loss.py 164.2 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14
#   Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

15 16
import math

17
# TODO: define loss functions of neural network
18
import paddle
19
from paddle import _C_ops, fluid, in_dynamic_mode
20
from paddle.framework import core
Z
Zman 已提交
21
from paddle.static.nn.control_flow import Assert
22
from paddle.utils import deprecated
23

24
from ...common_ops_import import Variable
25
from ...fluid.data_feeder import check_variable_and_dtype
26
from ...fluid.framework import _current_expected_place
27 28
from ...fluid.layer_helper import LayerHelper
from ...tensor.manipulation import reshape
29

30 31
__all__ = []

32 33
kIgnoreIndex = -100

34

35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63
def dice_loss(input, label, epsilon=0.00001, name=None):
    r"""

    Dice loss for comparing the similarity between the input predictions and the label.
    This implementation is for binary classification, where the input is sigmoid
    predictions of each pixel, usually used for segmentation task. The dice loss can
    be defined as the following equation:

    .. math::

        dice\_loss &= 1 - \frac{2 * intersection\_area}{total\_area} \\
                  &= \frac{(total\_area - intersection\_area) - intersection\_area}{total\_area} \\
                  &= \frac{(union\_area - intersection\_area)}{total\_area}


    Parameters:
        input (Tensor): Tensor, rank>=2, shape is :math:`[N_1, N_2, ..., N_k, D]`, where :math:`N_1` is
                          the batch_size, :math:`D` is the number of categories. It is usually the output
                          predictions of sigmoid activation. The data type can be float32 or float64.
        label (Tensor): Tensor, the groud truth with the same rank as input, shape is :math:`[N_1, N_2, ..., N_k, 1]`.
                          where :math:`N_1` is the batch_size. The data type can be int32 or int64.
        epsilon (float): The epsilon will be added to the numerator and denominator.
                         If both input and label are empty, it makes sure dice is 1.
                         Default: 0.00001
        name(str, optional): The default value is None.
                             Normally there is no need for user to set this property.
                             For more information, please refer to :ref:`api_guide_Name`

    Returns:
64
        0-D Tensor, which shape is [], data type is the same as `input` .
65 66 67 68 69 70 71 72 73 74 75 76 77 78

    Example:
        .. code-block:: python

            import paddle
            import paddle.nn.functional as F

            x = paddle.randn((3,224,224,2))
            label = paddle.randint(high=2, shape=(3,224,224,1))
            predictions = F.softmax(x)
            loss = F.dice_loss(input=predictions, label=label)
    """
    assert input.dtype in (paddle.float32, paddle.float64)
    assert label.dtype in (paddle.int32, paddle.int64)
79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96
    assert (
        len(input.shape) >= 2
    ), "The rank of input should be greater than or equal to 2."
    assert len(input.shape) == len(label.shape), (
        "The rank of input and label should be equal, "
        "but received input: %d, label: %d."
        % (len(input.shape), len(label.shape))
    )
    assert label.shape[-1] == 1, (
        "The last dimension of label should be 1, "
        "but received %d." % label.shape[-1]
    )
    assert (
        input.shape[:-1] == label.shape[:-1]
    ), "All dimensions should be equal except the last one."
    assert (
        input.numel() > 0 and label.numel() > 0
    ), "Any dimension of input and label cannot be equal to 0."
97 98 99 100 101 102

    label = paddle.squeeze(label, [-1])
    label = paddle.nn.functional.one_hot(label, input.shape[-1])
    reduce_dim = list(range(1, len(input.shape)))
    inse = paddle.sum(input * label, axis=reduce_dim)
    dice_denominator = paddle.sum(input, axis=reduce_dim) + paddle.sum(
103 104
        label, axis=reduce_dim
    )
105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145
    dice_score = 1 - inse * 2 / (dice_denominator + epsilon)
    return paddle.mean(dice_score)


def log_loss(input, label, epsilon=1e-4, name=None):
    r"""

    **Negative Log Loss Layer**

    This layer accepts input predictions and target label and returns the
    negative log loss.

    .. math::

        Out = -label * \log{(input + \epsilon)}
              - (1 - label) * \log{(1 - input + \epsilon)}

    Args:
        input (Tensor|list):  A 2-D tensor with shape [N x 1], where N is the
                                batch size. This input is a probability computed
                                by the previous operator. Data type float32.
        label (Tensor|list):  The ground truth which is a 2-D tensor with
                                shape [N x 1], where N is the batch size.
                                Data type float32.
        epsilon (float, optional): A small number for numerical stability. Default 1e-4.
        name(str|None): For detailed information, please refer to
            :ref:`api_guide_Name` . Usually name is no need to set and None by default.

    Returns:
        Tensor, which shape is [N x 1], data type is float32.

    Examples:
        .. code-block:: python

          import paddle
          import paddle.nn.functional as F

          label = paddle.randn((10,1))
          prob = paddle.randn((10,1))
          cost = F.log_loss(input=prob, label=label)
    """
146
    if in_dynamic_mode():
147
        return _C_ops.log_loss(input, label, epsilon)
148 149 150 151 152 153 154

    helper = LayerHelper('log_loss', **locals())
    check_variable_and_dtype(input, 'input', ['float32'], 'log_loss')
    check_variable_and_dtype(label, 'label', ['float32'], 'log_loss')

    loss = helper.create_variable_for_type_inference(dtype=input.dtype)

155 156 157 158 159 160
    helper.append_op(
        type='log_loss',
        inputs={'Predicted': [input], 'Labels': [label]},
        outputs={'Loss': [loss]},
        attrs={'epsilon': epsilon},
    )
161 162 163
    return loss


164 165 166 167 168 169 170 171 172
def fluid_softmax_with_cross_entropy(
    logits,
    label,
    soft_label=False,
    ignore_index=-100,
    numeric_stable_mode=True,
    return_softmax=False,
    axis=-1,
):
173 174
    r"""

175 176
    This operator implements the cross entropy loss function with softmax. This function
    combines the calculation of the softmax operation and the cross entropy loss function
177 178 179 180 181 182
    to provide a more numerically stable gradient.

    Because this operator performs a softmax on logits internally, it expects
    unscaled logits. This operator should not be used with the output of
    softmax operator since that would produce incorrect results.

183 184 185
    When the attribute :attr:`soft_label` is set :attr:`False`, this operators
    expects mutually exclusive hard labels, each sample in a batch is in exactly
    one class with a probability of 1.0. Each sample in the batch will have a
186 187 188 189 190 191 192
    single label.

    The equation is as follows:

    1) Hard label (one-hot label, so every sample has exactly one class)

    .. math::
193
        \\loss_j=-\text{logits}_{label_j} +\log\left(\sum_{i=0}^{K}\exp(\text{logits}_i)\right), j = 1,..., K
194 195 196 197

    2) Soft label (each sample can have a distribution over all classes)

    .. math::
198
        \\loss_j= -\sum_{i=0}^{K}\text{label}_i\left(\text{logits}_i - \log\left(\sum_{i=0}^{K}\exp(\text{logits}_i)\right)\right), j = 1,...,K
199 200 201 202

    3) If :attr:`numeric_stable_mode` is :attr:`True`, softmax is calculated first by:

    .. math::
203 204 205
        \\max_j&=\max_{i=0}^{K}{\text{logits}_i} \\
                log\_max\_sum_j &= \log\sum_{i=0}^{K}\exp(logits_i - max_j)\\
                softmax_j &= \exp(logits_j - max_j - {log\_max\_sum}_j)
206 207 208 209 210 211

    and then cross entropy loss is calculated by softmax and label.

    Args:
        logits (Tensor): A multi-dimension ``Tensor`` , and the data type is float32 or float64. The input tensor of unscaled log probabilities.
        label (Tensor): The ground truth  ``Tensor`` , data type is the same
212 213 214
            as the ``logits`` . If :attr:`soft_label` is set to :attr:`True`,
            Label is a ``Tensor``  in the same shape with :attr:`logits`.
            If :attr:`soft_label` is set to :attr:`True`, Label is a ``Tensor``
215 216 217 218 219
            in the same shape with :attr:`logits` expect shape in dimension :attr:`axis` as 1.
        soft_label (bool, optional): A flag to indicate whether to interpretant the given
            labels as soft labels. Default False.
        ignore_index (int, optional): Specifies a target value that is ignored and does
                                      not contribute to the input gradient. Only valid
220
                                      if :attr:`soft_label` is set to :attr:`False`.
221 222 223
                                      Default: kIgnoreIndex(-100).
        numeric_stable_mode (bool, optional): A flag to indicate whether to use a more
                                              numerically stable algorithm. Only valid
224 225 226
                                              when :attr:`soft_label` is :attr:`False`
                                              and GPU is used. When :attr:`soft_label`
                                              is :attr:`True` or CPU is used, the
227 228 229 230 231
                                              algorithm is always numerically stable.
                                              Note that the speed may be slower when use
                                              stable algorithm. Default: True.
        return_softmax (bool, optional): A flag indicating whether to return the softmax
                                         along with the cross entropy loss. Default: False.
232
        axis (int, optional): The index of dimension to perform softmax calculations. It
233 234 235 236 237 238 239 240 241 242 243 244 245 246 247
                              should be in range :math:`[-1, rank - 1]`, while :math:`rank`
                              is the rank of input :attr:`logits`. Default: -1.

    Returns:
        ``Tensor`` or Tuple of two ``Tensor`` : Return the cross entropy loss if \
                                                    `return_softmax` is False, otherwise the tuple \
                                                    (loss, softmax), softmax is in the same shape \
                                                    with input logits and cross entropy loss is in \
                                                    the same shape with input logits except shape \
                                                    in dimension :attr:`axis` as 1.

    Examples:
        .. code-block:: python

            import paddle
248 249 250 251 252

            logits = paddle.to_tensor([0.4, 0.6, 0.9])
            label = paddle.randint(high=2, shape=[1], dtype="int64")

            out = paddle.nn.functional.softmax_with_cross_entropy(logits=logits, label=label)
253
            print(out)
254 255
            # Tensor(shape=[1], dtype=float32, place=Place(gpu:0), stop_gradient=True,
            #        [1.15328646])
256
    """
257 258 259 260 261 262 263 264 265 266 267 268 269 270
    input_dims = len(list(logits.shape))
    if input_dims == 0:
        raise ValueError('The dimention of input should be larger than zero!')

    label_dims = len(list(label.shape))
    if input_dims - 1 != label_dims and input_dims != label_dims:
        raise ValueError(
            'Expected nput_dims - 1 = label_dims or input_dims == label_dims\
             (got nput_dims{}, label_dims{})'.format(
                input_dims, label_dims
            )
        )
    if input_dims - 1 == label_dims:
        label = paddle.unsqueeze(label, axis=axis)
271
    if in_dynamic_mode():
272 273 274 275 276 277 278 279 280
        softmax, loss = _C_ops.cross_entropy_with_softmax(
            logits,
            label,
            soft_label,
            True,
            numeric_stable_mode,
            ignore_index,
            axis,
        )
281 282 283 284
        if not return_softmax:
            return loss
        else:
            return loss, softmax
姜永久 已提交
285 286 287 288 289 290 291 292 293 294
    else:
        attrs = {
            'soft_label': soft_label,
            'ignore_index': ignore_index,
            'numeric_stable_mode': numeric_stable_mode,
            'axis': axis,
        }
        helper = LayerHelper('softmax_with_cross_entropy', **locals())
        softmax = helper.create_variable_for_type_inference(dtype=logits.dtype)
        loss = helper.create_variable_for_type_inference(dtype=logits.dtype)
295

姜永久 已提交
296 297 298 299 300 301 302
        outputs = {'Softmax': softmax, 'Loss': loss}
        helper.append_op(
            type='softmax_with_cross_entropy',
            inputs={'Logits': logits, 'Label': label},
            outputs=outputs,
            attrs=attrs,
        )
303

姜永久 已提交
304 305
        if return_softmax:
            return loss, softmax
306

姜永久 已提交
307
        return loss
308 309 310


def npair_loss(anchor, positive, labels, l2_reg=0.002):
311 312
    """

313 314 315
    Npair loss requires paired data. Npair loss has two parts: the first part is L2
    regularizer on the embedding vector; the second part is cross entropy loss which
    takes the similarity matrix of anchor and positive as logits.
316

317 318
    For more information, please refer to:
    `Improved Deep Metric Learning with Multi class N pair Loss Objective <http://www.nec-labs.com/uploads/images/Department-Images/MediaAnalytics/papers/nips16_npairmetriclearning.pdf>`_
319

320
    Args:
321
      anchor(Tensor): embedding vector for the anchor image. shape=[batch_size, embedding_dims],
322
                        the data type is float32 or float64.
323
      positive(Tensor): embedding vector for the positive image. shape=[batch_size, embedding_dims],
324 325 326 327
                        the data type is float32 or float64.
      labels(Tensor): 1-D tensor. shape=[batch_size], the data type is float32 or float64 or int64.
      l2_reg(float32): L2 regularization term on embedding vector, default: 0.002.

328

329
    Returns:
330
      A 0-D Tensor representing the npair loss, the data type is the same as anchor, the shape is [].
331

332 333 334
    Examples:

      .. code-block:: python
335

336
          import paddle
337

338
          DATATYPE = "float32"
339

340 341 342
          anchor = paddle.rand(shape=(18, 6), dtype=DATATYPE)
          positive = paddle.rand(shape=(18, 6), dtype=DATATYPE)
          labels = paddle.rand(shape=(18,), dtype=DATATYPE)
343

344 345
          npair_loss = paddle.nn.functional.npair_loss(anchor, positive, labels, l2_reg = 0.002)
          print(npair_loss)
346

347
    """
S
supplyout 已提交
348 349 350 351
    if anchor.size == 0:
        raise ValueError("The dims of anchor should be greater than 0.")
    if positive.size == 0:
        raise ValueError("The dims of positive should be greater than 0.")
352 353 354 355 356 357 358 359 360
    check_variable_and_dtype(
        anchor, 'anchor', ['float32', 'float64'], 'npair_loss'
    )
    check_variable_and_dtype(
        positive, 'positive', ['float32', 'float64'], 'positive'
    )
    check_variable_and_dtype(
        labels, 'labels', ['float32', 'float64', 'int64'], 'labels'
    )
361 362 363 364 365 366
    Beta = 0.25
    batch_size = labels.shape[0]

    labels = paddle.reshape(labels, shape=[batch_size, 1])
    labels = paddle.tile(labels, repeat_times=[1, batch_size])

367 368 369
    labels = paddle.equal(labels, paddle.transpose(labels, perm=[1, 0])).astype(
        'float32'
    )
370 371
    labels = labels / paddle.sum(labels, axis=1, keepdim=True)

372 373 374
    l2loss = paddle.mean(paddle.sum(paddle.square(anchor), 1)) + paddle.mean(
        paddle.sum(paddle.square(positive), 1)
    )
375 376
    l2loss = l2loss * Beta * l2_reg

377 378 379 380 381 382
    similarity_matrix = paddle.matmul(
        anchor, positive, transpose_x=False, transpose_y=True
    )
    softmax_ce = fluid_softmax_with_cross_entropy(
        logits=similarity_matrix, label=labels, soft_label=True
    )
383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405
    cross_entropy = paddle.sum(labels * softmax_ce, 0)
    celoss = paddle.mean(cross_entropy)

    return l2loss + celoss


def square_error_cost(input, label):
    r"""

    This op accepts input predictions and target label and returns the
    squared error cost.

    For predictions label, and target label, the equation is:

    .. math::

        Out = (input - label)^2

    Parameters:
        input (Tensor): Input tensor, the data type should be float32.
        label (Tensor): Label tensor, the data type should be float32.

    Returns:
406 407
        Tensor, The tensor storing the element-wise squared error
        difference between input and label.
408 409 410 411 412 413 414 415 416 417 418 419 420

    Examples:

        .. code-block:: python

            import paddle
            input = paddle.to_tensor([1.1, 1.9])
            label = paddle.to_tensor([1.0, 2.0])
            output = paddle.nn.functional.square_error_cost(input, label)
            print(output)
            # [0.01, 0.01]

    """
421
    if in_dynamic_mode():
422 423
        minus_out = _C_ops.subtract(input, label)
        square_out = _C_ops.square(minus_out)
424
        return square_out
姜永久 已提交
425 426 427 428 429 430 431 432 433 434 435 436 437 438
    else:
        check_variable_and_dtype(
            input, "input", ['float32', 'float64'], 'square_error_cost'
        )
        check_variable_and_dtype(
            label, "label", ['float32', 'float64'], 'square_error_cost'
        )
        helper = LayerHelper('square_error_cost', **locals())
        minus_out = helper.create_variable_for_type_inference(dtype=input.dtype)
        helper.append_op(
            type='elementwise_sub',
            inputs={'X': [input], 'Y': [label]},
            outputs={'Out': [minus_out]},
        )
439

姜永久 已提交
440 441 442 443 444 445 446 447 448
        square_out = helper.create_variable_for_type_inference(
            dtype=input.dtype
        )
        helper.append_op(
            type='square',
            inputs={'X': [minus_out]},
            outputs={'Out': [square_out]},
        )
        return square_out
449 450


451 452 453 454 455 456 457 458
def edit_distance(
    input,
    label,
    normalized=True,
    ignored_tokens=None,
    input_length=None,
    label_length=None,
):
459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491
    """
    This op computes the edit distances, also called Levenshtein distance, between a batch of
    hypothesis strings and their references. It measures how dissimilar two strings are by counting
    the minimum number of operations to transform one string into another.
    The operations include insertion, deletion, and substitution.

    For example, given hypothesis string A = "kitten" and reference
    B = "sitting", A will be transformed into B
    at least after two substitutions and one insertion:

    "kitten" -> "sitten" -> "sittin" -> "sitting"

    So the edit distance between A and B is 3.

    The input is a Tensor, the input_length and label_length should be supported.

    The `batch_size` of labels should be same as `input`.

    The output include the edit distance value between every pair of input and related label, and the number of sequence.
    If Attr(normalized) is true,
    the edit distance value will be divided by the length of label.

    Parameters:
        input(Tensor): The input tensor, its rank should be equal to 2 and its data type should be int64.
        label(Tensor): The label tensor, its rank should be equal to 2 and its data type should be int64.
        normalized(bool, default True): Indicated whether to normalize the edit distance.
        ignored_tokens(list<int>, default None): Tokens that will be removed before
                                     calculating edit distance.
        input_length(Tensor): The length for each sequence in `input` if it's of Tensor type, it should have shape `(batch_size, )` and its data type should be int64.
        label_length(Tensor): The length for each sequence in `label` if it's of Tensor type, it should have shape `(batch_size, )` and its data type should be int64.
        NOTE: To be avoid unexpected result, the value of every elements in input_length and label_length should be equal to the value of the second dimension of input and label. For example, The input: [[1,2,3,4],[5,6,7,8],[9,10,11,12]], the shape of input is [3,4] and the input_length should be [4,4,4]

    Returns:
492 493 494
        Tuple:
            distance(Tensor): edit distance result, its data type is float32, and its shape is (batch_size, 1).
            sequence_num(Tensor): sequence number, its data type is float32, and its shape is (1,).
495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523

    Examples:
        .. code-block:: python

            import paddle
            import paddle.nn.functional as F

            input = paddle.to_tensor([[1,2,3],[4,5,6],[4,4,4],[1,1,1]], dtype='int64')
            label = paddle.to_tensor([[1,3,4,1],[4,5,8,1],[7,7,7,1],[1,1,1,1]], dtype='int64')
            input_len = paddle.to_tensor([3,3,3,3], dtype='int64')
            label_len = paddle.to_tensor([4,4,4,4], dtype='int64')

            distance, sequence_num = F.loss.edit_distance(input=input, label=label, input_length=input_len, label_length=label_len, normalized=False)

            # print(distance)
            # [[3.]
            #  [2.]
            #  [4.]
            #  [1.]]
            # if set normalized to True
            # [[0.75]
            #  [0.5 ]
            #  [1.  ]
            #  [0.25]
            #
            # print(sequence_num)
            # [4]

    """
524

525 526 527 528 529 530 531
    helper = LayerHelper("edit_distance", **locals())

    # remove some tokens from input and labels
    if ignored_tokens is not None and len(ignored_tokens) > 0:
        erased_input = helper.create_variable_for_type_inference(dtype="int64")
        erased_label = helper.create_variable_for_type_inference(dtype="int64")

532 533 534 535 536 537
        helper.append_op(
            type="sequence_erase",
            inputs={"X": [input]},
            outputs={"Out": [erased_input]},
            attrs={"tokens": ignored_tokens},
        )
538 539
        input = erased_input

540 541 542 543 544 545
        helper.append_op(
            type="sequence_erase",
            inputs={"X": [label]},
            outputs={"Out": [erased_label]},
            attrs={"tokens": ignored_tokens},
        )
546 547
        label = erased_label

548
    if in_dynamic_mode():
549 550 551
        return _C_ops.edit_distance(
            input, label, input_length, label_length, normalized
        )
Z
zhiboniu 已提交
552

553 554
    check_variable_and_dtype(input, 'input', ['int64'], 'edit_distance')
    check_variable_and_dtype(label, 'label', ['int64'], 'edit_distance')
555 556 557 558 559 560 561 562
    this_inputs = {"Hyps": [input], "Refs": [label]}
    if input_length is not None and label_length is not None:
        this_inputs['HypsLength'] = [input_length]
        this_inputs['RefsLength'] = [label_length]

    # edit distance op
    edit_distance_out = helper.create_variable_for_type_inference(dtype="int64")
    sequence_num = helper.create_variable_for_type_inference(dtype="int64")
563 564 565 566 567 568
    helper.append_op(
        type="edit_distance",
        inputs=this_inputs,
        outputs={"Out": [edit_distance_out], "SequenceNum": [sequence_num]},
        attrs={"normalized": normalized},
    )
569 570 571 572

    return edit_distance_out, sequence_num


573 574 575
def binary_cross_entropy(
    input, label, weight=None, reduction='mean', name=None
):
576
    """
学渣戊's avatar
学渣戊 已提交
577
    Measure the binary_cross_entropy loss between input predictions ``input``
578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607
    and target labels ``label`` . The binary_cross_entropy loss can be described as:

    If :attr:`weight` is set, the loss is:

    .. math::
        Out = -1 * weight * (label * log(input) + (1 - label) * log(1 - input))

    If :attr:`weight` is None, the loss is:

    .. math::
        Out = -1 * (label * log(input) + (1 - label) * log(1 - input))

    If :attr:`reduction` set to ``'none'``, the interface will return the original loss `Out`.

    If :attr:`reduction` set to ``'mean'``, the reduced mean loss is:

    .. math::
        Out = MEAN(Out)

    If :attr:`reduction` set to ``'sum'``, the reduced sum loss is:

    .. math::
        Out = SUM(Out)

    Note that the input predictions ``input`` always be the output of sigmoid, and the target labels ``label``
    should be numbers between 0 and 1.

    Parameters:
        input (Tensor): The input predications tensor. 2-D tensor with shape: [N, *],
            N is batch_size, `*` means number of additional dimensions. The ``input``
608
            should always be the output of sigmod.  Available dtype is float16, float32, float64.
609 610
        label (Tensor): The target labels tensor. 2-D tensor with the same shape as
            ``input``. The target labels which values should be numbers between 0 and 1.
611
            Available dtype is float16, float32, float64.
612 613 614 615 616 617 618 619 620 621 622 623 624 625
        weight (Tensor, optional): A manual rescaling weight given to the loss of each
            batch element. If given, has to be a Tensor of size nbatch and the data type
            is float32, float64. Default is ``'None'``.
        reduction (str, optional): Indicate how to average the loss by batch_size,
            the candicates are ``'none'`` | ``'mean'`` | ``'sum'``.
            If :attr:`reduction` is ``'none'``, the unreduced loss is returned;
            If :attr:`reduction` is ``'mean'``, the reduced mean loss is returned;
            If :attr:`reduction` is ``'sum'``, the summed loss is returned.
            Default is ``'mean'``.
        name (str, optional): Name for the operation (optional, default is None).
            For more information, please refer to :ref:`api_guide_Name`.


    Returns:
学渣戊's avatar
学渣戊 已提交
626
        Tensor. If ``reduction`` is ``'none'``, the shape of output is
627 628 629 630 631 632 633
            same as ``input`` , else the shape of output is scalar.

    Examples:
        .. code-block:: python

            import paddle

634 635
            input = paddle.to_tensor([0.5, 0.6, 0.7], 'float32')
            label = paddle.to_tensor([1.0, 0.0, 1.0], 'float32')
636
            output = paddle.nn.functional.binary_cross_entropy(input, label)
637
            print(output)  # 0.65537095
638 639 640 641 642

    """
    if reduction not in ['sum', 'mean', 'none']:
        raise ValueError(
            "The value of 'reduction' in binary_cross_entropy should be 'sum', "
643 644 645
            "'mean' or 'none', but received %s, which is not allowed."
            % reduction
        )
646

647
    if in_dynamic_mode():
648
        out = _C_ops.bce_loss(input, label)
649
        if weight is not None:
650
            out = _C_ops.multiply(out, weight, 'axis', -1)
651 652

        if reduction == 'sum':
653
            return _C_ops.sum(out, [], None, False)
654

655
        elif reduction == 'mean':
656
            return _C_ops.mean_all(out)
657 658 659
        else:
            return out
    else:
姜永久 已提交
660
        check_variable_and_dtype(
661 662 663 664
            input,
            'input',
            ['float16', 'float32', 'float64'],
            'binary_cross_entropy',
姜永久 已提交
665 666
        )
        check_variable_and_dtype(
667 668 669 670
            label,
            'label',
            ['float16', 'float32', 'float64'],
            'binary_cross_entropy',
姜永久 已提交
671
        )
J
Jiabin Yang 已提交
672

姜永久 已提交
673 674 675 676 677 678 679 680 681 682 683
        sub_name = name if weight is None and reduction == 'none' else None
        helper = LayerHelper("binary_cross_entropy", name=sub_name)
        out = helper.create_variable_for_type_inference(dtype=input.dtype)
        helper.append_op(
            type='bce_loss',
            inputs={
                'X': [input],
                'Label': [label],
            },
            outputs={'Out': [out]},
        )
J
Jiabin Yang 已提交
684

姜永久 已提交
685 686 687 688
        if weight is not None:
            if isinstance(weight, paddle.static.Variable):
                weight_name = name if reduction == 'none' else None
                out = paddle.multiply(out, weight, name=weight_name)
J
Jiabin Yang 已提交
689
            else:
姜永久 已提交
690 691 692 693 694 695 696 697 698 699
                raise ValueError(
                    "The weight is not a Tensor, please convert to Tensor."
                )

        if reduction == 'sum':
            return paddle.sum(out, name=name)
        elif reduction == 'mean':
            return paddle.mean(out, name=name)
        else:
            return out
700 701


702 703 704
def binary_cross_entropy_with_logits(
    logit, label, weight=None, reduction='mean', pos_weight=None, name=None
):
705
    r"""
学渣戊's avatar
学渣戊 已提交
706
    Combine the sigmoid layer and the :ref:`api_nn_loss_BCELoss` layer.
707 708 709 710 711 712 713

    This measures the element-wise probability error in classification tasks
    in which each class is independent.
    This can be thought of as predicting labels for a data-point, where labels
    are not mutually exclusive. For example, a news article can be about
    politics, technology or sports at the same time or none of these.

学渣戊's avatar
学渣戊 已提交
714
    Firstly, calculate loss function as follows:
715 716

    .. math::
717
           Out = -Labels * \log(\sigma(Logit)) - (1 - Labels) * \log(1 - \sigma(Logit))
718

719
    We know that :math:`\sigma(Logit) = \frac{1}{1 + e^{-Logit}}`. By substituting this we get:
720 721

    .. math::
722
           Out = Logit - Logit * Labels + \log(1 + e^{-Logit})
723

N
Noel 已提交
724
    For stability and to prevent overflow of :math:`e^{-Logit}` when Logit < 0,
725 726 727
    we reformulate the loss as follows:

    .. math::
728
           Out = \max(Logit, 0) - Logit * Labels + \log(1 + e^{-\|Logit\|})
729

学渣戊's avatar
学渣戊 已提交
730
    Then, if ``weight`` or ``pos_weight`` is not None, then multiply the
731 732 733 734
    weight tensor on the loss `Out`. The ``weight`` tensor will attach different
    weight on every items in the batch. The ``pos_weight`` will attach different
    weight on the positive label of each class.

学渣戊's avatar
学渣戊 已提交
735 736
    Finally, apply reduce operation on the loss.
    If :attr:`reduction` set to ``'none'``, will return the original loss `Out`.
737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764
    If :attr:`reduction` set to ``'mean'``, the reduced mean loss is :math:`Out = MEAN(Out)`.
    If :attr:`reduction` set to ``'sum'``, the reduced sum loss is :math:`Out = SUM(Out)`.

    Note that the target labels ``label`` should be numbers between 0 and 1.

    Args:
        logit (Tensor): The input predications tensor. 2-D tensor with shape: [N, *],
            N is batch_size, `*` means number of additional dimensions. The ``logit``
            is usually the output of Linear layer. Available dtype is float32, float64.
        label (Tensor): The target labels tensor. 2-D tensor with the same shape as
            ``logit``. The target labels which values should be numbers between 0 and 1.
            Available dtype is float32, float64.
        weight (Tensor, optional): A manual rescaling weight given to the loss of each
            batch element. If given, it has to be a 1D Tensor whose size is `[N, ]`,
            The data type is float32, float64. Default is ``'None'``.
        reduction (str, optional): Indicate how to average the loss by batch_size,
            the candicates are ``'none'`` | ``'mean'`` | ``'sum'``.
            If :attr:`reduction` is ``'none'``, the unreduced loss is returned;
            If :attr:`reduction` is ``'mean'``, the reduced mean loss is returned;
            If :attr:`reduction` is ``'sum'``, the summed loss is returned.
            Default is ``'mean'``.
        pos_weight (Tensor, optional): A weight of positive examples. Must be a vector
            with length equal to the number of classes. The data type is float32, float64.
            Default is ``'None'``.
        name (str, optional): Name for the operation (optional, default is None).
            For more information, please refer to :ref:`api_guide_Name`.

    Returns:
学渣戊's avatar
学渣戊 已提交
765
        Tensor. If ``reduction`` is ``'none'``, the shape of output is
766 767 768 769 770 771 772
            same as ``logit`` , else the shape of output is scalar.

    Examples:

        .. code-block:: python

            import paddle
N
Noel 已提交
773

774 775
            logit = paddle.to_tensor([5.0, 1.0, 3.0])
            label = paddle.to_tensor([1.0, 0.0, 1.0])
776
            output = paddle.nn.functional.binary_cross_entropy_with_logits(logit, label)
777
            print(output)  # 0.45618808
778 779 780 781 782 783

    """
    if reduction not in ['sum', 'mean', 'none']:
        raise ValueError(
            "The value of 'reduction' in binary_cross_entropy_with_logits "
            "should be 'sum', 'mean' or 'none', but received %s, which is not allowed."
784 785
            % reduction
        )
786

787
    if in_dynamic_mode():
788 789 790
        one = _C_ops.full(
            [1],
            float(1.0),
791
            logit.dtype,
792 793
            _current_expected_place(),
        )
794

795
        if pos_weight is not None:
796
            pos_weight = _C_ops.add(
797 798
                _C_ops.multiply(label, _C_ops.subtract(pos_weight, one)), one
            )
799 800 801 802
        out = _C_ops.sigmoid_cross_entropy_with_logits(
            logit, label, pos_weight, False, -100
        )

803
        if weight is not None:
804
            out = _C_ops.multiply(out, weight)
805 806

        if reduction == "sum":
807
            return _C_ops.sum(out, [], None, False)
808
        elif reduction == "mean":
809
            return _C_ops.mean_all(out)
H
hong 已提交
810
        else:
811
            return out
姜永久 已提交
812
    else:
813
        check_variable_and_dtype(
姜永久 已提交
814 815
            logit,
            'logit',
816 817 818 819
            ['float32', 'float64'],
            'binary_cross_entropy_with_logits',
        )
        check_variable_and_dtype(
姜永久 已提交
820 821
            label,
            'label',
822 823 824
            ['float32', 'float64'],
            'binary_cross_entropy_with_logits',
        )
姜永久 已提交
825 826 827
        sigmoid_name = None
        if reduction == 'none' and pos_weight is None and weight is None:
            sigmoid_name = name
828

姜永久 已提交
829 830 831 832 833 834 835 836 837 838 839 840
        helper = LayerHelper("sigmoid_cross_entropy_with_logits", **locals())

        out = helper.create_variable_for_type_inference(dtype=logit.dtype)

        one = paddle.full(shape=[1], fill_value=1.0, dtype=logit.dtype)
        if pos_weight is not None:
            check_variable_and_dtype(
                pos_weight,
                'pos_weight',
                ['float32', 'float64'],
                'binary_cross_entropy_with_logits',
            )
841
            pos_weight = paddle.add(
姜永久 已提交
842 843
                paddle.multiply(label, paddle.subtract(pos_weight, one)), one
            )
844 845 846 847 848 849 850

        helper.append_op(
            type="sigmoid_cross_entropy_with_logits",
            inputs={"X": logit, "Label": label, "pos_weight": pos_weight},
            attrs={"ignore_index": kIgnoreIndex, 'normalize': False},
            outputs={"Out": out},
        )
姜永久 已提交
851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866

        if weight is not None:
            check_variable_and_dtype(
                weight,
                'weight',
                ['float32', 'float64'],
                'binary_cross_entropy_with_logits',
            )
            weight_name = name if reduction == 'none' else None
            out = paddle.multiply(out, weight, name=weight_name)

        if reduction == "sum":
            return paddle.sum(out, name=name)
        elif reduction == "mean":
            return paddle.mean(out, name=name)
        return out
867 868


869 870 871 872 873 874 875 876 877 878 879
def hsigmoid_loss(
    input,
    label,
    num_classes,
    weight,
    bias=None,
    path_table=None,
    path_code=None,
    is_sparse=False,
    name=None,
):
880 881 882
    """
    The hierarchical sigmoid organizes the classes into a complete binary tree to reduce the computational complexity
    and speed up the model training, especially the training of language model.
883

884 885 886
    Each leaf node of the complete binary tree represents a class(word) and each non-leaf node acts as a binary classifier.
    For each class(word), there's a unique path from root to itself, hsigmoid calculate the cost for each non-leaf node on
    the path, and sum them to get a total cost.
887 888

    Comparing to softmax, hsigmoid can reduce the computational complexity from :math:`O(N)` to :math:`O(logN)`, where :math:`N`
889 890
    represents the number of classes or the size of word dict.

891 892 893 894
    The API supports default tree and custom tree. For the default tree, you can refer to `Hierarchical Probabilistic Neural
    Network Language Model <http://www.iro.umontreal.ca/~lisa/pointeurs/hierarchical-nnlm-aistats05.pdf>`_.

    For the custom tree, you need to set :attr:`is_custom` to True, and do the following steps (take the language model as an example):
895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940

    1. Using a custom word dict to build a binary tree, each leaf node should be an word in the word dict.
    2. Creating a dict map word_id -> path that from the word to the root node, we call it path_table.
    3. Creating a dict map word_id -> code of path that from the word to the root node, we call it path_code.
       Code means the label of each binary classifier, 1 indicate true, 0 indicate false.
    4. Now, each word should has its path and code along the path, you can pass a batch of path and code related
       to the same batch of inputs.

    Parameters:
        input (Tensor): A tensor with the shape [N, D], where N is the size of mini-batch,
            and D is the feature size. Its data type supports float32 or float64.
        label (Tensor): A tensor contains the labels of training data. Its shape is [N, 1]
            and data type is int64.
        num_classes (int): The number of classes or the size of word dict, must be greater than 2.
            If the default tree is used (path_code and path_table is None are None), `num_classes`
            should not be None. If the custom tree is used (path_code and path_table is None are not None),
            `num_classes` should be the number of non-leaf nodes, which indicates the num of
            classes using by the binary classifier.
        weight (Tensor): A tensor with shape (num_classes - 1, D), with the same data type as `input`.
        bias (Tensor, optional): A tensor with shape (num_classes - 1, 1), with the same data type as `input`.
            If `bias` is None, no bias will be add. Default is None.
        path_table (Tensor, optional): A tensor that stores each batch of samples' path from leaf to root
            node, its shape is [N, L] and data type is int64, where L is the length of path. For each sample i,
            path_table[i] is a np.array like structure and each element in this array is the indexes in parent
            nodes' weight matrix. If `path_table` and `path_code` are None, the default tree will be used.
            Default is None.
        path_code (Tensor, optional): A tensor that stores each batch of samples' code of path from leaf
            to root node, its shape is [N, L] and data type is int64, which is the same as :attr:`path_table`.
            Each code of path is consisted with the code of nodes from leaf to root node. If `path_table` and
            `path_code` are None, the default tree will be used. Default is None.
        is_sparse (bool, optional): Whether use sparse updating instead of dense updating. If `is_sparse` is True,
            the gradient of `weight` and `input` will be sparse. Default is False.
        name (str, optional): Name for the operation (optional, default is None).
            For more information, please refer to :ref:`api_guide_Name`.

    Returns:
        A tensor with the cost of hierarchical sigmoid, its shape is [N, 1] and data type is the same as `input`.

    Examples:
        .. code-block:: python

            import paddle
            import paddle.nn.functional as F

            paddle.set_device('cpu')

L
Linjie Chen 已提交
941 942 943 944 945
            input = paddle.uniform([4, 3])
            # [[0.45424712  -0.77296764  0.82943869] # random
            #  [0.85062802  0.63303483  0.35312140] # random
            #  [0.57170701  0.16627562  0.21588242] # random
            #  [0.27610803  -0.99303514  -0.17114788]] # random
946 947 948
            label = paddle.to_tensor([0, 1, 4, 5])
            num_classes = 5
            weight=paddle.uniform([num_classes-1, 3])
L
Linjie Chen 已提交
949 950 951 952
            # [[-0.64477652  0.24821866  -0.17456549] # random
            #  [-0.04635394  0.07473493  -0.25081766] # random
            #  [ 0.05986035  -0.12185556  0.45153677] # random
            #  [-0.66236806  0.91271877  -0.88088769]] # random
953 954

            out=F.hsigmoid_loss(input, label, num_classes, weight)
L
Linjie Chen 已提交
955 956 957 958
            # [[1.96709502]
            #  [2.40019274]
            #  [2.11009121]
            #  [1.92374969]]
959
    """
L
Linjie Chen 已提交
960
    if num_classes < 2:
961
        raise ValueError(f'Expected num_classes >= 2 (got {num_classes})')
L
Linjie Chen 已提交
962

963
    if in_dynamic_mode():
964
        out, _, _ = _C_ops.hsigmoid_loss(
965 966
            input,
            label,
967 968
            weight,
            bias,
969 970 971 972 973 974
            path_table,
            path_code,
            num_classes,
            is_sparse,
            is_sparse,
        )
975
        return out
姜永久 已提交
976
    else:
977
        check_variable_and_dtype(
姜永久 已提交
978
            input, 'input', ['float32', 'float64'], 'hsigmoid_loss'
979
        )
姜永久 已提交
980
        check_variable_and_dtype(label, 'label', ['int64'], 'hsigmoid_loss')
981
        check_variable_and_dtype(
姜永久 已提交
982
            weight, 'weight', ['float32', 'float64'], 'hsigmoid_loss'
983
        )
姜永久 已提交
984 985 986 987 988 989 990 991 992 993 994 995
        if bias is not None:
            check_variable_and_dtype(
                bias, 'bias', ['float32', 'float64'], 'hsigmoid_loss'
            )
        if path_table is not None:
            check_variable_and_dtype(
                path_table, 'path_table', ['int64'], 'hsigmoid_loss'
            )
        if path_code is not None:
            check_variable_and_dtype(
                path_code, 'path_code', ['int64'], 'hsigmoid_loss'
            )
996

姜永久 已提交
997 998 999 1000
        attrs = {
            "num_classes": num_classes,
            "is_sparse": is_sparse,
        }
1001

姜永久 已提交
1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022
        inputs = {
            "X": input,
            "W": weight,
            "Bias": bias,
            "PathTable": path_table,
            "PathCode": path_code,
            "Label": label,
        }

        helper = LayerHelper('hsigmoid_loss', **locals())
        out = helper.create_variable_for_type_inference(input.dtype)
        pre_out = helper.create_variable_for_type_inference(input.dtype)
        outputs = {"Out": out, "PreOut": pre_out, "W_Out": weight}

        helper.append_op(
            type="hierarchical_sigmoid",
            inputs=inputs,
            outputs=outputs,
            attrs=attrs,
        )
        return out
1023 1024


1025
def smooth_l1_loss(input, label, reduction='mean', delta=1.0, name=None):
1026
    r"""
1027
    Calculate smooth_l1_loss. Creates a criterion that uses a squared
1028 1029 1030 1031 1032 1033
    term if the absolute element-wise error falls below 1 and an L1 term otherwise.
    In some cases it can prevent exploding gradients and it is more robust and less
    sensitivity to outliers. Also known as the Huber loss:

    .. math::

1034
        loss(x,y) = \frac{1}{n}\sum_{i}z_i
1035 1036


1037
    where :math:`z_i` is given by:
1038 1039 1040

    .. math::

1041
        \mathop{z_i} = \left\{\begin{array}{rcl}
1042 1043 1044
                0.5(x_i - y_i)^2 & & {if |x_i - y_i| < \delta} \\
                \delta * |x_i - y_i| - 0.5 * \delta^2 & & {otherwise}
            \end{array} \right.
1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057

    Parameters:
        input (Tensor): Input tensor, the data type is float32 or float64. Shape is
            (N, C), where C is number of classes, and if shape is more than 2D, this
            is (N, C, D1, D2,..., Dk), k >= 1.
        label (Tensor): Label tensor, the data type is float32 or float64. The shape of label
            is the same as the shape of input.
        reduction (str, optional): Indicate how to average the loss by batch_size,
            the candicates are ``'none'`` | ``'mean'`` | ``'sum'``.
            If :attr:`reduction` is ``'mean'``, the reduced mean loss is returned;
            If :attr:`reduction` is ``'sum'``, the reduced sum loss is returned.
            If :attr:`reduction` is ``'none'``, the unreduced loss is returned.
            Default is ``'mean'``.
1058
        delta (float, optional): Specifies the hyperparameter :math:`\delta` to be used.
1059 1060 1061
            The value determines how large the errors need to be to use L1. Errors
            smaller than delta are minimized with L2. Parameter is ignored for
            negative/zero values. Default = 1.0
1062
        name (str, optional): For details, please refer to :ref:`api_guide_Name`. Generally, no setting is required. Default: None.
1063 1064

    Returns:
1065
        Tensor, The tensor variable storing the smooth_l1_loss of input and label.
1066 1067 1068 1069 1070 1071

    Examples:
        .. code-block:: python

            import paddle

1072 1073
            input = paddle.rand([3, 3]).astype('float32')
            label = paddle.rand([3, 3]).astype('float32')
C
Chen Long 已提交
1074
            output = paddle.nn.functional.smooth_l1_loss(input, label)
G
Guanghua Yu 已提交
1075
            print(output)
1076
            # 0.068004
1077 1078
    """

1079
    if in_dynamic_mode():
1080
        out = _C_ops.huber_loss(input, label, delta)
1081
    else:
1082
        check_variable_and_dtype(
C
co63oc 已提交
1083 1084 1085 1086
            input,
            'input',
            ['float16', 'float32', 'float64', 'uint16'],
            'smooth_l1_loss',
1087 1088
        )
        check_variable_and_dtype(
C
co63oc 已提交
1089 1090 1091 1092
            label,
            'label',
            ['float16', 'float32', 'float64', 'uint16'],
            'smooth_l1_loss',
1093
        )
1094 1095
        helper = LayerHelper('huber_loss', **locals())
        residual = helper.create_variable_for_type_inference(
1096 1097
            dtype=helper.input_dtype()
        )
1098
        out = helper.create_variable_for_type_inference(
1099 1100 1101 1102 1103 1104 1105 1106
            dtype=helper.input_dtype()
        )
        helper.append_op(
            type='huber_loss',
            inputs={'X': input, 'Y': label},
            outputs={'Out': out, 'Residual': residual},
            attrs={'delta': delta},
        )
1107 1108 1109 1110

    if reduction not in ['sum', 'mean', 'none']:
        raise ValueError(
            "The value of 'reduction' in smooth_l1_loss should be 'sum', 'mean' or"
1111 1112
            " 'none', but received %s, which is not allowed." % reduction
        )
1113 1114 1115
    if reduction == 'none':
        return out
    elif reduction == 'mean':
1116
        return paddle.mean(out)
1117
    elif reduction == 'sum':
1118
        return paddle.sum(out)
1119 1120


1121 1122 1123
def margin_ranking_loss(
    input, other, label, margin=0.0, reduction='mean', name=None
):
1124
    r"""
1125

1126
    Calcluate the margin rank loss between the input, other and label, use the math function as follows.
1127

1128
    .. math::
1129
        margin\_rank\_loss = max(0, -label * (input - other) + margin)
1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145

    If :attr:`reduction` set to ``'mean'``, the reduced mean loss is:

    .. math::
        Out = MEAN(margin\_rank\_loss)

    If :attr:`reduction` set to ``'sum'``, the reduced sum loss is:

    .. math::
        Out = SUM(margin\_rank\_loss)

    If :attr:`reduction` set to ``'none'``, just return the origin ``margin_rank_loss``.

    Parameters:
        input(Tensor): the first input tensor, it's data type should be float32, float64.
        other(Tensor): the second input tensor, it's data type should be float32, float64.
1146
        label(Tensor): the label value corresponding to input, it's data type should be float32, float64.
1147 1148 1149 1150
        margin (float, optional): The margin value to add, default value is 0;
        reduction (str, optional): Indicate the reduction to apply to the loss, the candicates are ``'none'``, ``'mean'``, ``'sum'``.If :attr:`reduction` is ``'none'``, the unreduced loss is returned; If :attr:`reduction` is ``'mean'``, the reduced mean loss is returned. If :attr:`reduction` is ``'sum'``, the reduced sum loss is returned. Default is ``'mean'``.
        name (str, optional): Name for the operation (optional, default is None). For more information, please refer to :ref:`api_guide_Name`.

1151
    Returns:
1152
        Tensor, if :attr:`reduction` is ``'mean'`` or ``'sum'``, the out shape is :math:`[]`, otherwise the shape is the same as `input` .The same dtype as input tensor.
1153 1154 1155 1156 1157

    Examples:

        .. code-block:: python

1158 1159
            import paddle

Z
Zhong Hui 已提交
1160 1161 1162
            input = paddle.to_tensor([[1, 2], [3, 4]], dtype='float32')
            other = paddle.to_tensor([[2, 1], [2, 4]], dtype='float32')
            label = paddle.to_tensor([[1, -1], [-1, -1]], dtype='float32')
1163
            loss = paddle.nn.functional.margin_ranking_loss(input, other, label)
1164
            print(loss) # 0.75
1165
    """
1166 1167 1168
    if reduction not in ['sum', 'mean', 'none']:
        raise ValueError(
            "The value of 'reduction' in MarginRankingLoss should be 'sum', 'mean' or 'none', but "
1169 1170
            "received %s, which is not allowed." % reduction
        )
1171
    if in_dynamic_mode():
1172 1173
        out = _C_ops.subtract(other, input)
        out = _C_ops.multiply(out, label)
1174 1175
        if margin != 0.0:
            margin = fluid.dygraph.base.to_variable([margin], dtype=out.dtype)
1176 1177
            out = _C_ops.add(out, margin)
        out = _C_ops.relu(out)
1178
        if reduction == 'sum':
1179
            return _C_ops.sum(out, [], None, False)
1180
        elif reduction == 'mean':
1181
            return _C_ops.mean_all(out)
1182
        return out
姜永久 已提交
1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193
    else:
        helper = LayerHelper("margin_ranking_loss", **locals())
        check_variable_and_dtype(
            input, 'input', ['float32', 'float64'], 'margin_rank_loss'
        )
        check_variable_and_dtype(
            other, 'other', ['float32', 'float64'], 'margin_rank_loss'
        )
        check_variable_and_dtype(
            label, 'label', ['float32', 'float64'], 'margin_rank_loss'
        )
1194

姜永久 已提交
1195 1196 1197
        out = paddle.subtract(input, other)
        neg_label = paddle.neg(label)
        out = paddle.multiply(neg_label, out)
1198

姜永久 已提交
1199 1200 1201 1202 1203 1204
        if margin != 0.0:
            margin_var = out.block.create_var(dtype=out.dtype)
            margin_var = paddle.full(
                shape=[1], fill_value=margin, dtype=out.dtype
            )
            out = paddle.add(out, margin_var)
1205

姜永久 已提交
1206
        result_out = helper.create_variable_for_type_inference(input.dtype)
1207

姜永久 已提交
1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231
        if reduction == 'none':
            helper.append_op(
                type="relu", inputs={"X": out}, outputs={"Out": result_out}
            )
            return result_out
        elif reduction == 'sum':
            out = paddle.nn.functional.relu(out)
            attrs = {"dim": [0], "keep_dim": False, "reduce_all": True}
            helper.append_op(
                type="reduce_sum",
                inputs={"X": out},
                outputs={"Out": result_out},
                attrs=attrs,
            )
            return result_out
        elif reduction == 'mean':
            out = paddle.nn.functional.relu(out)
            helper.append_op(
                type="mean",
                inputs={"X": out},
                outputs={"Out": result_out},
                attrs={},
            )
            return result_out
1232 1233


1234
def l1_loss(input, label, reduction='mean', name=None):
1235
    r"""
1236

1237
    Computes the L1 Loss of Tensor ``input`` and ``label`` as follows.
1238

1239
    If `reduction` set to ``'none'``, the loss is:
1240 1241

    .. math::
1242
        Out = \lvert input - label \rvert
1243

1244
    If `reduction` set to ``'mean'``, the loss is:
1245 1246

    .. math::
1247
        Out = MEAN(\lvert input - label \rvert)
1248

1249
    If `reduction` set to ``'sum'``, the loss is:
1250 1251

    .. math::
1252
        Out = SUM(\lvert input - label \rvert)
1253

1254

1255
    Parameters:
N
Noel 已提交
1256 1257
        input (Tensor): The input tensor. The shapes is [N, `*`], where N is batch size and `*` means any number of additional dimensions. It's data type should be float32, float64, int32, int64.
        label (Tensor): label. The shapes is [N, `*`], same shape as ``input`` . It's data type should be float32, float64, int32, int64.
1258
        reduction (str, optional): Indicate the reduction to apply to the loss,
1259
            the candicates are ``'none'`` | ``'mean'`` | ``'sum'``.
1260 1261 1262
            If `reduction` is ``'none'``, the unreduced loss is returned;
            If `reduction` is ``'mean'``, the reduced mean loss is returned.
            If `reduction` is ``'sum'``, the reduced sum loss is returned.
1263 1264
            Default is ``'mean'``.
        name (str, optional): Name for the operation (optional, default is None). For more information, please refer to :ref:`api_guide_Name`.
N
Noel 已提交
1265

1266
    Returns:
1267
        Tensor, the L1 Loss of Tensor ``input`` and ``label``.
1268
        If `reduction` is ``'none'``, the shape of output loss is :math:`[N, *]`, the same as ``input`` .
1269
        If `reduction` is ``'mean'`` or ``'sum'``, the shape of output loss is [].
N
Noel 已提交
1270

1271 1272
    Examples:
        .. code-block:: python
N
Noel 已提交
1273

1274
            import paddle
1275

1276 1277
            input = paddle.to_tensor([[1.5, 0.8], [0.2, 1.3]])
            label = paddle.to_tensor([[1.7, 1], [0.4, 0.5]])
1278

1279
            l1_loss = paddle.nn.functional.l1_loss(input, label)
1280
            print(l1_loss)
1281 1282
            # Tensor(shape=[], dtype=float32, place=Place(gpu:0), stop_gradient=True,
            #        0.34999999)
1283

1284
            l1_loss = paddle.nn.functional.l1_loss(input, label, reduction='none')
1285 1286 1287 1288
            print(l1_loss)
            # Tensor(shape=[2, 2], dtype=float32, place=Place(gpu:0), stop_gradient=True,
            #        [[0.20000005, 0.19999999],
            #         [0.20000000, 0.79999995]])
1289

1290
            l1_loss = paddle.nn.functional.l1_loss(input, label, reduction='sum')
1291
            print(l1_loss)
1292 1293
            # Tensor(shape=[], dtype=float32, place=Place(gpu:0), stop_gradient=True,
            #        1.39999998)
1294

1295 1296 1297 1298
    """
    if reduction not in ['sum', 'mean', 'none']:
        raise ValueError(
            "The value of 'reduction' in L1Loss should be 'sum', 'mean' or 'none', but "
1299 1300
            "received %s, which is not allowed." % reduction
        )
1301

1302
    if in_dynamic_mode():
1303 1304
        unreduced = _C_ops.abs(_C_ops.subtract(input, label))

1305
        if reduction == 'mean':
1306
            return _C_ops.mean_all(unreduced)
1307
        elif reduction == 'sum':
1308
            return _C_ops.sum(unreduced, [], None, False)
1309 1310
        else:
            return unreduced
姜永久 已提交
1311 1312
    else:
        check_variable_and_dtype(
1313 1314 1315 1316
            input,
            'input',
            ['float32', 'float64', 'int32', 'int64'],
            'l1_loss',
姜永久 已提交
1317 1318
        )
        check_variable_and_dtype(
1319 1320 1321 1322
            label,
            'label',
            ['float32', 'float64', 'int32', 'int64'],
            'l1_loss',
1323
        )
1324

姜永久 已提交
1325 1326 1327 1328 1329 1330 1331 1332
        if reduction == 'sum':
            unreduced = paddle.abs(paddle.subtract(x=input, y=label))
            return paddle.sum(unreduced, name=name)
        elif reduction == 'mean':
            unreduced = paddle.abs(paddle.subtract(x=input, y=label))
            return paddle.mean(unreduced, name=name)
        else:
            return paddle.abs(paddle.subtract(x=input, y=label, name=name))
1333 1334 1335 1336 1337


def nll_loss(
    input, label, weight=None, ignore_index=-100, reduction='mean', name=None
):
1338 1339
    """
    This api returns negative log likelihood.
1340 1341
    See more detail in :ref:`NLLLoss <api_paddle_nn_NLLLoss>` .

1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352

    Parameters:
         input (Tensor): Input tensor, the shape is :math:`[N, C]`, `C` is the number of classes.
             But in K-dimension situation, the shape is :math:`[N, C, d_1, d_2, ..., d_K]`.
             The data type is float32, float64.
         label (Tensor): Label tensor, the shape is :math:`[N,]` or :math:`[N, d_1, d_2, ..., d_K]`.
             The data type is int64.
         weight (Tensor, optional): Weight tensor, a manual rescaling weight given
             to each class. If given, it has to be a 1D Tensor whose size is `[C, ]`. Otherwise,
             it treated as if having all ones. the data type is
             float32, float64, Default is ``'None'``.
1353 1354
         ignore_index (int, optional): Specifies a target value that is ignored
             and does not contribute to the input gradient. Default is -100.
1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368
         reduction (str, optional): Indicate how to average the loss,
             the candicates are ``'none'`` | ``'mean'`` | ``'sum'``.
             If `reduction` is ``'mean'``, the reduced mean loss is returned;
             if `reduction` is ``'sum'``, the reduced sum loss is returned;
             if `reduction` is ``'none'``, no reduction will be apllied.
             Default is ``'mean'``.
         name (str, optional): Name for the operation (optional, default is None).
             For more information, please refer to :ref:`api_guide_Name`.

    Returns:
         `Tensor`, the value of negative log likelihood loss.

    Examples:
        .. code-block:: python
1369

1370 1371 1372 1373
                import paddle
                from paddle.nn.functional import nll_loss
                log_softmax = paddle.nn.LogSoftmax(axis=1)

1374 1375 1376 1377 1378
                input = paddle.to_tensor([[0.88103855, 0.9908683 , 0.6226845 ],
                          [0.53331435, 0.07999352, 0.8549948 ],
                          [0.25879037, 0.39530203, 0.698465  ],
                          [0.73427284, 0.63575995, 0.18827209],
                          [0.05689114, 0.0862954 , 0.6325046 ]], "float32")
1379
                log_out = log_softmax(input)
1380
                label = paddle.to_tensor([0, 2, 1, 1, 0], "int64")
1381
                result = nll_loss(log_out, label)
1382
                print(result) # Tensor(shape=[], dtype=float32, place=CPUPlace, stop_gradient=True, 1.07202101)
1383 1384 1385 1386
    """
    if reduction not in ['sum', 'mean', 'none']:
        raise ValueError(
            "The value of 'reduction' in nll_loss should be 'sum', 'mean' or "
1387 1388
            "'none', but received %s, which is not allowed." % reduction
        )
1389 1390 1391

    input_shape = list(input.shape)
    input_dims = len(input_shape)
1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402
    label_shape = list(label.shape)
    label_dims = len(label_shape)

    if input_dims - 1 != label_dims and input_dims != label_dims:
        raise ValueError(
            "Expected input_dims - 1 = label_dims or input_dims == label_dims\
             (got input_dims{}, label_dims{})".format(
                input_dims, label_dims
            )
        )

1403
    if input_dims < 2:
1404
        raise ValueError(f'Expected 2 or more dimensions (got {input_dims})')
1405 1406 1407 1408 1409 1410 1411 1412

    if input_shape[1] < 1:
        raise ValueError(
            "Expected 1 or more classess (got num classes{})".format(
                input_shape[1]
            )
        )

1413 1414
    n = input_shape[0]
    c = input_shape[1]
1415
    if in_dynamic_mode():
Z
zyfncg 已提交
1416
        if input_dims != 2 and input_dims != 4:
1417 1418
            input = _C_ops.reshape(input, [n, c, 1, -1])
            label = _C_ops.reshape(label, [n, 1, -1])
Z
zyfncg 已提交
1419
            out_shape = [n] + input_shape[2:]
1420 1421 1422
        out, total_weight = _C_ops.nll_loss(
            input, label, weight, ignore_index, reduction
        )
Z
zyfncg 已提交
1423
        if input_dims != 2 and input_dims != 4 and reduction == 'none':
1424
            out = _C_ops.reshape(out, out_shape)
Z
zyfncg 已提交
1425
        return out
姜永久 已提交
1426 1427 1428
    else:
        helper = LayerHelper('nll_loss', **locals())

1429
        if input_dims != 2 and input_dims != 4:
姜永久 已提交
1430 1431
            input = reshape(input, shape=[n, c, 1, -1])
            label = reshape(label, shape=[n, 1, -1])
1432
            out_shape = [n] + input_shape[2:]
H
hong 已提交
1433

姜永久 已提交
1434 1435
        check_variable_and_dtype(
            input, 'input', ['float32', 'float64'], 'nll_loss'
1436
        )
姜永久 已提交
1437 1438 1439 1440 1441 1442
        check_variable_and_dtype(label, 'label', ['int64'], 'nll_loss')
        inputs = {'X': input, 'Label': label}
        attrs = {'reduction': reduction, 'ignore_index': ignore_index}
        if weight is not None:
            if isinstance(weight, Variable):
                inputs['Weight'] = weight
1443

姜永久 已提交
1444 1445 1446 1447 1448
        out = helper.create_variable_for_type_inference(dtype=input.dtype)
        total_weight = helper.create_variable_for_type_inference(
            dtype=input.dtype
        )
        outputs = {'Out': out, 'Total_weight': total_weight}
1449

姜永久 已提交
1450 1451 1452 1453 1454
        helper.append_op(
            type='nll_loss', inputs=inputs, outputs=outputs, attrs=attrs
        )
        if input_dims != 2 and input_dims != 4 and reduction == 'none':
            out = reshape(out, shape=out_shape)
1455

姜永久 已提交
1456
        return out
1457 1458


1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509
def poisson_nll_loss(
    input,
    label,
    log_input=True,
    full=False,
    epsilon=1e-8,
    reduction="mean",
    name=None,
):
    r"""Poisson negative log likelihood loss.
    See more detail in :ref:`PoissonNLLLoss <api_paddle_nn_PoissonNLLLoss>` .

    Parameters:
         input (Tensor):
            Input tensor, expectation of underlying Poisson distribution.
            The shape of input tensor should be `(N, *)` or `(*)` where `(*)` denotes any number of extra dimensions.
            It's data type should be float16, bfloat16, float32, float64.
         label (Tensor):
            Label tensor, random sampled from Poisson distribution :math:`label \sim \text{Poisson}(input)`.
            The shape of input tensor should be `(N, *)` or `(*)`, same shape as the input tensor.
            It's data type should be float16, bfloat16, float32, float64.
         log_input (bool, optional):
            Whether to the treat input tensor as log input.
            If ``True`` the loss is computed as, :math:`\exp(\text{input}) - \text{label} * \text{input}` .
            If ``False`` then loss is :math:`\text{input} - \text{label} * \log(\text{input}+\text{epsilon})` .
            Default: ``True``.
         full (bool, optional):
            Whether to compute full loss.
            If ``True``, the Stirling approximation term is added.
            If ``False``, the Stirling approximation is dropped.
            Default: ``False``.
         epsilon (float, optional):
            A small value to avoid evaluation of :math:`\log(0)` when `log_input`\ =\ ``False``. ``epsilon > 0``.
            Default: 1e-8.
         reduction (str, optional):
            Indicate how to reduce the loss, the candicates are ``'none'`` | ``'mean'`` | ``'sum'``.
            If `reduction` is ``'mean'``, the reduced mean loss is returned;
            if `reduction` is ``'sum'``, the reduced sum loss is returned;
            if `reduction` is ``'none'``, no reduction will be apllied.
            Default is ``'mean'``.
         name (str, optional):
            Name for the operation (optional, default is None). For more information, please refer to :ref:`api_guide_Name`.

    Examples:
        .. code-block:: python

            import paddle
            import paddle.nn.functional as F

            input = paddle.randn([5, 2], dtype=paddle.float32)
            label = paddle.randn([5, 2], dtype=paddle.float32)
1510
            loss = F.poisson_nll_loss(input, label, log_input=True, reduction='none')
1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568
            print(loss)
            loss = F.poisson_nll_loss(input, label, reduction='mean')
            print(loss)

    """
    # check parameter values
    if epsilon <= 0:
        raise ValueError(
            "The value of `epsilon` in poisson_nll_loss should be positve, but received %f, which is not allowed"
            % epsilon
        )

    if reduction not in ['sum', 'mean', 'none']:
        raise ValueError(
            "The value of 'reduction' in poisson_nll_loss should be 'sum', 'mean' or 'none', but "
            "received %s, which is not allowed." % reduction
        )
    # check input dtype and dimension
    check_variable_and_dtype(
        input,
        'input',
        ['float16', 'uint16', 'float32', 'float64'],
        'poisson_nll_loss',
    )
    check_variable_and_dtype(
        label,
        'label',
        ['float16', 'uint16', 'float32', 'float64'],
        'poisson_nll_loss',
    )

    if not (input.shape == label.shape):
        raise ValueError("input's shape must equal to label's shape")

    label = paddle.cast(label, input.dtype)
    loss_out = 0
    if log_input:
        loss_out = paddle.exp(input) - label * input
    else:
        loss_out = input - label * paddle.log(input + epsilon)
    if full:
        stirling_approx = (
            label * paddle.log(label)
            - label
            + 0.5 * paddle.log(2 * math.pi * label)
        )
        loss_out += paddle.where(
            stirling_approx <= 1,
            paddle.zeros_like(stirling_approx),
            stirling_approx,
        )
    if reduction == 'mean':
        loss_out = paddle.mean(loss_out)
    elif reduction == 'sum':
        loss_out = paddle.sum(loss_out)
    return loss_out


1569
def kl_div(input, label, reduction='mean', name=None):
1570
    r"""
1571
    Calculate the Kullback-Leibler divergence loss
1572 1573 1574 1575 1576 1577 1578
    between Input(X) and Input(Target). Notes that Input(X) is the
    log-probability and Input(Target) is the probability.

    KL divergence loss is calculated as follows:

    $$l(x, y) = y * (\log(y) - x)$$

1579
    Here :math:`x` is input and :math:`y` is label.
1580

1581
    If `reduction` is ``'none'``, the output loss is the same shape as the input, and the loss at each point is calculated separately. There is no reduction to the result.
1582

1583
    If `reduction` is ``'mean'``, the output loss is the shape of [], and the output is the average of all losses.
1584

1585
    If `reduction` is ``'sum'``, the output loss is the shape of [], and the output is the sum of all losses.
1586

1587
    If `reduction` is ``'batchmean'``, the output loss is the shape of [N], N is the batch size, and the output is the sum of all losses divided by the batch size.
1588 1589

    Args:
1590
        input (Tensor): The input tensor. The shapes is [N, *], where N is batch size and `*` means
1591
            any number of additional dimensions. It's data type should be float32, float64.
1592
        label (Tensor): label. The shapes is [N, *], same shape as ``input`` . It's data type should be float32, float64.
1593 1594 1595 1596 1597 1598 1599
        reduction (str, optional): Indicate how to average the loss,
            the candicates are ``'none'`` | ``'batchmean'`` | ``'mean'`` | ``'sum'``.
            If `reduction` is ``'mean'``, the reduced mean loss is returned;
            If `reduction` is ``'batchmean'``, the sum loss divided by batch size is returned;
            if `reduction` is ``'sum'``, the reduced sum loss is returned;
            if `reduction` is ``'none'``, no reduction will be apllied.
            Default is ``'mean'``.
1600
        name(str, optional): Name for the operation (optional, default is None). For more information,
1601 1602 1603 1604 1605 1606 1607 1608 1609 1610
            please refer to :ref:`api_guide_Name`.

    Returns:
        Tensor: The KL divergence loss. The data type is same as input tensor

    Examples:
        .. code-block:: python

            import paddle
            import paddle.nn.functional as F
1611

1612
            shape = (5, 20)
1613 1614
            x = paddle.uniform(shape, min=-10, max=10).astype('float32')
            target = paddle.uniform(shape, min=-10, max=10).astype('float32')
1615

1616
            # 'batchmean' reduction, loss shape will be [], who is 0-D Tensor
1617
            pred_loss = F.kl_div(x, target, reduction='batchmean')
1618
            # shape=[]
1619

1620
            # 'mean' reduction, loss shape will be [], who is 0-D Tensor
1621
            pred_loss = F.kl_div(x, target, reduction='mean')
1622
            # shape=[]
1623

1624
            # 'sum' reduction, loss shape will be [], who is 0-D Tensor
1625
            pred_loss = F.kl_div(x, target, reduction='sum')
1626
            # shape=[]
1627 1628

            # 'none' reduction, loss shape is same with input shape
1629
            pred_loss = F.kl_div(x, target, reduction='none')
1630 1631 1632
            # shape=[5, 20]

    """
L
LielinJiang 已提交
1633
    # ugly type promotion
1634 1635 1636 1637
    if (
        fluid.data_feeder.convert_dtype(input.dtype) == 'float32'
        and fluid.data_feeder.convert_dtype(label.dtype) == 'float64'
    ):
1638
        input = paddle.cast(input, 'float64')
1639 1640 1641 1642
    elif (
        fluid.data_feeder.convert_dtype(input.dtype) == 'float64'
        and fluid.data_feeder.convert_dtype(label.dtype) == 'float32'
    ):
1643
        label = paddle.cast(label, 'float64')
L
LielinJiang 已提交
1644

1645
    if in_dynamic_mode():
1646
        out = _C_ops.kldiv_loss(input, label, 'none')
1647 1648 1649 1650 1651 1652 1653 1654 1655
        if reduction == 'mean':
            out = paddle.mean(out)
        elif reduction == 'sum':
            out = paddle.sum(out)
        elif reduction == 'batchmean':
            if len(input.shape) > 0:
                batch_size = input.shape[0]
                out = paddle.sum(out) / batch_size
        return out
姜永久 已提交
1656 1657
    else:
        helper = LayerHelper('kl_div', **locals())
1658

姜永久 已提交
1659 1660 1661 1662 1663 1664 1665
        check_variable_and_dtype(
            input, 'input', ['float32', 'float64'], 'kl_div'
        )
        check_variable_and_dtype(
            label, 'label', ['float32', 'float64'], 'kl_div'
        )
        fluid.data_feeder.check_type(reduction, 'reduction', str, 'kl_div')
1666

姜永久 已提交
1667 1668 1669 1670 1671 1672 1673
        loss = helper.create_variable_for_type_inference(dtype=input.dtype)
        helper.append_op(
            type='kldiv_loss',
            inputs={'X': input, 'Target': label},
            outputs={'Loss': loss},
            attrs={'reduction': 'none'},
        )
1674

姜永久 已提交
1675 1676 1677 1678 1679 1680 1681 1682
        if reduction == 'mean':
            loss = paddle.mean(loss)
        elif reduction == 'sum':
            loss = paddle.sum(loss)
        elif reduction == 'batchmean':
            batch_size = paddle.shape(input)[0]
            loss = paddle.sum(loss) / batch_size
        return loss
1683 1684


1685
def mse_loss(input, label, reduction='mean', name=None):
1686
    r"""
1687
    Accept input predications and label and returns the mean square error.
1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716

    If :attr:`reduction` is set to ``'none'``, loss is calculated as:

    .. math::
        Out = (input - label)^2

    If :attr:`reduction` is set to ``'mean'``, loss is calculated as:

    .. math::
        Out = \operatorname{mean}((input - label)^2)

    If :attr:`reduction` is set to ``'sum'``, loss is calculated as:

    .. math::
        Out = \operatorname{sum}((input - label)^2)

    Parameters:
        input (Tensor): Input tensor, the data type should be float32 or float64.
        label (Tensor): Label tensor, the data type should be float32 or float64.
        reduction (string, optional): The reduction method for the output,
            could be 'none' | 'mean' | 'sum'.
            If :attr:`reduction` is ``'mean'``, the reduced mean loss is returned.
            If :attr:`reduction` is ``'sum'``, the reduced sum loss is returned.
            If :attr:`reduction` is ``'none'``, the unreduced loss is returned.
            Default is ``'mean'``.
        name (str, optional): Name for the operation (optional, default is None). For more information, please refer to :ref:`api_guide_Name`.


    Returns:
1717
        Tensor, The tensor tensor storing the mean square error difference of input and label.
1718

1719 1720 1721
    Examples:

        .. code-block:: python
1722

1723 1724
            import paddle
            mse_loss = paddle.nn.loss.MSELoss()
1725 1726
            input = paddle.to_tensor(1.5)
            label = paddle.to_tensor(1.7)
1727
            output = mse_loss(input, label)
B
Bai Yifan 已提交
1728
            print(output)
1729
            # 0.04000002
1730 1731 1732 1733 1734 1735

    """

    if reduction not in ['sum', 'mean', 'none']:
        raise ValueError(
            "'reduction' in 'mse_loss' should be 'sum', 'mean' or 'none', "
1736 1737
            "but received {}.".format(reduction)
        )
1738

Z
zhiboniu 已提交
1739
    if not in_dynamic_mode():
1740 1741 1742 1743 1744 1745
        check_variable_and_dtype(
            input, 'input', ['float32', 'float64'], 'mse_loss'
        )
        check_variable_and_dtype(
            label, 'label', ['float32', 'float64'], 'mse_loss'
        )
1746 1747

    if reduction == 'none':
1748
        return paddle.square(paddle.subtract(input, label), name=name)
1749
    elif reduction == 'mean':
1750 1751 1752
        return paddle.mean(
            paddle.square(paddle.subtract(input, label)), name=name
        )
1753
    else:
1754 1755 1756
        return paddle.sum(
            paddle.square(paddle.subtract(input, label)), name=name
        )
1757 1758


1759 1760 1761 1762 1763 1764 1765 1766 1767
def ctc_loss(
    log_probs,
    labels,
    input_lengths,
    label_lengths,
    blank=0,
    reduction='mean',
    norm_by_times=False,
):
1768 1769
    """

1770 1771 1772
    An operator integrating the open source Warp-CTC library (https://github.com/baidu-research/warp-ctc)
    to compute Connectionist Temporal Classification (CTC) loss.
    It can be aliased as softmax with CTC, since a native softmax activation
1773 1774 1775
    is interated to the Warp-CTC library to normalize values for each row of the input tensor.

    Parameters:
1776
        log_probs (Tensor): The unscaled probability sequence with padding, which is a 3-D Tensor. The tensor shape is [max_logit_length, batch_size, num_classes + 1], where max_logit_length is the longest length of input logit sequence. The data type should be float32 or float64.
1777 1778 1779
        labels (Tensor): The ground truth sequence with padding, which must be a 3-D Tensor. The tensor shape is [batch_size, max_label_length], where max_label_length is the longest length of label sequence. The data type must be int32.
        input_lengths (Tensor): The length for each input sequence, it should have shape [batch_size] and dtype int64.
        label_lengths (Tensor): The length for each label sequence, it should have shape [batch_size] and dtype int64.
1780 1781 1782
        blank (int, optional): The blank label index of Connectionist Temporal Classification (CTC) loss, which is in the half-opened interval [0, num_classes + 1). The data type must be int32. Default: 0.
        reduction (str, optional): Indicate how to average the loss, the candicates are ``'none'`` | ``'mean'`` | ``'sum'``. If :attr:`reduction` is ``'mean'``, the output loss will be divided by the label_lengths, and then return the mean of quotient; If :attr:`reduction` is ``'sum'``, return the sum of loss; If :attr:`reduction` is ``'none'``, no reduction will be applied. Default: ``'mean'``.
        norm_by_times (bool, optional): Whether to normalize the gradients by the number of time-step, which is also the sequence's length. There is no need to normalize the gradients if reduction mode is 'mean'. Default: False.
H
Hui Zhang 已提交
1783

1784
    Returns:
1785
        Tensor, The Connectionist Temporal Classification (CTC) loss between ``log_probs`` and  ``labels``. If attr:`reduction` is ``'none'``, the shape of loss is [batch_size], otherwise, the shape of loss is []. Data type is the same as ``log_probs``.
1786

1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803
    Examples:

        .. code-block:: python

            # declarative mode
            import paddle.nn.functional as F
            import paddle

            # length of the longest logit sequence
            max_seq_length = 4
            #length of the longest label sequence
            max_label_length = 3
            # number of logit sequences
            batch_size = 2
            # class num
            class_num = 3

1804
            log_probs = paddle.to_tensor([[[4.17021990e-01, 7.20324516e-01, 1.14374816e-04],
1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816
                                    [3.02332580e-01, 1.46755889e-01, 9.23385918e-02]],

                                    [[1.86260208e-01, 3.45560730e-01, 3.96767467e-01],
                                    [5.38816750e-01, 4.19194520e-01, 6.85219526e-01]],

                                    [[2.04452246e-01, 8.78117442e-01, 2.73875929e-02],
                                    [6.70467496e-01, 4.17304814e-01, 5.58689833e-01]],

                                    [[1.40386939e-01, 1.98101491e-01, 8.00744593e-01],
                                    [9.68261600e-01, 3.13424170e-01, 6.92322612e-01]],

                                    [[8.76389146e-01, 8.94606650e-01, 8.50442126e-02],
1817 1818 1819 1820 1821 1822
                                    [3.90547849e-02, 1.69830427e-01, 8.78142476e-01]]],
                                    dtype="float32")
            labels = paddle.to_tensor([[1, 2, 2],
                                    [1, 2, 2]], dtype="int32")
            input_lengths = paddle.to_tensor([5, 5], dtype="int64")
            label_lengths = paddle.to_tensor([3, 3], dtype="int64")
1823

1824 1825 1826 1827
            loss = F.ctc_loss(log_probs, labels,
                input_lengths,
                label_lengths,
                blank=0,
1828
                reduction='none')
1829 1830 1831
            print(loss)
            # Tensor(shape=[2], dtype=float32, place=Place(gpu:0), stop_gradient=True,
            #        [3.91798496, 2.90765190])
1832

1833 1834 1835 1836 1837
            loss = F.ctc_loss(log_probs, labels,
                input_lengths,
                label_lengths,
                blank=0,
                reduction='mean')
1838
            print(loss)
1839 1840
            # Tensor(shape=[], dtype=float32, place=Place(gpu:0), stop_gradient=True,
            #        1.13760614)
1841 1842 1843

    """

1844 1845 1846 1847 1848 1849 1850 1851
    def warpctc(
        input,
        label,
        blank=0,
        norm_by_times=False,
        input_length=None,
        label_length=None,
    ):
1852
        if in_dynamic_mode():
1853 1854 1855 1856 1857 1858 1859 1860
            if input_length is None or label_length is None:
                raise ValueError(
                    "input_length and label_length must not be None in dygraph mode!"
                )
            loss_out = _C_ops.warpctc(
                input, label, input_length, label_length, blank, norm_by_times
            )
            return loss_out
姜永久 已提交
1861 1862
        else:
            helper = LayerHelper('warpctc', **locals())
1863
            check_variable_and_dtype(
姜永久 已提交
1864
                input, 'input', ['float32', 'float64'], "warpctc"
1865
            )
姜永久 已提交
1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876
            check_variable_and_dtype(label, 'label', ['int32'], "warpctc")
            this_inputs = {'Logits': [input], 'Label': [label]}
            if input_length is not None and label_length is not None:
                check_variable_and_dtype(
                    input_length, 'LogitsLength', ['int64'], "warpctc"
                )
                check_variable_and_dtype(
                    label_length, 'LabelLength', ['int64'], "warpctc"
                )
                this_inputs['LogitsLength'] = [input_length]
                this_inputs['LabelLength'] = [label_length]
1877

姜永久 已提交
1878 1879 1880 1881 1882 1883
            loss_out = helper.create_variable_for_type_inference(
                dtype=input.dtype
            )
            grad_out = helper.create_variable_for_type_inference(
                dtype=input.dtype
            )
1884

姜永久 已提交
1885 1886 1887 1888 1889 1890 1891 1892 1893 1894
            helper.append_op(
                type='warpctc',
                inputs=this_inputs,
                outputs={'WarpCTCGrad': [grad_out], 'Loss': [loss_out]},
                attrs={
                    'blank': blank,
                    'norm_by_times': norm_by_times,
                },
            )
            return loss_out
1895 1896

    loss_out = warpctc(
1897 1898
        log_probs, labels, blank, norm_by_times, input_lengths, label_lengths
    )
1899

Z
zhiboniu 已提交
1900
    loss_out = paddle.squeeze(loss_out, [-1])
1901 1902
    assert reduction in ['mean', 'sum', 'none']
    if reduction == 'mean':
S
ShenLiang 已提交
1903
        loss_out = paddle.mean(loss_out / label_lengths)
1904 1905 1906
    elif reduction == 'sum':
        loss_out = paddle.sum(loss_out)
    return loss_out
H
Hui Zhang 已提交
1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922 1923


def rnnt_loss(
    input,
    label,
    input_lengths,
    label_lengths,
    blank=0,
    fastemit_lambda=0.001,
    reduction='mean',
    name=None,
):
    """
    An operator integrating the open source Warp-Transducer library (https://github.com/b-flo/warp-transducer.git)
    to compute Sequence Transduction with Recurrent Neural Networks (RNN-T) loss.

    Parameters:
C
cyberslack_lee 已提交
1924
        input (Tensor): The logprobs sequence with padding, which is a 4-D Tensor. The tensor shape is [B, Tmax, Umax, D], where Tmax is the longest length of input logit sequence. The data type should be float32 or float64.
H
Hui Zhang 已提交
1925 1926 1927 1928 1929 1930 1931 1932 1933
        label (Tensor): The ground truth sequence with padding, which must be a 2-D Tensor. The tensor shape is [B, Umax], where Umax is the longest length of label sequence. The data type must be int32.
        input_lengths (Tensor): The length for each input sequence, it should have shape [batch_size] and dtype int64.
        label_lengths (Tensor): The length for each label sequence, it should have shape [batch_size] and dtype int64.
        blank (int, optional): The blank label index of RNN-T loss, which is in the half-opened interval [0, B). The data type must be int32. Default is 0.
        fastemit_lambda (float, default 0.001): Regularization parameter for FastEmit (https://arxiv.org/pdf/2010.11148.pdf)
        reduction (string, optional): Indicate how to average the loss, the candicates are ``'none'`` | ``'mean'`` | ``'sum'``. If :attr:`reduction` is ``'mean'``, the output will be sum of loss and be divided by the batch_size; If :attr:`reduction` is ``'sum'``, return the sum of loss; If :attr:`reduction` is ``'none'``, no reduction will be applied. Default is ``'mean'``.
        name (str, optional): Name for the operation (optional, default is None). For more information, please refer to :ref:`api_guide_Name`.

    Returns:
1934
        Tensor, The RNN-T loss between ``logprobs`` and  ``labels``. If attr:`reduction` is ``'none'``, the shape of loss is [batch_size], otherwise, the shape of loss is []. Data type is the same as ``logprobs``.
H
Hui Zhang 已提交
1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965

    Examples:

        .. code-block:: python

            # declarative mode
            import paddle.nn.functional as F
            import numpy as np
            import paddle
            import functools

            fn = functools.partial(F.rnnt_loss, reduction='sum', fastemit_lambda=0.0, blank=0)

            acts = np.array([[[[0.1, 0.6, 0.1, 0.1, 0.1],
                            [0.1, 0.1, 0.6, 0.1, 0.1],
                            [0.1, 0.1, 0.2, 0.8, 0.1]],
                            [[0.1, 0.6, 0.1, 0.1, 0.1],
                            [0.1, 0.1, 0.2, 0.1, 0.1],
                            [0.7, 0.1, 0.2, 0.1, 0.1]]]])
            labels = [[1, 2]]

            acts = paddle.to_tensor(acts, stop_gradient=False)

            lengths = [acts.shape[1]] * acts.shape[0]
            label_lengths = [len(l) for l in labels]
            labels = paddle.to_tensor(labels, paddle.int32)
            lengths = paddle.to_tensor(lengths, paddle.int32)
            label_lengths = paddle.to_tensor(label_lengths, paddle.int32)

            costs = fn(acts, labels, lengths, label_lengths)
            print(costs)
1966 1967
            # Tensor(shape=[], dtype=float64, place=Place(gpu:0), stop_gradient=False,
            #        4.49566677)
H
Hui Zhang 已提交
1968 1969 1970 1971 1972
    """

    def warprnnt(
        input, label, input_length, label_length, blank=0, fastemit_lambda=0.001
    ):
1973
        if in_dynamic_mode():
H
Hui Zhang 已提交
1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030
            loss_out = _C_ops.warprnnt(
                input,
                label,
                input_length,
                label_length,
                blank,
                fastemit_lambda,
            )
            return loss_out
        helper = LayerHelper('warprnnt', **locals())
        check_variable_and_dtype(
            input, 'input', ['float32', 'float64'], "warprnnt"
        )
        check_variable_and_dtype(label, 'label', ['int32'], "warprnnt")
        check_variable_and_dtype(
            input_length, 'input_lengths', ['int32'], "warprnnt"
        )
        check_variable_and_dtype(
            label_length, 'label_lengths', ['int32'], "warprnnt"
        )
        this_inputs = {
            'input': [input],
            'label': [label],
            'input_lengths': [input_length],
            'label_lengths': [label_length],
        }

        loss_out = helper.create_variable_for_type_inference(dtype=input.dtype)
        grad_out = helper.create_variable_for_type_inference(dtype=input.dtype)

        helper.append_op(
            type='warprnnt',
            inputs=this_inputs,
            outputs={'warprnntgrad': [grad_out], 'loss': [loss_out]},
            attrs={
                'blank': blank,
                'fastemit_lambda': fastemit_lambda,
            },
        )
        return loss_out

    B = input.shape[0]

    # NOTE manually done log_softmax for CPU version,
    # log_softmax is computed within GPU version.

    # (B,)
    loss_out = warprnnt(
        input, label, input_lengths, label_lengths, blank, fastemit_lambda
    )

    assert reduction in ['mean', 'sum', 'none']
    if reduction == 'mean':
        loss_out = paddle.sum(loss_out, name=name) / B
    elif reduction == 'sum':
        loss_out = paddle.sum(loss_out, name=name)
    return loss_out
2031 2032


2033 2034 2035 2036 2037 2038 2039 2040 2041 2042 2043
def margin_cross_entropy(
    logits,
    label,
    margin1=1.0,
    margin2=0.5,
    margin3=0.0,
    scale=64.0,
    group=None,
    return_softmax=False,
    reduction='mean',
):
2044
    r"""
2045 2046
    .. math::

2047
        L=-\frac{1}{N}\sum^N_{i=1}\log\frac{e^{s(cos(m_{1}\theta_{y_i}+m_{2})-m_{3})}}{e^{s(cos(m_{1}\theta_{y_i}+m_{2})-m_{3})}+\sum^n_{j=1,j\neq y_i} e^{scos\theta_{y_i}}}
2048

2049
    where the :math:`\theta_{y_i}` is the angle between the feature :math:`x` and
2050 2051 2052 2053
    the representation of class :math:`i`. The details of ArcFace loss
    could be referred to https://arxiv.org/abs/1801.07698.

    .. hint::
2054 2055 2056 2057
        The API supports single GPU and multi GPU, and don't supports CPU.
        For data parallel mode, set ``group=False``.
        For model parallel mode, set ``group=None`` or the group instance return by paddle.distributed.new_group.
        And logits.shape[-1] can be different at each rank.
2058 2059

    Args:
G
Guoxia Wang 已提交
2060
        logits (Tensor): shape[N, local_num_classes], the output of the normalized X multiply the normalized W.
2061
                The logits is shard_logits when using model parallel.
G
Guoxia Wang 已提交
2062 2063 2064 2065 2066
        label (Tensor): shape[N] or shape[N, 1], the groud truth label.
        margin1 (float, optional): m1 of margin loss, default value is `1.0`.
        margin2 (float, optional): m2 of margin loss, default value is `0.5`.
        margin3 (float, optional): m3 of margin loss, default value is `0.0`.
        scale (float, optional): s of margin loss, default value is `64.0`.
2067
        group (Group, optional): The group instance return by paddle.distributed.new_group
2068 2069
            or ``None`` for global default group or ``False`` for data parallel (do not communication cross ranks).
            Default is ``None``.
2070 2071 2072 2073 2074 2075 2076 2077
        return_softmax (bool, optional): Whether return softmax probability. Default value is `False`.
        reduction (str, optional): The candicates are ``'none'`` | ``'mean'`` | ``'sum'``.
                    If :attr:`reduction` is ``'mean'``, return the average of loss;
                    If :attr:`reduction` is ``'sum'``, return the sum of loss;
                    If :attr:`reduction` is ``'none'``, no reduction will be applied.
                    Default value is `'mean'`.

    Returns:
2078 2079 2080 2081 2082
        Tensor|tuple[Tensor, Tensor], return the cross entropy loss if
            `return_softmax` is False, otherwise the tuple (loss, softmax),
            softmax is shard_softmax when using model parallel, otherwise
            softmax is in the same shape with input logits. If
            ``reduction == None``, the shape of loss is ``[N, 1]``, otherwise
2083
            the shape is ``[]``.
2084 2085 2086 2087

    Examples:

    .. code-block:: python
G
Guoxia Wang 已提交
2088
        :name: code-example1
2089 2090 2091 2092 2093 2094 2095 2096 2097 2098 2099 2100 2101 2102 2103 2104 2105 2106 2107 2108 2109 2110 2111 2112 2113 2114 2115 2116 2117 2118 2119 2120 2121 2122

        # required: gpu
        # Single GPU
        import paddle
        m1 = 1.0
        m2 = 0.5
        m3 = 0.0
        s = 64.0
        batch_size = 2
        feature_length = 4
        num_classes = 4

        label = paddle.randint(low=0, high=num_classes, shape=[batch_size], dtype='int64')

        X = paddle.randn(
            shape=[batch_size, feature_length],
            dtype='float64')
        X_l2 = paddle.sqrt(paddle.sum(paddle.square(X), axis=1, keepdim=True))
        X = paddle.divide(X, X_l2)

        W = paddle.randn(
            shape=[feature_length, num_classes],
            dtype='float64')
        W_l2 = paddle.sqrt(paddle.sum(paddle.square(W), axis=0, keepdim=True))
        W = paddle.divide(W, W_l2)

        logits = paddle.matmul(X, W)
        loss, softmax = paddle.nn.functional.margin_cross_entropy(
            logits, label, margin1=m1, margin2=m2, margin3=m3, scale=s, return_softmax=True, reduction=None)

        print(logits)
        print(label)
        print(loss)
        print(softmax)
2123

2124 2125 2126 2127 2128 2129 2130 2131 2132 2133 2134 2135 2136
        #Tensor(shape=[2, 4], dtype=float64, place=CUDAPlace(0), stop_gradient=True,
        #       [[ 0.85204151, -0.55557678,  0.04994566,  0.71986042],
        #        [-0.20198586, -0.35270476, -0.55182702,  0.09749021]])
        #Tensor(shape=[2], dtype=int64, place=CUDAPlace(0), stop_gradient=True,
        #       [2, 3])
        #Tensor(shape=[2, 1], dtype=float64, place=CUDAPlace(0), stop_gradient=True,
        #       [[82.37059586],
        #        [12.13448420]])
        #Tensor(shape=[2, 4], dtype=float64, place=CUDAPlace(0), stop_gradient=True,
        #       [[0.99978819, 0.00000000, 0.00000000, 0.00021181],
        #        [0.99992995, 0.00006468, 0.00000000, 0.00000537]])

    .. code-block:: python
G
Guoxia Wang 已提交
2137
        :name: code-example2
2138 2139 2140 2141 2142 2143 2144 2145 2146 2147 2148 2149 2150 2151 2152 2153 2154 2155 2156 2157 2158 2159 2160 2161 2162 2163 2164 2165 2166 2167 2168 2169 2170 2171 2172 2173 2174 2175 2176 2177 2178 2179 2180 2181 2182 2183

        # required: distributed
        # Multi GPU, test_margin_cross_entropy.py
        import paddle
        import paddle.distributed as dist
        strategy = dist.fleet.DistributedStrategy()
        dist.fleet.init(is_collective=True, strategy=strategy)
        rank_id = dist.get_rank()
        m1 = 1.0
        m2 = 0.5
        m3 = 0.0
        s = 64.0
        batch_size = 2
        feature_length = 4
        num_class_per_card = [4, 8]
        num_classes = paddle.sum(paddle.to_tensor(num_class_per_card))

        label = paddle.randint(low=0, high=num_classes.item(), shape=[batch_size], dtype='int64')
        label_list = []
        dist.all_gather(label_list, label)
        label = paddle.concat(label_list, axis=0)

        X = paddle.randn(
            shape=[batch_size, feature_length],
            dtype='float64')
        X_list = []
        dist.all_gather(X_list, X)
        X = paddle.concat(X_list, axis=0)
        X_l2 = paddle.sqrt(paddle.sum(paddle.square(X), axis=1, keepdim=True))
        X = paddle.divide(X, X_l2)

        W = paddle.randn(
            shape=[feature_length, num_class_per_card[rank_id]],
            dtype='float64')
        W_l2 = paddle.sqrt(paddle.sum(paddle.square(W), axis=0, keepdim=True))
        W = paddle.divide(W, W_l2)

        logits = paddle.matmul(X, W)
        loss, softmax = paddle.nn.functional.margin_cross_entropy(
            logits, label, margin1=m1, margin2=m2, margin3=m3, scale=s, return_softmax=True, reduction=None)

        print(logits)
        print(label)
        print(loss)
        print(softmax)

2184
        # python -m paddle.distributed.launch --gpus=0,1 test_margin_cross_entropy.py
2185 2186 2187 2188 2189 2190 2191 2192 2193 2194 2195 2196 2197 2198 2199 2200 2201 2202 2203 2204 2205 2206 2207 2208 2209 2210 2211 2212 2213 2214 2215 2216 2217 2218 2219 2220 2221 2222 2223 2224 2225 2226 2227
        ## for rank0 input
        #Tensor(shape=[4, 4], dtype=float64, place=CUDAPlace(0), stop_gradient=True,
        #       [[ 0.32888934,  0.02408748, -0.02763289,  0.18173063],
        #        [-0.52893978, -0.10623845, -0.21596515, -0.06432517],
        #        [-0.00536345, -0.03924667,  0.66735314, -0.28640926],
        #        [-0.09907366, -0.48534973, -0.10365338, -0.39472322]])
        #Tensor(shape=[4], dtype=int64, place=CUDAPlace(0), stop_gradient=True,
        #       [11, 1 , 10, 11])

        ## for rank1 input
        #Tensor(shape=[4, 8], dtype=float64, place=CUDAPlace(1), stop_gradient=True,
        #       [[ 0.68654754,  0.28137170,  0.69694954, -0.60923933, -0.57077653,  0.54576703, -0.38709028,  0.56028204],
        #        [-0.80360371, -0.03042448, -0.45107338,  0.49559349,  0.69998950, -0.45411693,  0.61927630, -0.82808600],
        #        [ 0.11457570, -0.34785879, -0.68819499, -0.26189226, -0.48241491, -0.67685711,  0.06510185,  0.49660849],
        #        [ 0.31604851,  0.52087884,  0.53124749, -0.86176582, -0.43426329,  0.34786144, -0.10850784,  0.51566383]])
        #Tensor(shape=[4], dtype=int64, place=CUDAPlace(1), stop_gradient=True,
        #       [11, 1 , 10, 11])

        ## for rank0 output
        #Tensor(shape=[4, 1], dtype=float64, place=CUDAPlace(0), stop_gradient=True,
        #       [[38.96608230],
        #        [81.28152394],
        #        [69.67229865],
        #        [31.74197251]])
        #Tensor(shape=[4, 4], dtype=float64, place=CUDAPlace(0), stop_gradient=True,
        #       [[0.00000000, 0.00000000, 0.00000000, 0.00000000],
        #        [0.00000000, 0.00000000, 0.00000000, 0.00000000],
        #        [0.00000000, 0.00000000, 0.99998205, 0.00000000],
        #        [0.00000000, 0.00000000, 0.00000000, 0.00000000]])
        ## for rank1 output
        #Tensor(shape=[4, 1], dtype=float64, place=CUDAPlace(1), stop_gradient=True,
        #       [[38.96608230],
        #        [81.28152394],
        #        [69.67229865],
        #        [31.74197251]])
        #Tensor(shape=[4, 8], dtype=float64, place=CUDAPlace(1), stop_gradient=True,
        #       [[0.33943993, 0.00000000, 0.66051859, 0.00000000, 0.00000000, 0.00004148, 0.00000000, 0.00000000],
        #        [0.00000000, 0.00000000, 0.00000000, 0.00000207, 0.99432097, 0.00000000, 0.00567696, 0.00000000],
        #        [0.00000000, 0.00000000, 0.00000000, 0.00000000, 0.00000000, 0.00000000, 0.00000000, 0.00001795],
        #        [0.00000069, 0.33993085, 0.66006319, 0.00000000, 0.00000000, 0.00000528, 0.00000000, 0.00000000]])
    """

    assert reduction in ['mean', 'sum', 'none', None]
2228
    if not (group is False or group is None or hasattr(group, 'is_member')):
2229 2230
        raise ValueError(
            'Expected group is False, None or instance of paddle.distributed.collective.Group \
2231 2232 2233 2234
             (got group: {})'.format(
                group
            )
        )
2235 2236 2237
        return

    if hasattr(group, 'is_member') and not group.is_member():
2238 2239
        return

2240
    ring_id = 0
2241 2242
    rank = 0
    nranks = 1
2243
    if group is not False:
2244 2245 2246 2247
        ring_id = 0 if group is None else group.id
        if core.is_compiled_with_dist():
            parallel_env = paddle.distributed.ParallelEnv()
            global_rank = parallel_env.rank
2248 2249 2250 2251 2252
            rank = (
                global_rank
                if group is None
                else group.get_group_rank(global_rank)
            )
2253
            nranks = parallel_env.world_size if group is None else group.nranks
2254 2255 2256 2257 2258

    input_dims = len(list(logits.shape))
    label_dims = len(list(label.shape))
    if input_dims - 1 != label_dims and input_dims != label_dims:
        raise ValueError(
2259
            'Expected input_dims - 1 = label_dims or input_dims == label_dims\
2260
             (got input_dims{}, label_dims{})'.format(
2261 2262 2263
                input_dims, label_dims
            )
        )
2264 2265 2266
    if input_dims - 1 == label_dims:
        label = paddle.unsqueeze(label, axis=-1)

2267
    if in_dynamic_mode():
2268 2269 2270 2271 2272 2273 2274 2275 2276 2277 2278 2279
        softmax, loss = _C_ops.margin_cross_entropy(
            logits,
            label,
            return_softmax,
            ring_id,
            rank,
            nranks,
            margin1,
            margin2,
            margin3,
            scale,
        )
2280 2281 2282 2283 2284 2285 2286 2287
        if reduction == 'mean':
            loss = paddle.mean(loss)
        elif reduction == 'sum':
            loss = paddle.sum(loss)
        if not return_softmax:
            return loss
        else:
            return loss, softmax
姜永久 已提交
2288 2289 2290 2291 2292 2293 2294
    else:
        op_type = 'margin_cross_entropy'
        helper = LayerHelper(op_type, **locals())
        softmax = helper.create_variable_for_type_inference(dtype=logits.dtype)
        loss = helper.create_variable_for_type_inference(dtype=logits.dtype)

        check_variable_and_dtype(
2295
            logits,
姜永久 已提交
2296 2297 2298
            'logits',
            ['float16', 'float32', 'float64'],
            'margin_cross_entropy',
2299
        )
姜永久 已提交
2300 2301 2302 2303 2304 2305 2306 2307 2308 2309 2310 2311 2312 2313 2314 2315 2316 2317 2318 2319
        check_variable_and_dtype(
            label, 'label', ['int32', 'int64'], 'margin_cross_entropy'
        )

        helper.append_op(
            type=op_type,
            inputs={'Logits': logits, 'Label': label},
            outputs={'Softmax': softmax, 'Loss': loss},
            attrs={
                'return_softmax': return_softmax,
                'ring_id': ring_id,
                'rank': rank,
                'nranks': nranks,
                'margin1': margin1,
                'margin2': margin2,
                'margin3': margin3,
                'scale': scale,
            },
        )

2320 2321 2322 2323
        if reduction == 'mean':
            loss = paddle.mean(loss)
        elif reduction == 'sum':
            loss = paddle.sum(loss)
姜永久 已提交
2324

2325 2326 2327 2328 2329 2330
        if not return_softmax:
            return loss
        else:
            return loss, softmax


2331 2332 2333 2334
@deprecated(
    since="2.0.0",
    update_to="paddle.nn.functional.cross_entropy",
    level=1,
2335 2336 2337 2338 2339 2340 2341 2342 2343 2344 2345 2346 2347 2348
    reason=(
        'Please notice that behavior of "paddle.nn.functional.softmax_with_cross_entropy" '
        'and "paddle.nn.functional.cross_entropy" is different.'
    ),
)
def softmax_with_cross_entropy(
    logits,
    label,
    soft_label=False,
    ignore_index=-100,
    numeric_stable_mode=True,
    return_softmax=False,
    axis=-1,
):
2349
    r"""
2350 2351
    This operator implements the cross entropy loss function with softmax. This function
    combines the calculation of the softmax operation and the cross entropy loss function
2352 2353 2354 2355 2356 2357
    to provide a more numerically stable gradient.

    Because this operator performs a softmax on logits internally, it expects
    unscaled logits. This operator should not be used with the output of
    softmax operator since that would produce incorrect results.

2358 2359 2360
    When the attribute :attr:`soft_label` is set :attr:`False`, this operators
    expects mutually exclusive hard labels, each sample in a batch is in exactly
    one class with a probability of 1.0. Each sample in the batch will have a
2361 2362 2363 2364 2365 2366 2367 2368 2369 2370 2371 2372 2373 2374 2375 2376 2377 2378 2379 2380 2381 2382 2383 2384 2385 2386
    single label.

    The equation is as follows:

    1) Hard label (one-hot label, so every sample has exactly one class)

    .. math::
        \\loss_j=-\text{logits}_{label_j} +\log\left(\sum_{i=0}^{K}\exp(\text{logits}_i)\right), j = 1,..., K

    2) Soft label (each sample can have a distribution over all classes)

    .. math::
        \\loss_j= -\sum_{i=0}^{K}\text{label}_i\left(\text{logits}_i - \log\left(\sum_{i=0}^{K}\exp(\text{logits}_i)\right)\right), j = 1,...,K

    3) If :attr:`numeric_stable_mode` is :attr:`True`, softmax is calculated first by:

    .. math::
        \\max_j&=\max_{i=0}^{K}{\text{logits}_i} \\
                log\_max\_sum_j &= \log\sum_{i=0}^{K}\exp(logits_i - max_j)\\
                softmax_j &= \exp(logits_j - max_j - {log\_max\_sum}_j)

    and then cross entropy loss is calculated by softmax and label.

    Args:
        logits (Tensor): A multi-dimension ``Tensor`` , and the data type is float32 or float64. The input tensor of unscaled log probabilities.
        label (Tensor): The ground truth  ``Tensor`` , data type is the same
2387 2388 2389
            as the ``logits`` . If :attr:`soft_label` is set to :attr:`True`,
            Label is a ``Tensor``  in the same shape with :attr:`logits`.
            If :attr:`soft_label` is set to :attr:`True`, Label is a ``Tensor``
2390 2391 2392 2393 2394
            in the same shape with :attr:`logits` expect shape in dimension :attr:`axis` as 1.
        soft_label (bool, optional): A flag to indicate whether to interpretant the given
            labels as soft labels. Default False.
        ignore_index (int, optional): Specifies a target value that is ignored and does
                                      not contribute to the input gradient. Only valid
2395
                                      if :attr:`soft_label` is set to :attr:`False`.
2396 2397 2398
                                      Default: kIgnoreIndex(-100).
        numeric_stable_mode (bool, optional): A flag to indicate whether to use a more
                                              numerically stable algorithm. Only valid
2399 2400 2401
                                              when :attr:`soft_label` is :attr:`False`
                                              and GPU is used. When :attr:`soft_label`
                                              is :attr:`True` or CPU is used, the
2402 2403 2404 2405 2406
                                              algorithm is always numerically stable.
                                              Note that the speed may be slower when use
                                              stable algorithm. Default: True.
        return_softmax (bool, optional): A flag indicating whether to return the softmax
                                         along with the cross entropy loss. Default: False.
2407
        axis (int, optional): The index of dimension to perform softmax calculations. It
2408 2409 2410 2411 2412 2413 2414 2415 2416 2417 2418 2419 2420 2421 2422
                              should be in range :math:`[-1, rank - 1]`, while :math:`rank`
                              is the rank of input :attr:`logits`. Default: -1.

    Returns:
        ``Tensor`` or Tuple of two ``Tensor`` : Return the cross entropy loss if \
                                                    `return_softmax` is False, otherwise the tuple \
                                                    (loss, softmax), softmax is in the same shape \
                                                    with input logits and cross entropy loss is in \
                                                    the same shape with input logits except shape \
                                                    in dimension :attr:`axis` as 1.

    Examples:
        .. code-block:: python

            import paddle
2423 2424 2425 2426 2427

            logits = paddle.to_tensor([0.4, 0.6, 0.9], dtype="float32")
            label = paddle.to_tensor([1], dtype="int64")

            out = paddle.nn.functional.softmax_with_cross_entropy(logits=logits, label=label)
2428
            print(out)
2429 2430
            # Tensor(shape=[1], dtype=float32, place=Place(gpu:0), stop_gradient=True,
            #        [1.15328646])
2431
    """
2432 2433 2434 2435 2436 2437 2438 2439 2440 2441 2442 2443 2444 2445 2446 2447 2448 2449 2450 2451 2452 2453
    return fluid_softmax_with_cross_entropy(
        logits,
        label,
        soft_label,
        ignore_index,
        numeric_stable_mode,
        return_softmax,
        axis,
    )


def cross_entropy(
    input,
    label,
    weight=None,
    ignore_index=-100,
    reduction='mean',
    soft_label=False,
    axis=-1,
    use_softmax=True,
    name=None,
):
2454
    r"""
2455

2456
    By default, the cross entropy loss function is implemented using softmax. This function
2457 2458
    combines the calculation of the softmax operation and the cross entropy loss function
    to provide a more numerically stable computing.
2459

2460
    Calculate the cross entropy loss function without softmax when use_softmax=False.
2461

2462
    By default, calculate the mean of the result, and you can also affect
2463
    the default behavior by using the reduction parameter. Please refer to the part of
2464
    parameters for details.
2465

2466
    Can be used to calculate the softmax cross entropy loss with soft and hard labels.
2467
    Where, the hard labels mean the actual label value, 0, 1, 2, etc.  And the soft labels
2468
    mean the probability of the actual label, 0.6, 0.8, 0.2, etc.
2469

2470
    The calculation includes the following two steps.
2471

2472
    - **1.softmax cross entropy**
2473

2474
        1. Hard label (each sample can only be assigned into one category)
2475

2476
        1.1. when use_softmax=True
2477

2478 2479
            .. math::
              \\loss_j=-\text{logits}_{label_j}+\log\left(\sum_{i=0}^{C}\exp(\text{logits}_i)\right) , j = 1,...,N
2480

2481 2482 2483 2484 2485 2486 2487 2488 2489 2490 2491 2492 2493 2494 2495 2496 2497 2498 2499 2500 2501 2502 2503 2504 2505 2506 2507 2508 2509 2510 2511 2512 2513 2514 2515 2516 2517 2518 2519 2520 2521
            where, N is the number of samples and C is the number of categories.

        1.2. when use_softmax=False

            .. math::
              \\loss_j=-\log\left({P}_{label_j}\right) , j = 1,...,N

            where, N is the number of samples and C is the number of categories, P is input(the output of softmax).


        2. Soft label (each sample is assigned to multiple categories with a certain probability, and the probability sum is 1).

        2.1. when use_softmax=True

            .. math::
              \\loss_j=-\sum_{i=0}^{C}\text{label}_i\left(\text{logits}_i-\log\left(\sum_{i=0}^{C}\exp(\text{logits}_i)\right)\right) , j = 1,...,N

            where, N is the number of samples and C is the number of categories.

        2.2. when use_softmax=False

            .. math::
              \\loss_j=-\sum_{j=0}^{C}\left({label}_j*\log\left({P}_{label_j}\right)\right) , j = 1,...,N

            where, N is the number of samples and C is the number of categories, P is input(the output of softmax).




    - **2. Weight and reduction processing**

        1. Weight

            If the ``weight`` parameter is ``None`` , go to the next step directly.

            If the ``weight`` parameter is not ``None`` , the cross entropy of each sample is weighted by weight
            according to soft_label = False or True as follows.

            1.1. Hard labels (soft_label = False)

            .. math::
2522
                \\loss_j=loss_j*weight[label_j]
2523

2524

2525 2526 2527 2528 2529 2530 2531
            1.2. Soft labels (soft_label = True)

             .. math::
                \\loss_j=loss_j*\sum_{i}\left(weight[label_i]*logits_i\right)

        2. reduction

2532
            2.1 if the ``reduction`` parameter is ``none``
2533 2534 2535

                Return the previous result directly

2536
            2.2 if the ``reduction`` parameter is ``sum``
2537 2538 2539 2540 2541 2542

                Return the sum of the previous results

            .. math::
               \\loss=\sum_{j}loss_j

2543 2544
            2.3 if the ``reduction`` parameter is ``mean`` , it will be processed according to
            the ``weight`` parameter as follows.
2545

2546
            2.3.1. If the  ``weight``  parameter is ``None``
2547 2548 2549

                   Return the average value of the previous results

2550
            .. math::
2551 2552 2553 2554 2555 2556 2557 2558
                \\loss=\sum_{j}loss_j/N

                  where, N is the number of samples and C is the number of categories.

            2.3.2. If the 'weight' parameter is not 'None', the weighted average value of the previous result will be returned

            1. Hard labels (soft_label = False)

2559
            .. math::
2560
                \\loss=\sum_{j}loss_j/\sum_{j}weight[label_j]
2561 2562 2563

            2. Soft labels (soft_label = True)

2564
            .. math::
2565
                \\loss=\sum_{j}loss_j/\sum_{j}\left(\sum_{i}weight[label_i]\right)
2566 2567


2568
    Parameters:
2569
        input (Tensor): the data type is float32, float64. Shape is :math:`[N_1, N_2, ..., N_k, C]`, where C is number of classes, ``k >= 1`` .
2570

2571
            Note:
2572
                1. when use_softmax=True, it expects unscaled logits. This operator should not be used with the output of softmax operator, which will produce incorrect results.
2573
                2. when use_softmax=False, it expects the output of softmax operator.
2574

2575
        label (Tensor):
2576 2577 2578 2579
            1. If soft_label=False, the shape is
            :math:`[N_1, N_2, ..., N_k]` or :math:`[N_1, N_2, ..., N_k, 1]`, k >= 1.
            the data type is int32, int64, float32, float64, where each value is [0, C-1].

2580
            2. If soft_label=True, the shape and data type should be same with ``input`` ,
2581 2582
            and the sum of the labels for each sample should be 1.

2583
        weight (Tensor, optional): a manual rescaling weight given to each class.
2584
            If given, has to be a Tensor of size C and the data type is float32, float64.
2585
            Default is ``'None'`` .
2586
        ignore_index (int64, optional): Specifies a target value that is ignored
2587 2588
            and does not contribute to the loss. A negative value means that no label
            value needs to be ignored. Only valid when soft_label = False.
2589
            Default is ``-100`` .
2590
        reduction (str, optional): Indicate how to average the loss by batch_size,
2591 2592
            the candicates are ``'none'`` | ``'mean'`` | ``'sum'``.
            If :attr:`reduction` is ``'mean'``, the reduced mean loss is returned;
H
Hui Zhang 已提交
2593
            If :attr:`size_average` is ``'sum'``, the reduced sum loss is returned.
2594 2595
            If :attr:`reduction` is ``'none'``, the unreduced loss is returned.
            Default is ``'mean'``.
2596 2597
        soft_label (bool, optional): Indicate whether label is soft. Default is ``False``.
        axis (int, optional):The index of dimension to perform softmax calculations.
2598 2599
            It should be in range :math:`[-1, rank - 1]`, where :math:`rank` is the
            number of dimensions of input :attr:`input`.
2600
            Default is ``-1`` .
2601
        use_softmax (bool, optional): Indicate whether compute softmax before cross_entropy.
2602
            Default is ``True``.
2603
        name (str, optional): The name of the operator. Default is ``None`` .
2604
            For more information, please refer to :ref:`api_guide_Name` .
2605 2606 2607

    Returns:

2608 2609
        Tensor. Return the softmax cross_entropy loss of ``input`` and ``label``.
        The data type is the same as input.
2610

2611
        If :attr:`reduction` is ``'mean'`` or ``'sum'`` , the dimension of return value is ``1``.
2612

2613
        If :attr:`reduction` is ``'none'``:
C
Chen Long 已提交
2614

2615
        1. If soft_label = False, the dimension of return value is the same with ``label`` .
C
Chen Long 已提交
2616

2617
        2. if soft_label = True, the dimension of return value is :math:`[N_1, N_2, ..., N_k, 1]` .
2618

2619
    Examples:
2620
        .. code-block:: python
2621 2622

            # hard labels
2623 2624 2625 2626 2627
            import paddle
            paddle.seed(99999)
            N=100
            C=200
            reduction='mean'
2628
            input =  paddle.rand([N, C], dtype='float64')
2629
            label =  paddle.randint(0, C, shape=[N], dtype='int64')
2630 2631
            weight = paddle.rand([C], dtype='float64')

2632 2633 2634
            cross_entropy_loss = paddle.nn.loss.CrossEntropyLoss(
                weight=weight, reduction=reduction)
            dy_ret = cross_entropy_loss(
2635 2636 2637
                                        input,
                                        label)
            print(dy_ret)
2638 2639
            # Tensor(shape=[], dtype=float64, place=Place(gpu:0), stop_gradient=True,
            #        5.34043430)
2640 2641

        .. code-block:: python
2642 2643

            # soft labels
2644 2645 2646 2647 2648 2649 2650 2651 2652 2653 2654 2655 2656
            import paddle
            paddle.seed(99999)
            axis = -1
            ignore_index = -100
            N = 4
            C = 3
            shape = [N, C]
            reduction='mean'
            weight = None
            logits = paddle.uniform(shape, dtype='float64', min=0.1, max=1.0)
            labels = paddle.uniform(shape, dtype='float64', min=0.1, max=1.0)
            labels /= paddle.sum(labels, axis=axis, keepdim=True)
            paddle_loss_mean = paddle.nn.functional.cross_entropy(
2657 2658 2659 2660 2661 2662 2663
                                                                    logits,
                                                                    labels,
                                                                    soft_label=True,
                                                                    axis=axis,
                                                                    weight=weight,
                                                                    reduction=reduction)
            print(paddle_loss_mean)
2664 2665
            # Tensor(shape=[], dtype=float64, place=Place(gpu:0), stop_gradient=True,
            #        1.11043464)
C
Chen Long 已提交
2666

2667 2668 2669 2670
    """

    if reduction not in ['sum', 'mean', 'none']:
        raise ValueError(
2671 2672
            "The value of 'reduction' in softmax_cross_entropy"
            "should be 'sum', 'mean' or 'none', but received %s, which is not allowed."
2673 2674
            % reduction
        )
2675
    if ignore_index > 0 and soft_label:
2676 2677
        raise ValueError(
            "When soft_label == True, the value of 'ignore_index' in softmax_cross_entropy"
2678 2679 2680
            "should be '-100', but received %s, which is not allowed."
            % ignore_index
        )
2681

2682
    input_dims = len(list(input.shape))
2683 2684 2685
    if input_dims == 0:
        raise ValueError('The dimention of input should be larger than zero!')

2686 2687 2688
    label_dims = len(list(label.shape))
    if input_dims - 1 == label_dims:
        label = paddle.unsqueeze(label, axis=axis)
2689

2690 2691 2692 2693 2694 2695 2696 2697
    if input_dims - 1 != label_dims and input_dims != label_dims:
        raise ValueError(
            'Expected nput_dims - 1 = label_dims or input_dims == label_dims\
             (got nput_dims{}, label_dims{})'.format(
                input_dims, label_dims
            )
        )

2698
    if in_dynamic_mode():
2699
        if not soft_label:
2700 2701 2702
            valid_label = (
                paddle.cast(label != ignore_index, dtype=label.dtype) * label
            )
2703 2704 2705
        _, out = _C_ops.cross_entropy_with_softmax(
            input, label, soft_label, use_softmax, True, ignore_index, axis
        )
2706 2707 2708

        if weight is not None:
            # trans weight from class to sample, shape:N or [N,H,W] for 1d and 2d cases.
2709
            if soft_label:
2710 2711 2712 2713
                # chajchaj:
                # weight's shape is C, where C is class num.
                # for 1d case: label's shape is [N,C], weight_gather's shape is N.
                # for 2d case: label's shape is [N,H,W,C], weight_gather's shape is [N,H,W].
2714 2715 2716 2717 2718 2719
                weight_gather = paddle.matmul(
                    x=paddle.cast(label, weight.dtype),
                    y=weight,
                    transpose_x=False,
                    transpose_y=True,
                )
2720 2721 2722 2723
                out_shape = list(out.shape)
                weight_gather_reshape = reshape(weight_gather, shape=out_shape)
                out = paddle.cast(out, weight_gather_reshape.dtype)

2724
                out = _C_ops.multiply(out, weight_gather_reshape)
2725 2726 2727 2728 2729
            else:
                if input.shape[axis] != weight.shape[-1]:
                    raise ValueError(
                        "input's class_dimension({}) must equal to "
                        "weight's class_dimension({}) "
2730 2731 2732 2733 2734 2735 2736 2737 2738 2739 2740 2741
                        "when weight is provided".format(
                            input.shape[axis], weight.shape[-1]
                        )
                    )

                ignore_weight_mask = paddle.cast(
                    (label != ignore_index), out.dtype
                )
                if (
                    ignore_weight_mask.ndim > 1
                    and ignore_weight_mask.shape[axis] == 1
                ):
2742
                    # TODO: Temporarily use squeeze instead of squeeze_
2743 2744 2745
                    ignore_weight_mask = paddle.squeeze(
                        ignore_weight_mask, axis
                    )
2746
                if axis != -1 and axis != valid_label.ndim - 1:
2747 2748 2749 2750 2751 2752 2753 2754 2755
                    temp_perm = (
                        list(range(axis % valid_label.ndim))
                        + list(
                            range(
                                (axis % valid_label.ndim + 1), valid_label.ndim
                            )
                        )
                        + [axis % valid_label.ndim]
                    )
2756
                    weight_gather = _C_ops.gather_nd(
2757 2758
                        weight, valid_label.transpose(temp_perm)
                    )
2759
                else:
2760
                    weight_gather = _C_ops.gather_nd(weight, valid_label)
2761 2762 2763
                weight_gather = _C_ops.multiply(
                    weight_gather, ignore_weight_mask
                )
2764
                input_shape = list(label.shape)
2765 2766 2767
                weight_gather_reshape = reshape(
                    weight_gather, shape=input_shape
                )
2768
                out = paddle.cast(out, weight_gather_reshape.dtype)
2769
                out = _C_ops.multiply(out, weight_gather_reshape)
2770 2771 2772 2773 2774

        if reduction == "sum":
            #   because of fluid_softmax_with_cross_entropy op's inner logic,
            #   in the out tensor of this op, the loss of sample with class_index==ignore_index is 0
            #   so, reduce_sum all directly is ok
2775
            return _C_ops.sum(out, [], None, False)
2776 2777 2778 2779 2780 2781 2782
        elif reduction == "mean":
            # 1. if weight==none,
            #     numerator: reduce_sum all loss directly is ok causeof fluid_softmax_with_cross_entropy's inner logic
            #     denominator: count sample num with class_index!=ignore_index
            # 2. else
            #     numerator: loss's weighted sum
            #     denominator: cal the sum of weight where the sample's class_index!=ignore_index
H
huangjun12 已提交
2783 2784 2785
            is_ignore = label == ignore_index
            mask = ~is_ignore
            if paddle.count_nonzero(is_ignore) > 0:  # ignore label
2786
                out_sum = _C_ops.sum(out, [], None, False)
2787 2788 2789 2790 2791
                # for each label[i],set 1 or 0, according to ignore_index
                # mask[i]=0, if label[i]==ignore_index
                # mask[i]=1, otherwise
                if weight is None:
                    mask = paddle.cast(mask, dtype=out_sum.dtype)
2792
                    count = _C_ops.sum(mask, [], None, False)
2793 2794 2795
                    ret = out_sum / (count + (count == 0.0))
                else:
                    mask = paddle.cast(mask, weight_gather_reshape.dtype)
2796 2797 2798
                    weight_ignored = _C_ops.multiply(
                        mask, weight_gather_reshape
                    )
2799
                    weight_sum = _C_ops.sum(weight_ignored, [], None, False)
2800 2801 2802
                    ret = out_sum / (weight_sum + (weight_sum == 0.0))
                return ret
            elif weight is not None:
2803
                out_sum = _C_ops.sum(out, [], None, False)
2804 2805 2806
                total_weight = _C_ops.sum(
                    weight_gather_reshape, [], None, False
                )
2807 2808
                return out_sum / (total_weight + (total_weight == 0.0))
            else:
2809
                return _C_ops.mean_all(out)
2810 2811 2812 2813 2814 2815

        else:
            if input_dims - 1 == label_dims:
                out = paddle.squeeze(out, axis=axis)
            return out

姜永久 已提交
2816 2817 2818 2819 2820 2821 2822 2823 2824 2825 2826 2827 2828 2829 2830 2831 2832 2833 2834 2835 2836 2837 2838 2839 2840 2841 2842 2843 2844 2845 2846
    else:
        check_variable_and_dtype(
            input,
            'input',
            ['float16', 'float32', 'float64'],
            'softmax_cross_entropy',
        )
        check_variable_and_dtype(
            label,
            'label',
            ['uint8', 'int8', 'int16', 'int32', 'int64', 'float32', 'float64'],
            'softmax_cross_entropy',
        )
        attrs = {
            'soft_label': soft_label,
            'ignore_index': ignore_index,
            'numeric_stable_mode': True,
            'axis': axis,
            'use_softmax': use_softmax,
        }
        helper = LayerHelper('softmax_with_cross_entropy', **locals())
        softmax = helper.create_variable_for_type_inference(dtype=input.dtype)
        out = helper.create_variable_for_type_inference(dtype=input.dtype)

        outputs = {'Softmax': softmax, 'Loss': out}
        helper.append_op(
            type='softmax_with_cross_entropy',
            inputs={'Logits': input, 'Label': label},
            outputs=outputs,
            attrs=attrs,
        )
2847

2848
        if weight is not None:
姜永久 已提交
2849 2850 2851 2852 2853 2854 2855
            check_variable_and_dtype(
                weight,
                'weight',
                ['float32', 'float64'],
                'softmax_cross_entropy',
            )
            weight_name = name if reduction == 'none' else None
2856
            if soft_label:
2857
                # chajchaj:
姜永久 已提交
2858
                # trans weight from class to sample, shape:N or [N,H,W] for 1d and 2d cases.
H
HydrogenSulfate 已提交
2859
                # weight's shape is C, where C is class num.
2860 2861
                # for 1d case: label's shape is [N,C], weight_gather's shape is N.
                # for 2d case: label's shape is [N,H,W,C], weight_gather's shape is [N,H,W].
2862 2863 2864 2865 2866 2867
                weight_gather = paddle.matmul(
                    x=paddle.cast(label, weight.dtype),
                    y=weight,
                    transpose_x=False,
                    transpose_y=True,
                )
姜永久 已提交
2868

2869 2870 2871 2872
                out_shape = list(out.shape)
                weight_gather_reshape = reshape(weight_gather, shape=out_shape)
                out = paddle.cast(out, weight_gather_reshape.dtype)
            else:
2873 2874 2875 2876
                if input.shape[axis] != weight.shape[-1]:
                    raise ValueError(
                        "input's class_dimension({}) must equal to "
                        "weight's class_dimension({}) "
2877 2878 2879 2880 2881
                        "when weight is provided".format(
                            input.shape[axis], weight.shape[-1]
                        )
                    )

姜永久 已提交
2882 2883 2884
                valid_label = paddle.multiply(
                    paddle.cast(label != ignore_index, dtype=label.dtype), label
                )
2885
                ignore_weight_mask = paddle.cast(
姜永久 已提交
2886
                    (label != ignore_index), input.dtype
2887 2888 2889 2890 2891 2892 2893 2894
                )
                if (
                    ignore_weight_mask.ndim > 1
                    and ignore_weight_mask.shape[axis] == 1
                ):
                    ignore_weight_mask = paddle.squeeze(
                        ignore_weight_mask, axis
                    )
H
HydrogenSulfate 已提交
2895
                if axis != -1 and axis != valid_label.ndim - 1:
2896 2897 2898 2899 2900 2901 2902 2903 2904
                    temp_perm = (
                        list(range(axis % valid_label.ndim))
                        + list(
                            range(
                                (axis % valid_label.ndim + 1), valid_label.ndim
                            )
                        )
                        + [axis % valid_label.ndim]
                    )
姜永久 已提交
2905 2906
                    weight_gather = paddle.gather_nd(
                        weight, paddle.transpose(valid_label, temp_perm)
2907
                    )
2908
                else:
姜永久 已提交
2909 2910
                    weight_gather = paddle.gather_nd(weight, valid_label)
                weight_gather = paddle.multiply(
2911 2912
                    weight_gather, ignore_weight_mask
                )
姜永久 已提交
2913

2914
                input_shape = list(label.shape)
2915 2916 2917
                weight_gather_reshape = reshape(
                    weight_gather, shape=input_shape
                )
姜永久 已提交
2918
            out = paddle.multiply(out, weight_gather_reshape, name=weight_name)
2919

2920
        if reduction == "sum":
姜永久 已提交
2921
            return paddle.sum(out, name=name)
2922
        elif reduction == "mean":
姜永久 已提交
2923 2924
            if ignore_index >= 0:
                out_sum = paddle.sum(out, name=name)
H
HydrogenSulfate 已提交
2925 2926 2927
                # for each label[i],set 1 or 0, according to ignore_index
                # mask[i]=0, if label[i]==ignore_index
                # mask[i]=1, otherwise
姜永久 已提交
2928
                mask = label != ignore_index
2929
                if weight is None:
2930
                    mask = paddle.cast(mask, dtype=out_sum.dtype)
姜永久 已提交
2931
                    count = paddle.sum(mask, name=name)
2932
                    ret = out_sum / (count + (count == 0.0))
2933 2934
                else:
                    mask = paddle.cast(mask, weight_gather_reshape.dtype)
姜永久 已提交
2935
                    weight_ignored = paddle.multiply(
2936 2937
                        mask, weight_gather_reshape
                    )
姜永久 已提交
2938
                    weight_sum = paddle.sum(weight_ignored, name=name)
2939
                    ret = out_sum / (weight_sum + (weight_sum == 0.0))
2940 2941
                return ret
            elif weight is not None:
姜永久 已提交
2942 2943
                out_sum = paddle.sum(out, name=name)
                total_weight = paddle.sum(weight_gather_reshape)
2944
                return out_sum / (total_weight + (total_weight == 0.0))
2945
            else:
姜永久 已提交
2946 2947
                return paddle.mean(out, name=name)

2948
        else:
2949 2950 2951
            if input_dims - 1 == label_dims:
                out = paddle.squeeze(out, axis=axis)

姜永久 已提交
2952
            return out
2953 2954


2955 2956 2957 2958 2959 2960 2961 2962 2963
def sigmoid_focal_loss(
    logit,
    label,
    normalizer=None,
    alpha=0.25,
    gamma=2.0,
    reduction='sum',
    name=None,
):
2964
    r"""
2965 2966 2967 2968 2969 2970
    `Focal Loss <https://arxiv.org/abs/1708.02002>`_ is proposed to address the
    foreground-background class imbalance for classification tasks. It down-weights
    easily-classified examples and thus focuses training on hard examples. For example,
    it is used in one-stage object detection where the foreground-background class
    imbalance is extremely high.

2971
    This operator measures focal loss function as follows:
2972 2973

    .. math::
2974
           Out = -Labels * alpha * {(1 - \sigma(Logit))}^{gamma}\log(\sigma(Logit)) - (1 - Labels) * (1 - alpha) * {\sigma(Logit)}^{gamma}\log(1 - \sigma(Logit))
2975

2976
    We know that :math:`\sigma(Logit) = \frac{1}{1 + \exp(-Logit)}`.
2977 2978 2979 2980 2981

    Then, if :attr:`normalizer` is not None, this operator divides the
    normalizer tensor on the loss `Out`:

    .. math::
2982
           Out = \frac{Out}{normalizer}
2983 2984 2985 2986 2987 2988 2989 2990 2991 2992 2993 2994 2995 2996 2997 2998

    Finally, this operator applies reduce operation on the loss.
    If :attr:`reduction` set to ``'none'``, the operator will return the original loss `Out`.
    If :attr:`reduction` set to ``'mean'``, the reduced mean loss is :math:`Out = MEAN(Out)`.
    If :attr:`reduction` set to ``'sum'``, the reduced sum loss is :math:`Out = SUM(Out)`.

    Note that the target ``label`` is 0 for the negative class and is 1 for the positive class.

    Args:
        logit (Tensor): The input logit tensor. The shape is [N, *], where N is batch_size,
            `*` means any number of additional dimensions. The ``logit`` is usually the
            output of a convolution layer. Available dtype is float32, float64.
        label (Tensor): The target label tensor with the same shape as
            ``logit``. The target label whose value should be numbers between 0 and 1.
            Available dtype is float32, float64.
        normalizer (Tensor, optional): The number normalizes the focal loss. It has to be
2999 3000
            a 1-D Tensor with shape `[1, ]` or 0-D Tensor with shape `[]`. The data type
            is float32, float64. For object detection task, it is the number of positive samples.
3001 3002
            If set to None, the focal loss will not be normalized. Default is None.
        alpha(int|float, optional): Hyper-parameter to balance the positive and negative example,
3003
            it should be between 0 and 1.  Default value is set to 0.25.
3004 3005 3006 3007 3008 3009 3010 3011 3012 3013 3014 3015
        gamma(int|float, optional): Hyper-parameter to modulate the easy and hard examples.
            Default value is set to 2.0.
        reduction (str, optional): Indicate how to average the loss by batch_size,
            the candicates are ``'none'`` | ``'mean'`` | ``'sum'``.
            If :attr:`reduction` is ``'none'``, the unreduced loss is returned;
            If :attr:`reduction` is ``'mean'``, the reduced mean loss is returned;
            If :attr:`reduction` is ``'sum'``, the summed loss is returned.
            Default is ``'sum'``.
        name (str, optional): Name for the operation (optional, default is None).
            For more information, please refer to :ref:`api_guide_Name`.

    Returns:
3016
        Tensor, if :attr:`reduction` is ``'mean'`` or ``'sum'``, the out shape is :math:`[]`, otherwise the shape is the same as ``logit``. The same dtype as ``logit`` tensor.
3017 3018 3019 3020 3021 3022 3023 3024 3025 3026 3027

    Examples:

        .. code-block:: python

            import paddle

            logit = paddle.to_tensor([[0.97, 0.91, 0.03], [0.55, 0.43, 0.71]], dtype='float32')
            label = paddle.to_tensor([[1.0, 0.0, 0.0], [0.0, 1.0, 0.0]], dtype='float32')
            one = paddle.to_tensor([1.], dtype='float32')
            fg_label = paddle.greater_equal(label, one)
3028
            fg_num = paddle.sum(paddle.cast(fg_label, dtype='float32'))
3029
            output = paddle.nn.functional.sigmoid_focal_loss(logit, label, normalizer=fg_num)
3030
            print(output)  # 0.65782464
3031 3032 3033 3034 3035 3036

    """
    if reduction not in ['sum', 'mean', 'none']:
        raise ValueError(
            "The value of 'reduction' in sigmoid_focal_loss "
            "should be 'sum', 'mean' or 'none', but received %s, which is not allowed."
3037 3038
            % reduction
        )
3039 3040

    if normalizer is not None:
3041 3042 3043 3044 3045 3046
        check_variable_and_dtype(
            normalizer,
            'normalizer',
            ['float32', 'float64'],
            'sigmoid_focal_loss',
        )
3047 3048 3049 3050
        normalizer_shape = list(normalizer.shape)
        normalizer_dims = len(normalizer_shape)
        if normalizer_dims > 1:
            raise ValueError(
3051
                "Expected zero or one dimension of normalizer in sigmoid_focal_loss but got {}.".format(
3052 3053 3054
                    normalizer_dims
                )
            )
3055

3056
    if in_dynamic_mode():
3057
        place = _current_expected_place()
3058
        one = _C_ops.full(logit.shape, float(1.0), logit.dtype, place)
3059

3060
        loss = _C_ops.sigmoid_cross_entropy_with_logits(
3061
            logit, label, None, False, -100
3062
        )
3063

3064
        pred = _C_ops.sigmoid(logit)
3065

3066 3067
        p_t = _C_ops.add(
            _C_ops.multiply(pred, label),
3068 3069 3070 3071
            _C_ops.multiply(
                _C_ops.subtract(one, pred), _C_ops.subtract(one, label)
            ),
        )
3072 3073

        alpha = fluid.dygraph.base.to_variable([alpha], dtype=loss.dtype)
3074 3075
        alpha_t = _C_ops.add(
            _C_ops.multiply(alpha, label),
3076 3077 3078 3079
            _C_ops.multiply(
                _C_ops.subtract(one, alpha), _C_ops.subtract(one, label)
            ),
        )
3080
        loss = _C_ops.multiply(alpha_t, loss)
3081 3082

        gamma = fluid.dygraph.base.to_variable([gamma], dtype=loss.dtype)
3083 3084
        gamma_t = _C_ops.pow(_C_ops.subtract(one, p_t), gamma)
        loss = _C_ops.multiply(gamma_t, loss)
3085 3086

        if normalizer is not None:
3087
            loss = _C_ops.divide(loss, normalizer)
3088 3089

        if reduction == "sum":
3090
            return _C_ops.sum(loss, [], None, False)
3091
        elif reduction == "mean":
3092
            return _C_ops.mean_all(loss)
3093 3094 3095

        return loss

姜永久 已提交
3096 3097 3098
    else:
        check_variable_and_dtype(
            logit, 'logit', ['float32', 'float64'], 'sigmoid_focal_loss'
3099
        )
姜永久 已提交
3100 3101
        check_variable_and_dtype(
            label, 'label', ['float32', 'float64'], 'sigmoid_focal_loss'
3102
        )
3103

姜永久 已提交
3104 3105 3106 3107
        bce_name = None
        if reduction == 'none' and normalizer is None:
            bce_name = name
        loss = paddle.nn.functional.binary_cross_entropy_with_logits(
3108
            logit, label, None, reduction='none', name=bce_name
3109
        )
3110

姜永久 已提交
3111 3112
        pred = paddle.nn.functional.sigmoid(logit)
        p_t = pred * label + (1 - pred) * (1 - label)
3113

姜永久 已提交
3114 3115
        alpha_t = alpha * label + (1 - alpha) * (1 - label)
        loss = paddle.multiply(alpha_t, loss)
3116

姜永久 已提交
3117 3118
        gamma_t = paddle.pow((1 - p_t), gamma)
        loss = paddle.multiply(gamma_t, loss)
3119

姜永久 已提交
3120 3121 3122
        if normalizer is not None:
            normalizer_name = name if reduction == 'none' else None
            loss = paddle.divide(loss, normalizer, name=normalizer_name)
3123

姜永久 已提交
3124 3125 3126 3127
        if reduction == 'mean':
            loss = paddle.mean(loss, name=name)
        elif reduction == 'sum':
            loss = paddle.sum(loss, name=name)
3128

姜永久 已提交
3129
        return loss
3130 3131


3132 3133 3134
def multi_label_soft_margin_loss(
    input, label, weight=None, reduction="mean", name=None
):
Y
yangguohao 已提交
3135
    r"""
3136 3137 3138 3139 3140 3141 3142 3143 3144 3145 3146 3147 3148
    Calculate a multi-class multi-classification
    hinge loss (margin-based loss) between input :math:`x` (a 2D mini-batch `Tensor`)
    and output :math:`y` (which is a 2D `Tensor` of target class indices).
    For each sample in the mini-batch:

    .. math::
        \text{loss}(x, y) = \sum_{ij}\frac{\max(0, 1 - (x[y[j]] - x[i]))}{\text{x.size}(0)}

    where :math:`x \in \left\{0, \; \cdots , \; \text{x.size}(0) - 1\right\}`, \
    :math:`y \in \left\{0, \; \cdots , \; \text{y.size}(0) - 1\right\}`, \
    :math:`0 \leq y[j] \leq \text{x.size}(0)-1`, \
    and :math:`i \neq y[j]` for all :math:`i` and :math:`j`.
    :math:`y` and :math:`x` must have the same size.
Y
yangguohao 已提交
3149

3150 3151 3152 3153 3154 3155 3156 3157 3158 3159 3160 3161 3162 3163
    Parameters:
        input (Tensor): Input tensor, the data type is float32 or float64. Shape is (N, C), where C is number of classes, and if shape is more than 2D, this is (N, C, D1, D2,..., Dk), k >= 1.
        label (Tensor): Label tensor, the data type is float32 or float64. The shape of label is the same as the shape of input.
        weight (Tensor,optional): a manual rescaling weight given to each class.
                If given, has to be a Tensor of size C and the data type is float32, float64.
                Default is ``'None'`` .
        reduction (str, optional): Indicate how to average the loss by batch_size,
                the candicates are ``'none'`` | ``'mean'`` | ``'sum'``.
                If :attr:`reduction` is ``'none'``, the unreduced loss is returned;
                If :attr:`reduction` is ``'mean'``, the reduced mean loss is returned;
                If :attr:`reduction` is ``'sum'``, the summed loss is returned.
                Default: ``'mean'``
        name (str, optional): Name for the operation (optional, default is None).
                For more information, please refer to :ref:`api_guide_Name`.
Y
yangguohao 已提交
3164

3165 3166 3167 3168 3169
    Shape:
        input: N-D Tensor, the shape is [N, \*], N is batch size and `\*` means number of classes, available dtype is float32, float64. The sum operationoperates over all the elements.
        label: N-D Tensor, same shape as the input.
        weight:N-D Tensor, the shape is [N,1]
        output: scalar. If :attr:`reduction` is ``'none'``, then same shape as the input.
Y
yangguohao 已提交
3170

3171 3172
    Returns:
        Tensor, The tensor variable storing the multi_label_soft_margin_loss of input and label.
Y
yangguohao 已提交
3173

3174 3175
    Examples:
        .. code-block:: python
Y
yangguohao 已提交
3176

3177 3178 3179 3180 3181 3182 3183 3184 3185 3186
            import paddle
            import paddle.nn.functional as F
            input = paddle.to_tensor([[1, -2, 3], [0, -1, 2], [1, 0, 1]], dtype=paddle.float32)
            # label elements in {1., -1.}
            label = paddle.to_tensor([[-1, 1, -1], [1, 1, 1], [1, -1, 1]], dtype=paddle.float32)
            loss = F.multi_label_soft_margin_loss(input, label, reduction='none')
            print(loss)
            # Tensor([3.49625897, 0.71111226, 0.43989015])
            loss = F.multi_label_soft_margin_loss(input, label, reduction='mean')
            print(loss)
3187
            # Tensor(1.54908717)
Y
yangguohao 已提交
3188 3189 3190 3191
    """
    if reduction not in ['sum', 'mean', 'none']:
        raise ValueError(
            "'reduction' in 'multi_label_soft_margin_loss' should be 'sum', 'mean' or 'none', "
3192 3193
            "but received {}.".format(reduction)
        )
Y
yangguohao 已提交
3194 3195

    if not (input.shape == label.shape):
3196 3197 3198 3199
        raise ValueError(
            "The input and label should have same dimension,"
            "but received {}!={}".format(input.shape, label.shape)
        )
Y
yangguohao 已提交
3200

3201
    if not in_dynamic_mode():
3202 3203 3204 3205 3206 3207 3208 3209 3210 3211 3212 3213
        check_variable_and_dtype(
            input,
            'input',
            ['float32', 'float64'],
            'multilabel_soft_margin_loss',
        )
        check_variable_and_dtype(
            label,
            'label',
            ['float32', 'float64'],
            'multilabel_soft_margin_loss',
        )
Y
yangguohao 已提交
3214

3215 3216 3217 3218
    loss = -(
        label * paddle.nn.functional.log_sigmoid(input)
        + (1 - label) * paddle.nn.functional.log_sigmoid(-input)
    )
Y
yangguohao 已提交
3219 3220

    if weight is not None:
3221
        if not in_dynamic_mode():
3222 3223 3224 3225 3226 3227
            check_variable_and_dtype(
                weight,
                'weight',
                ['float32', 'float64'],
                'multilabel_soft_margin_loss',
            )
Y
yangguohao 已提交
3228 3229 3230 3231 3232 3233 3234 3235 3236 3237 3238 3239
        loss = loss * weight

    loss = loss.mean(axis=-1)  # only return N loss values

    if reduction == "none":
        return loss
    elif reduction == "mean":
        return paddle.mean(loss)
    elif reduction == "sum":
        return paddle.sum(loss)


3240 3241
def hinge_embedding_loss(input, label, margin=1.0, reduction='mean', name=None):
    r"""
3242
    Calculates hinge_embedding_loss. Measures the loss given an input tensor :math:`x` and a labels tensor :math:`y`(containing 1 or -1).
3243 3244 3245 3246 3247 3248 3249 3250 3251 3252 3253 3254 3255 3256 3257 3258 3259 3260 3261 3262 3263 3264 3265 3266 3267 3268 3269 3270 3271 3272 3273 3274 3275 3276 3277 3278 3279 3280 3281 3282 3283 3284 3285 3286 3287 3288 3289 3290 3291 3292 3293 3294 3295 3296 3297 3298 3299 3300 3301 3302 3303 3304 3305 3306 3307 3308 3309 3310
    This is usually used for measuring whether two inputs are similar or dissimilar, e.g. using the L1 pairwise distance as :math:`x`,
    and is typically used for learning nonlinear embeddings or semi-supervised learning.

    The loss function for :math:`n`-th sample in the mini-batch is

    .. math::
        l_n = \begin{cases}
            x_n, & \text{if}\; y_n = 1,\\
            \max \{0, \Delta - x_n\}, & \text{if}\; y_n = -1,
        \end{cases}

    and the total loss functions is

    .. math::
        \ell(x, y) = \begin{cases}
            \operatorname{mean}(L), & \text{if reduction} = \text{'mean';}\\
            \operatorname{sum}(L),  & \text{if reduction} = \text{'sum'.}
        \end{cases}

    where :math:`L = \{l_1,\dots,l_N\}^\top`.

    Parameters:
        input (Tensor): Input tensor, the data type is float32 or float64.
            the shape is [N, \*], N is batch size and `\*` means any number of additional dimensions, available dtype is float32, float64.
        label (Tensor): Label tensor containing 1 or -1, the data type is float32 or float64.
            The shape of label is the same as the shape of input.
        margin (float, optional): Specifies the hyperparameter margin to be used.
            The value determines how large the input need to be to calculate in
            hinge_embedding_loss. When label is -1, Input smaller than margin are minimized with hinge_embedding_loss.
            Default = 1.0
        reduction (str, optional): Indicate how to average the loss by batch_size.
            the candicates are ``'none'`` | ``'mean'`` | ``'sum'``.
            If :attr:`reduction` is ``'none'``, the unreduced loss is returned;
            If :attr:`reduction` is ``'mean'``, the reduced mean loss is returned;
            If :attr:`reduction` is ``'sum'``, the summed loss is returned.
            Default: ``'mean'``
        name (str, optional): Name for the operation (optional, default is None).
            For more information, please refer to :ref:`api_guide_Name`.

    Shape:

        input: N-D Tensor, the shape is [N, \*], N is batch size and `\*` means any number of additional dimensions, available dtype is float32, float64. The sum operationoperates over all the elements.

        label: N-D Tensor, same shape as the input. tensor elements should containing 1 or -1, the data type is float32 or float64.

        output: scalar. If :attr:`reduction` is ``'none'``, then same shape as the input.

    Returns:
        Tensor. The tensor variable storing the hinge_embedding_loss of input and label.

    Examples:
        .. code-block:: python

            import paddle
            import paddle.nn.functional as F

            input = paddle.to_tensor([[1, -2, 3], [0, -1, 2], [1, 0, 1]], dtype=paddle.float32)
            # label elements in {1., -1.}
            label = paddle.to_tensor([[-1, 1, -1], [1, 1, 1], [1, -1, 1]], dtype=paddle.float32)

            loss = F.hinge_embedding_loss(input, label, margin=1.0, reduction='none')
            print(loss)
            # Tensor([[0., -2., 0.],
            #         [0., -1., 2.],
            #         [1., 1., 1.]])

            loss = F.hinge_embedding_loss(input, label, margin=1.0, reduction='mean')
            print(loss)
3311
            # Tensor(0.22222222)
3312 3313 3314 3315 3316
    """

    if reduction not in ['sum', 'mean', 'none']:
        raise ValueError(
            "'reduction' in 'hinge_embedding_loss' should be 'sum', 'mean' or 'none', "
3317 3318
            "but received {}.".format(reduction)
        )
3319

3320
    if not in_dynamic_mode():
3321 3322 3323 3324 3325 3326
        check_variable_and_dtype(
            input, 'input', ['float32', 'float64'], 'hinge_embedding_loss'
        )
        check_variable_and_dtype(
            label, 'label', ['float32', 'float64'], 'hinge_embedding_loss'
        )
3327 3328

    zero_ = paddle.zeros([1], dtype=input.dtype)
3329 3330 3331
    loss = paddle.where(label == 1.0, input, zero_) + paddle.where(
        label == -1.0, paddle.nn.functional.relu(margin - input), zero_
    )
3332 3333 3334 3335 3336 3337 3338

    if reduction == 'mean':
        return paddle.mean(loss, name=name)
    elif reduction == 'sum':
        return paddle.sum(loss, name=name)
    elif reduction == 'none':
        return loss
3339 3340


3341 3342 3343
def cosine_embedding_loss(
    input1, input2, label, margin=0, reduction='mean', name=None
):
3344
    r"""
3345
    Compute the cosine embedding loss of Tensor ``input1``, ``input2`` and ``label`` as follows.
3346 3347 3348 3349 3350 3351 3352 3353 3354 3355 3356 3357 3358 3359 3360

    If label = 1, then the loss value can be calculated as follow:

    .. math::
        Out = 1 - cos(input1, input2)

    If label = -1, then the loss value can be calculated as follow:

    .. math::
        Out = max(0, cos(input1, input2)) - margin

    The operator cos can be described as follow:
     .. math::
        cos(x1, x2) = \frac{x1 \cdot{} x2}{\Vert x1 \Vert_2 * \Vert x2 \Vert_2}

3361 3362
    Parameters:
        input1 (Tensor): tensor with shape: [N, M] or [M], 'N' means batch size, which can be 0, 'M' means the length of input array.
3363
                         Available dtypes are float32, float64.
3364
        input2 (Tensor): tensor with shape: [N, M] or [M], 'N' means batch size, which can be 0, 'M' means the length of input array.
3365
                         Available dtypes are float32, float64.
3366
        label (Tensor): tensor with shape: [N] or [1], 'N' means the length of input array. The target labels values should be -1 or 1.
3367 3368 3369 3370 3371 3372 3373 3374 3375 3376 3377 3378 3379 3380
                         Available dtypes are int32, int64, float32, float64.
        margin (float, optional): Should be a number from :math:`-1` to :math:`1`,
                         :math:`0` to :math:`0.5` is suggested. If :attr:`margin` is missing, the
                         default value is :math:`0`.
        reduction (string, optional): Specifies the reduction to apply to the output:
                         ``'none'`` | ``'mean'`` | ``'sum'``. ``'none'``: no reduction will be applied,
                         ``'mean'``: the sum of the output will be divided by the number of elements in the output
                         ``'sum'``: the output will be summed.
        name (str, optional): Name for the operation (optional, default is None).
                         For more information, please refer to :ref:`api_guide_Name`.

    Returns:
        Tensor, the cosine embedding Loss of Tensor ``input1`` ``input2`` and ``label``.
            If `reduction` is ``'none'``, the shape of output loss is [N], the same as ``input`` .
3381
            If `reduction` is ``'mean'`` or ``'sum'``, the shape of output loss is [].
3382 3383 3384 3385 3386 3387 3388 3389 3390 3391 3392

    Examples:
        .. code-block:: python

            import paddle

            input1 = paddle.to_tensor([[1.6, 1.2, -0.5], [3.2, 2.6, -5.8]], 'float32')
            input2 = paddle.to_tensor([[0.5, 0.5, -1.8], [2.3, -1.4, 1.1]], 'float32')
            label = paddle.to_tensor([1, -1], 'int64')

            output = paddle.nn.functional.cosine_embedding_loss(input1, input2, label, margin=0.5, reduction='mean')
3393
            print(output)  # 0.21155193
3394 3395

            output = paddle.nn.functional.cosine_embedding_loss(input1, input2, label, margin=0.5, reduction='sum')
3396
            print(output)  # 0.42310387
3397 3398 3399 3400 3401 3402 3403

            output = paddle.nn.functional.cosine_embedding_loss(input1, input2, label, margin=0.5, reduction='none')
            print(output)  # [0.42310387, 0.        ]

    """
    if len(label.shape) != 1:
        raise ValueError(
3404 3405
            "1D target tensor expected, multi-target not supported"
        )
3406 3407 3408 3409

    if input1.shape != input2.shape:
        raise ValueError(
            "the shape of input tensor 1 should be equal to input tensor 2, but found inputs with "
3410 3411
            "different sizes"
        )
3412 3413 3414 3415 3416 3417 3418 3419

    if len(input1.shape) > 2:
        raise ValueError(
            "1D target tensor expects 1D or 2D input tensors, but found inputs with different sizes"
        )

    if input1.dtype not in [paddle.float32, paddle.float64]:
        raise ValueError(
3420 3421
            "The data type of input Variable must be 'float32' or 'float64'"
        )
3422
    if label.dtype not in [
3423 3424 3425 3426
        paddle.int32,
        paddle.int64,
        paddle.float32,
        paddle.float64,
3427 3428 3429 3430 3431 3432 3433 3434 3435 3436 3437 3438 3439 3440 3441 3442 3443 3444 3445 3446 3447 3448 3449
    ]:
        raise ValueError(
            "The data type of label Variable must be 'int32', 'int64', 'float32', 'float64'"
        )

    prod_sum = (input1 * input2).sum(axis=-1)
    mag_square1 = paddle.square(input1).sum(axis=-1) + 10e-12
    mag_square2 = paddle.square(input2).sum(axis=-1) + 10e-12
    denom = paddle.sqrt(mag_square1 * mag_square2)
    cos = prod_sum / denom
    zeros = paddle.zeros_like(cos)
    pos = 1 - cos
    neg = paddle.clip(cos - margin, min=0)
    out_pos = paddle.where(label == 1, pos, zeros)
    out_neg = paddle.where(label == -1, neg, zeros)
    out = out_pos + out_neg

    if reduction == 'none':
        return out
    if reduction == 'mean':
        return paddle.mean(out, name=name)
    elif reduction == 'sum':
        return paddle.sum(out, name=name)
Y
yangguohao 已提交
3450 3451


3452 3453 3454 3455 3456 3457 3458 3459 3460 3461
def triplet_margin_with_distance_loss(
    input,
    positive,
    negative,
    distance_function=None,
    margin=1.0,
    swap=False,
    reduction='mean',
    name=None,
):
Y
yangguohao 已提交
3462 3463 3464 3465 3466 3467 3468 3469 3470 3471 3472 3473 3474 3475 3476 3477 3478 3479 3480
    r"""
    Measures the triplet loss given an input
    tensors :math:`x1`, :math:`x2`, :math:`x3` and a margin with a value greater than :math:`0`.
    This is used for measuring a relative similarity between samples. A triplet
    is composed by `input`, `positive` and `negative` (i.e., `input`, `positive examples` and `negative
    examples` respectively). The shapes of all input tensors should be
    :math:`(N, D)`.

    The loss function for each sample in the mini-batch is:

    .. math::
        L(input, pos, neg) = \max \{d(input_i, pos_i) - d(input_i, neg_i) + {\rm margin}, 0\}


    where the default distance function

    .. math::
        d(x_i, y_i) = \left\lVert {\bf x}_i - {\bf y}_i \right\rVert_p

3481
    or user can defined their own distance functions. `margin` is a nonnegative margin representing the minimum difference
Y
yangguohao 已提交
3482 3483 3484 3485 3486 3487 3488 3489 3490 3491 3492 3493 3494 3495 3496
    between the positive and negative distances that is required for the loss to be 0. If `swap` is true, it will compare distance of (input, negative) with
    distance of (negative, positive) and change it to the smaller one. For more details see http://www.bmva.org/bmvc/2016/papers/paper119/paper119.pdf.

    Parameters:

        input (Tensor):Input tensor, the data type is float32 or float64.
            the shape is [N, \*], N is batch size and `\*` means any number of additional dimensions, available dtype is float32, float64.

        positive (Tensor):Positive tensor, the data type is float32 or float64.
            The shape of label is the same as the shape of input.

        negative (Tensor):Negative tensor, the data type is float32 or float64.
            The shape of label is the same as the shape of input.

        distance_function (callable, optional): Quantifies the distance between two tensors. if not specified, 2 norm functions will be used.
3497

3498 3499
        margin (float, optional): A nonnegative margin representing the minimum difference
            between the positive and negative distances required for the loss to be 0. Default value is :math:`1`.
3500

Y
yangguohao 已提交
3501 3502 3503 3504 3505 3506 3507 3508 3509 3510 3511
        swap (bool, optional):The distance swap changes the negative distance to the swap distance (distance between positive samples
                and negative samples) if swap distance smaller than negative distance. Default: ``False``.

        reduction (str, optional):Indicate how to average the loss by batch_size.
            the candicates are ``'none'`` | ``'mean'`` | ``'sum'``.
            If :attr:`reduction` is ``'none'``, the unreduced loss is returned;
            If :attr:`reduction` is ``'mean'``, the reduced mean loss is returned;
            If :attr:`reduction` is ``'sum'``, the summed loss is returned.
            Default: ``'mean'``
        name (str, optional): Name for the operation (optional, default is None).
            For more information, please refer to :ref:`api_guide_Name`.
3512

Y
yangguohao 已提交
3513 3514 3515 3516 3517 3518 3519 3520 3521 3522 3523 3524 3525 3526 3527 3528 3529 3530 3531
    Returns:
        Output: Tensor. The tensor variable storing the triplet_margin_with_distance_loss of input and positive and negative.

    Examples:
        .. code-block:: python

            import paddle
            import paddle.nn.functional as F

            input = paddle.to_tensor([[1, 5, 3], [0, 3, 2], [1, 4, 1]], dtype=paddle.float32)
            positive= paddle.to_tensor([[5, 1, 2], [3, 2, 1], [3, -1, 1]], dtype=paddle.float32)
            negative = paddle.to_tensor([[2, 1, -3], [1, 1, -1], [4, -2, 1]], dtype=paddle.float32)
            loss = F.triplet_margin_with_distance_loss(input, positive, negative, margin=1.0, reduction='none')
            print(loss)
            # Tensor([0.        , 0.57496738, 0.        ])


            loss = F.triplet_margin_with_distance_loss(input, positive, negative, margin=1.0, reduction='mean')
            print(loss)
3532
            # Tensor(0.19165580)
Y
yangguohao 已提交
3533 3534 3535

    """
    if reduction not in ['sum', 'mean', 'none']:
3536 3537 3538 3539 3540
        raise ValueError(
            "'reduction' in 'triplet_margin_with_distance_loss' "
            "should be 'sum', 'mean' or 'none', "
            "but received {}.".format(reduction)
        )
Y
yangguohao 已提交
3541 3542 3543 3544
    if margin < 0:
        raise ValueError(
            "The margin between positive samples and negative samples should be greater than 0."
        )
3545
    if not in_dynamic_mode():
3546 3547 3548 3549 3550 3551 3552 3553 3554 3555 3556 3557 3558 3559 3560 3561 3562 3563
        check_variable_and_dtype(
            input,
            'input',
            ['float32', 'float64'],
            'triplet_margin_with_distance_loss',
        )
        check_variable_and_dtype(
            positive,
            'positive',
            ['float32', 'float64'],
            'triplet_margin_with_distance_loss',
        )
        check_variable_and_dtype(
            negative,
            'negative',
            ['float32', 'float64'],
            'triplet_margin_with_distance_loss',
        )
Y
yangguohao 已提交
3564 3565

    if not (input.shape == positive.shape == negative.shape):
3566 3567 3568 3569 3570
        raise ValueError(
            "input's shape must equal to "
            "positive's shape and  "
            "negative's shape"
        )
Y
yangguohao 已提交
3571

3572 3573 3574
    distance_function = (
        distance_function
        if distance_function is not None
Y
yangguohao 已提交
3575
        else paddle.nn.PairwiseDistance(2)
3576
    )
Y
yangguohao 已提交
3577 3578 3579 3580 3581 3582 3583 3584 3585 3586 3587

    positive_dist = distance_function(input, positive)
    negative_dist = distance_function(input, negative)

    if swap:
        swap_dist = distance_function(positive, negative)
        negative_dist = paddle.minimum(negative_dist, swap_dist)

    if not paddle.all(positive_dist > 0) or not paddle.all(negative_dist > 0):
        raise ValueError(
            "The positive distance or negative distance should be greater than 0, "
3588 3589
            "The distance functions should be checked."
        )
Y
yangguohao 已提交
3590 3591 3592 3593 3594 3595 3596 3597 3598

    loss = paddle.clip(positive_dist - negative_dist + margin, min=0.0)

    if reduction == 'mean':
        return paddle.mean(loss, name=name)
    elif reduction == 'sum':
        return paddle.sum(loss, name=name)
    elif reduction == 'none':
        return loss
Y
yangguohao 已提交
3599 3600


3601 3602 3603 3604 3605 3606 3607 3608 3609 3610 3611
def triplet_margin_loss(
    input,
    positive,
    negative,
    margin=1.0,
    p=2,
    epsilon=1e-6,
    swap=False,
    reduction='mean',
    name=None,
):
Y
yangguohao 已提交
3612 3613 3614 3615 3616 3617 3618 3619 3620 3621 3622 3623 3624 3625 3626 3627 3628 3629 3630 3631 3632 3633 3634 3635 3636 3637 3638 3639 3640 3641 3642 3643 3644 3645 3646 3647 3648 3649 3650 3651 3652 3653 3654 3655 3656 3657 3658 3659 3660 3661 3662 3663 3664 3665 3666 3667 3668 3669 3670 3671 3672 3673 3674 3675 3676 3677 3678 3679 3680 3681
    r"""
        Measures the triplet loss given an input
        tensors :math:`x1`, :math:`x2`, :math:`x3` and a margin with a value greater than :math:`0`.
        This is used for measuring a relative similarity between samples. A triplet
        is composed by `input`, `positive` and `negative` (i.e., `input`, `positive examples` and `negative
        examples` respectively). The shapes of all input tensors should be
        :math:`(N, *)`.

        The loss function for each sample in the mini-batch is:

        .. math::
            L(input, pos, neg) = \max \{d(input_i, pos_i) - d(input_i, neg_i) + {\rm margin}, 0\}


        where

        .. math::
            d(x_i, y_i) = \left\lVert {\bf x}_i - {\bf y}_i \right\rVert_p

    Parameters:
        input (Tensor): Input tensor, the data type is float32 or float64.
            the shape is [N, \*], N is batch size and `\*` means any number of additional dimensions, available dtype is float32, float64.

        positive (Tensor): Positive tensor, the data type is float32 or float64.
            The shape of label is the same as the shape of input.

        negative (Tensor): Negative tensor, the data type is float32 or float64.
            The shape of label is the same as the shape of input.

        margin (float, Optional): Default: :math:`1`.

        p (int, Optional): The norm degree for pairwise distance. Default: :math:`2`.

        epsilon (float, Optional): Add small value to avoid division by zero,
            default value is 1e-6.

        swap (bool,Optional): The distance swap change the negative distance to the distance between
            positive sample and negative sample. For more details, see `Learning shallow convolutional feature descriptors with triplet losses`.
            Default: ``False``.


        reduction (str, Optional):Indicate how to average the loss by batch_size.
            the candicates are ``'none'`` | ``'mean'`` | ``'sum'``.
            If :attr:`reduction` is ``'none'``, the unreduced loss is returned;
            If :attr:`reduction` is ``'mean'``, the reduced mean loss is returned;
            If :attr:`reduction` is ``'sum'``, the summed loss is returned.
            Default: ``'mean'``

        name (str, Optional): Name for the operation (optional, default is None).
            For more information, please refer to :ref:`api_guide_Name`.

    Returns:
        Output: Tensor. The tensor variable storing the triplet_margin_loss of input and positive and negative.

    Examples:
        .. code-block:: python

            import paddle
            import paddle.nn.functional as F

            input = paddle.to_tensor([[1, 5, 3], [0, 3, 2], [1, 4, 1]], dtype=paddle.float32)
            positive= paddle.to_tensor([[5, 1, 2], [3, 2, 1], [3, -1, 1]], dtype=paddle.float32)
            negative = paddle.to_tensor([[2, 1, -3], [1, 1, -1], [4, -2, 1]], dtype=paddle.float32)
            loss = F.triplet_margin_loss(input, positive, negative, margin=1.0, reduction='none')
            print(loss)
            # Tensor([0.        , 0.57496738, 0.        ])


            loss = F.triplet_margin_loss(input, positive, negative, margin=1.0, reduction='mean')
            print(loss)
3682
            # Tensor(0.19165580)
Y
yangguohao 已提交
3683 3684 3685 3686 3687

    """
    if reduction not in ['sum', 'mean', 'none']:
        raise ValueError(
            "'reduction' in 'triplet_margin_loss' should be 'sum', 'mean' or 'none', "
3688 3689
            "but received {}.".format(reduction)
        )
Y
yangguohao 已提交
3690 3691 3692 3693
    if margin < 0:
        raise ValueError(
            "The margin between positive samples and negative samples should be greater than 0."
        )
3694
    if not in_dynamic_mode():
3695 3696 3697 3698 3699 3700 3701 3702 3703
        check_variable_and_dtype(
            input, 'input', ['float32', 'float64'], 'triplet_margin_loss'
        )
        check_variable_and_dtype(
            positive, 'positive', ['float32', 'float64'], 'triplet_margin_loss'
        )
        check_variable_and_dtype(
            negative, 'negative', ['float32', 'float64'], 'triplet_margin_loss'
        )
Y
yangguohao 已提交
3704 3705

    if not (input.shape == positive.shape == negative.shape):
3706 3707 3708 3709 3710
        raise ValueError(
            "input's shape must equal to "
            "positive's shape and  "
            "negative's shape"
        )
Y
yangguohao 已提交
3711 3712 3713 3714 3715 3716 3717 3718 3719 3720 3721 3722 3723 3724 3725 3726 3727

    distance_function = paddle.nn.PairwiseDistance(p, epsilon=epsilon)
    positive_dist = distance_function(input, positive)
    negative_dist = distance_function(input, negative)

    if swap:
        swap_dist = distance_function(positive, negative)
        negative_dist = paddle.minimum(negative_dist, swap_dist)

    loss = paddle.clip(positive_dist - negative_dist + margin, min=0.0)

    if reduction == 'mean':
        return paddle.mean(loss, name=name)
    elif reduction == 'sum':
        return paddle.sum(loss, name=name)
    elif reduction == 'none':
        return loss
3728 3729


3730 3731 3732 3733 3734 3735 3736 3737 3738
def multi_margin_loss(
    input,
    label,
    p: int = 1,
    margin: float = 1.0,
    weight=None,
    reduction='mean',
    name=None,
):
Y
yangguohao 已提交
3739 3740 3741 3742 3743 3744 3745 3746 3747 3748 3749 3750 3751 3752 3753 3754 3755 3756 3757 3758 3759 3760 3761 3762 3763 3764 3765 3766 3767 3768 3769 3770 3771 3772 3773 3774 3775 3776 3777 3778 3779 3780 3781 3782 3783 3784 3785 3786 3787 3788 3789 3790 3791 3792 3793 3794 3795 3796 3797 3798 3799 3800
    r"""
        Measures a multi-class classification hinge loss between input :math:`input` and label :math:`label`:

        For i-th mini-batch sample, the loss in terms of the 1D input :math:`input_i` and scalar
        output :math:`label_i` is:

        .. math::
            \text{loss}(input_i, label_i) = \frac{\sum_{j} \max(0, \text{margin} - input_i[label_i] + input_i[j])^p}{\text{C}}

        where :math:`0 \leq j \leq \text{C}-1`, :math:`0 \leq i \leq \text{N}-1` and :math:`j \neq label_i`.

        Optionally, you can give non-equal weighting on the classes by passing
        a 1D :attr:`weight` tensor into the constructor.

        The loss function for i-th sample then becomes:

        .. math::
            \text{loss}(input_i, label_i) = \frac{\sum_{j} \max(0, weight[label_i] * (\text{margin} - input_i[label_i] + input_i[j]))^p}{\text{C}}


    Parameters:
        input (Tensor): Input tensor, the data type is float32 or float64. Shape is (N, C), where C is number of classes.

        label (Tensor): Label tensor, the data type is int32 or int64. The shape of label is (N,)

        p (int, Optional): The power num. Default: :math:`1`.

        margin (float, Optional): Default: :math:`1`.

        weight (Tensor,optional): a manual rescaling weight given to each class.
                If given, has to be a Tensor of shape (C,) and the data type is float32, float64.
                Default is ``'None'`` .


        reduction (str, Optional):Indicate how to calculate the loss by batch_size.
            the candidates are ``'none'`` | ``'mean'`` | ``'sum'``.
            If :attr:`reduction` is ``'none'``, the unreduced loss is returned;
            If :attr:`reduction` is ``'mean'``, the reduced mean loss is returned;
            If :attr:`reduction` is ``'sum'``, the summed loss is returned.
            Default: ``'mean'``

        name (str, Optional): Name for the operation (optional, default is None).
            For more information, please refer to :ref:`api_guide_Name`.

    Returns:
        Output: Tensor. The tensor variable storing the multi_margin_loss of input and label.

    Examples:
        .. code-block:: python

            import paddle
            import paddle.nn.functional as F

            input = paddle.to_tensor([[1, 5, 3], [0, 3, 2], [1, 4, 1]], dtype=paddle.float32)
            label = paddle.to_tensor([1, 2, 1], dtype=paddle.int32)
            loss = F.multi_margin_loss(input, label, margin=1.0, reduction='none')
            print(loss)

    """
    if reduction not in ['sum', 'mean', 'none']:
        raise ValueError(
            "'reduction' in 'multi_margin_loss' should be 'sum', 'mean' or 'none', "
3801 3802
            "but received {}.".format(reduction)
        )
Y
yangguohao 已提交
3803

3804
    if not in_dynamic_mode():
3805 3806 3807 3808 3809 3810
        check_variable_and_dtype(
            input, 'input', ['float32', 'float64'], 'multi_margin_loss'
        )
        check_variable_and_dtype(
            label, 'label', ['int32', 'int64'], 'multi_margin_loss'
        )
Y
yangguohao 已提交
3811 3812 3813 3814
    if not (input.shape[0] == label.shape[0]):
        raise ValueError(
            "The label's shape[0] should be equal to input's shape[0], "
            "but received input's shape[0] {} and label's shape[0]:{}. ".format(
3815 3816 3817
                input.shape[0], label.shape[0]
            )
        )
Y
yangguohao 已提交
3818 3819 3820
    label = label.reshape((-1, 1))
    index_sample = paddle.index_sample(input, label)
    if weight is not None:
3821
        if not in_dynamic_mode():
3822 3823 3824
            check_variable_and_dtype(
                weight, 'weight', ['float32', 'float64'], 'multi_margin_loss'
            )
Y
yangguohao 已提交
3825 3826 3827
        if not (input.shape[1] == weight.shape[0]):
            raise ValueError(
                "The weight's shape[0] should be equal to input's shape[1]"
3828 3829 3830 3831
                "but received weight's shape[0]: {} and input's shape[1]: {}".format(
                    weight.shape[0], input.shape[1]
                )
            )
Y
yangguohao 已提交
3832 3833 3834
        weight = paddle.gather(weight, label, axis=0).reshape((-1, 1))
        loss = paddle.mean(
            paddle.pow(
3835 3836 3837 3838 3839
                paddle.clip(weight * (margin - index_sample + input), min=0.0),
                p,
            ),
            axis=1,
        ) - weight * (margin**p / paddle.shape(input)[1])
Y
yangguohao 已提交
3840
    else:
3841 3842 3843 3844 3845 3846 3847 3848 3849
        loss = (
            paddle.mean(
                paddle.pow(
                    paddle.clip(margin - index_sample + input, min=0.0), p
                ),
                axis=1,
            )
            - margin**p / paddle.shape(input)[1]
        )
Y
yangguohao 已提交
3850 3851 3852 3853 3854 3855 3856 3857 3858

    if reduction == 'mean':
        return paddle.mean(loss, name=name)
    elif reduction == 'sum':
        return paddle.sum(loss, name=name)
    elif reduction == 'none':
        return loss


3859 3860
def soft_margin_loss(input, label, reduction='mean', name=None):
    """
3861

3862 3863 3864 3865 3866 3867 3868 3869
    The API measures the soft margin loss between input predictions ``input``
    and target labels ``label`` . It can be described as:

    .. math::
        Out = log(1 + exp((-label * input)))

    Parameters:

3870
        input (Tensor): The input predications tensor with shape: ``[N, *]``,
3871
            N is batch_size, `*` means any number of additional dimensions. The ``input`` ranges from -inf to inf.
3872
            Available dtype is float32, float64.
3873 3874 3875 3876 3877 3878 3879 3880 3881 3882 3883 3884 3885 3886 3887 3888 3889

        label (Tensor): The target labels tensor with the same shape as
            ``input``. The target labels which values should be numbers -1 or 1.
            Available dtype is int32, int64, float32, float64.

        reduction (str, optional): Indicate how to average the loss by batch_size,
            the candidates are ``'none'`` | ``'mean'`` | ``'sum'``.
            If :attr:`reduction` is ``'none'``, the unreduced loss is returned;
            If :attr:`reduction` is ``'mean'``, the reduced mean loss is returned;
            If :attr:`reduction` is ``'sum'``, the summed loss is returned.
            Default is ``'mean'``.

        name (str, optional): Name for the operation (optional, default is None).
            For more information, please refer to :ref:`api_guide_Name`.

    Returns:

3890
        Output (Tensor): If ``reduction`` is ``'none'``, the shape of output is same as ``input`` , else the shape of output is [].
3891 3892 3893 3894 3895 3896 3897 3898 3899

    Examples:
        .. code-block:: python

            import paddle

            input = paddle.to_tensor([[0.5, 0.6, 0.7],[0.3, 0.5, 0.2]], 'float32')
            label = paddle.to_tensor([[1.0, -1.0, 1.0],[-1.0, 1.0, 1.0]], 'float32')
            output = paddle.nn.functional.soft_margin_loss(input, label)
3900
            print(output)
3901 3902
            # Tensor(shape=[], dtype=float32, place=Place(gpu:0), stop_gradient=True,
            #        0.64022040)
3903 3904 3905 3906

            input = paddle.uniform(shape=(5, 5), dtype="float32", min=0.1, max=0.8)
            label = paddle.randint(0, 2, shape=(5, 5), dtype="int64")
            label[label==0]=-1
3907 3908

            output = paddle.nn.functional.soft_margin_loss(input, label, reduction='none')
3909 3910 3911 3912 3913 3914 3915
            print(output)
            # Tensor(shape=[5, 5], dtype=float32, place=Place(gpu:0), stop_gradient=True,
            #        [[1.09917796, 0.52613139, 0.56263304, 0.82736146, 0.38776723],
            #         [1.07179427, 1.11924267, 0.49877715, 1.10026348, 0.46184641],
            #         [0.84367639, 0.74795729, 0.44629076, 0.55123353, 0.77659678],
            #         [0.39465919, 0.76651484, 0.54485321, 0.76609844, 0.77166790],
            #         [0.51283568, 0.84757161, 0.78913331, 1.05268764, 0.45318675]])
3916

3917 3918 3919 3920
    """
    if reduction not in ['sum', 'mean', 'none']:
        raise ValueError(
            "The value of 'reduction' in soft_margin_loss should be 'sum', "
3921 3922 3923
            "'mean' or 'none', but received %s, which is not allowed."
            % reduction
        )
3924

3925
    if not in_dynamic_mode():
3926
        fluid.data_feeder.check_variable_and_dtype(
3927 3928 3929 3930 3931 3932 3933 3934
            input, 'input', ['float32', 'float64'], 'soft_margin_loss'
        )
        fluid.data_feeder.check_variable_and_dtype(
            label,
            'label',
            ['int32', 'int64', 'float32', 'float64'],
            'soft_margin_loss',
        )
3935 3936

    if not (input.shape == label.shape):
3937
        raise ValueError("input's shape must equal to " "label's shape")
3938

3939
    label = paddle.cast(label, input.dtype)
3940 3941 3942 3943 3944 3945 3946 3947
    out = paddle.log(1 + paddle.exp(-label * input))

    if reduction == 'sum':
        return paddle.sum(out, name=name)
    elif reduction == 'mean':
        return paddle.mean(out, name=name)
    else:
        return out
Z
Zman 已提交
3948 3949 3950 3951 3952 3953 3954 3955 3956 3957 3958 3959 3960 3961 3962 3963 3964 3965 3966 3967 3968 3969 3970 3971 3972 3973 3974 3975 3976 3977 3978 3979 3980 3981 3982 3983 3984 3985 3986 3987 3988 3989 3990 3991 3992 3993 3994 3995 3996 3997 3998 3999 4000 4001


def gaussian_nll_loss(
    input,
    label,
    variance,
    full=False,
    epsilon=1e-6,
    reduction='mean',
    name=None,
):
    r"""Gaussian negative log likelihood loss.

    Gaussian negative log likelihood loss among ``input``, ``variance`` and
    ``label``. Note that the ``label`` is treated as samples from Gaussian distributions.
    This function is used to train a neural network predicts
    the ``input`` and ``variance`` of a gaussian distribution that ``label`` are supposed to
    be coming from. This means ``input`` and ``variance`` should be functions(the neural network) of some inputs.

    For a ``label`` having Gaussian distribution with ``input`` and ``variance`` predicted by neural network
    the loss is calculated as follows:

    .. math::
        \text{loss} = \frac{1}{2}\left(\log\left(\text{max}\left(\text{var},
        \ \text{epsilon}\right)\right) + \frac{\left(\text{input} - \text{label}\right)^2}
        {\text{max}\left(\text{var}, \ \text{epsilon}\right)}\right) + \text{const.}

    where :attr:`epsilon` is used for stability. By default, the constant term of
    the loss function is omitted unless :attr:`full` is ``True``. If ``variance`` is not the same
    size as ``input`` (due to a homoscedastic assumption), it must either have a final dimension
    of 1 or have one fewer dimension (with all other sizes being the same) for correct broadcasting.

    Args:
        input (Tensor): input tensor, :math:`(N, *)` or :math:`(*)` where :math:`*` means any number of additional
            dimensions. Expectation of the Gaussian distribution, available dtype is float32, float64.
        label (Tensor): target label tensor, :math:`(N, *)` or :math:`(*)`, same shape as the input, or same shape as the input
            but with one dimension equal to 1 (to allow for broadcasting). Sample from the Gaussian distribution, available dtype is float32, float64.
        variance (Tensor): tensor of positive variance(s), :math:`(N, *)` or :math:`(*)`, same shape as the input, or same shape as the input but
            with one dimension equal to 1, or same shape as the input but with one fewer
            dimension (to allow for broadcasting). One for each of the expectations
            in the input (heteroscedastic), or a single one (homoscedastic), available dtype is float32, float64.
        full (bool, optional): include the constant term in the loss
            calculation. Default: ``False``.
        epsilon (float, optional): value used to clamp ``variance`` (see note below), for
            stability. Default: 1e-6.
        reduction (str, optional): specifies the reduction to apply to the
            output:``'none'`` | ``'mean'`` | ``'sum'``. ``'none'``: no reduction
            will be applied, ``'mean'``: the output is the average of all batch
            member losses, ``'sum'``: the output is the sum of all batch member
            losses. Default: ``'mean'``.
        name (str, optional): Name for the operation (optional, default is None). For more information, please refer to :ref:`api_guide_Name`.

    Returns:

4002
        output (Tensor): If ``reduction`` is ``'none'``, the shape of output is same as ``input`` , else the shape of output is [].
Z
Zman 已提交
4003 4004 4005 4006 4007 4008 4009 4010 4011 4012 4013 4014 4015 4016 4017 4018 4019 4020 4021 4022 4023 4024 4025 4026 4027 4028 4029 4030 4031 4032 4033 4034 4035 4036 4037 4038 4039 4040 4041 4042 4043 4044 4045 4046 4047 4048 4049 4050 4051 4052 4053 4054 4055 4056 4057 4058 4059 4060 4061 4062 4063 4064 4065 4066 4067 4068

    Examples::
        .. code-block:: python

            import paddle
            import paddle.nn.functional as F

            input = paddle.randn([5, 2], dtype=paddle.float32)
            label = paddle.randn([5, 2], dtype=paddle.float32)
            variance = paddle.ones([5, 2], dtype=paddle.float32)

            loss = F.gaussian_nll_loss(input, label, variance, reduction='none')
            print(loss)

            loss = F.gaussian_nll_loss(input, label, variance, reduction='mean')
            print(loss)

    Note:
        The clamping of ``variance`` is ignored with respect to autograd, and so the
        gradients are unaffected by it.
    """

    # Check variance shape
    # If variance.shape == input.shape, the case is heteroscedastic and no further checks are needed.
    # Otherwise:
    if variance.shape != input.shape:
        # If variance is one dimension short of input, but the shape match otherwise, then this is a homoscedastic case.
        # e.g. input.shape = (10, 2, 3), variance.shape = (10, 2)
        # -> unsqueeze variance so that variance.shape = (10, 2, 1)
        # this is done so that broadcasting can happen in the loss calculation
        if input.shape[:-1] == variance.shape:
            variance = paddle.unsqueeze(variance, -1)
        # This checks if the shape match up to the final dimension, and the final dimension of variance is of shape 1.
        # This is also a homoscedastic case.
        # e.g. input.shape = (10, 2, 3), variance.shape = (10, 2, 1)
        elif (
            input.shape[:-1] == variance.shape[:-1] and variance.shape[-1] == 1
        ):  # Heteroscedastic case
            pass
        # If none of the above pass, then the shape of variance is incorrect.
        else:
            raise ValueError("variance is of incorrect shape")

    # Check validity of reduction mode
    if reduction != 'none' and reduction != 'mean' and reduction != 'sum':
        raise ValueError(reduction + " is not valid")

    check_variable_and_dtype(
        input,
        'Input',
        ['float32', 'float64'],
        'gaussian_nll_loss',
    )
    check_variable_and_dtype(
        label,
        'Label',
        ['float32', 'float64'],
        'gaussian_nll_loss',
    )
    check_variable_and_dtype(
        variance,
        'Variance',
        ['float32', 'float64'],
        'gaussian_nll_loss',
    )
    # Entries of variance must be non-negative
4069
    if not in_dynamic_mode():
Z
Zman 已提交
4070 4071 4072 4073 4074 4075 4076 4077 4078 4079 4080 4081 4082 4083 4084 4085 4086 4087 4088 4089 4090 4091 4092 4093 4094 4095 4096 4097 4098 4099 4100 4101 4102 4103 4104 4105 4106 4107
        condition = paddle.all(variance > 0)
        Assert(condition, [variance], 6)
    else:
        if input.dtype not in [paddle.float32, paddle.float64]:
            raise ValueError(
                "The data type of input Variable must be 'float32' or 'float64'"
            )
        if label.dtype not in [
            paddle.float32,
            paddle.float64,
        ]:
            raise ValueError(
                "The data type of label Variable must be 'float32', 'float64'"
            )
        if variance.dtype not in [paddle.float32, paddle.float64]:
            raise ValueError(
                "The data type of variance Variable must be 'float32', 'float64'"
            )
        if paddle.any(variance < 0):
            raise ValueError("variance has negative entry/entries")

    # Clamp for stability
    variance = variance.clone()
    with paddle.no_grad():
        variance = paddle.clip(variance, min=epsilon)
    # Calculate the loss
    loss = 0.5 * (
        paddle.log(variance) + paddle.square(input - label) / variance
    )
    if full:
        loss += 0.5 * math.log(2 * math.pi)

    if reduction == 'mean':
        return paddle.mean(loss, name=name)
    elif reduction == 'sum':
        return paddle.sum(loss, name=name)
    elif reduction == 'none':
        return loss