFLAGS_HEAPTYPE;
#if PY_VERSION_HEX >= 0x03050000
  type->tp_as_async = &heap_type->as_async;
#endif
738
  p_tensor_type = type;
739 740

  if (PyType_Ready(type) < 0) {
741
    PADDLE_THROW(platform::errors::Fatal(
742
        "Init Paddle error in BindEager(PyType_Ready)."));
743 744 745
    return;
  }

746
  Py_INCREF(type);
747 748
  if (PyModule_AddObject(m.ptr(), "Tensor", reinterpret_cast<PyObject*>(type)) <
      0) {
749
    Py_DECREF(type);
750 751
    Py_DECREF(m.ptr());
    PADDLE_THROW(platform::errors::Fatal(
752
        "Init Paddle error in BindEager(PyModule_AddObject)."));
753 754 755 756
    return;
  }

  BindFunctions(m.ptr());
757
  BindEagerOpFunctions(&m);
758 759 760 761
}

}  // namespace pybind
}  // namespace paddle