未验证 提交 d03dd9d5 编写于 作者: W wawltor 提交者: GitHub

fix the margin ranking loss doc and api, test=develop (#26266)

* upate the target to label, test=develop

* Update the code for the margin_ranking_loss, test=develop
上级 00e08ce0
......@@ -73,16 +73,16 @@ __all__ = [
def margin_ranking_loss(input,
other,
target,
label,
margin=0.0,
reduction='mean',
name=None):
"""
This op the calcluate the the margin rank loss between the input x, y and target, use the math function as follows.
This op the calcluate the the margin rank loss between the input, other and label, use the math function as follows.
.. math::
margin\_rank\_loss = max(0, -target * (input - other) + margin)
margin\_rank\_loss = max(0, -label * (input - other) + margin)
If :attr:`reduction` set to ``'mean'``, the reduced mean loss is:
......@@ -99,7 +99,7 @@ def margin_ranking_loss(input,
Parameters:
input(Tensor): the first input tensor, it's data type should be float32, float64.
other(Tensor): the second input tensor, it's data type should be float32, float64.
target(Tensor): the target value corresponding to input, it's data type should be float32, float64.
label(Tensor): the label value corresponding to input, it's data type should be float32, float64.
margin (float, optional): The margin value to add, default value is 0;
reduction (str, optional): Indicate the reduction to apply to the loss, the candicates are ``'none'``, ``'mean'``, ``'sum'``.If :attr:`reduction` is ``'none'``, the unreduced loss is returned; If :attr:`reduction` is ``'mean'``, the reduced mean loss is returned. If :attr:`reduction` is ``'sum'``, the reduced sum loss is returned. Default is ``'mean'``.
name (str, optional): Name for the operation (optional, default is None). For more information, please refer to :ref:`api_guide_Name`.
......@@ -115,15 +115,15 @@ def margin_ranking_loss(input,
paddle.disable_static()
x = paddle.to_variable(np.array([[1, 2], [3, 4]]).astype('float32'))
y = paddle.to_variable(np.array([[2, 1], [2, 4]]).astype('float32'))
target = paddle.to_variable(np.array([[1, -1], [-1, -1]]).astype('float32'))
loss = paddle.nn.functional.margin_ranking_loss(x, y, target)
input = paddle.to_variable(np.array([[1, 2], [3, 4]]).astype('float32'))
other = paddle.to_variable(np.array([[2, 1], [2, 4]]).astype('float32'))
label = paddle.to_variable(np.array([[1, -1], [-1, -1]]).astype('float32'))
loss = paddle.nn.functional.margin_ranking_loss(input, other, label)
print(loss.numpy()) # [0.75]
"""
if fluid.framework.in_dygraph_mode():
out = core.ops.elementwise_sub(other, input)
out = core.ops.elementwise_mul(out, target)
out = core.ops.elementwise_mul(out, label)
if margin != 0.0:
margin = fluid.dygraph.base.to_variable([margin], dtype=out.dtype)
out = core.ops.elementwise_add(out, margin)
......@@ -140,10 +140,10 @@ def margin_ranking_loss(input,
fluid.data_feeder.check_variable_and_dtype(
other, 'other', ['float32', 'float64'], 'margin_rank_loss')
fluid.data_feeder.check_variable_and_dtype(
target, 'target', ['float32', 'float64'], 'margin_rank_loss')
label, 'label', ['float32', 'float64'], 'margin_rank_loss')
out = paddle.elementwise_sub(other, input)
out = paddle.multiply(out, target)
out = paddle.multiply(out, label)
if margin != 0.0:
margin_var = out.block.create_var(dtype=out.dtype)
......
......@@ -648,11 +648,11 @@ class MarginRankingLoss(fluid.dygraph.Layer):
"""
This interface is used to construct a callable object of the ``MarginRankingLoss`` class.
The MarginRankingLoss layer calculates the margin rank loss between the input, other and target
The MarginRankingLoss layer calculates the margin rank loss between the input, other and label
, use the math function as follows.
.. math::
margin\_rank\_loss = max(0, -target * (input - other) + margin)
margin\_rank\_loss = max(0, -label * (input - other) + margin)
If :attr:`reduction` set to ``'mean'``, the reduced mean loss is:
......@@ -674,8 +674,8 @@ class MarginRankingLoss(fluid.dygraph.Layer):
Shape:
input: N-D Tensor, the shape is [N, *], N is batch size and `*` means any number of additional dimensions., available dtype is float32, float64.
other: N-D Tensor, `other` have the same shape and dtype as `input`.
target: N-D Tensor, target have the same shape and dtype as `input`.
out: If :attr:`reduction` is ``'mean'`` or ``'sum'`` , the out shape is :math:`[1]`, otherwise the shape is the same as `input` .The same dtype as input tensor.
label: N-D Tensor, label have the same shape and dtype as `input`.
output: If :attr:`reduction` is ``'mean'`` or ``'sum'`` , the out shape is :math:`[1]`, otherwise the shape is the same as `input` .The same dtype as input tensor.
Returns:
A callable object of MarginRankingLoss.
......@@ -691,9 +691,9 @@ class MarginRankingLoss(fluid.dygraph.Layer):
input = paddle.to_variable(np.array([[1, 2], [3, 4]]).astype("float32"))
other = paddle.to_variable(np.array([[2, 1], [2, 4]]).astype("float32"))
target = paddle.to_variable(np.array([[1, -1], [-1, -1]]).astype("float32"))
label = paddle.to_variable(np.array([[1, -1], [-1, -1]]).astype("float32"))
margin_rank_loss = paddle.nn.MarginRankingLoss()
loss = margin_rank_loss(input, other, target)
loss = margin_rank_loss(input, other, label)
print(loss.numpy()) # [0.75]
"""
......@@ -707,7 +707,7 @@ class MarginRankingLoss(fluid.dygraph.Layer):
self.reduction = reduction
self.name = name
def forward(self, input, other, target):
def forward(self, input, other, label):
out = paddle.nn.functional.margin_ranking_loss(
input, other, target, self.margin, self.reduction, self.name)
input, other, label, self.margin, self.reduction, self.name)
return out
Markdown is supported
0% .
You are about to add 0 people to the discussion. Proceed with caution.
先完成此消息的编辑!
想要评论请 注册