loss.py 164.4 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14
#   Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

15 16
import math

17
# TODO: define loss functions of neural network
18
import paddle
19
from paddle import _C_ops, fluid, in_dynamic_mode
20
from paddle.framework import core
Z
Zman 已提交
21
from paddle.static.nn.control_flow import Assert
22
from paddle.utils import deprecated
23

24
from ...common_ops_import import Variable
25
from ...fluid.data_feeder import check_variable_and_dtype
姜永久 已提交
26
from ...fluid.framework import _current_expected_place, in_dygraph_mode
27 28
from ...fluid.layer_helper import LayerHelper
from ...tensor.manipulation import reshape
29

30 31
__all__ = []

32 33
kIgnoreIndex = -100

34

35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63
def dice_loss(input, label, epsilon=0.00001, name=None):
    r"""

    Dice loss for comparing the similarity between the input predictions and the label.
    This implementation is for binary classification, where the input is sigmoid
    predictions of each pixel, usually used for segmentation task. The dice loss can
    be defined as the following equation:

    .. math::

        dice\_loss &= 1 - \frac{2 * intersection\_area}{total\_area} \\
                  &= \frac{(total\_area - intersection\_area) - intersection\_area}{total\_area} \\
                  &= \frac{(union\_area - intersection\_area)}{total\_area}


    Parameters:
        input (Tensor): Tensor, rank>=2, shape is :math:`[N_1, N_2, ..., N_k, D]`, where :math:`N_1` is
                          the batch_size, :math:`D` is the number of categories. It is usually the output
                          predictions of sigmoid activation. The data type can be float32 or float64.
        label (Tensor): Tensor, the groud truth with the same rank as input, shape is :math:`[N_1, N_2, ..., N_k, 1]`.
                          where :math:`N_1` is the batch_size. The data type can be int32 or int64.
        epsilon (float): The epsilon will be added to the numerator and denominator.
                         If both input and label are empty, it makes sure dice is 1.
                         Default: 0.00001
        name(str, optional): The default value is None.
                             Normally there is no need for user to set this property.
                             For more information, please refer to :ref:`api_guide_Name`

    Returns:
64
        0-D Tensor, which shape is [], data type is the same as `input` .
65 66 67 68 69 70 71 72 73 74 75 76 77 78

    Example:
        .. code-block:: python

            import paddle
            import paddle.nn.functional as F

            x = paddle.randn((3,224,224,2))
            label = paddle.randint(high=2, shape=(3,224,224,1))
            predictions = F.softmax(x)
            loss = F.dice_loss(input=predictions, label=label)
    """
    assert input.dtype in (paddle.float32, paddle.float64)
    assert label.dtype in (paddle.int32, paddle.int64)
79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96
    assert (
        len(input.shape) >= 2
    ), "The rank of input should be greater than or equal to 2."
    assert len(input.shape) == len(label.shape), (
        "The rank of input and label should be equal, "
        "but received input: %d, label: %d."
        % (len(input.shape), len(label.shape))
    )
    assert label.shape[-1] == 1, (
        "The last dimension of label should be 1, "
        "but received %d." % label.shape[-1]
    )
    assert (
        input.shape[:-1] == label.shape[:-1]
    ), "All dimensions should be equal except the last one."
    assert (
        input.numel() > 0 and label.numel() > 0
    ), "Any dimension of input and label cannot be equal to 0."
97 98 99 100 101 102

    label = paddle.squeeze(label, [-1])
    label = paddle.nn.functional.one_hot(label, input.shape[-1])
    reduce_dim = list(range(1, len(input.shape)))
    inse = paddle.sum(input * label, axis=reduce_dim)
    dice_denominator = paddle.sum(input, axis=reduce_dim) + paddle.sum(
103 104
        label, axis=reduce_dim
    )
105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146
    dice_score = 1 - inse * 2 / (dice_denominator + epsilon)
    return paddle.mean(dice_score)


def log_loss(input, label, epsilon=1e-4, name=None):
    r"""

    **Negative Log Loss Layer**

    This layer accepts input predictions and target label and returns the
    negative log loss.

    .. math::

        Out = -label * \log{(input + \epsilon)}
              - (1 - label) * \log{(1 - input + \epsilon)}

    Args:
        input (Tensor|list):  A 2-D tensor with shape [N x 1], where N is the
                                batch size. This input is a probability computed
                                by the previous operator. Data type float32.
        label (Tensor|list):  The ground truth which is a 2-D tensor with
                                shape [N x 1], where N is the batch size.
                                Data type float32.
        epsilon (float, optional): A small number for numerical stability. Default 1e-4.
        name(str|None): For detailed information, please refer to
            :ref:`api_guide_Name` . Usually name is no need to set and None by default.

    Returns:
        Tensor, which shape is [N x 1], data type is float32.

    Examples:
        .. code-block:: python

          import paddle
          import paddle.nn.functional as F

          label = paddle.randn((10,1))
          prob = paddle.randn((10,1))
          cost = F.log_loss(input=prob, label=label)
    """
    if in_dygraph_mode():
147
        return _C_ops.log_loss(input, label, epsilon)
148 149 150 151 152 153 154

    helper = LayerHelper('log_loss', **locals())
    check_variable_and_dtype(input, 'input', ['float32'], 'log_loss')
    check_variable_and_dtype(label, 'label', ['float32'], 'log_loss')

    loss = helper.create_variable_for_type_inference(dtype=input.dtype)

155 156 157 158 159 160
    helper.append_op(
        type='log_loss',
        inputs={'Predicted': [input], 'Labels': [label]},
        outputs={'Loss': [loss]},
        attrs={'epsilon': epsilon},
    )
161 162 163
    return loss


164 165 166 167 168 169 170 171 172
def fluid_softmax_with_cross_entropy(
    logits,
    label,
    soft_label=False,
    ignore_index=-100,
    numeric_stable_mode=True,
    return_softmax=False,
    axis=-1,
):
173 174
    r"""

175 176
    This operator implements the cross entropy loss function with softmax. This function
    combines the calculation of the softmax operation and the cross entropy loss function
177 178 179 180 181 182
    to provide a more numerically stable gradient.

    Because this operator performs a softmax on logits internally, it expects
    unscaled logits. This operator should not be used with the output of
    softmax operator since that would produce incorrect results.

183 184 185
    When the attribute :attr:`soft_label` is set :attr:`False`, this operators
    expects mutually exclusive hard labels, each sample in a batch is in exactly
    one class with a probability of 1.0. Each sample in the batch will have a
186 187 188 189 190 191 192
    single label.

    The equation is as follows:

    1) Hard label (one-hot label, so every sample has exactly one class)

    .. math::
193
        \\loss_j=-\text{logits}_{label_j} +\log\left(\sum_{i=0}^{K}\exp(\text{logits}_i)\right), j = 1,..., K
194 195 196 197

    2) Soft label (each sample can have a distribution over all classes)

    .. math::
198
        \\loss_j= -\sum_{i=0}^{K}\text{label}_i\left(\text{logits}_i - \log\left(\sum_{i=0}^{K}\exp(\text{logits}_i)\right)\right), j = 1,...,K
199 200 201 202

    3) If :attr:`numeric_stable_mode` is :attr:`True`, softmax is calculated first by:

    .. math::
203 204 205
        \\max_j&=\max_{i=0}^{K}{\text{logits}_i} \\
                log\_max\_sum_j &= \log\sum_{i=0}^{K}\exp(logits_i - max_j)\\
                softmax_j &= \exp(logits_j - max_j - {log\_max\_sum}_j)
206 207 208 209 210 211

    and then cross entropy loss is calculated by softmax and label.

    Args:
        logits (Tensor): A multi-dimension ``Tensor`` , and the data type is float32 or float64. The input tensor of unscaled log probabilities.
        label (Tensor): The ground truth  ``Tensor`` , data type is the same
212 213 214
            as the ``logits`` . If :attr:`soft_label` is set to :attr:`True`,
            Label is a ``Tensor``  in the same shape with :attr:`logits`.
            If :attr:`soft_label` is set to :attr:`True`, Label is a ``Tensor``
215 216 217 218 219
            in the same shape with :attr:`logits` expect shape in dimension :attr:`axis` as 1.
        soft_label (bool, optional): A flag to indicate whether to interpretant the given
            labels as soft labels. Default False.
        ignore_index (int, optional): Specifies a target value that is ignored and does
                                      not contribute to the input gradient. Only valid
220
                                      if :attr:`soft_label` is set to :attr:`False`.
221 222 223
                                      Default: kIgnoreIndex(-100).
        numeric_stable_mode (bool, optional): A flag to indicate whether to use a more
                                              numerically stable algorithm. Only valid
224 225 226
                                              when :attr:`soft_label` is :attr:`False`
                                              and GPU is used. When :attr:`soft_label`
                                              is :attr:`True` or CPU is used, the
227 228 229 230 231
                                              algorithm is always numerically stable.
                                              Note that the speed may be slower when use
                                              stable algorithm. Default: True.
        return_softmax (bool, optional): A flag indicating whether to return the softmax
                                         along with the cross entropy loss. Default: False.
232
        axis (int, optional): The index of dimension to perform softmax calculations. It
233 234 235 236 237 238 239 240 241 242 243 244 245 246 247
                              should be in range :math:`[-1, rank - 1]`, while :math:`rank`
                              is the rank of input :attr:`logits`. Default: -1.

    Returns:
        ``Tensor`` or Tuple of two ``Tensor`` : Return the cross entropy loss if \
                                                    `return_softmax` is False, otherwise the tuple \
                                                    (loss, softmax), softmax is in the same shape \
                                                    with input logits and cross entropy loss is in \
                                                    the same shape with input logits except shape \
                                                    in dimension :attr:`axis` as 1.

    Examples:
        .. code-block:: python

            import paddle
248 249 250 251 252

            logits = paddle.to_tensor([0.4, 0.6, 0.9])
            label = paddle.randint(high=2, shape=[1], dtype="int64")

            out = paddle.nn.functional.softmax_with_cross_entropy(logits=logits, label=label)
253
            print(out)
254 255
            # Tensor(shape=[1], dtype=float32, place=Place(gpu:0), stop_gradient=True,
            #        [1.15328646])
256
    """
257 258 259 260 261 262 263 264 265 266 267 268 269 270
    input_dims = len(list(logits.shape))
    if input_dims == 0:
        raise ValueError('The dimention of input should be larger than zero!')

    label_dims = len(list(label.shape))
    if input_dims - 1 != label_dims and input_dims != label_dims:
        raise ValueError(
            'Expected nput_dims - 1 = label_dims or input_dims == label_dims\
             (got nput_dims{}, label_dims{})'.format(
                input_dims, label_dims
            )
        )
    if input_dims - 1 == label_dims:
        label = paddle.unsqueeze(label, axis=axis)
姜永久 已提交
271
    if in_dygraph_mode():
272 273 274 275 276 277 278 279 280
        softmax, loss = _C_ops.cross_entropy_with_softmax(
            logits,
            label,
            soft_label,
            True,
            numeric_stable_mode,
            ignore_index,
            axis,
        )
281 282 283 284
        if not return_softmax:
            return loss
        else:
            return loss, softmax
姜永久 已提交
285 286 287 288 289 290 291 292 293 294
    else:
        attrs = {
            'soft_label': soft_label,
            'ignore_index': ignore_index,
            'numeric_stable_mode': numeric_stable_mode,
            'axis': axis,
        }
        helper = LayerHelper('softmax_with_cross_entropy', **locals())
        softmax = helper.create_variable_for_type_inference(dtype=logits.dtype)
        loss = helper.create_variable_for_type_inference(dtype=logits.dtype)
295

姜永久 已提交
296 297 298 299 300 301 302
        outputs = {'Softmax': softmax, 'Loss': loss}
        helper.append_op(
            type='softmax_with_cross_entropy',
            inputs={'Logits': logits, 'Label': label},
            outputs=outputs,
            attrs=attrs,
        )
303

姜永久 已提交
304 305
        if return_softmax:
            return loss, softmax
306

姜永久 已提交
307
        return loss
308 309 310


def npair_loss(anchor, positive, labels, l2_reg=0.002):
311 312
    """

313 314 315
    Npair loss requires paired data. Npair loss has two parts: the first part is L2
    regularizer on the embedding vector; the second part is cross entropy loss which
    takes the similarity matrix of anchor and positive as logits.
316

317 318
    For more information, please refer to:
    `Improved Deep Metric Learning with Multi class N pair Loss Objective <http://www.nec-labs.com/uploads/images/Department-Images/MediaAnalytics/papers/nips16_npairmetriclearning.pdf>`_
319

320
    Args:
321
      anchor(Tensor): embedding vector for the anchor image. shape=[batch_size, embedding_dims],
322
                        the data type is float32 or float64.
323
      positive(Tensor): embedding vector for the positive image. shape=[batch_size, embedding_dims],
324 325 326 327
                        the data type is float32 or float64.
      labels(Tensor): 1-D tensor. shape=[batch_size], the data type is float32 or float64 or int64.
      l2_reg(float32): L2 regularization term on embedding vector, default: 0.002.

328

329
    Returns:
330
      A 0-D Tensor representing the npair loss, the data type is the same as anchor, the shape is [].
331

332 333 334
    Examples:

      .. code-block:: python
335

336
          import paddle
337

338
          DATATYPE = "float32"
339

340 341 342
          anchor = paddle.rand(shape=(18, 6), dtype=DATATYPE)
          positive = paddle.rand(shape=(18, 6), dtype=DATATYPE)
          labels = paddle.rand(shape=(18,), dtype=DATATYPE)
343

344 345
          npair_loss = paddle.nn.functional.npair_loss(anchor, positive, labels, l2_reg = 0.002)
          print(npair_loss)
346

347
    """
S
supplyout 已提交
348 349 350 351
    if anchor.size == 0:
        raise ValueError("The dims of anchor should be greater than 0.")
    if positive.size == 0:
        raise ValueError("The dims of positive should be greater than 0.")
352 353 354 355 356 357 358 359 360
    check_variable_and_dtype(
        anchor, 'anchor', ['float32', 'float64'], 'npair_loss'
    )
    check_variable_and_dtype(
        positive, 'positive', ['float32', 'float64'], 'positive'
    )
    check_variable_and_dtype(
        labels, 'labels', ['float32', 'float64', 'int64'], 'labels'
    )
361 362 363 364 365 366
    Beta = 0.25
    batch_size = labels.shape[0]

    labels = paddle.reshape(labels, shape=[batch_size, 1])
    labels = paddle.tile(labels, repeat_times=[1, batch_size])

367 368 369
    labels = paddle.equal(labels, paddle.transpose(labels, perm=[1, 0])).astype(
        'float32'
    )
370 371
    labels = labels / paddle.sum(labels, axis=1, keepdim=True)

372 373 374
    l2loss = paddle.mean(paddle.sum(paddle.square(anchor), 1)) + paddle.mean(
        paddle.sum(paddle.square(positive), 1)
    )
375 376
    l2loss = l2loss * Beta * l2_reg

377 378 379 380 381 382
    similarity_matrix = paddle.matmul(
        anchor, positive, transpose_x=False, transpose_y=True
    )
    softmax_ce = fluid_softmax_with_cross_entropy(
        logits=similarity_matrix, label=labels, soft_label=True
    )
383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405
    cross_entropy = paddle.sum(labels * softmax_ce, 0)
    celoss = paddle.mean(cross_entropy)

    return l2loss + celoss


def square_error_cost(input, label):
    r"""

    This op accepts input predictions and target label and returns the
    squared error cost.

    For predictions label, and target label, the equation is:

    .. math::

        Out = (input - label)^2

    Parameters:
        input (Tensor): Input tensor, the data type should be float32.
        label (Tensor): Label tensor, the data type should be float32.

    Returns:
406 407
        Tensor, The tensor storing the element-wise squared error
        difference between input and label.
408 409 410 411 412 413 414 415 416 417 418 419 420

    Examples:

        .. code-block:: python

            import paddle
            input = paddle.to_tensor([1.1, 1.9])
            label = paddle.to_tensor([1.0, 2.0])
            output = paddle.nn.functional.square_error_cost(input, label)
            print(output)
            # [0.01, 0.01]

    """
421
    if in_dygraph_mode():
422 423
        minus_out = _C_ops.subtract(input, label)
        square_out = _C_ops.square(minus_out)
424
        return square_out
姜永久 已提交
425 426 427 428 429 430 431 432 433 434 435 436 437 438
    else:
        check_variable_and_dtype(
            input, "input", ['float32', 'float64'], 'square_error_cost'
        )
        check_variable_and_dtype(
            label, "label", ['float32', 'float64'], 'square_error_cost'
        )
        helper = LayerHelper('square_error_cost', **locals())
        minus_out = helper.create_variable_for_type_inference(dtype=input.dtype)
        helper.append_op(
            type='elementwise_sub',
            inputs={'X': [input], 'Y': [label]},
            outputs={'Out': [minus_out]},
        )
439

姜永久 已提交
440 441 442 443 444 445 446 447 448
        square_out = helper.create_variable_for_type_inference(
            dtype=input.dtype
        )
        helper.append_op(
            type='square',
            inputs={'X': [minus_out]},
            outputs={'Out': [square_out]},
        )
        return square_out
449 450


451 452 453 454 455 456 457 458
def edit_distance(
    input,
    label,
    normalized=True,
    ignored_tokens=None,
    input_length=None,
    label_length=None,
):
459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491
    """
    This op computes the edit distances, also called Levenshtein distance, between a batch of
    hypothesis strings and their references. It measures how dissimilar two strings are by counting
    the minimum number of operations to transform one string into another.
    The operations include insertion, deletion, and substitution.

    For example, given hypothesis string A = "kitten" and reference
    B = "sitting", A will be transformed into B
    at least after two substitutions and one insertion:

    "kitten" -> "sitten" -> "sittin" -> "sitting"

    So the edit distance between A and B is 3.

    The input is a Tensor, the input_length and label_length should be supported.

    The `batch_size` of labels should be same as `input`.

    The output include the edit distance value between every pair of input and related label, and the number of sequence.
    If Attr(normalized) is true,
    the edit distance value will be divided by the length of label.

    Parameters:
        input(Tensor): The input tensor, its rank should be equal to 2 and its data type should be int64.
        label(Tensor): The label tensor, its rank should be equal to 2 and its data type should be int64.
        normalized(bool, default True): Indicated whether to normalize the edit distance.
        ignored_tokens(list<int>, default None): Tokens that will be removed before
                                     calculating edit distance.
        input_length(Tensor): The length for each sequence in `input` if it's of Tensor type, it should have shape `(batch_size, )` and its data type should be int64.
        label_length(Tensor): The length for each sequence in `label` if it's of Tensor type, it should have shape `(batch_size, )` and its data type should be int64.
        NOTE: To be avoid unexpected result, the value of every elements in input_length and label_length should be equal to the value of the second dimension of input and label. For example, The input: [[1,2,3,4],[5,6,7,8],[9,10,11,12]], the shape of input is [3,4] and the input_length should be [4,4,4]

    Returns:
492 493 494
        Tuple:
            distance(Tensor): edit distance result, its data type is float32, and its shape is (batch_size, 1).
            sequence_num(Tensor): sequence number, its data type is float32, and its shape is (1,).
495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523

    Examples:
        .. code-block:: python

            import paddle
            import paddle.nn.functional as F

            input = paddle.to_tensor([[1,2,3],[4,5,6],[4,4,4],[1,1,1]], dtype='int64')
            label = paddle.to_tensor([[1,3,4,1],[4,5,8,1],[7,7,7,1],[1,1,1,1]], dtype='int64')
            input_len = paddle.to_tensor([3,3,3,3], dtype='int64')
            label_len = paddle.to_tensor([4,4,4,4], dtype='int64')

            distance, sequence_num = F.loss.edit_distance(input=input, label=label, input_length=input_len, label_length=label_len, normalized=False)

            # print(distance)
            # [[3.]
            #  [2.]
            #  [4.]
            #  [1.]]
            # if set normalized to True
            # [[0.75]
            #  [0.5 ]
            #  [1.  ]
            #  [0.25]
            #
            # print(sequence_num)
            # [4]

    """
524

525 526 527 528 529 530 531
    helper = LayerHelper("edit_distance", **locals())

    # remove some tokens from input and labels
    if ignored_tokens is not None and len(ignored_tokens) > 0:
        erased_input = helper.create_variable_for_type_inference(dtype="int64")
        erased_label = helper.create_variable_for_type_inference(dtype="int64")

532 533 534 535 536 537
        helper.append_op(
            type="sequence_erase",
            inputs={"X": [input]},
            outputs={"Out": [erased_input]},
            attrs={"tokens": ignored_tokens},
        )
538 539
        input = erased_input

540 541 542 543 544 545
        helper.append_op(
            type="sequence_erase",
            inputs={"X": [label]},
            outputs={"Out": [erased_label]},
            attrs={"tokens": ignored_tokens},
        )
546 547
        label = erased_label

Z
zhiboniu 已提交
548
    if in_dygraph_mode():
549 550 551
        return _C_ops.edit_distance(
            input, label, input_length, label_length, normalized
        )
Z
zhiboniu 已提交
552

553 554
    check_variable_and_dtype(input, 'input', ['int64'], 'edit_distance')
    check_variable_and_dtype(label, 'label', ['int64'], 'edit_distance')
555 556 557 558 559 560 561 562
    this_inputs = {"Hyps": [input], "Refs": [label]}
    if input_length is not None and label_length is not None:
        this_inputs['HypsLength'] = [input_length]
        this_inputs['RefsLength'] = [label_length]

    # edit distance op
    edit_distance_out = helper.create_variable_for_type_inference(dtype="int64")
    sequence_num = helper.create_variable_for_type_inference(dtype="int64")
563 564 565 566 567 568
    helper.append_op(
        type="edit_distance",
        inputs=this_inputs,
        outputs={"Out": [edit_distance_out], "SequenceNum": [sequence_num]},
        attrs={"normalized": normalized},
    )
569 570 571 572

    return edit_distance_out, sequence_num


573 574 575
def binary_cross_entropy(
    input, label, weight=None, reduction='mean', name=None
):
576
    """
学渣戊's avatar
学渣戊 已提交
577
    Measure the binary_cross_entropy loss between input predictions ``input``
578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607
    and target labels ``label`` . The binary_cross_entropy loss can be described as:

    If :attr:`weight` is set, the loss is:

    .. math::
        Out = -1 * weight * (label * log(input) + (1 - label) * log(1 - input))

    If :attr:`weight` is None, the loss is:

    .. math::
        Out = -1 * (label * log(input) + (1 - label) * log(1 - input))

    If :attr:`reduction` set to ``'none'``, the interface will return the original loss `Out`.

    If :attr:`reduction` set to ``'mean'``, the reduced mean loss is:

    .. math::
        Out = MEAN(Out)

    If :attr:`reduction` set to ``'sum'``, the reduced sum loss is:

    .. math::
        Out = SUM(Out)

    Note that the input predictions ``input`` always be the output of sigmoid, and the target labels ``label``
    should be numbers between 0 and 1.

    Parameters:
        input (Tensor): The input predications tensor. 2-D tensor with shape: [N, *],
            N is batch_size, `*` means number of additional dimensions. The ``input``
608
            should always be the output of sigmod.  Available dtype is float16, float32, float64.
609 610
        label (Tensor): The target labels tensor. 2-D tensor with the same shape as
            ``input``. The target labels which values should be numbers between 0 and 1.
611
            Available dtype is float16, float32, float64.
612 613 614 615 616 617 618 619 620 621 622 623 624 625
        weight (Tensor, optional): A manual rescaling weight given to the loss of each
            batch element. If given, has to be a Tensor of size nbatch and the data type
            is float32, float64. Default is ``'None'``.
        reduction (str, optional): Indicate how to average the loss by batch_size,
            the candicates are ``'none'`` | ``'mean'`` | ``'sum'``.
            If :attr:`reduction` is ``'none'``, the unreduced loss is returned;
            If :attr:`reduction` is ``'mean'``, the reduced mean loss is returned;
            If :attr:`reduction` is ``'sum'``, the summed loss is returned.
            Default is ``'mean'``.
        name (str, optional): Name for the operation (optional, default is None).
            For more information, please refer to :ref:`api_guide_Name`.


    Returns:
学渣戊's avatar
学渣戊 已提交
626
        Tensor. If ``reduction`` is ``'none'``, the shape of output is
627 628 629 630 631 632 633
            same as ``input`` , else the shape of output is scalar.

    Examples:
        .. code-block:: python

            import paddle

634 635
            input = paddle.to_tensor([0.5, 0.6, 0.7], 'float32')
            label = paddle.to_tensor([1.0, 0.0, 1.0], 'float32')
636
            output = paddle.nn.functional.binary_cross_entropy(input, label)
637
            print(output)  # 0.65537095
638 639 640 641 642

    """
    if reduction not in ['sum', 'mean', 'none']:
        raise ValueError(
            "The value of 'reduction' in binary_cross_entropy should be 'sum', "
643 644 645
            "'mean' or 'none', but received %s, which is not allowed."
            % reduction
        )
646

J
Jiabin Yang 已提交
647
    if in_dygraph_mode():
648
        out = _C_ops.bce_loss(input, label)
649
        if weight is not None:
650
            out = _C_ops.multiply(out, weight, 'axis', -1)
651 652

        if reduction == 'sum':
653
            return _C_ops.sum(out, [], None, False)
654

655
        elif reduction == 'mean':
656
            return _C_ops.mean_all(out)
657 658 659
        else:
            return out
    else:
姜永久 已提交
660
        check_variable_and_dtype(
661 662 663 664
            input,
            'input',
            ['float16', 'float32', 'float64'],
            'binary_cross_entropy',
姜永久 已提交
665 666
        )
        check_variable_and_dtype(
667 668 669 670
            label,
            'label',
            ['float16', 'float32', 'float64'],
            'binary_cross_entropy',
姜永久 已提交
671
        )
J
Jiabin Yang 已提交
672

姜永久 已提交
673 674 675 676 677 678 679 680 681 682 683
        sub_name = name if weight is None and reduction == 'none' else None
        helper = LayerHelper("binary_cross_entropy", name=sub_name)
        out = helper.create_variable_for_type_inference(dtype=input.dtype)
        helper.append_op(
            type='bce_loss',
            inputs={
                'X': [input],
                'Label': [label],
            },
            outputs={'Out': [out]},
        )
J
Jiabin Yang 已提交
684

姜永久 已提交
685 686 687 688
        if weight is not None:
            if isinstance(weight, paddle.static.Variable):
                weight_name = name if reduction == 'none' else None
                out = paddle.multiply(out, weight, name=weight_name)
J
Jiabin Yang 已提交
689
            else:
姜永久 已提交
690 691 692 693 694 695 696 697 698 699
                raise ValueError(
                    "The weight is not a Tensor, please convert to Tensor."
                )

        if reduction == 'sum':
            return paddle.sum(out, name=name)
        elif reduction == 'mean':
            return paddle.mean(out, name=name)
        else:
            return out
700 701


702 703 704
def binary_cross_entropy_with_logits(
    logit, label, weight=None, reduction='mean', pos_weight=None, name=None
):
705
    r"""
学渣戊's avatar
学渣戊 已提交
706
    Combine the sigmoid layer and the :ref:`api_nn_loss_BCELoss` layer.
707 708 709 710 711 712 713

    This measures the element-wise probability error in classification tasks
    in which each class is independent.
    This can be thought of as predicting labels for a data-point, where labels
    are not mutually exclusive. For example, a news article can be about
    politics, technology or sports at the same time or none of these.

学渣戊's avatar
学渣戊 已提交
714
    Firstly, calculate loss function as follows:
715 716

    .. math::
717
           Out = -Labels * \log(\sigma(Logit)) - (1 - Labels) * \log(1 - \sigma(Logit))
718

719
    We know that :math:`\sigma(Logit) = \frac{1}{1 + e^{-Logit}}`. By substituting this we get:
720 721

    .. math::
722
           Out = Logit - Logit * Labels + \log(1 + e^{-Logit})
723

N
Noel 已提交
724
    For stability and to prevent overflow of :math:`e^{-Logit}` when Logit < 0,
725 726 727
    we reformulate the loss as follows:

    .. math::
728
           Out = \max(Logit, 0) - Logit * Labels + \log(1 + e^{-\|Logit\|})
729

学渣戊's avatar
学渣戊 已提交
730
    Then, if ``weight`` or ``pos_weight`` is not None, then multiply the
731 732 733 734
    weight tensor on the loss `Out`. The ``weight`` tensor will attach different
    weight on every items in the batch. The ``pos_weight`` will attach different
    weight on the positive label of each class.

学渣戊's avatar
学渣戊 已提交
735 736
    Finally, apply reduce operation on the loss.
    If :attr:`reduction` set to ``'none'``, will return the original loss `Out`.
737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764
    If :attr:`reduction` set to ``'mean'``, the reduced mean loss is :math:`Out = MEAN(Out)`.
    If :attr:`reduction` set to ``'sum'``, the reduced sum loss is :math:`Out = SUM(Out)`.

    Note that the target labels ``label`` should be numbers between 0 and 1.

    Args:
        logit (Tensor): The input predications tensor. 2-D tensor with shape: [N, *],
            N is batch_size, `*` means number of additional dimensions. The ``logit``
            is usually the output of Linear layer. Available dtype is float32, float64.
        label (Tensor): The target labels tensor. 2-D tensor with the same shape as
            ``logit``. The target labels which values should be numbers between 0 and 1.
            Available dtype is float32, float64.
        weight (Tensor, optional): A manual rescaling weight given to the loss of each
            batch element. If given, it has to be a 1D Tensor whose size is `[N, ]`,
            The data type is float32, float64. Default is ``'None'``.
        reduction (str, optional): Indicate how to average the loss by batch_size,
            the candicates are ``'none'`` | ``'mean'`` | ``'sum'``.
            If :attr:`reduction` is ``'none'``, the unreduced loss is returned;
            If :attr:`reduction` is ``'mean'``, the reduced mean loss is returned;
            If :attr:`reduction` is ``'sum'``, the summed loss is returned.
            Default is ``'mean'``.
        pos_weight (Tensor, optional): A weight of positive examples. Must be a vector
            with length equal to the number of classes. The data type is float32, float64.
            Default is ``'None'``.
        name (str, optional): Name for the operation (optional, default is None).
            For more information, please refer to :ref:`api_guide_Name`.

    Returns:
学渣戊's avatar
学渣戊 已提交
765
        Tensor. If ``reduction`` is ``'none'``, the shape of output is
766 767 768 769 770 771 772
            same as ``logit`` , else the shape of output is scalar.

    Examples:

        .. code-block:: python

            import paddle
N
Noel 已提交
773

774 775
            logit = paddle.to_tensor([5.0, 1.0, 3.0])
            label = paddle.to_tensor([1.0, 0.0, 1.0])
776
            output = paddle.nn.functional.binary_cross_entropy_with_logits(logit, label)
777
            print(output)  # 0.45618808
778 779 780 781 782 783

    """
    if reduction not in ['sum', 'mean', 'none']:
        raise ValueError(
            "The value of 'reduction' in binary_cross_entropy_with_logits "
            "should be 'sum', 'mean' or 'none', but received %s, which is not allowed."
784 785
            % reduction
        )
786

787
    if in_dygraph_mode():
788 789 790
        one = _C_ops.full(
            [1],
            float(1.0),
791
            logit.dtype,
792 793 794 795 796
            _current_expected_place(),
        )
        out = _C_ops.sigmoid_cross_entropy_with_logits(
            logit, label, False, -100
        )
797
        if pos_weight is not None:
798
            log_weight = _C_ops.add(
799 800
                _C_ops.multiply(label, _C_ops.subtract(pos_weight, one)), one
            )
801
            out = _C_ops.multiply(out, log_weight)
802
        if weight is not None:
803
            out = _C_ops.multiply(out, weight)
804 805

        if reduction == "sum":
806
            return _C_ops.sum(out, [], None, False)
807
        elif reduction == "mean":
808
            return _C_ops.mean_all(out)
H
hong 已提交
809
        else:
810
            return out
姜永久 已提交
811
    else:
812
        check_variable_and_dtype(
姜永久 已提交
813 814
            logit,
            'logit',
815 816 817 818
            ['float32', 'float64'],
            'binary_cross_entropy_with_logits',
        )
        check_variable_and_dtype(
姜永久 已提交
819 820
            label,
            'label',
821 822 823
            ['float32', 'float64'],
            'binary_cross_entropy_with_logits',
        )
姜永久 已提交
824 825 826
        sigmoid_name = None
        if reduction == 'none' and pos_weight is None and weight is None:
            sigmoid_name = name
827

姜永久 已提交
828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869
        helper = LayerHelper("sigmoid_cross_entropy_with_logits", **locals())

        out = helper.create_variable_for_type_inference(dtype=logit.dtype)

        helper.append_op(
            type="sigmoid_cross_entropy_with_logits",
            inputs={"X": logit, "Label": label},
            attrs={"ignore_index": kIgnoreIndex, 'normalize': False},
            outputs={"Out": out},
        )

        one = paddle.full(shape=[1], fill_value=1.0, dtype=logit.dtype)
        if pos_weight is not None:
            check_variable_and_dtype(
                pos_weight,
                'pos_weight',
                ['float32', 'float64'],
                'binary_cross_entropy_with_logits',
            )
            log_weight = paddle.add(
                paddle.multiply(label, paddle.subtract(pos_weight, one)), one
            )
            pos_weight_name = (
                name if reduction == 'none' and weight is None else None
            )
            out = paddle.multiply(out, log_weight, name=pos_weight_name)

        if weight is not None:
            check_variable_and_dtype(
                weight,
                'weight',
                ['float32', 'float64'],
                'binary_cross_entropy_with_logits',
            )
            weight_name = name if reduction == 'none' else None
            out = paddle.multiply(out, weight, name=weight_name)

        if reduction == "sum":
            return paddle.sum(out, name=name)
        elif reduction == "mean":
            return paddle.mean(out, name=name)
        return out
870 871


872 873 874 875 876 877 878 879 880 881 882
def hsigmoid_loss(
    input,
    label,
    num_classes,
    weight,
    bias=None,
    path_table=None,
    path_code=None,
    is_sparse=False,
    name=None,
):
883 884 885
    """
    The hierarchical sigmoid organizes the classes into a complete binary tree to reduce the computational complexity
    and speed up the model training, especially the training of language model.
886

887 888 889
    Each leaf node of the complete binary tree represents a class(word) and each non-leaf node acts as a binary classifier.
    For each class(word), there's a unique path from root to itself, hsigmoid calculate the cost for each non-leaf node on
    the path, and sum them to get a total cost.
890 891

    Comparing to softmax, hsigmoid can reduce the computational complexity from :math:`O(N)` to :math:`O(logN)`, where :math:`N`
892 893
    represents the number of classes or the size of word dict.

894 895 896 897
    The API supports default tree and custom tree. For the default tree, you can refer to `Hierarchical Probabilistic Neural
    Network Language Model <http://www.iro.umontreal.ca/~lisa/pointeurs/hierarchical-nnlm-aistats05.pdf>`_.

    For the custom tree, you need to set :attr:`is_custom` to True, and do the following steps (take the language model as an example):
898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943

    1. Using a custom word dict to build a binary tree, each leaf node should be an word in the word dict.
    2. Creating a dict map word_id -> path that from the word to the root node, we call it path_table.
    3. Creating a dict map word_id -> code of path that from the word to the root node, we call it path_code.
       Code means the label of each binary classifier, 1 indicate true, 0 indicate false.
    4. Now, each word should has its path and code along the path, you can pass a batch of path and code related
       to the same batch of inputs.

    Parameters:
        input (Tensor): A tensor with the shape [N, D], where N is the size of mini-batch,
            and D is the feature size. Its data type supports float32 or float64.
        label (Tensor): A tensor contains the labels of training data. Its shape is [N, 1]
            and data type is int64.
        num_classes (int): The number of classes or the size of word dict, must be greater than 2.
            If the default tree is used (path_code and path_table is None are None), `num_classes`
            should not be None. If the custom tree is used (path_code and path_table is None are not None),
            `num_classes` should be the number of non-leaf nodes, which indicates the num of
            classes using by the binary classifier.
        weight (Tensor): A tensor with shape (num_classes - 1, D), with the same data type as `input`.
        bias (Tensor, optional): A tensor with shape (num_classes - 1, 1), with the same data type as `input`.
            If `bias` is None, no bias will be add. Default is None.
        path_table (Tensor, optional): A tensor that stores each batch of samples' path from leaf to root
            node, its shape is [N, L] and data type is int64, where L is the length of path. For each sample i,
            path_table[i] is a np.array like structure and each element in this array is the indexes in parent
            nodes' weight matrix. If `path_table` and `path_code` are None, the default tree will be used.
            Default is None.
        path_code (Tensor, optional): A tensor that stores each batch of samples' code of path from leaf
            to root node, its shape is [N, L] and data type is int64, which is the same as :attr:`path_table`.
            Each code of path is consisted with the code of nodes from leaf to root node. If `path_table` and
            `path_code` are None, the default tree will be used. Default is None.
        is_sparse (bool, optional): Whether use sparse updating instead of dense updating. If `is_sparse` is True,
            the gradient of `weight` and `input` will be sparse. Default is False.
        name (str, optional): Name for the operation (optional, default is None).
            For more information, please refer to :ref:`api_guide_Name`.

    Returns:
        A tensor with the cost of hierarchical sigmoid, its shape is [N, 1] and data type is the same as `input`.

    Examples:
        .. code-block:: python

            import paddle
            import paddle.nn.functional as F

            paddle.set_device('cpu')

L
Linjie Chen 已提交
944 945 946 947 948
            input = paddle.uniform([4, 3])
            # [[0.45424712  -0.77296764  0.82943869] # random
            #  [0.85062802  0.63303483  0.35312140] # random
            #  [0.57170701  0.16627562  0.21588242] # random
            #  [0.27610803  -0.99303514  -0.17114788]] # random
949 950 951
            label = paddle.to_tensor([0, 1, 4, 5])
            num_classes = 5
            weight=paddle.uniform([num_classes-1, 3])
L
Linjie Chen 已提交
952 953 954 955
            # [[-0.64477652  0.24821866  -0.17456549] # random
            #  [-0.04635394  0.07473493  -0.25081766] # random
            #  [ 0.05986035  -0.12185556  0.45153677] # random
            #  [-0.66236806  0.91271877  -0.88088769]] # random
956 957

            out=F.hsigmoid_loss(input, label, num_classes, weight)
L
Linjie Chen 已提交
958 959 960 961
            # [[1.96709502]
            #  [2.40019274]
            #  [2.11009121]
            #  [1.92374969]]
962
    """
L
Linjie Chen 已提交
963
    if num_classes < 2:
964
        raise ValueError(f'Expected num_classes >= 2 (got {num_classes})')
L
Linjie Chen 已提交
965

966
    if in_dygraph_mode():
967
        out, _, _ = _C_ops.hsigmoid_loss(
968 969
            input,
            label,
970 971
            weight,
            bias,
972 973 974 975 976 977
            path_table,
            path_code,
            num_classes,
            is_sparse,
            is_sparse,
        )
978
        return out
姜永久 已提交
979
    else:
980

981
        check_variable_and_dtype(
姜永久 已提交
982
            input, 'input', ['float32', 'float64'], 'hsigmoid_loss'
983
        )
姜永久 已提交
984
        check_variable_and_dtype(label, 'label', ['int64'], 'hsigmoid_loss')
985
        check_variable_and_dtype(
姜永久 已提交
986
            weight, 'weight', ['float32', 'float64'], 'hsigmoid_loss'
987
        )
姜永久 已提交
988 989 990 991 992 993 994 995 996 997 998 999
        if bias is not None:
            check_variable_and_dtype(
                bias, 'bias', ['float32', 'float64'], 'hsigmoid_loss'
            )
        if path_table is not None:
            check_variable_and_dtype(
                path_table, 'path_table', ['int64'], 'hsigmoid_loss'
            )
        if path_code is not None:
            check_variable_and_dtype(
                path_code, 'path_code', ['int64'], 'hsigmoid_loss'
            )
1000

姜永久 已提交
1001 1002 1003 1004
        attrs = {
            "num_classes": num_classes,
            "is_sparse": is_sparse,
        }
1005

姜永久 已提交
1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026
        inputs = {
            "X": input,
            "W": weight,
            "Bias": bias,
            "PathTable": path_table,
            "PathCode": path_code,
            "Label": label,
        }

        helper = LayerHelper('hsigmoid_loss', **locals())
        out = helper.create_variable_for_type_inference(input.dtype)
        pre_out = helper.create_variable_for_type_inference(input.dtype)
        outputs = {"Out": out, "PreOut": pre_out, "W_Out": weight}

        helper.append_op(
            type="hierarchical_sigmoid",
            inputs=inputs,
            outputs=outputs,
            attrs=attrs,
        )
        return out
1027 1028


1029
def smooth_l1_loss(input, label, reduction='mean', delta=1.0, name=None):
1030
    r"""
1031
    Calculate smooth_l1_loss. Creates a criterion that uses a squared
1032 1033 1034 1035 1036 1037
    term if the absolute element-wise error falls below 1 and an L1 term otherwise.
    In some cases it can prevent exploding gradients and it is more robust and less
    sensitivity to outliers. Also known as the Huber loss:

    .. math::

1038
        loss(x,y) = \frac{1}{n}\sum_{i}z_i
1039 1040


1041
    where :math:`z_i` is given by:
1042 1043 1044

    .. math::

1045
        \mathop{z_i} = \left\{\begin{array}{rcl}
1046 1047 1048
                0.5(x_i - y_i)^2 & & {if |x_i - y_i| < \delta} \\
                \delta * |x_i - y_i| - 0.5 * \delta^2 & & {otherwise}
            \end{array} \right.
1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061

    Parameters:
        input (Tensor): Input tensor, the data type is float32 or float64. Shape is
            (N, C), where C is number of classes, and if shape is more than 2D, this
            is (N, C, D1, D2,..., Dk), k >= 1.
        label (Tensor): Label tensor, the data type is float32 or float64. The shape of label
            is the same as the shape of input.
        reduction (str, optional): Indicate how to average the loss by batch_size,
            the candicates are ``'none'`` | ``'mean'`` | ``'sum'``.
            If :attr:`reduction` is ``'mean'``, the reduced mean loss is returned;
            If :attr:`reduction` is ``'sum'``, the reduced sum loss is returned.
            If :attr:`reduction` is ``'none'``, the unreduced loss is returned.
            Default is ``'mean'``.
1062
        delta (float, optional): Specifies the hyperparameter :math:`\delta` to be used.
1063 1064 1065
            The value determines how large the errors need to be to use L1. Errors
            smaller than delta are minimized with L2. Parameter is ignored for
            negative/zero values. Default = 1.0
1066
        name (str, optional): For details, please refer to :ref:`api_guide_Name`. Generally, no setting is required. Default: None.
1067 1068

    Returns:
1069
        Tensor, The tensor variable storing the smooth_l1_loss of input and label.
1070 1071 1072 1073 1074 1075

    Examples:
        .. code-block:: python

            import paddle

1076 1077
            input = paddle.rand([3, 3]).astype('float32')
            label = paddle.rand([3, 3]).astype('float32')
C
Chen Long 已提交
1078
            output = paddle.nn.functional.smooth_l1_loss(input, label)
G
Guanghua Yu 已提交
1079
            print(output)
1080
            # 0.068004
1081 1082
    """

1083
    if in_dygraph_mode():
1084
        out = _C_ops.huber_loss(input, label, delta)
1085
    else:
1086
        check_variable_and_dtype(
C
co63oc 已提交
1087 1088 1089 1090
            input,
            'input',
            ['float16', 'float32', 'float64', 'uint16'],
            'smooth_l1_loss',
1091 1092
        )
        check_variable_and_dtype(
C
co63oc 已提交
1093 1094 1095 1096
            label,
            'label',
            ['float16', 'float32', 'float64', 'uint16'],
            'smooth_l1_loss',
1097
        )
1098 1099
        helper = LayerHelper('huber_loss', **locals())
        residual = helper.create_variable_for_type_inference(
1100 1101
            dtype=helper.input_dtype()
        )
1102
        out = helper.create_variable_for_type_inference(
1103 1104 1105 1106 1107 1108 1109 1110
            dtype=helper.input_dtype()
        )
        helper.append_op(
            type='huber_loss',
            inputs={'X': input, 'Y': label},
            outputs={'Out': out, 'Residual': residual},
            attrs={'delta': delta},
        )
1111 1112 1113 1114

    if reduction not in ['sum', 'mean', 'none']:
        raise ValueError(
            "The value of 'reduction' in smooth_l1_loss should be 'sum', 'mean' or"
1115 1116
            " 'none', but received %s, which is not allowed." % reduction
        )
1117 1118 1119
    if reduction == 'none':
        return out
    elif reduction == 'mean':
1120
        return paddle.mean(out)
1121
    elif reduction == 'sum':
1122
        return paddle.sum(out)
1123 1124


1125 1126 1127
def margin_ranking_loss(
    input, other, label, margin=0.0, reduction='mean', name=None
):
1128
    r"""
1129

1130
    Calcluate the margin rank loss between the input, other and label, use the math function as follows.
1131

1132
    .. math::
1133
        margin\_rank\_loss = max(0, -label * (input - other) + margin)
1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149

    If :attr:`reduction` set to ``'mean'``, the reduced mean loss is:

    .. math::
        Out = MEAN(margin\_rank\_loss)

    If :attr:`reduction` set to ``'sum'``, the reduced sum loss is:

    .. math::
        Out = SUM(margin\_rank\_loss)

    If :attr:`reduction` set to ``'none'``, just return the origin ``margin_rank_loss``.

    Parameters:
        input(Tensor): the first input tensor, it's data type should be float32, float64.
        other(Tensor): the second input tensor, it's data type should be float32, float64.
1150
        label(Tensor): the label value corresponding to input, it's data type should be float32, float64.
1151 1152 1153 1154
        margin (float, optional): The margin value to add, default value is 0;
        reduction (str, optional): Indicate the reduction to apply to the loss, the candicates are ``'none'``, ``'mean'``, ``'sum'``.If :attr:`reduction` is ``'none'``, the unreduced loss is returned; If :attr:`reduction` is ``'mean'``, the reduced mean loss is returned. If :attr:`reduction` is ``'sum'``, the reduced sum loss is returned. Default is ``'mean'``.
        name (str, optional): Name for the operation (optional, default is None). For more information, please refer to :ref:`api_guide_Name`.

1155
    Returns:
1156
        Tensor, if :attr:`reduction` is ``'mean'`` or ``'sum'``, the out shape is :math:`[]`, otherwise the shape is the same as `input` .The same dtype as input tensor.
1157 1158 1159 1160 1161

    Examples:

        .. code-block:: python

1162 1163
            import paddle

Z
Zhong Hui 已提交
1164 1165 1166
            input = paddle.to_tensor([[1, 2], [3, 4]], dtype='float32')
            other = paddle.to_tensor([[2, 1], [2, 4]], dtype='float32')
            label = paddle.to_tensor([[1, -1], [-1, -1]], dtype='float32')
1167
            loss = paddle.nn.functional.margin_ranking_loss(input, other, label)
1168
            print(loss) # 0.75
1169
    """
1170 1171 1172
    if reduction not in ['sum', 'mean', 'none']:
        raise ValueError(
            "The value of 'reduction' in MarginRankingLoss should be 'sum', 'mean' or 'none', but "
1173 1174
            "received %s, which is not allowed." % reduction
        )
1175
    if in_dygraph_mode():
1176 1177
        out = _C_ops.subtract(other, input)
        out = _C_ops.multiply(out, label)
1178 1179
        if margin != 0.0:
            margin = fluid.dygraph.base.to_variable([margin], dtype=out.dtype)
1180 1181
            out = _C_ops.add(out, margin)
        out = _C_ops.relu(out)
1182
        if reduction == 'sum':
1183
            return _C_ops.sum(out, [], None, False)
1184
        elif reduction == 'mean':
1185
            return _C_ops.mean_all(out)
1186
        return out
姜永久 已提交
1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197
    else:
        helper = LayerHelper("margin_ranking_loss", **locals())
        check_variable_and_dtype(
            input, 'input', ['float32', 'float64'], 'margin_rank_loss'
        )
        check_variable_and_dtype(
            other, 'other', ['float32', 'float64'], 'margin_rank_loss'
        )
        check_variable_and_dtype(
            label, 'label', ['float32', 'float64'], 'margin_rank_loss'
        )
1198

姜永久 已提交
1199 1200 1201
        out = paddle.subtract(input, other)
        neg_label = paddle.neg(label)
        out = paddle.multiply(neg_label, out)
1202

姜永久 已提交
1203 1204 1205 1206 1207 1208
        if margin != 0.0:
            margin_var = out.block.create_var(dtype=out.dtype)
            margin_var = paddle.full(
                shape=[1], fill_value=margin, dtype=out.dtype
            )
            out = paddle.add(out, margin_var)
1209

姜永久 已提交
1210
        result_out = helper.create_variable_for_type_inference(input.dtype)
1211

姜永久 已提交
1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235
        if reduction == 'none':
            helper.append_op(
                type="relu", inputs={"X": out}, outputs={"Out": result_out}
            )
            return result_out
        elif reduction == 'sum':
            out = paddle.nn.functional.relu(out)
            attrs = {"dim": [0], "keep_dim": False, "reduce_all": True}
            helper.append_op(
                type="reduce_sum",
                inputs={"X": out},
                outputs={"Out": result_out},
                attrs=attrs,
            )
            return result_out
        elif reduction == 'mean':
            out = paddle.nn.functional.relu(out)
            helper.append_op(
                type="mean",
                inputs={"X": out},
                outputs={"Out": result_out},
                attrs={},
            )
            return result_out
1236 1237


1238
def l1_loss(input, label, reduction='mean', name=None):
1239
    r"""
1240

1241
    Computes the L1 Loss of Tensor ``input`` and ``label`` as follows.
1242

1243
    If `reduction` set to ``'none'``, the loss is:
1244 1245

    .. math::
1246
        Out = \lvert input - label \rvert
1247

1248
    If `reduction` set to ``'mean'``, the loss is:
1249 1250

    .. math::
1251
        Out = MEAN(\lvert input - label \rvert)
1252

1253
    If `reduction` set to ``'sum'``, the loss is:
1254 1255

    .. math::
1256
        Out = SUM(\lvert input - label \rvert)
1257

1258

1259
    Parameters:
N
Noel 已提交
1260 1261
        input (Tensor): The input tensor. The shapes is [N, `*`], where N is batch size and `*` means any number of additional dimensions. It's data type should be float32, float64, int32, int64.
        label (Tensor): label. The shapes is [N, `*`], same shape as ``input`` . It's data type should be float32, float64, int32, int64.
1262
        reduction (str, optional): Indicate the reduction to apply to the loss,
1263
            the candicates are ``'none'`` | ``'mean'`` | ``'sum'``.
1264 1265 1266
            If `reduction` is ``'none'``, the unreduced loss is returned;
            If `reduction` is ``'mean'``, the reduced mean loss is returned.
            If `reduction` is ``'sum'``, the reduced sum loss is returned.
1267 1268
            Default is ``'mean'``.
        name (str, optional): Name for the operation (optional, default is None). For more information, please refer to :ref:`api_guide_Name`.
N
Noel 已提交
1269

1270
    Returns:
1271
        Tensor, the L1 Loss of Tensor ``input`` and ``label``.
1272
        If `reduction` is ``'none'``, the shape of output loss is :math:`[N, *]`, the same as ``input`` .
1273
        If `reduction` is ``'mean'`` or ``'sum'``, the shape of output loss is [].
N
Noel 已提交
1274

1275 1276
    Examples:
        .. code-block:: python
N
Noel 已提交
1277

1278
            import paddle
1279

1280 1281
            input = paddle.to_tensor([[1.5, 0.8], [0.2, 1.3]])
            label = paddle.to_tensor([[1.7, 1], [0.4, 0.5]])
1282

1283
            l1_loss = paddle.nn.functional.l1_loss(input, label)
1284
            print(l1_loss)
1285 1286
            # Tensor(shape=[], dtype=float32, place=Place(gpu:0), stop_gradient=True,
            #        0.34999999)
1287

1288
            l1_loss = paddle.nn.functional.l1_loss(input, label, reduction='none')
1289 1290 1291 1292
            print(l1_loss)
            # Tensor(shape=[2, 2], dtype=float32, place=Place(gpu:0), stop_gradient=True,
            #        [[0.20000005, 0.19999999],
            #         [0.20000000, 0.79999995]])
1293

1294
            l1_loss = paddle.nn.functional.l1_loss(input, label, reduction='sum')
1295
            print(l1_loss)
1296 1297
            # Tensor(shape=[], dtype=float32, place=Place(gpu:0), stop_gradient=True,
            #        1.39999998)
1298

1299 1300 1301 1302
    """
    if reduction not in ['sum', 'mean', 'none']:
        raise ValueError(
            "The value of 'reduction' in L1Loss should be 'sum', 'mean' or 'none', but "
1303 1304
            "received %s, which is not allowed." % reduction
        )
1305

1306
    if in_dygraph_mode():
1307 1308
        unreduced = _C_ops.abs(_C_ops.subtract(input, label))

1309
        if reduction == 'mean':
1310
            return _C_ops.mean_all(unreduced)
1311
        elif reduction == 'sum':
1312
            return _C_ops.sum(unreduced, [], None, False)
1313 1314
        else:
            return unreduced
姜永久 已提交
1315 1316
    else:
        check_variable_and_dtype(
1317 1318 1319 1320
            input,
            'input',
            ['float32', 'float64', 'int32', 'int64'],
            'l1_loss',
姜永久 已提交
1321 1322
        )
        check_variable_and_dtype(
1323 1324 1325 1326
            label,
            'label',
            ['float32', 'float64', 'int32', 'int64'],
            'l1_loss',
1327
        )
1328

姜永久 已提交
1329 1330 1331 1332 1333 1334 1335 1336
        if reduction == 'sum':
            unreduced = paddle.abs(paddle.subtract(x=input, y=label))
            return paddle.sum(unreduced, name=name)
        elif reduction == 'mean':
            unreduced = paddle.abs(paddle.subtract(x=input, y=label))
            return paddle.mean(unreduced, name=name)
        else:
            return paddle.abs(paddle.subtract(x=input, y=label, name=name))
1337 1338 1339 1340 1341


def nll_loss(
    input, label, weight=None, ignore_index=-100, reduction='mean', name=None
):
1342 1343
    """
    This api returns negative log likelihood.
1344 1345
    See more detail in :ref:`NLLLoss <api_paddle_nn_NLLLoss>` .

1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356

    Parameters:
         input (Tensor): Input tensor, the shape is :math:`[N, C]`, `C` is the number of classes.
             But in K-dimension situation, the shape is :math:`[N, C, d_1, d_2, ..., d_K]`.
             The data type is float32, float64.
         label (Tensor): Label tensor, the shape is :math:`[N,]` or :math:`[N, d_1, d_2, ..., d_K]`.
             The data type is int64.
         weight (Tensor, optional): Weight tensor, a manual rescaling weight given
             to each class. If given, it has to be a 1D Tensor whose size is `[C, ]`. Otherwise,
             it treated as if having all ones. the data type is
             float32, float64, Default is ``'None'``.
1357 1358
         ignore_index (int, optional): Specifies a target value that is ignored
             and does not contribute to the input gradient. Default is -100.
1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372
         reduction (str, optional): Indicate how to average the loss,
             the candicates are ``'none'`` | ``'mean'`` | ``'sum'``.
             If `reduction` is ``'mean'``, the reduced mean loss is returned;
             if `reduction` is ``'sum'``, the reduced sum loss is returned;
             if `reduction` is ``'none'``, no reduction will be apllied.
             Default is ``'mean'``.
         name (str, optional): Name for the operation (optional, default is None).
             For more information, please refer to :ref:`api_guide_Name`.

    Returns:
         `Tensor`, the value of negative log likelihood loss.

    Examples:
        .. code-block:: python
1373

1374 1375 1376 1377
                import paddle
                from paddle.nn.functional import nll_loss
                log_softmax = paddle.nn.LogSoftmax(axis=1)

1378 1379 1380 1381 1382
                input = paddle.to_tensor([[0.88103855, 0.9908683 , 0.6226845 ],
                          [0.53331435, 0.07999352, 0.8549948 ],
                          [0.25879037, 0.39530203, 0.698465  ],
                          [0.73427284, 0.63575995, 0.18827209],
                          [0.05689114, 0.0862954 , 0.6325046 ]], "float32")
1383
                log_out = log_softmax(input)
1384
                label = paddle.to_tensor([0, 2, 1, 1, 0], "int64")
1385
                result = nll_loss(log_out, label)
1386
                print(result) # Tensor(shape=[], dtype=float32, place=CPUPlace, stop_gradient=True, 1.07202101)
1387 1388 1389 1390
    """
    if reduction not in ['sum', 'mean', 'none']:
        raise ValueError(
            "The value of 'reduction' in nll_loss should be 'sum', 'mean' or "
1391 1392
            "'none', but received %s, which is not allowed." % reduction
        )
1393 1394 1395

    input_shape = list(input.shape)
    input_dims = len(input_shape)
1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406
    label_shape = list(label.shape)
    label_dims = len(label_shape)

    if input_dims - 1 != label_dims and input_dims != label_dims:
        raise ValueError(
            "Expected input_dims - 1 = label_dims or input_dims == label_dims\
             (got input_dims{}, label_dims{})".format(
                input_dims, label_dims
            )
        )

1407
    if input_dims < 2:
1408
        raise ValueError(f'Expected 2 or more dimensions (got {input_dims})')
1409 1410 1411 1412 1413 1414 1415 1416

    if input_shape[1] < 1:
        raise ValueError(
            "Expected 1 or more classess (got num classes{})".format(
                input_shape[1]
            )
        )

1417 1418
    n = input_shape[0]
    c = input_shape[1]
Z
zyfncg 已提交
1419 1420
    if in_dygraph_mode():
        if input_dims != 2 and input_dims != 4:
1421 1422
            input = _C_ops.reshape(input, [n, c, 1, -1])
            label = _C_ops.reshape(label, [n, 1, -1])
Z
zyfncg 已提交
1423
            out_shape = [n] + input_shape[2:]
1424 1425 1426
        out, total_weight = _C_ops.nll_loss(
            input, label, weight, ignore_index, reduction
        )
Z
zyfncg 已提交
1427
        if input_dims != 2 and input_dims != 4 and reduction == 'none':
1428
            out = _C_ops.reshape(out, out_shape)
Z
zyfncg 已提交
1429
        return out
姜永久 已提交
1430 1431 1432
    else:
        helper = LayerHelper('nll_loss', **locals())

1433
        if input_dims != 2 and input_dims != 4:
姜永久 已提交
1434 1435
            input = reshape(input, shape=[n, c, 1, -1])
            label = reshape(label, shape=[n, 1, -1])
1436
            out_shape = [n] + input_shape[2:]
H
hong 已提交
1437

姜永久 已提交
1438 1439
        check_variable_and_dtype(
            input, 'input', ['float32', 'float64'], 'nll_loss'
1440
        )
姜永久 已提交
1441 1442 1443 1444 1445 1446
        check_variable_and_dtype(label, 'label', ['int64'], 'nll_loss')
        inputs = {'X': input, 'Label': label}
        attrs = {'reduction': reduction, 'ignore_index': ignore_index}
        if weight is not None:
            if isinstance(weight, Variable):
                inputs['Weight'] = weight
1447

姜永久 已提交
1448 1449 1450 1451 1452
        out = helper.create_variable_for_type_inference(dtype=input.dtype)
        total_weight = helper.create_variable_for_type_inference(
            dtype=input.dtype
        )
        outputs = {'Out': out, 'Total_weight': total_weight}
1453

姜永久 已提交
1454 1455 1456 1457 1458
        helper.append_op(
            type='nll_loss', inputs=inputs, outputs=outputs, attrs=attrs
        )
        if input_dims != 2 and input_dims != 4 and reduction == 'none':
            out = reshape(out, shape=out_shape)
1459

姜永久 已提交
1460
        return out
1461 1462


1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513
def poisson_nll_loss(
    input,
    label,
    log_input=True,
    full=False,
    epsilon=1e-8,
    reduction="mean",
    name=None,
):
    r"""Poisson negative log likelihood loss.
    See more detail in :ref:`PoissonNLLLoss <api_paddle_nn_PoissonNLLLoss>` .

    Parameters:
         input (Tensor):
            Input tensor, expectation of underlying Poisson distribution.
            The shape of input tensor should be `(N, *)` or `(*)` where `(*)` denotes any number of extra dimensions.
            It's data type should be float16, bfloat16, float32, float64.
         label (Tensor):
            Label tensor, random sampled from Poisson distribution :math:`label \sim \text{Poisson}(input)`.
            The shape of input tensor should be `(N, *)` or `(*)`, same shape as the input tensor.
            It's data type should be float16, bfloat16, float32, float64.
         log_input (bool, optional):
            Whether to the treat input tensor as log input.
            If ``True`` the loss is computed as, :math:`\exp(\text{input}) - \text{label} * \text{input}` .
            If ``False`` then loss is :math:`\text{input} - \text{label} * \log(\text{input}+\text{epsilon})` .
            Default: ``True``.
         full (bool, optional):
            Whether to compute full loss.
            If ``True``, the Stirling approximation term is added.
            If ``False``, the Stirling approximation is dropped.
            Default: ``False``.
         epsilon (float, optional):
            A small value to avoid evaluation of :math:`\log(0)` when `log_input`\ =\ ``False``. ``epsilon > 0``.
            Default: 1e-8.
         reduction (str, optional):
            Indicate how to reduce the loss, the candicates are ``'none'`` | ``'mean'`` | ``'sum'``.
            If `reduction` is ``'mean'``, the reduced mean loss is returned;
            if `reduction` is ``'sum'``, the reduced sum loss is returned;
            if `reduction` is ``'none'``, no reduction will be apllied.
            Default is ``'mean'``.
         name (str, optional):
            Name for the operation (optional, default is None). For more information, please refer to :ref:`api_guide_Name`.

    Examples:
        .. code-block:: python

            import paddle
            import paddle.nn.functional as F

            input = paddle.randn([5, 2], dtype=paddle.float32)
            label = paddle.randn([5, 2], dtype=paddle.float32)
1514
            loss = F.poisson_nll_loss(input, label, log_input=True, reduction='none')
1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572
            print(loss)
            loss = F.poisson_nll_loss(input, label, reduction='mean')
            print(loss)

    """
    # check parameter values
    if epsilon <= 0:
        raise ValueError(
            "The value of `epsilon` in poisson_nll_loss should be positve, but received %f, which is not allowed"
            % epsilon
        )

    if reduction not in ['sum', 'mean', 'none']:
        raise ValueError(
            "The value of 'reduction' in poisson_nll_loss should be 'sum', 'mean' or 'none', but "
            "received %s, which is not allowed." % reduction
        )
    # check input dtype and dimension
    check_variable_and_dtype(
        input,
        'input',
        ['float16', 'uint16', 'float32', 'float64'],
        'poisson_nll_loss',
    )
    check_variable_and_dtype(
        label,
        'label',
        ['float16', 'uint16', 'float32', 'float64'],
        'poisson_nll_loss',
    )

    if not (input.shape == label.shape):
        raise ValueError("input's shape must equal to label's shape")

    label = paddle.cast(label, input.dtype)
    loss_out = 0
    if log_input:
        loss_out = paddle.exp(input) - label * input
    else:
        loss_out = input - label * paddle.log(input + epsilon)
    if full:
        stirling_approx = (
            label * paddle.log(label)
            - label
            + 0.5 * paddle.log(2 * math.pi * label)
        )
        loss_out += paddle.where(
            stirling_approx <= 1,
            paddle.zeros_like(stirling_approx),
            stirling_approx,
        )
    if reduction == 'mean':
        loss_out = paddle.mean(loss_out)
    elif reduction == 'sum':
        loss_out = paddle.sum(loss_out)
    return loss_out


1573
def kl_div(input, label, reduction='mean', name=None):
1574
    r"""
1575
    Calculate the Kullback-Leibler divergence loss
1576 1577 1578 1579 1580 1581 1582
    between Input(X) and Input(Target). Notes that Input(X) is the
    log-probability and Input(Target) is the probability.

    KL divergence loss is calculated as follows:

    $$l(x, y) = y * (\log(y) - x)$$

1583
    Here :math:`x` is input and :math:`y` is label.
1584

1585
    If `reduction` is ``'none'``, the output loss is the same shape as the input, and the loss at each point is calculated separately. There is no reduction to the result.
1586

1587
    If `reduction` is ``'mean'``, the output loss is the shape of [], and the output is the average of all losses.
1588

1589
    If `reduction` is ``'sum'``, the output loss is the shape of [], and the output is the sum of all losses.
1590

1591
    If `reduction` is ``'batchmean'``, the output loss is the shape of [N], N is the batch size, and the output is the sum of all losses divided by the batch size.
1592 1593

    Args:
1594
        input (Tensor): The input tensor. The shapes is [N, *], where N is batch size and `*` means
1595
            any number of additional dimensions. It's data type should be float32, float64.
1596
        label (Tensor): label. The shapes is [N, *], same shape as ``input`` . It's data type should be float32, float64.
1597 1598 1599 1600 1601 1602 1603
        reduction (str, optional): Indicate how to average the loss,
            the candicates are ``'none'`` | ``'batchmean'`` | ``'mean'`` | ``'sum'``.
            If `reduction` is ``'mean'``, the reduced mean loss is returned;
            If `reduction` is ``'batchmean'``, the sum loss divided by batch size is returned;
            if `reduction` is ``'sum'``, the reduced sum loss is returned;
            if `reduction` is ``'none'``, no reduction will be apllied.
            Default is ``'mean'``.
1604
        name(str, optional): Name for the operation (optional, default is None). For more information,
1605 1606 1607 1608 1609 1610 1611 1612 1613 1614
            please refer to :ref:`api_guide_Name`.

    Returns:
        Tensor: The KL divergence loss. The data type is same as input tensor

    Examples:
        .. code-block:: python

            import paddle
            import paddle.nn.functional as F
1615

1616
            shape = (5, 20)
1617 1618
            x = paddle.uniform(shape, min=-10, max=10).astype('float32')
            target = paddle.uniform(shape, min=-10, max=10).astype('float32')
1619

1620
            # 'batchmean' reduction, loss shape will be [], who is 0-D Tensor
1621
            pred_loss = F.kl_div(x, target, reduction='batchmean')
1622
            # shape=[]
1623

1624
            # 'mean' reduction, loss shape will be [], who is 0-D Tensor
1625
            pred_loss = F.kl_div(x, target, reduction='mean')
1626
            # shape=[]
1627

1628
            # 'sum' reduction, loss shape will be [], who is 0-D Tensor
1629
            pred_loss = F.kl_div(x, target, reduction='sum')
1630
            # shape=[]
1631 1632

            # 'none' reduction, loss shape is same with input shape
1633
            pred_loss = F.kl_div(x, target, reduction='none')
1634 1635 1636
            # shape=[5, 20]

    """
L
LielinJiang 已提交
1637
    # ugly type promotion
1638 1639 1640 1641
    if (
        fluid.data_feeder.convert_dtype(input.dtype) == 'float32'
        and fluid.data_feeder.convert_dtype(label.dtype) == 'float64'
    ):
1642
        input = paddle.cast(input, 'float64')
1643 1644 1645 1646
    elif (
        fluid.data_feeder.convert_dtype(input.dtype) == 'float64'
        and fluid.data_feeder.convert_dtype(label.dtype) == 'float32'
    ):
1647
        label = paddle.cast(label, 'float64')
L
LielinJiang 已提交
1648

1649
    if in_dygraph_mode():
1650
        out = _C_ops.kldiv_loss(input, label, 'none')
1651 1652 1653 1654 1655 1656 1657 1658 1659
        if reduction == 'mean':
            out = paddle.mean(out)
        elif reduction == 'sum':
            out = paddle.sum(out)
        elif reduction == 'batchmean':
            if len(input.shape) > 0:
                batch_size = input.shape[0]
                out = paddle.sum(out) / batch_size
        return out
姜永久 已提交
1660 1661
    else:
        helper = LayerHelper('kl_div', **locals())
1662

姜永久 已提交
1663 1664 1665 1666 1667 1668 1669
        check_variable_and_dtype(
            input, 'input', ['float32', 'float64'], 'kl_div'
        )
        check_variable_and_dtype(
            label, 'label', ['float32', 'float64'], 'kl_div'
        )
        fluid.data_feeder.check_type(reduction, 'reduction', str, 'kl_div')
1670

姜永久 已提交
1671 1672 1673 1674 1675 1676 1677
        loss = helper.create_variable_for_type_inference(dtype=input.dtype)
        helper.append_op(
            type='kldiv_loss',
            inputs={'X': input, 'Target': label},
            outputs={'Loss': loss},
            attrs={'reduction': 'none'},
        )
1678

姜永久 已提交
1679 1680 1681 1682 1683 1684 1685 1686
        if reduction == 'mean':
            loss = paddle.mean(loss)
        elif reduction == 'sum':
            loss = paddle.sum(loss)
        elif reduction == 'batchmean':
            batch_size = paddle.shape(input)[0]
            loss = paddle.sum(loss) / batch_size
        return loss
1687 1688


1689
def mse_loss(input, label, reduction='mean', name=None):
1690
    r"""
1691
    Accept input predications and label and returns the mean square error.
1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720

    If :attr:`reduction` is set to ``'none'``, loss is calculated as:

    .. math::
        Out = (input - label)^2

    If :attr:`reduction` is set to ``'mean'``, loss is calculated as:

    .. math::
        Out = \operatorname{mean}((input - label)^2)

    If :attr:`reduction` is set to ``'sum'``, loss is calculated as:

    .. math::
        Out = \operatorname{sum}((input - label)^2)

    Parameters:
        input (Tensor): Input tensor, the data type should be float32 or float64.
        label (Tensor): Label tensor, the data type should be float32 or float64.
        reduction (string, optional): The reduction method for the output,
            could be 'none' | 'mean' | 'sum'.
            If :attr:`reduction` is ``'mean'``, the reduced mean loss is returned.
            If :attr:`reduction` is ``'sum'``, the reduced sum loss is returned.
            If :attr:`reduction` is ``'none'``, the unreduced loss is returned.
            Default is ``'mean'``.
        name (str, optional): Name for the operation (optional, default is None). For more information, please refer to :ref:`api_guide_Name`.


    Returns:
1721
        Tensor, The tensor tensor storing the mean square error difference of input and label.
1722

1723 1724 1725
    Examples:

        .. code-block:: python
1726

1727 1728
            import paddle
            mse_loss = paddle.nn.loss.MSELoss()
1729 1730
            input = paddle.to_tensor(1.5)
            label = paddle.to_tensor(1.7)
1731
            output = mse_loss(input, label)
B
Bai Yifan 已提交
1732
            print(output)
1733
            # 0.04000002
1734 1735 1736 1737 1738 1739

    """

    if reduction not in ['sum', 'mean', 'none']:
        raise ValueError(
            "'reduction' in 'mse_loss' should be 'sum', 'mean' or 'none', "
1740 1741
            "but received {}.".format(reduction)
        )
1742

Z
zhiboniu 已提交
1743
    if not in_dynamic_mode():
1744 1745 1746 1747 1748 1749
        check_variable_and_dtype(
            input, 'input', ['float32', 'float64'], 'mse_loss'
        )
        check_variable_and_dtype(
            label, 'label', ['float32', 'float64'], 'mse_loss'
        )
1750 1751

    if reduction == 'none':
1752
        return paddle.square(paddle.subtract(input, label), name=name)
1753
    elif reduction == 'mean':
1754 1755 1756
        return paddle.mean(
            paddle.square(paddle.subtract(input, label)), name=name
        )
1757
    else:
1758 1759 1760
        return paddle.sum(
            paddle.square(paddle.subtract(input, label)), name=name
        )
1761 1762


1763 1764 1765 1766 1767 1768 1769 1770 1771
def ctc_loss(
    log_probs,
    labels,
    input_lengths,
    label_lengths,
    blank=0,
    reduction='mean',
    norm_by_times=False,
):
1772 1773
    """

1774 1775 1776
    An operator integrating the open source Warp-CTC library (https://github.com/baidu-research/warp-ctc)
    to compute Connectionist Temporal Classification (CTC) loss.
    It can be aliased as softmax with CTC, since a native softmax activation
1777 1778 1779
    is interated to the Warp-CTC library to normalize values for each row of the input tensor.

    Parameters:
1780
        log_probs (Tensor): The unscaled probability sequence with padding, which is a 3-D Tensor. The tensor shape is [max_logit_length, batch_size, num_classes + 1], where max_logit_length is the longest length of input logit sequence. The data type should be float32 or float64.
1781 1782 1783
        labels (Tensor): The ground truth sequence with padding, which must be a 3-D Tensor. The tensor shape is [batch_size, max_label_length], where max_label_length is the longest length of label sequence. The data type must be int32.
        input_lengths (Tensor): The length for each input sequence, it should have shape [batch_size] and dtype int64.
        label_lengths (Tensor): The length for each label sequence, it should have shape [batch_size] and dtype int64.
1784 1785 1786
        blank (int, optional): The blank label index of Connectionist Temporal Classification (CTC) loss, which is in the half-opened interval [0, num_classes + 1). The data type must be int32. Default: 0.
        reduction (str, optional): Indicate how to average the loss, the candicates are ``'none'`` | ``'mean'`` | ``'sum'``. If :attr:`reduction` is ``'mean'``, the output loss will be divided by the label_lengths, and then return the mean of quotient; If :attr:`reduction` is ``'sum'``, return the sum of loss; If :attr:`reduction` is ``'none'``, no reduction will be applied. Default: ``'mean'``.
        norm_by_times (bool, optional): Whether to normalize the gradients by the number of time-step, which is also the sequence's length. There is no need to normalize the gradients if reduction mode is 'mean'. Default: False.
H
Hui Zhang 已提交
1787

1788
    Returns:
1789
        Tensor, The Connectionist Temporal Classification (CTC) loss between ``log_probs`` and  ``labels``. If attr:`reduction` is ``'none'``, the shape of loss is [batch_size], otherwise, the shape of loss is []. Data type is the same as ``log_probs``.
1790

1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807
    Examples:

        .. code-block:: python

            # declarative mode
            import paddle.nn.functional as F
            import paddle

            # length of the longest logit sequence
            max_seq_length = 4
            #length of the longest label sequence
            max_label_length = 3
            # number of logit sequences
            batch_size = 2
            # class num
            class_num = 3

1808
            log_probs = paddle.to_tensor([[[4.17021990e-01, 7.20324516e-01, 1.14374816e-04],
1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820
                                    [3.02332580e-01, 1.46755889e-01, 9.23385918e-02]],

                                    [[1.86260208e-01, 3.45560730e-01, 3.96767467e-01],
                                    [5.38816750e-01, 4.19194520e-01, 6.85219526e-01]],

                                    [[2.04452246e-01, 8.78117442e-01, 2.73875929e-02],
                                    [6.70467496e-01, 4.17304814e-01, 5.58689833e-01]],

                                    [[1.40386939e-01, 1.98101491e-01, 8.00744593e-01],
                                    [9.68261600e-01, 3.13424170e-01, 6.92322612e-01]],

                                    [[8.76389146e-01, 8.94606650e-01, 8.50442126e-02],
1821 1822 1823 1824 1825 1826
                                    [3.90547849e-02, 1.69830427e-01, 8.78142476e-01]]],
                                    dtype="float32")
            labels = paddle.to_tensor([[1, 2, 2],
                                    [1, 2, 2]], dtype="int32")
            input_lengths = paddle.to_tensor([5, 5], dtype="int64")
            label_lengths = paddle.to_tensor([3, 3], dtype="int64")
1827

1828 1829 1830 1831
            loss = F.ctc_loss(log_probs, labels,
                input_lengths,
                label_lengths,
                blank=0,
1832
                reduction='none')
1833 1834 1835
            print(loss)
            # Tensor(shape=[2], dtype=float32, place=Place(gpu:0), stop_gradient=True,
            #        [3.91798496, 2.90765190])
1836

1837 1838 1839 1840 1841
            loss = F.ctc_loss(log_probs, labels,
                input_lengths,
                label_lengths,
                blank=0,
                reduction='mean')
1842
            print(loss)
1843 1844
            # Tensor(shape=[], dtype=float32, place=Place(gpu:0), stop_gradient=True,
            #        1.13760614)
1845 1846 1847

    """

1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864
    def warpctc(
        input,
        label,
        blank=0,
        norm_by_times=False,
        input_length=None,
        label_length=None,
    ):
        if in_dygraph_mode():
            if input_length is None or label_length is None:
                raise ValueError(
                    "input_length and label_length must not be None in dygraph mode!"
                )
            loss_out = _C_ops.warpctc(
                input, label, input_length, label_length, blank, norm_by_times
            )
            return loss_out
姜永久 已提交
1865 1866
        else:
            helper = LayerHelper('warpctc', **locals())
1867
            check_variable_and_dtype(
姜永久 已提交
1868
                input, 'input', ['float32', 'float64'], "warpctc"
1869
            )
姜永久 已提交
1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880
            check_variable_and_dtype(label, 'label', ['int32'], "warpctc")
            this_inputs = {'Logits': [input], 'Label': [label]}
            if input_length is not None and label_length is not None:
                check_variable_and_dtype(
                    input_length, 'LogitsLength', ['int64'], "warpctc"
                )
                check_variable_and_dtype(
                    label_length, 'LabelLength', ['int64'], "warpctc"
                )
                this_inputs['LogitsLength'] = [input_length]
                this_inputs['LabelLength'] = [label_length]
1881

姜永久 已提交
1882 1883 1884 1885 1886 1887
            loss_out = helper.create_variable_for_type_inference(
                dtype=input.dtype
            )
            grad_out = helper.create_variable_for_type_inference(
                dtype=input.dtype
            )
1888

姜永久 已提交
1889 1890 1891 1892 1893 1894 1895 1896 1897 1898
            helper.append_op(
                type='warpctc',
                inputs=this_inputs,
                outputs={'WarpCTCGrad': [grad_out], 'Loss': [loss_out]},
                attrs={
                    'blank': blank,
                    'norm_by_times': norm_by_times,
                },
            )
            return loss_out
1899 1900

    loss_out = warpctc(
1901 1902
        log_probs, labels, blank, norm_by_times, input_lengths, label_lengths
    )
1903

Z
zhiboniu 已提交
1904
    loss_out = paddle.squeeze(loss_out, [-1])
1905 1906
    assert reduction in ['mean', 'sum', 'none']
    if reduction == 'mean':
S
ShenLiang 已提交
1907
        loss_out = paddle.mean(loss_out / label_lengths)
1908 1909 1910
    elif reduction == 'sum':
        loss_out = paddle.sum(loss_out)
    return loss_out
H
Hui Zhang 已提交
1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937


def rnnt_loss(
    input,
    label,
    input_lengths,
    label_lengths,
    blank=0,
    fastemit_lambda=0.001,
    reduction='mean',
    name=None,
):
    """
    An operator integrating the open source Warp-Transducer library (https://github.com/b-flo/warp-transducer.git)
    to compute Sequence Transduction with Recurrent Neural Networks (RNN-T) loss.

    Parameters:
        input (Tensor): The logprobs sequence with padding, which is a 4-D Tensor. The tensor shape is [B, Tmax, Umax, D], where Tmax, is the longest length of input logit sequence. The data type should be float32 or float64.
        label (Tensor): The ground truth sequence with padding, which must be a 2-D Tensor. The tensor shape is [B, Umax], where Umax is the longest length of label sequence. The data type must be int32.
        input_lengths (Tensor): The length for each input sequence, it should have shape [batch_size] and dtype int64.
        label_lengths (Tensor): The length for each label sequence, it should have shape [batch_size] and dtype int64.
        blank (int, optional): The blank label index of RNN-T loss, which is in the half-opened interval [0, B). The data type must be int32. Default is 0.
        fastemit_lambda (float, default 0.001): Regularization parameter for FastEmit (https://arxiv.org/pdf/2010.11148.pdf)
        reduction (string, optional): Indicate how to average the loss, the candicates are ``'none'`` | ``'mean'`` | ``'sum'``. If :attr:`reduction` is ``'mean'``, the output will be sum of loss and be divided by the batch_size; If :attr:`reduction` is ``'sum'``, return the sum of loss; If :attr:`reduction` is ``'none'``, no reduction will be applied. Default is ``'mean'``.
        name (str, optional): Name for the operation (optional, default is None). For more information, please refer to :ref:`api_guide_Name`.

    Returns:
1938
        Tensor, The RNN-T loss between ``logprobs`` and  ``labels``. If attr:`reduction` is ``'none'``, the shape of loss is [batch_size], otherwise, the shape of loss is []. Data type is the same as ``logprobs``.
H
Hui Zhang 已提交
1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969

    Examples:

        .. code-block:: python

            # declarative mode
            import paddle.nn.functional as F
            import numpy as np
            import paddle
            import functools

            fn = functools.partial(F.rnnt_loss, reduction='sum', fastemit_lambda=0.0, blank=0)

            acts = np.array([[[[0.1, 0.6, 0.1, 0.1, 0.1],
                            [0.1, 0.1, 0.6, 0.1, 0.1],
                            [0.1, 0.1, 0.2, 0.8, 0.1]],
                            [[0.1, 0.6, 0.1, 0.1, 0.1],
                            [0.1, 0.1, 0.2, 0.1, 0.1],
                            [0.7, 0.1, 0.2, 0.1, 0.1]]]])
            labels = [[1, 2]]

            acts = paddle.to_tensor(acts, stop_gradient=False)

            lengths = [acts.shape[1]] * acts.shape[0]
            label_lengths = [len(l) for l in labels]
            labels = paddle.to_tensor(labels, paddle.int32)
            lengths = paddle.to_tensor(lengths, paddle.int32)
            label_lengths = paddle.to_tensor(label_lengths, paddle.int32)

            costs = fn(acts, labels, lengths, label_lengths)
            print(costs)
1970 1971
            # Tensor(shape=[], dtype=float64, place=Place(gpu:0), stop_gradient=False,
            #        4.49566677)
H
Hui Zhang 已提交
1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031 2032 2033 2034
    """

    def warprnnt(
        input, label, input_length, label_length, blank=0, fastemit_lambda=0.001
    ):
        if in_dygraph_mode():
            loss_out = _C_ops.warprnnt(
                input,
                label,
                input_length,
                label_length,
                blank,
                fastemit_lambda,
            )
            return loss_out
        helper = LayerHelper('warprnnt', **locals())
        check_variable_and_dtype(
            input, 'input', ['float32', 'float64'], "warprnnt"
        )
        check_variable_and_dtype(label, 'label', ['int32'], "warprnnt")
        check_variable_and_dtype(
            input_length, 'input_lengths', ['int32'], "warprnnt"
        )
        check_variable_and_dtype(
            label_length, 'label_lengths', ['int32'], "warprnnt"
        )
        this_inputs = {
            'input': [input],
            'label': [label],
            'input_lengths': [input_length],
            'label_lengths': [label_length],
        }

        loss_out = helper.create_variable_for_type_inference(dtype=input.dtype)
        grad_out = helper.create_variable_for_type_inference(dtype=input.dtype)

        helper.append_op(
            type='warprnnt',
            inputs=this_inputs,
            outputs={'warprnntgrad': [grad_out], 'loss': [loss_out]},
            attrs={
                'blank': blank,
                'fastemit_lambda': fastemit_lambda,
            },
        )
        return loss_out

    B = input.shape[0]

    # NOTE manually done log_softmax for CPU version,
    # log_softmax is computed within GPU version.

    # (B,)
    loss_out = warprnnt(
        input, label, input_lengths, label_lengths, blank, fastemit_lambda
    )

    assert reduction in ['mean', 'sum', 'none']
    if reduction == 'mean':
        loss_out = paddle.sum(loss_out, name=name) / B
    elif reduction == 'sum':
        loss_out = paddle.sum(loss_out, name=name)
    return loss_out
2035 2036


2037 2038 2039 2040 2041 2042 2043 2044 2045 2046 2047
def margin_cross_entropy(
    logits,
    label,
    margin1=1.0,
    margin2=0.5,
    margin3=0.0,
    scale=64.0,
    group=None,
    return_softmax=False,
    reduction='mean',
):
2048
    r"""
2049 2050
    .. math::

2051
        L=-\frac{1}{N}\sum^N_{i=1}\log\frac{e^{s(cos(m_{1}\theta_{y_i}+m_{2})-m_{3})}}{e^{s(cos(m_{1}\theta_{y_i}+m_{2})-m_{3})}+\sum^n_{j=1,j\neq y_i} e^{scos\theta_{y_i}}}
2052

2053
    where the :math:`\theta_{y_i}` is the angle between the feature :math:`x` and
2054 2055 2056 2057
    the representation of class :math:`i`. The details of ArcFace loss
    could be referred to https://arxiv.org/abs/1801.07698.

    .. hint::
2058 2059 2060 2061
        The API supports single GPU and multi GPU, and don't supports CPU.
        For data parallel mode, set ``group=False``.
        For model parallel mode, set ``group=None`` or the group instance return by paddle.distributed.new_group.
        And logits.shape[-1] can be different at each rank.
2062 2063

    Args:
G
Guoxia Wang 已提交
2064
        logits (Tensor): shape[N, local_num_classes], the output of the normalized X multiply the normalized W.
2065
                The logits is shard_logits when using model parallel.
G
Guoxia Wang 已提交
2066 2067 2068 2069 2070
        label (Tensor): shape[N] or shape[N, 1], the groud truth label.
        margin1 (float, optional): m1 of margin loss, default value is `1.0`.
        margin2 (float, optional): m2 of margin loss, default value is `0.5`.
        margin3 (float, optional): m3 of margin loss, default value is `0.0`.
        scale (float, optional): s of margin loss, default value is `64.0`.
2071
        group (Group, optional): The group instance return by paddle.distributed.new_group
2072 2073
            or ``None`` for global default group or ``False`` for data parallel (do not communication cross ranks).
            Default is ``None``.
2074 2075 2076 2077 2078 2079 2080 2081
        return_softmax (bool, optional): Whether return softmax probability. Default value is `False`.
        reduction (str, optional): The candicates are ``'none'`` | ``'mean'`` | ``'sum'``.
                    If :attr:`reduction` is ``'mean'``, return the average of loss;
                    If :attr:`reduction` is ``'sum'``, return the sum of loss;
                    If :attr:`reduction` is ``'none'``, no reduction will be applied.
                    Default value is `'mean'`.

    Returns:
2082 2083 2084 2085 2086
        Tensor|tuple[Tensor, Tensor], return the cross entropy loss if
            `return_softmax` is False, otherwise the tuple (loss, softmax),
            softmax is shard_softmax when using model parallel, otherwise
            softmax is in the same shape with input logits. If
            ``reduction == None``, the shape of loss is ``[N, 1]``, otherwise
2087
            the shape is ``[]``.
2088 2089 2090 2091

    Examples:

    .. code-block:: python
G
Guoxia Wang 已提交
2092
        :name: code-example1
2093 2094 2095 2096 2097 2098 2099 2100 2101 2102 2103 2104 2105 2106 2107 2108 2109 2110 2111 2112 2113 2114 2115 2116 2117 2118 2119 2120 2121 2122 2123 2124 2125 2126

        # required: gpu
        # Single GPU
        import paddle
        m1 = 1.0
        m2 = 0.5
        m3 = 0.0
        s = 64.0
        batch_size = 2
        feature_length = 4
        num_classes = 4

        label = paddle.randint(low=0, high=num_classes, shape=[batch_size], dtype='int64')

        X = paddle.randn(
            shape=[batch_size, feature_length],
            dtype='float64')
        X_l2 = paddle.sqrt(paddle.sum(paddle.square(X), axis=1, keepdim=True))
        X = paddle.divide(X, X_l2)

        W = paddle.randn(
            shape=[feature_length, num_classes],
            dtype='float64')
        W_l2 = paddle.sqrt(paddle.sum(paddle.square(W), axis=0, keepdim=True))
        W = paddle.divide(W, W_l2)

        logits = paddle.matmul(X, W)
        loss, softmax = paddle.nn.functional.margin_cross_entropy(
            logits, label, margin1=m1, margin2=m2, margin3=m3, scale=s, return_softmax=True, reduction=None)

        print(logits)
        print(label)
        print(loss)
        print(softmax)
2127

2128 2129 2130 2131 2132 2133 2134 2135 2136 2137 2138 2139 2140
        #Tensor(shape=[2, 4], dtype=float64, place=CUDAPlace(0), stop_gradient=True,
        #       [[ 0.85204151, -0.55557678,  0.04994566,  0.71986042],
        #        [-0.20198586, -0.35270476, -0.55182702,  0.09749021]])
        #Tensor(shape=[2], dtype=int64, place=CUDAPlace(0), stop_gradient=True,
        #       [2, 3])
        #Tensor(shape=[2, 1], dtype=float64, place=CUDAPlace(0), stop_gradient=True,
        #       [[82.37059586],
        #        [12.13448420]])
        #Tensor(shape=[2, 4], dtype=float64, place=CUDAPlace(0), stop_gradient=True,
        #       [[0.99978819, 0.00000000, 0.00000000, 0.00021181],
        #        [0.99992995, 0.00006468, 0.00000000, 0.00000537]])

    .. code-block:: python
G
Guoxia Wang 已提交
2141
        :name: code-example2
2142 2143 2144 2145 2146 2147 2148 2149 2150 2151 2152 2153 2154 2155 2156 2157 2158 2159 2160 2161 2162 2163 2164 2165 2166 2167 2168 2169 2170 2171 2172 2173 2174 2175 2176 2177 2178 2179 2180 2181 2182 2183 2184 2185 2186 2187

        # required: distributed
        # Multi GPU, test_margin_cross_entropy.py
        import paddle
        import paddle.distributed as dist
        strategy = dist.fleet.DistributedStrategy()
        dist.fleet.init(is_collective=True, strategy=strategy)
        rank_id = dist.get_rank()
        m1 = 1.0
        m2 = 0.5
        m3 = 0.0
        s = 64.0
        batch_size = 2
        feature_length = 4
        num_class_per_card = [4, 8]
        num_classes = paddle.sum(paddle.to_tensor(num_class_per_card))

        label = paddle.randint(low=0, high=num_classes.item(), shape=[batch_size], dtype='int64')
        label_list = []
        dist.all_gather(label_list, label)
        label = paddle.concat(label_list, axis=0)

        X = paddle.randn(
            shape=[batch_size, feature_length],
            dtype='float64')
        X_list = []
        dist.all_gather(X_list, X)
        X = paddle.concat(X_list, axis=0)
        X_l2 = paddle.sqrt(paddle.sum(paddle.square(X), axis=1, keepdim=True))
        X = paddle.divide(X, X_l2)

        W = paddle.randn(
            shape=[feature_length, num_class_per_card[rank_id]],
            dtype='float64')
        W_l2 = paddle.sqrt(paddle.sum(paddle.square(W), axis=0, keepdim=True))
        W = paddle.divide(W, W_l2)

        logits = paddle.matmul(X, W)
        loss, softmax = paddle.nn.functional.margin_cross_entropy(
            logits, label, margin1=m1, margin2=m2, margin3=m3, scale=s, return_softmax=True, reduction=None)

        print(logits)
        print(label)
        print(loss)
        print(softmax)

2188
        # python -m paddle.distributed.launch --gpus=0,1 test_margin_cross_entropy.py
2189 2190 2191 2192 2193 2194 2195 2196 2197 2198 2199 2200 2201 2202 2203 2204 2205 2206 2207 2208 2209 2210 2211 2212 2213 2214 2215 2216 2217 2218 2219 2220 2221 2222 2223 2224 2225 2226 2227 2228 2229 2230 2231
        ## for rank0 input
        #Tensor(shape=[4, 4], dtype=float64, place=CUDAPlace(0), stop_gradient=True,
        #       [[ 0.32888934,  0.02408748, -0.02763289,  0.18173063],
        #        [-0.52893978, -0.10623845, -0.21596515, -0.06432517],
        #        [-0.00536345, -0.03924667,  0.66735314, -0.28640926],
        #        [-0.09907366, -0.48534973, -0.10365338, -0.39472322]])
        #Tensor(shape=[4], dtype=int64, place=CUDAPlace(0), stop_gradient=True,
        #       [11, 1 , 10, 11])

        ## for rank1 input
        #Tensor(shape=[4, 8], dtype=float64, place=CUDAPlace(1), stop_gradient=True,
        #       [[ 0.68654754,  0.28137170,  0.69694954, -0.60923933, -0.57077653,  0.54576703, -0.38709028,  0.56028204],
        #        [-0.80360371, -0.03042448, -0.45107338,  0.49559349,  0.69998950, -0.45411693,  0.61927630, -0.82808600],
        #        [ 0.11457570, -0.34785879, -0.68819499, -0.26189226, -0.48241491, -0.67685711,  0.06510185,  0.49660849],
        #        [ 0.31604851,  0.52087884,  0.53124749, -0.86176582, -0.43426329,  0.34786144, -0.10850784,  0.51566383]])
        #Tensor(shape=[4], dtype=int64, place=CUDAPlace(1), stop_gradient=True,
        #       [11, 1 , 10, 11])

        ## for rank0 output
        #Tensor(shape=[4, 1], dtype=float64, place=CUDAPlace(0), stop_gradient=True,
        #       [[38.96608230],
        #        [81.28152394],
        #        [69.67229865],
        #        [31.74197251]])
        #Tensor(shape=[4, 4], dtype=float64, place=CUDAPlace(0), stop_gradient=True,
        #       [[0.00000000, 0.00000000, 0.00000000, 0.00000000],
        #        [0.00000000, 0.00000000, 0.00000000, 0.00000000],
        #        [0.00000000, 0.00000000, 0.99998205, 0.00000000],
        #        [0.00000000, 0.00000000, 0.00000000, 0.00000000]])
        ## for rank1 output
        #Tensor(shape=[4, 1], dtype=float64, place=CUDAPlace(1), stop_gradient=True,
        #       [[38.96608230],
        #        [81.28152394],
        #        [69.67229865],
        #        [31.74197251]])
        #Tensor(shape=[4, 8], dtype=float64, place=CUDAPlace(1), stop_gradient=True,
        #       [[0.33943993, 0.00000000, 0.66051859, 0.00000000, 0.00000000, 0.00004148, 0.00000000, 0.00000000],
        #        [0.00000000, 0.00000000, 0.00000000, 0.00000207, 0.99432097, 0.00000000, 0.00567696, 0.00000000],
        #        [0.00000000, 0.00000000, 0.00000000, 0.00000000, 0.00000000, 0.00000000, 0.00000000, 0.00001795],
        #        [0.00000069, 0.33993085, 0.66006319, 0.00000000, 0.00000000, 0.00000528, 0.00000000, 0.00000000]])
    """

    assert reduction in ['mean', 'sum', 'none', None]
2232
    if not (group is False or group is None or hasattr(group, 'is_member')):
2233 2234
        raise ValueError(
            'Expected group is False, None or instance of paddle.distributed.collective.Group \
2235 2236 2237 2238
             (got group: {})'.format(
                group
            )
        )
2239 2240 2241
        return

    if hasattr(group, 'is_member') and not group.is_member():
2242 2243
        return

2244
    ring_id = 0
2245 2246
    rank = 0
    nranks = 1
2247
    if group is not False:
2248 2249 2250 2251
        ring_id = 0 if group is None else group.id
        if core.is_compiled_with_dist():
            parallel_env = paddle.distributed.ParallelEnv()
            global_rank = parallel_env.rank
2252 2253 2254 2255 2256
            rank = (
                global_rank
                if group is None
                else group.get_group_rank(global_rank)
            )
2257
            nranks = parallel_env.world_size if group is None else group.nranks
2258 2259 2260 2261 2262

    input_dims = len(list(logits.shape))
    label_dims = len(list(label.shape))
    if input_dims - 1 != label_dims and input_dims != label_dims:
        raise ValueError(
2263
            'Expected input_dims - 1 = label_dims or input_dims == label_dims\
2264
             (got input_dims{}, label_dims{})'.format(
2265 2266 2267
                input_dims, label_dims
            )
        )
2268 2269 2270
    if input_dims - 1 == label_dims:
        label = paddle.unsqueeze(label, axis=-1)

2271
    if in_dygraph_mode():
2272 2273 2274 2275 2276 2277 2278 2279 2280 2281 2282 2283
        softmax, loss = _C_ops.margin_cross_entropy(
            logits,
            label,
            return_softmax,
            ring_id,
            rank,
            nranks,
            margin1,
            margin2,
            margin3,
            scale,
        )
2284 2285 2286 2287 2288 2289 2290 2291
        if reduction == 'mean':
            loss = paddle.mean(loss)
        elif reduction == 'sum':
            loss = paddle.sum(loss)
        if not return_softmax:
            return loss
        else:
            return loss, softmax
姜永久 已提交
2292 2293 2294 2295 2296 2297 2298
    else:
        op_type = 'margin_cross_entropy'
        helper = LayerHelper(op_type, **locals())
        softmax = helper.create_variable_for_type_inference(dtype=logits.dtype)
        loss = helper.create_variable_for_type_inference(dtype=logits.dtype)

        check_variable_and_dtype(
2299
            logits,
姜永久 已提交
2300 2301 2302
            'logits',
            ['float16', 'float32', 'float64'],
            'margin_cross_entropy',
2303
        )
姜永久 已提交
2304 2305 2306 2307 2308 2309 2310 2311 2312 2313 2314 2315 2316 2317 2318 2319 2320 2321 2322 2323
        check_variable_and_dtype(
            label, 'label', ['int32', 'int64'], 'margin_cross_entropy'
        )

        helper.append_op(
            type=op_type,
            inputs={'Logits': logits, 'Label': label},
            outputs={'Softmax': softmax, 'Loss': loss},
            attrs={
                'return_softmax': return_softmax,
                'ring_id': ring_id,
                'rank': rank,
                'nranks': nranks,
                'margin1': margin1,
                'margin2': margin2,
                'margin3': margin3,
                'scale': scale,
            },
        )

2324 2325 2326 2327
        if reduction == 'mean':
            loss = paddle.mean(loss)
        elif reduction == 'sum':
            loss = paddle.sum(loss)
姜永久 已提交
2328

2329 2330 2331 2332 2333 2334
        if not return_softmax:
            return loss
        else:
            return loss, softmax


2335 2336 2337 2338
@deprecated(
    since="2.0.0",
    update_to="paddle.nn.functional.cross_entropy",
    level=1,
2339 2340 2341 2342 2343 2344 2345 2346 2347 2348 2349 2350 2351 2352
    reason=(
        'Please notice that behavior of "paddle.nn.functional.softmax_with_cross_entropy" '
        'and "paddle.nn.functional.cross_entropy" is different.'
    ),
)
def softmax_with_cross_entropy(
    logits,
    label,
    soft_label=False,
    ignore_index=-100,
    numeric_stable_mode=True,
    return_softmax=False,
    axis=-1,
):
2353
    r"""
2354 2355
    This operator implements the cross entropy loss function with softmax. This function
    combines the calculation of the softmax operation and the cross entropy loss function
2356 2357 2358 2359 2360 2361
    to provide a more numerically stable gradient.

    Because this operator performs a softmax on logits internally, it expects
    unscaled logits. This operator should not be used with the output of
    softmax operator since that would produce incorrect results.

2362 2363 2364
    When the attribute :attr:`soft_label` is set :attr:`False`, this operators
    expects mutually exclusive hard labels, each sample in a batch is in exactly
    one class with a probability of 1.0. Each sample in the batch will have a
2365 2366 2367 2368 2369 2370 2371 2372 2373 2374 2375 2376 2377 2378 2379 2380 2381 2382 2383 2384 2385 2386 2387 2388 2389 2390
    single label.

    The equation is as follows:

    1) Hard label (one-hot label, so every sample has exactly one class)

    .. math::
        \\loss_j=-\text{logits}_{label_j} +\log\left(\sum_{i=0}^{K}\exp(\text{logits}_i)\right), j = 1,..., K

    2) Soft label (each sample can have a distribution over all classes)

    .. math::
        \\loss_j= -\sum_{i=0}^{K}\text{label}_i\left(\text{logits}_i - \log\left(\sum_{i=0}^{K}\exp(\text{logits}_i)\right)\right), j = 1,...,K

    3) If :attr:`numeric_stable_mode` is :attr:`True`, softmax is calculated first by:

    .. math::
        \\max_j&=\max_{i=0}^{K}{\text{logits}_i} \\
                log\_max\_sum_j &= \log\sum_{i=0}^{K}\exp(logits_i - max_j)\\
                softmax_j &= \exp(logits_j - max_j - {log\_max\_sum}_j)

    and then cross entropy loss is calculated by softmax and label.

    Args:
        logits (Tensor): A multi-dimension ``Tensor`` , and the data type is float32 or float64. The input tensor of unscaled log probabilities.
        label (Tensor): The ground truth  ``Tensor`` , data type is the same
2391 2392 2393
            as the ``logits`` . If :attr:`soft_label` is set to :attr:`True`,
            Label is a ``Tensor``  in the same shape with :attr:`logits`.
            If :attr:`soft_label` is set to :attr:`True`, Label is a ``Tensor``
2394 2395 2396 2397 2398
            in the same shape with :attr:`logits` expect shape in dimension :attr:`axis` as 1.
        soft_label (bool, optional): A flag to indicate whether to interpretant the given
            labels as soft labels. Default False.
        ignore_index (int, optional): Specifies a target value that is ignored and does
                                      not contribute to the input gradient. Only valid
2399
                                      if :attr:`soft_label` is set to :attr:`False`.
2400 2401 2402
                                      Default: kIgnoreIndex(-100).
        numeric_stable_mode (bool, optional): A flag to indicate whether to use a more
                                              numerically stable algorithm. Only valid
2403 2404 2405
                                              when :attr:`soft_label` is :attr:`False`
                                              and GPU is used. When :attr:`soft_label`
                                              is :attr:`True` or CPU is used, the
2406 2407 2408 2409 2410
                                              algorithm is always numerically stable.
                                              Note that the speed may be slower when use
                                              stable algorithm. Default: True.
        return_softmax (bool, optional): A flag indicating whether to return the softmax
                                         along with the cross entropy loss. Default: False.
2411
        axis (int, optional): The index of dimension to perform softmax calculations. It
2412 2413 2414 2415 2416 2417 2418 2419 2420 2421 2422 2423 2424 2425 2426
                              should be in range :math:`[-1, rank - 1]`, while :math:`rank`
                              is the rank of input :attr:`logits`. Default: -1.

    Returns:
        ``Tensor`` or Tuple of two ``Tensor`` : Return the cross entropy loss if \
                                                    `return_softmax` is False, otherwise the tuple \
                                                    (loss, softmax), softmax is in the same shape \
                                                    with input logits and cross entropy loss is in \
                                                    the same shape with input logits except shape \
                                                    in dimension :attr:`axis` as 1.

    Examples:
        .. code-block:: python

            import paddle
2427 2428 2429 2430 2431

            logits = paddle.to_tensor([0.4, 0.6, 0.9], dtype="float32")
            label = paddle.to_tensor([1], dtype="int64")

            out = paddle.nn.functional.softmax_with_cross_entropy(logits=logits, label=label)
2432
            print(out)
2433 2434
            # Tensor(shape=[1], dtype=float32, place=Place(gpu:0), stop_gradient=True,
            #        [1.15328646])
2435
    """
2436 2437 2438 2439 2440 2441 2442 2443 2444 2445 2446 2447 2448 2449 2450 2451 2452 2453 2454 2455 2456 2457
    return fluid_softmax_with_cross_entropy(
        logits,
        label,
        soft_label,
        ignore_index,
        numeric_stable_mode,
        return_softmax,
        axis,
    )


def cross_entropy(
    input,
    label,
    weight=None,
    ignore_index=-100,
    reduction='mean',
    soft_label=False,
    axis=-1,
    use_softmax=True,
    name=None,
):
2458
    r"""
2459

2460
    By default, the cross entropy loss function is implemented using softmax. This function
2461 2462
    combines the calculation of the softmax operation and the cross entropy loss function
    to provide a more numerically stable computing.
2463

2464
    Calculate the cross entropy loss function without softmax when use_softmax=False.
2465

2466
    By default, calculate the mean of the result, and you can also affect
2467
    the default behavior by using the reduction parameter. Please refer to the part of
2468
    parameters for details.
2469

2470
    Can be used to calculate the softmax cross entropy loss with soft and hard labels.
2471
    Where, the hard labels mean the actual label value, 0, 1, 2, etc.  And the soft labels
2472
    mean the probability of the actual label, 0.6, 0.8, 0.2, etc.
2473

2474
    The calculation includes the following two steps.
2475

2476
    - **1.softmax cross entropy**
2477

2478
        1. Hard label (each sample can only be assigned into one category)
2479

2480
        1.1. when use_softmax=True
2481

2482 2483
            .. math::
              \\loss_j=-\text{logits}_{label_j}+\log\left(\sum_{i=0}^{C}\exp(\text{logits}_i)\right) , j = 1,...,N
2484

2485 2486 2487 2488 2489 2490 2491 2492 2493 2494 2495 2496 2497 2498 2499 2500 2501 2502 2503 2504 2505 2506 2507 2508 2509 2510 2511 2512 2513 2514 2515 2516 2517 2518 2519 2520 2521 2522 2523 2524 2525
            where, N is the number of samples and C is the number of categories.

        1.2. when use_softmax=False

            .. math::
              \\loss_j=-\log\left({P}_{label_j}\right) , j = 1,...,N

            where, N is the number of samples and C is the number of categories, P is input(the output of softmax).


        2. Soft label (each sample is assigned to multiple categories with a certain probability, and the probability sum is 1).

        2.1. when use_softmax=True

            .. math::
              \\loss_j=-\sum_{i=0}^{C}\text{label}_i\left(\text{logits}_i-\log\left(\sum_{i=0}^{C}\exp(\text{logits}_i)\right)\right) , j = 1,...,N

            where, N is the number of samples and C is the number of categories.

        2.2. when use_softmax=False

            .. math::
              \\loss_j=-\sum_{j=0}^{C}\left({label}_j*\log\left({P}_{label_j}\right)\right) , j = 1,...,N

            where, N is the number of samples and C is the number of categories, P is input(the output of softmax).




    - **2. Weight and reduction processing**

        1. Weight

            If the ``weight`` parameter is ``None`` , go to the next step directly.

            If the ``weight`` parameter is not ``None`` , the cross entropy of each sample is weighted by weight
            according to soft_label = False or True as follows.

            1.1. Hard labels (soft_label = False)

            .. math::
2526
                \\loss_j=loss_j*weight[label_j]
2527

2528

2529 2530 2531 2532 2533 2534 2535
            1.2. Soft labels (soft_label = True)

             .. math::
                \\loss_j=loss_j*\sum_{i}\left(weight[label_i]*logits_i\right)

        2. reduction

2536
            2.1 if the ``reduction`` parameter is ``none``
2537 2538 2539

                Return the previous result directly

2540
            2.2 if the ``reduction`` parameter is ``sum``
2541 2542 2543 2544 2545 2546

                Return the sum of the previous results

            .. math::
               \\loss=\sum_{j}loss_j

2547 2548
            2.3 if the ``reduction`` parameter is ``mean`` , it will be processed according to
            the ``weight`` parameter as follows.
2549

2550
            2.3.1. If the  ``weight``  parameter is ``None``
2551 2552 2553

                   Return the average value of the previous results

2554
            .. math::
2555 2556 2557 2558 2559 2560 2561 2562
                \\loss=\sum_{j}loss_j/N

                  where, N is the number of samples and C is the number of categories.

            2.3.2. If the 'weight' parameter is not 'None', the weighted average value of the previous result will be returned

            1. Hard labels (soft_label = False)

2563
            .. math::
2564
                \\loss=\sum_{j}loss_j/\sum_{j}weight[label_j]
2565 2566 2567

            2. Soft labels (soft_label = True)

2568
            .. math::
2569
                \\loss=\sum_{j}loss_j/\sum_{j}\left(\sum_{i}weight[label_i]\right)
2570 2571


2572
    Parameters:
2573
        input (Tensor): the data type is float32, float64. Shape is :math:`[N_1, N_2, ..., N_k, C]`, where C is number of classes, ``k >= 1`` .
2574

2575
            Note:
2576
                1. when use_softmax=True, it expects unscaled logits. This operator should not be used with the output of softmax operator, which will produce incorrect results.
2577
                2. when use_softmax=False, it expects the output of softmax operator.
2578

2579
        label (Tensor):
2580 2581 2582 2583
            1. If soft_label=False, the shape is
            :math:`[N_1, N_2, ..., N_k]` or :math:`[N_1, N_2, ..., N_k, 1]`, k >= 1.
            the data type is int32, int64, float32, float64, where each value is [0, C-1].

2584
            2. If soft_label=True, the shape and data type should be same with ``input`` ,
2585 2586
            and the sum of the labels for each sample should be 1.

2587
        weight (Tensor, optional): a manual rescaling weight given to each class.
2588
            If given, has to be a Tensor of size C and the data type is float32, float64.
2589
            Default is ``'None'`` .
2590
        ignore_index (int64, optional): Specifies a target value that is ignored
2591 2592
            and does not contribute to the loss. A negative value means that no label
            value needs to be ignored. Only valid when soft_label = False.
2593
            Default is ``-100`` .
2594
        reduction (str, optional): Indicate how to average the loss by batch_size,
2595 2596
            the candicates are ``'none'`` | ``'mean'`` | ``'sum'``.
            If :attr:`reduction` is ``'mean'``, the reduced mean loss is returned;
H
Hui Zhang 已提交
2597
            If :attr:`size_average` is ``'sum'``, the reduced sum loss is returned.
2598 2599
            If :attr:`reduction` is ``'none'``, the unreduced loss is returned.
            Default is ``'mean'``.
2600 2601
        soft_label (bool, optional): Indicate whether label is soft. Default is ``False``.
        axis (int, optional):The index of dimension to perform softmax calculations.
2602 2603
            It should be in range :math:`[-1, rank - 1]`, where :math:`rank` is the
            number of dimensions of input :attr:`input`.
2604
            Default is ``-1`` .
2605
        use_softmax (bool, optional): Indicate whether compute softmax before cross_entropy.
2606
            Default is ``True``.
2607
        name (str, optional): The name of the operator. Default is ``None`` .
2608
            For more information, please refer to :ref:`api_guide_Name` .
2609 2610 2611

    Returns:

2612 2613
        Tensor. Return the softmax cross_entropy loss of ``input`` and ``label``.
        The data type is the same as input.
2614

2615
        If :attr:`reduction` is ``'mean'`` or ``'sum'`` , the dimension of return value is ``1``.
2616

2617
        If :attr:`reduction` is ``'none'``:
C
Chen Long 已提交
2618

2619
        1. If soft_label = False, the dimension of return value is the same with ``label`` .
C
Chen Long 已提交
2620

2621
        2. if soft_label = True, the dimension of return value is :math:`[N_1, N_2, ..., N_k, 1]` .
2622

2623
    Examples:
2624
        .. code-block:: python
2625 2626

            # hard labels
2627 2628 2629 2630 2631
            import paddle
            paddle.seed(99999)
            N=100
            C=200
            reduction='mean'
2632
            input =  paddle.rand([N, C], dtype='float64')
2633
            label =  paddle.randint(0, C, shape=[N], dtype='int64')
2634 2635
            weight = paddle.rand([C], dtype='float64')

2636 2637 2638
            cross_entropy_loss = paddle.nn.loss.CrossEntropyLoss(
                weight=weight, reduction=reduction)
            dy_ret = cross_entropy_loss(
2639 2640 2641
                                        input,
                                        label)
            print(dy_ret)
2642 2643
            # Tensor(shape=[], dtype=float64, place=Place(gpu:0), stop_gradient=True,
            #        5.34043430)
2644 2645

        .. code-block:: python
2646 2647

            # soft labels
2648 2649 2650 2651 2652 2653 2654 2655 2656 2657 2658 2659 2660
            import paddle
            paddle.seed(99999)
            axis = -1
            ignore_index = -100
            N = 4
            C = 3
            shape = [N, C]
            reduction='mean'
            weight = None
            logits = paddle.uniform(shape, dtype='float64', min=0.1, max=1.0)
            labels = paddle.uniform(shape, dtype='float64', min=0.1, max=1.0)
            labels /= paddle.sum(labels, axis=axis, keepdim=True)
            paddle_loss_mean = paddle.nn.functional.cross_entropy(
2661 2662 2663 2664 2665 2666 2667
                                                                    logits,
                                                                    labels,
                                                                    soft_label=True,
                                                                    axis=axis,
                                                                    weight=weight,
                                                                    reduction=reduction)
            print(paddle_loss_mean)
2668 2669
            # Tensor(shape=[], dtype=float64, place=Place(gpu:0), stop_gradient=True,
            #        1.11043464)
C
Chen Long 已提交
2670

2671 2672 2673 2674
    """

    if reduction not in ['sum', 'mean', 'none']:
        raise ValueError(
2675 2676
            "The value of 'reduction' in softmax_cross_entropy"
            "should be 'sum', 'mean' or 'none', but received %s, which is not allowed."
2677 2678
            % reduction
        )
2679
    if ignore_index > 0 and soft_label:
2680 2681
        raise ValueError(
            "When soft_label == True, the value of 'ignore_index' in softmax_cross_entropy"
2682 2683 2684
            "should be '-100', but received %s, which is not allowed."
            % ignore_index
        )
2685

2686
    input_dims = len(list(input.shape))
2687 2688 2689
    if input_dims == 0:
        raise ValueError('The dimention of input should be larger than zero!')

2690 2691 2692
    label_dims = len(list(label.shape))
    if input_dims - 1 == label_dims:
        label = paddle.unsqueeze(label, axis=axis)
2693

2694 2695 2696 2697 2698 2699 2700 2701
    if input_dims - 1 != label_dims and input_dims != label_dims:
        raise ValueError(
            'Expected nput_dims - 1 = label_dims or input_dims == label_dims\
             (got nput_dims{}, label_dims{})'.format(
                input_dims, label_dims
            )
        )

2702
    if in_dygraph_mode():
2703
        if not soft_label:
2704 2705 2706
            valid_label = (
                paddle.cast(label != ignore_index, dtype=label.dtype) * label
            )
2707 2708 2709
        _, out = _C_ops.cross_entropy_with_softmax(
            input, label, soft_label, use_softmax, True, ignore_index, axis
        )
2710 2711 2712 2713

        if weight is not None:

            # trans weight from class to sample, shape:N or [N,H,W] for 1d and 2d cases.
2714
            if soft_label:
2715 2716 2717 2718
                # chajchaj:
                # weight's shape is C, where C is class num.
                # for 1d case: label's shape is [N,C], weight_gather's shape is N.
                # for 2d case: label's shape is [N,H,W,C], weight_gather's shape is [N,H,W].
2719 2720 2721 2722 2723 2724
                weight_gather = paddle.matmul(
                    x=paddle.cast(label, weight.dtype),
                    y=weight,
                    transpose_x=False,
                    transpose_y=True,
                )
2725 2726 2727 2728
                out_shape = list(out.shape)
                weight_gather_reshape = reshape(weight_gather, shape=out_shape)
                out = paddle.cast(out, weight_gather_reshape.dtype)

2729
                out = _C_ops.multiply(out, weight_gather_reshape)
2730 2731 2732 2733 2734
            else:
                if input.shape[axis] != weight.shape[-1]:
                    raise ValueError(
                        "input's class_dimension({}) must equal to "
                        "weight's class_dimension({}) "
2735 2736 2737 2738 2739 2740 2741 2742 2743 2744 2745 2746
                        "when weight is provided".format(
                            input.shape[axis], weight.shape[-1]
                        )
                    )

                ignore_weight_mask = paddle.cast(
                    (label != ignore_index), out.dtype
                )
                if (
                    ignore_weight_mask.ndim > 1
                    and ignore_weight_mask.shape[axis] == 1
                ):
2747
                    # TODO: Temporarily use squeeze instead of squeeze_
2748 2749 2750
                    ignore_weight_mask = paddle.squeeze(
                        ignore_weight_mask, axis
                    )
2751
                if axis != -1 and axis != valid_label.ndim - 1:
2752 2753 2754 2755 2756 2757 2758 2759 2760
                    temp_perm = (
                        list(range(axis % valid_label.ndim))
                        + list(
                            range(
                                (axis % valid_label.ndim + 1), valid_label.ndim
                            )
                        )
                        + [axis % valid_label.ndim]
                    )
2761
                    weight_gather = _C_ops.gather_nd(
2762 2763
                        weight, valid_label.transpose(temp_perm)
                    )
2764
                else:
2765
                    weight_gather = _C_ops.gather_nd(weight, valid_label)
2766 2767 2768
                weight_gather = _C_ops.multiply(
                    weight_gather, ignore_weight_mask
                )
2769
                input_shape = list(label.shape)
2770 2771 2772
                weight_gather_reshape = reshape(
                    weight_gather, shape=input_shape
                )
2773
                out = paddle.cast(out, weight_gather_reshape.dtype)
2774
                out = _C_ops.multiply(out, weight_gather_reshape)
2775 2776 2777 2778 2779

        if reduction == "sum":
            #   because of fluid_softmax_with_cross_entropy op's inner logic,
            #   in the out tensor of this op, the loss of sample with class_index==ignore_index is 0
            #   so, reduce_sum all directly is ok
2780
            return _C_ops.sum(out, [], None, False)
2781 2782 2783 2784 2785 2786 2787
        elif reduction == "mean":
            # 1. if weight==none,
            #     numerator: reduce_sum all loss directly is ok causeof fluid_softmax_with_cross_entropy's inner logic
            #     denominator: count sample num with class_index!=ignore_index
            # 2. else
            #     numerator: loss's weighted sum
            #     denominator: cal the sum of weight where the sample's class_index!=ignore_index
H
huangjun12 已提交
2788 2789 2790
            is_ignore = label == ignore_index
            mask = ~is_ignore
            if paddle.count_nonzero(is_ignore) > 0:  # ignore label
2791
                out_sum = _C_ops.sum(out, [], None, False)
2792 2793 2794 2795 2796
                # for each label[i],set 1 or 0, according to ignore_index
                # mask[i]=0, if label[i]==ignore_index
                # mask[i]=1, otherwise
                if weight is None:
                    mask = paddle.cast(mask, dtype=out_sum.dtype)
2797
                    count = _C_ops.sum(mask, [], None, False)
2798 2799 2800
                    ret = out_sum / (count + (count == 0.0))
                else:
                    mask = paddle.cast(mask, weight_gather_reshape.dtype)
2801 2802 2803
                    weight_ignored = _C_ops.multiply(
                        mask, weight_gather_reshape
                    )
2804
                    weight_sum = _C_ops.sum(weight_ignored, [], None, False)
2805 2806 2807
                    ret = out_sum / (weight_sum + (weight_sum == 0.0))
                return ret
            elif weight is not None:
2808
                out_sum = _C_ops.sum(out, [], None, False)
2809 2810 2811
                total_weight = _C_ops.sum(
                    weight_gather_reshape, [], None, False
                )
2812 2813
                return out_sum / (total_weight + (total_weight == 0.0))
            else:
2814
                return _C_ops.mean_all(out)
2815 2816 2817 2818 2819 2820

        else:
            if input_dims - 1 == label_dims:
                out = paddle.squeeze(out, axis=axis)
            return out

姜永久 已提交
2821 2822 2823 2824 2825 2826 2827 2828 2829 2830 2831 2832 2833 2834 2835 2836 2837 2838 2839 2840 2841 2842 2843 2844 2845 2846 2847 2848 2849 2850 2851
    else:
        check_variable_and_dtype(
            input,
            'input',
            ['float16', 'float32', 'float64'],
            'softmax_cross_entropy',
        )
        check_variable_and_dtype(
            label,
            'label',
            ['uint8', 'int8', 'int16', 'int32', 'int64', 'float32', 'float64'],
            'softmax_cross_entropy',
        )
        attrs = {
            'soft_label': soft_label,
            'ignore_index': ignore_index,
            'numeric_stable_mode': True,
            'axis': axis,
            'use_softmax': use_softmax,
        }
        helper = LayerHelper('softmax_with_cross_entropy', **locals())
        softmax = helper.create_variable_for_type_inference(dtype=input.dtype)
        out = helper.create_variable_for_type_inference(dtype=input.dtype)

        outputs = {'Softmax': softmax, 'Loss': out}
        helper.append_op(
            type='softmax_with_cross_entropy',
            inputs={'Logits': input, 'Label': label},
            outputs=outputs,
            attrs=attrs,
        )
2852

2853
        if weight is not None:
姜永久 已提交
2854 2855 2856 2857 2858 2859 2860
            check_variable_and_dtype(
                weight,
                'weight',
                ['float32', 'float64'],
                'softmax_cross_entropy',
            )
            weight_name = name if reduction == 'none' else None
2861
            if soft_label:
2862
                # chajchaj:
姜永久 已提交
2863
                # trans weight from class to sample, shape:N or [N,H,W] for 1d and 2d cases.
H
HydrogenSulfate 已提交
2864
                # weight's shape is C, where C is class num.
2865 2866
                # for 1d case: label's shape is [N,C], weight_gather's shape is N.
                # for 2d case: label's shape is [N,H,W,C], weight_gather's shape is [N,H,W].
2867 2868 2869 2870 2871 2872
                weight_gather = paddle.matmul(
                    x=paddle.cast(label, weight.dtype),
                    y=weight,
                    transpose_x=False,
                    transpose_y=True,
                )
姜永久 已提交
2873

2874 2875 2876 2877
                out_shape = list(out.shape)
                weight_gather_reshape = reshape(weight_gather, shape=out_shape)
                out = paddle.cast(out, weight_gather_reshape.dtype)
            else:
2878 2879 2880 2881
                if input.shape[axis] != weight.shape[-1]:
                    raise ValueError(
                        "input's class_dimension({}) must equal to "
                        "weight's class_dimension({}) "
2882 2883 2884 2885 2886
                        "when weight is provided".format(
                            input.shape[axis], weight.shape[-1]
                        )
                    )

姜永久 已提交
2887 2888 2889
                valid_label = paddle.multiply(
                    paddle.cast(label != ignore_index, dtype=label.dtype), label
                )
2890
                ignore_weight_mask = paddle.cast(
姜永久 已提交
2891
                    (label != ignore_index), input.dtype
2892 2893 2894 2895 2896 2897 2898 2899
                )
                if (
                    ignore_weight_mask.ndim > 1
                    and ignore_weight_mask.shape[axis] == 1
                ):
                    ignore_weight_mask = paddle.squeeze(
                        ignore_weight_mask, axis
                    )
H
HydrogenSulfate 已提交
2900
                if axis != -1 and axis != valid_label.ndim - 1:
2901 2902 2903 2904 2905 2906 2907 2908 2909
                    temp_perm = (
                        list(range(axis % valid_label.ndim))
                        + list(
                            range(
                                (axis % valid_label.ndim + 1), valid_label.ndim
                            )
                        )
                        + [axis % valid_label.ndim]
                    )
姜永久 已提交
2910 2911
                    weight_gather = paddle.gather_nd(
                        weight, paddle.transpose(valid_label, temp_perm)
2912
                    )
2913
                else:
姜永久 已提交
2914 2915
                    weight_gather = paddle.gather_nd(weight, valid_label)
                weight_gather = paddle.multiply(
2916 2917
                    weight_gather, ignore_weight_mask
                )
姜永久 已提交
2918

2919
                input_shape = list(label.shape)
2920 2921 2922
                weight_gather_reshape = reshape(
                    weight_gather, shape=input_shape
                )
姜永久 已提交
2923
            out = paddle.multiply(out, weight_gather_reshape, name=weight_name)
2924

2925
        if reduction == "sum":
姜永久 已提交
2926
            return paddle.sum(out, name=name)
2927
        elif reduction == "mean":
姜永久 已提交
2928 2929
            if ignore_index >= 0:
                out_sum = paddle.sum(out, name=name)
H
HydrogenSulfate 已提交
2930 2931 2932
                # for each label[i],set 1 or 0, according to ignore_index
                # mask[i]=0, if label[i]==ignore_index
                # mask[i]=1, otherwise
姜永久 已提交
2933
                mask = label != ignore_index
2934
                if weight is None:
2935
                    mask = paddle.cast(mask, dtype=out_sum.dtype)
姜永久 已提交
2936
                    count = paddle.sum(mask, name=name)
2937
                    ret = out_sum / (count + (count == 0.0))
2938 2939
                else:
                    mask = paddle.cast(mask, weight_gather_reshape.dtype)
姜永久 已提交
2940
                    weight_ignored = paddle.multiply(
2941 2942
                        mask, weight_gather_reshape
                    )
姜永久 已提交
2943
                    weight_sum = paddle.sum(weight_ignored, name=name)
2944
                    ret = out_sum / (weight_sum + (weight_sum == 0.0))
2945 2946
                return ret
            elif weight is not None:
姜永久 已提交
2947 2948
                out_sum = paddle.sum(out, name=name)
                total_weight = paddle.sum(weight_gather_reshape)
2949
                return out_sum / (total_weight + (total_weight == 0.0))
2950
            else:
姜永久 已提交
2951 2952
                return paddle.mean(out, name=name)

2953
        else:
2954 2955 2956
            if input_dims - 1 == label_dims:
                out = paddle.squeeze(out, axis=axis)

姜永久 已提交
2957
            return out
2958 2959


2960 2961 2962 2963 2964 2965 2966 2967 2968
def sigmoid_focal_loss(
    logit,
    label,
    normalizer=None,
    alpha=0.25,
    gamma=2.0,
    reduction='sum',
    name=None,
):
2969
    r"""
2970 2971 2972 2973 2974 2975
    `Focal Loss <https://arxiv.org/abs/1708.02002>`_ is proposed to address the
    foreground-background class imbalance for classification tasks. It down-weights
    easily-classified examples and thus focuses training on hard examples. For example,
    it is used in one-stage object detection where the foreground-background class
    imbalance is extremely high.

2976
    This operator measures focal loss function as follows:
2977 2978

    .. math::
2979
           Out = -Labels * alpha * {(1 - \sigma(Logit))}^{gamma}\log(\sigma(Logit)) - (1 - Labels) * (1 - alpha) * {\sigma(Logit)}^{gamma}\log(1 - \sigma(Logit))
2980

2981
    We know that :math:`\sigma(Logit) = \frac{1}{1 + \exp(-Logit)}`.
2982 2983 2984 2985 2986

    Then, if :attr:`normalizer` is not None, this operator divides the
    normalizer tensor on the loss `Out`:

    .. math::
2987
           Out = \frac{Out}{normalizer}
2988 2989 2990 2991 2992 2993 2994 2995 2996 2997 2998 2999 3000 3001 3002 3003

    Finally, this operator applies reduce operation on the loss.
    If :attr:`reduction` set to ``'none'``, the operator will return the original loss `Out`.
    If :attr:`reduction` set to ``'mean'``, the reduced mean loss is :math:`Out = MEAN(Out)`.
    If :attr:`reduction` set to ``'sum'``, the reduced sum loss is :math:`Out = SUM(Out)`.

    Note that the target ``label`` is 0 for the negative class and is 1 for the positive class.

    Args:
        logit (Tensor): The input logit tensor. The shape is [N, *], where N is batch_size,
            `*` means any number of additional dimensions. The ``logit`` is usually the
            output of a convolution layer. Available dtype is float32, float64.
        label (Tensor): The target label tensor with the same shape as
            ``logit``. The target label whose value should be numbers between 0 and 1.
            Available dtype is float32, float64.
        normalizer (Tensor, optional): The number normalizes the focal loss. It has to be
3004 3005
            a 1-D Tensor with shape `[1, ]` or 0-D Tensor with shape `[]`. The data type
            is float32, float64. For object detection task, it is the number of positive samples.
3006 3007
            If set to None, the focal loss will not be normalized. Default is None.
        alpha(int|float, optional): Hyper-parameter to balance the positive and negative example,
3008
            it should be between 0 and 1.  Default value is set to 0.25.
3009 3010 3011 3012 3013 3014 3015 3016 3017 3018 3019 3020
        gamma(int|float, optional): Hyper-parameter to modulate the easy and hard examples.
            Default value is set to 2.0.
        reduction (str, optional): Indicate how to average the loss by batch_size,
            the candicates are ``'none'`` | ``'mean'`` | ``'sum'``.
            If :attr:`reduction` is ``'none'``, the unreduced loss is returned;
            If :attr:`reduction` is ``'mean'``, the reduced mean loss is returned;
            If :attr:`reduction` is ``'sum'``, the summed loss is returned.
            Default is ``'sum'``.
        name (str, optional): Name for the operation (optional, default is None).
            For more information, please refer to :ref:`api_guide_Name`.

    Returns:
3021
        Tensor, if :attr:`reduction` is ``'mean'`` or ``'sum'``, the out shape is :math:`[]`, otherwise the shape is the same as ``logit``. The same dtype as ``logit`` tensor.
3022 3023 3024 3025 3026 3027 3028 3029 3030 3031 3032

    Examples:

        .. code-block:: python

            import paddle

            logit = paddle.to_tensor([[0.97, 0.91, 0.03], [0.55, 0.43, 0.71]], dtype='float32')
            label = paddle.to_tensor([[1.0, 0.0, 0.0], [0.0, 1.0, 0.0]], dtype='float32')
            one = paddle.to_tensor([1.], dtype='float32')
            fg_label = paddle.greater_equal(label, one)
3033
            fg_num = paddle.sum(paddle.cast(fg_label, dtype='float32'))
3034
            output = paddle.nn.functional.sigmoid_focal_loss(logit, label, normalizer=fg_num)
3035
            print(output)  # 0.65782464
3036 3037 3038 3039 3040 3041

    """
    if reduction not in ['sum', 'mean', 'none']:
        raise ValueError(
            "The value of 'reduction' in sigmoid_focal_loss "
            "should be 'sum', 'mean' or 'none', but received %s, which is not allowed."
3042 3043
            % reduction
        )
3044 3045

    if normalizer is not None:
3046 3047 3048 3049 3050 3051
        check_variable_and_dtype(
            normalizer,
            'normalizer',
            ['float32', 'float64'],
            'sigmoid_focal_loss',
        )
3052 3053 3054 3055
        normalizer_shape = list(normalizer.shape)
        normalizer_dims = len(normalizer_shape)
        if normalizer_dims > 1:
            raise ValueError(
3056
                "Expected zero or one dimension of normalizer in sigmoid_focal_loss but got {}.".format(
3057 3058 3059
                    normalizer_dims
                )
            )
3060

3061 3062
    if in_dygraph_mode():
        place = _current_expected_place()
3063
        one = _C_ops.full(logit.shape, float(1.0), logit.dtype, place)
3064

3065 3066 3067
        loss = _C_ops.sigmoid_cross_entropy_with_logits(
            logit, label, False, -100
        )
3068

3069
        pred = _C_ops.sigmoid(logit)
3070

3071 3072
        p_t = _C_ops.add(
            _C_ops.multiply(pred, label),
3073 3074 3075 3076
            _C_ops.multiply(
                _C_ops.subtract(one, pred), _C_ops.subtract(one, label)
            ),
        )
3077 3078

        alpha = fluid.dygraph.base.to_variable([alpha], dtype=loss.dtype)
3079 3080
        alpha_t = _C_ops.add(
            _C_ops.multiply(alpha, label),
3081 3082 3083 3084
            _C_ops.multiply(
                _C_ops.subtract(one, alpha), _C_ops.subtract(one, label)
            ),
        )
3085
        loss = _C_ops.multiply(alpha_t, loss)
3086 3087

        gamma = fluid.dygraph.base.to_variable([gamma], dtype=loss.dtype)
3088 3089
        gamma_t = _C_ops.pow(_C_ops.subtract(one, p_t), gamma)
        loss = _C_ops.multiply(gamma_t, loss)
3090 3091

        if normalizer is not None:
3092
            loss = _C_ops.divide(loss, normalizer)
3093 3094

        if reduction == "sum":
3095
            return _C_ops.sum(loss, [], None, False)
3096
        elif reduction == "mean":
3097
            return _C_ops.mean_all(loss)
3098 3099 3100

        return loss

姜永久 已提交
3101 3102 3103
    else:
        check_variable_and_dtype(
            logit, 'logit', ['float32', 'float64'], 'sigmoid_focal_loss'
3104
        )
姜永久 已提交
3105 3106
        check_variable_and_dtype(
            label, 'label', ['float32', 'float64'], 'sigmoid_focal_loss'
3107
        )
3108

姜永久 已提交
3109 3110 3111 3112 3113
        bce_name = None
        if reduction == 'none' and normalizer is None:
            bce_name = name
        loss = paddle.nn.functional.binary_cross_entropy_with_logits(
            logit, label, reduction='none', name=bce_name
3114
        )
3115

姜永久 已提交
3116 3117
        pred = paddle.nn.functional.sigmoid(logit)
        p_t = pred * label + (1 - pred) * (1 - label)
3118

姜永久 已提交
3119 3120
        alpha_t = alpha * label + (1 - alpha) * (1 - label)
        loss = paddle.multiply(alpha_t, loss)
3121

姜永久 已提交
3122 3123
        gamma_t = paddle.pow((1 - p_t), gamma)
        loss = paddle.multiply(gamma_t, loss)
3124

姜永久 已提交
3125 3126 3127
        if normalizer is not None:
            normalizer_name = name if reduction == 'none' else None
            loss = paddle.divide(loss, normalizer, name=normalizer_name)
3128

姜永久 已提交
3129 3130 3131 3132
        if reduction == 'mean':
            loss = paddle.mean(loss, name=name)
        elif reduction == 'sum':
            loss = paddle.sum(loss, name=name)
3133

姜永久 已提交
3134
        return loss
3135 3136


3137 3138 3139
def multi_label_soft_margin_loss(
    input, label, weight=None, reduction="mean", name=None
):
Y
yangguohao 已提交
3140
    r"""
3141 3142 3143 3144 3145 3146 3147 3148 3149 3150 3151 3152 3153
    Calculate a multi-class multi-classification
    hinge loss (margin-based loss) between input :math:`x` (a 2D mini-batch `Tensor`)
    and output :math:`y` (which is a 2D `Tensor` of target class indices).
    For each sample in the mini-batch:

    .. math::
        \text{loss}(x, y) = \sum_{ij}\frac{\max(0, 1 - (x[y[j]] - x[i]))}{\text{x.size}(0)}

    where :math:`x \in \left\{0, \; \cdots , \; \text{x.size}(0) - 1\right\}`, \
    :math:`y \in \left\{0, \; \cdots , \; \text{y.size}(0) - 1\right\}`, \
    :math:`0 \leq y[j] \leq \text{x.size}(0)-1`, \
    and :math:`i \neq y[j]` for all :math:`i` and :math:`j`.
    :math:`y` and :math:`x` must have the same size.
Y
yangguohao 已提交
3154

3155 3156 3157 3158 3159 3160 3161 3162 3163 3164 3165 3166 3167 3168
    Parameters:
        input (Tensor): Input tensor, the data type is float32 or float64. Shape is (N, C), where C is number of classes, and if shape is more than 2D, this is (N, C, D1, D2,..., Dk), k >= 1.
        label (Tensor): Label tensor, the data type is float32 or float64. The shape of label is the same as the shape of input.
        weight (Tensor,optional): a manual rescaling weight given to each class.
                If given, has to be a Tensor of size C and the data type is float32, float64.
                Default is ``'None'`` .
        reduction (str, optional): Indicate how to average the loss by batch_size,
                the candicates are ``'none'`` | ``'mean'`` | ``'sum'``.
                If :attr:`reduction` is ``'none'``, the unreduced loss is returned;
                If :attr:`reduction` is ``'mean'``, the reduced mean loss is returned;
                If :attr:`reduction` is ``'sum'``, the summed loss is returned.
                Default: ``'mean'``
        name (str, optional): Name for the operation (optional, default is None).
                For more information, please refer to :ref:`api_guide_Name`.
Y
yangguohao 已提交
3169

3170 3171 3172 3173 3174
    Shape:
        input: N-D Tensor, the shape is [N, \*], N is batch size and `\*` means number of classes, available dtype is float32, float64. The sum operationoperates over all the elements.
        label: N-D Tensor, same shape as the input.
        weight:N-D Tensor, the shape is [N,1]
        output: scalar. If :attr:`reduction` is ``'none'``, then same shape as the input.
Y
yangguohao 已提交
3175

3176 3177
    Returns:
        Tensor, The tensor variable storing the multi_label_soft_margin_loss of input and label.
Y
yangguohao 已提交
3178

3179 3180
    Examples:
        .. code-block:: python
Y
yangguohao 已提交
3181

3182 3183 3184 3185 3186 3187 3188 3189 3190 3191
            import paddle
            import paddle.nn.functional as F
            input = paddle.to_tensor([[1, -2, 3], [0, -1, 2], [1, 0, 1]], dtype=paddle.float32)
            # label elements in {1., -1.}
            label = paddle.to_tensor([[-1, 1, -1], [1, 1, 1], [1, -1, 1]], dtype=paddle.float32)
            loss = F.multi_label_soft_margin_loss(input, label, reduction='none')
            print(loss)
            # Tensor([3.49625897, 0.71111226, 0.43989015])
            loss = F.multi_label_soft_margin_loss(input, label, reduction='mean')
            print(loss)
3192
            # Tensor(1.54908717)
Y
yangguohao 已提交
3193 3194 3195 3196
    """
    if reduction not in ['sum', 'mean', 'none']:
        raise ValueError(
            "'reduction' in 'multi_label_soft_margin_loss' should be 'sum', 'mean' or 'none', "
3197 3198
            "but received {}.".format(reduction)
        )
Y
yangguohao 已提交
3199 3200

    if not (input.shape == label.shape):
3201 3202 3203 3204
        raise ValueError(
            "The input and label should have same dimension,"
            "but received {}!={}".format(input.shape, label.shape)
        )
Y
yangguohao 已提交
3205

姜永久 已提交
3206
    if not in_dygraph_mode():
3207 3208 3209 3210 3211 3212 3213 3214 3215 3216 3217 3218
        check_variable_and_dtype(
            input,
            'input',
            ['float32', 'float64'],
            'multilabel_soft_margin_loss',
        )
        check_variable_and_dtype(
            label,
            'label',
            ['float32', 'float64'],
            'multilabel_soft_margin_loss',
        )
Y
yangguohao 已提交
3219

3220 3221 3222 3223
    loss = -(
        label * paddle.nn.functional.log_sigmoid(input)
        + (1 - label) * paddle.nn.functional.log_sigmoid(-input)
    )
Y
yangguohao 已提交
3224 3225

    if weight is not None:
姜永久 已提交
3226
        if not in_dygraph_mode():
3227 3228 3229 3230 3231 3232
            check_variable_and_dtype(
                weight,
                'weight',
                ['float32', 'float64'],
                'multilabel_soft_margin_loss',
            )
Y
yangguohao 已提交
3233 3234 3235 3236 3237 3238 3239 3240 3241 3242 3243 3244
        loss = loss * weight

    loss = loss.mean(axis=-1)  # only return N loss values

    if reduction == "none":
        return loss
    elif reduction == "mean":
        return paddle.mean(loss)
    elif reduction == "sum":
        return paddle.sum(loss)


3245 3246
def hinge_embedding_loss(input, label, margin=1.0, reduction='mean', name=None):
    r"""
3247
    Calculates hinge_embedding_loss. Measures the loss given an input tensor :math:`x` and a labels tensor :math:`y`(containing 1 or -1).
3248 3249 3250 3251 3252 3253 3254 3255 3256 3257 3258 3259 3260 3261 3262 3263 3264 3265 3266 3267 3268 3269 3270 3271 3272 3273 3274 3275 3276 3277 3278 3279 3280 3281 3282 3283 3284 3285 3286 3287 3288 3289 3290 3291 3292 3293 3294 3295 3296 3297 3298 3299 3300 3301 3302 3303 3304 3305 3306 3307 3308 3309 3310 3311 3312 3313 3314 3315
    This is usually used for measuring whether two inputs are similar or dissimilar, e.g. using the L1 pairwise distance as :math:`x`,
    and is typically used for learning nonlinear embeddings or semi-supervised learning.

    The loss function for :math:`n`-th sample in the mini-batch is

    .. math::
        l_n = \begin{cases}
            x_n, & \text{if}\; y_n = 1,\\
            \max \{0, \Delta - x_n\}, & \text{if}\; y_n = -1,
        \end{cases}

    and the total loss functions is

    .. math::
        \ell(x, y) = \begin{cases}
            \operatorname{mean}(L), & \text{if reduction} = \text{'mean';}\\
            \operatorname{sum}(L),  & \text{if reduction} = \text{'sum'.}
        \end{cases}

    where :math:`L = \{l_1,\dots,l_N\}^\top`.

    Parameters:
        input (Tensor): Input tensor, the data type is float32 or float64.
            the shape is [N, \*], N is batch size and `\*` means any number of additional dimensions, available dtype is float32, float64.
        label (Tensor): Label tensor containing 1 or -1, the data type is float32 or float64.
            The shape of label is the same as the shape of input.
        margin (float, optional): Specifies the hyperparameter margin to be used.
            The value determines how large the input need to be to calculate in
            hinge_embedding_loss. When label is -1, Input smaller than margin are minimized with hinge_embedding_loss.
            Default = 1.0
        reduction (str, optional): Indicate how to average the loss by batch_size.
            the candicates are ``'none'`` | ``'mean'`` | ``'sum'``.
            If :attr:`reduction` is ``'none'``, the unreduced loss is returned;
            If :attr:`reduction` is ``'mean'``, the reduced mean loss is returned;
            If :attr:`reduction` is ``'sum'``, the summed loss is returned.
            Default: ``'mean'``
        name (str, optional): Name for the operation (optional, default is None).
            For more information, please refer to :ref:`api_guide_Name`.

    Shape:

        input: N-D Tensor, the shape is [N, \*], N is batch size and `\*` means any number of additional dimensions, available dtype is float32, float64. The sum operationoperates over all the elements.

        label: N-D Tensor, same shape as the input. tensor elements should containing 1 or -1, the data type is float32 or float64.

        output: scalar. If :attr:`reduction` is ``'none'``, then same shape as the input.

    Returns:
        Tensor. The tensor variable storing the hinge_embedding_loss of input and label.

    Examples:
        .. code-block:: python

            import paddle
            import paddle.nn.functional as F

            input = paddle.to_tensor([[1, -2, 3], [0, -1, 2], [1, 0, 1]], dtype=paddle.float32)
            # label elements in {1., -1.}
            label = paddle.to_tensor([[-1, 1, -1], [1, 1, 1], [1, -1, 1]], dtype=paddle.float32)

            loss = F.hinge_embedding_loss(input, label, margin=1.0, reduction='none')
            print(loss)
            # Tensor([[0., -2., 0.],
            #         [0., -1., 2.],
            #         [1., 1., 1.]])

            loss = F.hinge_embedding_loss(input, label, margin=1.0, reduction='mean')
            print(loss)
3316
            # Tensor(0.22222222)
3317 3318 3319 3320 3321
    """

    if reduction not in ['sum', 'mean', 'none']:
        raise ValueError(
            "'reduction' in 'hinge_embedding_loss' should be 'sum', 'mean' or 'none', "
3322 3323
            "but received {}.".format(reduction)
        )
3324

姜永久 已提交
3325
    if not in_dygraph_mode():
3326 3327 3328 3329 3330 3331
        check_variable_and_dtype(
            input, 'input', ['float32', 'float64'], 'hinge_embedding_loss'
        )
        check_variable_and_dtype(
            label, 'label', ['float32', 'float64'], 'hinge_embedding_loss'
        )
3332 3333

    zero_ = paddle.zeros([1], dtype=input.dtype)
3334 3335 3336
    loss = paddle.where(label == 1.0, input, zero_) + paddle.where(
        label == -1.0, paddle.nn.functional.relu(margin - input), zero_
    )
3337 3338 3339 3340 3341 3342 3343

    if reduction == 'mean':
        return paddle.mean(loss, name=name)
    elif reduction == 'sum':
        return paddle.sum(loss, name=name)
    elif reduction == 'none':
        return loss
3344 3345


3346 3347 3348
def cosine_embedding_loss(
    input1, input2, label, margin=0, reduction='mean', name=None
):
3349
    r"""
3350
    Compute the cosine embedding loss of Tensor ``input1``, ``input2`` and ``label`` as follows.
3351 3352 3353 3354 3355 3356 3357 3358 3359 3360 3361 3362 3363 3364 3365

    If label = 1, then the loss value can be calculated as follow:

    .. math::
        Out = 1 - cos(input1, input2)

    If label = -1, then the loss value can be calculated as follow:

    .. math::
        Out = max(0, cos(input1, input2)) - margin

    The operator cos can be described as follow:
     .. math::
        cos(x1, x2) = \frac{x1 \cdot{} x2}{\Vert x1 \Vert_2 * \Vert x2 \Vert_2}

3366 3367
    Parameters:
        input1 (Tensor): tensor with shape: [N, M] or [M], 'N' means batch size, which can be 0, 'M' means the length of input array.
3368
                         Available dtypes are float32, float64.
3369
        input2 (Tensor): tensor with shape: [N, M] or [M], 'N' means batch size, which can be 0, 'M' means the length of input array.
3370
                         Available dtypes are float32, float64.
3371
        label (Tensor): tensor with shape: [N] or [1], 'N' means the length of input array. The target labels values should be -1 or 1.
3372 3373 3374 3375 3376 3377 3378 3379 3380 3381 3382 3383 3384 3385
                         Available dtypes are int32, int64, float32, float64.
        margin (float, optional): Should be a number from :math:`-1` to :math:`1`,
                         :math:`0` to :math:`0.5` is suggested. If :attr:`margin` is missing, the
                         default value is :math:`0`.
        reduction (string, optional): Specifies the reduction to apply to the output:
                         ``'none'`` | ``'mean'`` | ``'sum'``. ``'none'``: no reduction will be applied,
                         ``'mean'``: the sum of the output will be divided by the number of elements in the output
                         ``'sum'``: the output will be summed.
        name (str, optional): Name for the operation (optional, default is None).
                         For more information, please refer to :ref:`api_guide_Name`.

    Returns:
        Tensor, the cosine embedding Loss of Tensor ``input1`` ``input2`` and ``label``.
            If `reduction` is ``'none'``, the shape of output loss is [N], the same as ``input`` .
3386
            If `reduction` is ``'mean'`` or ``'sum'``, the shape of output loss is [].
3387 3388 3389 3390 3391 3392 3393 3394 3395 3396 3397

    Examples:
        .. code-block:: python

            import paddle

            input1 = paddle.to_tensor([[1.6, 1.2, -0.5], [3.2, 2.6, -5.8]], 'float32')
            input2 = paddle.to_tensor([[0.5, 0.5, -1.8], [2.3, -1.4, 1.1]], 'float32')
            label = paddle.to_tensor([1, -1], 'int64')

            output = paddle.nn.functional.cosine_embedding_loss(input1, input2, label, margin=0.5, reduction='mean')
3398
            print(output)  # 0.21155193
3399 3400

            output = paddle.nn.functional.cosine_embedding_loss(input1, input2, label, margin=0.5, reduction='sum')
3401
            print(output)  # 0.42310387
3402 3403 3404 3405 3406 3407 3408

            output = paddle.nn.functional.cosine_embedding_loss(input1, input2, label, margin=0.5, reduction='none')
            print(output)  # [0.42310387, 0.        ]

    """
    if len(label.shape) != 1:
        raise ValueError(
3409 3410
            "1D target tensor expected, multi-target not supported"
        )
3411 3412 3413 3414

    if input1.shape != input2.shape:
        raise ValueError(
            "the shape of input tensor 1 should be equal to input tensor 2, but found inputs with "
3415 3416
            "different sizes"
        )
3417 3418 3419 3420 3421 3422 3423 3424

    if len(input1.shape) > 2:
        raise ValueError(
            "1D target tensor expects 1D or 2D input tensors, but found inputs with different sizes"
        )

    if input1.dtype not in [paddle.float32, paddle.float64]:
        raise ValueError(
3425 3426
            "The data type of input Variable must be 'float32' or 'float64'"
        )
3427
    if label.dtype not in [
3428 3429 3430 3431
        paddle.int32,
        paddle.int64,
        paddle.float32,
        paddle.float64,
3432 3433 3434 3435 3436 3437 3438 3439 3440 3441 3442 3443 3444 3445 3446 3447 3448 3449 3450 3451 3452 3453 3454
    ]:
        raise ValueError(
            "The data type of label Variable must be 'int32', 'int64', 'float32', 'float64'"
        )

    prod_sum = (input1 * input2).sum(axis=-1)
    mag_square1 = paddle.square(input1).sum(axis=-1) + 10e-12
    mag_square2 = paddle.square(input2).sum(axis=-1) + 10e-12
    denom = paddle.sqrt(mag_square1 * mag_square2)
    cos = prod_sum / denom
    zeros = paddle.zeros_like(cos)
    pos = 1 - cos
    neg = paddle.clip(cos - margin, min=0)
    out_pos = paddle.where(label == 1, pos, zeros)
    out_neg = paddle.where(label == -1, neg, zeros)
    out = out_pos + out_neg

    if reduction == 'none':
        return out
    if reduction == 'mean':
        return paddle.mean(out, name=name)
    elif reduction == 'sum':
        return paddle.sum(out, name=name)
Y
yangguohao 已提交
3455 3456


3457 3458 3459 3460 3461 3462 3463 3464 3465 3466
def triplet_margin_with_distance_loss(
    input,
    positive,
    negative,
    distance_function=None,
    margin=1.0,
    swap=False,
    reduction='mean',
    name=None,
):
Y
yangguohao 已提交
3467 3468 3469 3470 3471 3472 3473 3474 3475 3476 3477 3478 3479 3480 3481 3482 3483 3484 3485
    r"""
    Measures the triplet loss given an input
    tensors :math:`x1`, :math:`x2`, :math:`x3` and a margin with a value greater than :math:`0`.
    This is used for measuring a relative similarity between samples. A triplet
    is composed by `input`, `positive` and `negative` (i.e., `input`, `positive examples` and `negative
    examples` respectively). The shapes of all input tensors should be
    :math:`(N, D)`.

    The loss function for each sample in the mini-batch is:

    .. math::
        L(input, pos, neg) = \max \{d(input_i, pos_i) - d(input_i, neg_i) + {\rm margin}, 0\}


    where the default distance function

    .. math::
        d(x_i, y_i) = \left\lVert {\bf x}_i - {\bf y}_i \right\rVert_p

3486
    or user can defined their own distance functions. `margin` is a nonnegative margin representing the minimum difference
Y
yangguohao 已提交
3487 3488 3489 3490 3491 3492 3493 3494 3495 3496 3497 3498 3499 3500 3501
    between the positive and negative distances that is required for the loss to be 0. If `swap` is true, it will compare distance of (input, negative) with
    distance of (negative, positive) and change it to the smaller one. For more details see http://www.bmva.org/bmvc/2016/papers/paper119/paper119.pdf.

    Parameters:

        input (Tensor):Input tensor, the data type is float32 or float64.
            the shape is [N, \*], N is batch size and `\*` means any number of additional dimensions, available dtype is float32, float64.

        positive (Tensor):Positive tensor, the data type is float32 or float64.
            The shape of label is the same as the shape of input.

        negative (Tensor):Negative tensor, the data type is float32 or float64.
            The shape of label is the same as the shape of input.

        distance_function (callable, optional): Quantifies the distance between two tensors. if not specified, 2 norm functions will be used.
3502

3503 3504
        margin (float, optional): A nonnegative margin representing the minimum difference
            between the positive and negative distances required for the loss to be 0. Default value is :math:`1`.
3505

Y
yangguohao 已提交
3506 3507 3508 3509 3510 3511 3512 3513 3514 3515 3516
        swap (bool, optional):The distance swap changes the negative distance to the swap distance (distance between positive samples
                and negative samples) if swap distance smaller than negative distance. Default: ``False``.

        reduction (str, optional):Indicate how to average the loss by batch_size.
            the candicates are ``'none'`` | ``'mean'`` | ``'sum'``.
            If :attr:`reduction` is ``'none'``, the unreduced loss is returned;
            If :attr:`reduction` is ``'mean'``, the reduced mean loss is returned;
            If :attr:`reduction` is ``'sum'``, the summed loss is returned.
            Default: ``'mean'``
        name (str, optional): Name for the operation (optional, default is None).
            For more information, please refer to :ref:`api_guide_Name`.
3517

Y
yangguohao 已提交
3518 3519 3520 3521 3522 3523 3524 3525 3526 3527 3528 3529 3530 3531 3532 3533 3534 3535 3536
    Returns:
        Output: Tensor. The tensor variable storing the triplet_margin_with_distance_loss of input and positive and negative.

    Examples:
        .. code-block:: python

            import paddle
            import paddle.nn.functional as F

            input = paddle.to_tensor([[1, 5, 3], [0, 3, 2], [1, 4, 1]], dtype=paddle.float32)
            positive= paddle.to_tensor([[5, 1, 2], [3, 2, 1], [3, -1, 1]], dtype=paddle.float32)
            negative = paddle.to_tensor([[2, 1, -3], [1, 1, -1], [4, -2, 1]], dtype=paddle.float32)
            loss = F.triplet_margin_with_distance_loss(input, positive, negative, margin=1.0, reduction='none')
            print(loss)
            # Tensor([0.        , 0.57496738, 0.        ])


            loss = F.triplet_margin_with_distance_loss(input, positive, negative, margin=1.0, reduction='mean')
            print(loss)
3537
            # Tensor(0.19165580)
Y
yangguohao 已提交
3538 3539 3540

    """
    if reduction not in ['sum', 'mean', 'none']:
3541 3542 3543 3544 3545
        raise ValueError(
            "'reduction' in 'triplet_margin_with_distance_loss' "
            "should be 'sum', 'mean' or 'none', "
            "but received {}.".format(reduction)
        )
Y
yangguohao 已提交
3546 3547 3548 3549
    if margin < 0:
        raise ValueError(
            "The margin between positive samples and negative samples should be greater than 0."
        )
姜永久 已提交
3550
    if not in_dygraph_mode():
3551 3552 3553 3554 3555 3556 3557 3558 3559 3560 3561 3562 3563 3564 3565 3566 3567 3568
        check_variable_and_dtype(
            input,
            'input',
            ['float32', 'float64'],
            'triplet_margin_with_distance_loss',
        )
        check_variable_and_dtype(
            positive,
            'positive',
            ['float32', 'float64'],
            'triplet_margin_with_distance_loss',
        )
        check_variable_and_dtype(
            negative,
            'negative',
            ['float32', 'float64'],
            'triplet_margin_with_distance_loss',
        )
Y
yangguohao 已提交
3569 3570

    if not (input.shape == positive.shape == negative.shape):
3571 3572 3573 3574 3575
        raise ValueError(
            "input's shape must equal to "
            "positive's shape and  "
            "negative's shape"
        )
Y
yangguohao 已提交
3576

3577 3578 3579
    distance_function = (
        distance_function
        if distance_function is not None
Y
yangguohao 已提交
3580
        else paddle.nn.PairwiseDistance(2)
3581
    )
Y
yangguohao 已提交
3582 3583 3584 3585 3586 3587 3588 3589 3590 3591 3592

    positive_dist = distance_function(input, positive)
    negative_dist = distance_function(input, negative)

    if swap:
        swap_dist = distance_function(positive, negative)
        negative_dist = paddle.minimum(negative_dist, swap_dist)

    if not paddle.all(positive_dist > 0) or not paddle.all(negative_dist > 0):
        raise ValueError(
            "The positive distance or negative distance should be greater than 0, "
3593 3594
            "The distance functions should be checked."
        )
Y
yangguohao 已提交
3595 3596 3597 3598 3599 3600 3601 3602 3603

    loss = paddle.clip(positive_dist - negative_dist + margin, min=0.0)

    if reduction == 'mean':
        return paddle.mean(loss, name=name)
    elif reduction == 'sum':
        return paddle.sum(loss, name=name)
    elif reduction == 'none':
        return loss
Y
yangguohao 已提交
3604 3605


3606 3607 3608 3609 3610 3611 3612 3613 3614 3615 3616
def triplet_margin_loss(
    input,
    positive,
    negative,
    margin=1.0,
    p=2,
    epsilon=1e-6,
    swap=False,
    reduction='mean',
    name=None,
):
Y
yangguohao 已提交
3617 3618 3619 3620 3621 3622 3623 3624 3625 3626 3627 3628 3629 3630 3631 3632 3633 3634 3635 3636 3637 3638 3639 3640 3641 3642 3643 3644 3645 3646 3647 3648 3649 3650 3651 3652 3653 3654 3655 3656 3657 3658 3659 3660 3661 3662 3663 3664 3665 3666 3667 3668 3669 3670 3671 3672 3673 3674 3675 3676 3677 3678 3679 3680 3681 3682 3683 3684 3685 3686
    r"""
        Measures the triplet loss given an input
        tensors :math:`x1`, :math:`x2`, :math:`x3` and a margin with a value greater than :math:`0`.
        This is used for measuring a relative similarity between samples. A triplet
        is composed by `input`, `positive` and `negative` (i.e., `input`, `positive examples` and `negative
        examples` respectively). The shapes of all input tensors should be
        :math:`(N, *)`.

        The loss function for each sample in the mini-batch is:

        .. math::
            L(input, pos, neg) = \max \{d(input_i, pos_i) - d(input_i, neg_i) + {\rm margin}, 0\}


        where

        .. math::
            d(x_i, y_i) = \left\lVert {\bf x}_i - {\bf y}_i \right\rVert_p

    Parameters:
        input (Tensor): Input tensor, the data type is float32 or float64.
            the shape is [N, \*], N is batch size and `\*` means any number of additional dimensions, available dtype is float32, float64.

        positive (Tensor): Positive tensor, the data type is float32 or float64.
            The shape of label is the same as the shape of input.

        negative (Tensor): Negative tensor, the data type is float32 or float64.
            The shape of label is the same as the shape of input.

        margin (float, Optional): Default: :math:`1`.

        p (int, Optional): The norm degree for pairwise distance. Default: :math:`2`.

        epsilon (float, Optional): Add small value to avoid division by zero,
            default value is 1e-6.

        swap (bool,Optional): The distance swap change the negative distance to the distance between
            positive sample and negative sample. For more details, see `Learning shallow convolutional feature descriptors with triplet losses`.
            Default: ``False``.


        reduction (str, Optional):Indicate how to average the loss by batch_size.
            the candicates are ``'none'`` | ``'mean'`` | ``'sum'``.
            If :attr:`reduction` is ``'none'``, the unreduced loss is returned;
            If :attr:`reduction` is ``'mean'``, the reduced mean loss is returned;
            If :attr:`reduction` is ``'sum'``, the summed loss is returned.
            Default: ``'mean'``

        name (str, Optional): Name for the operation (optional, default is None).
            For more information, please refer to :ref:`api_guide_Name`.

    Returns:
        Output: Tensor. The tensor variable storing the triplet_margin_loss of input and positive and negative.

    Examples:
        .. code-block:: python

            import paddle
            import paddle.nn.functional as F

            input = paddle.to_tensor([[1, 5, 3], [0, 3, 2], [1, 4, 1]], dtype=paddle.float32)
            positive= paddle.to_tensor([[5, 1, 2], [3, 2, 1], [3, -1, 1]], dtype=paddle.float32)
            negative = paddle.to_tensor([[2, 1, -3], [1, 1, -1], [4, -2, 1]], dtype=paddle.float32)
            loss = F.triplet_margin_loss(input, positive, negative, margin=1.0, reduction='none')
            print(loss)
            # Tensor([0.        , 0.57496738, 0.        ])


            loss = F.triplet_margin_loss(input, positive, negative, margin=1.0, reduction='mean')
            print(loss)
3687
            # Tensor(0.19165580)
Y
yangguohao 已提交
3688 3689 3690 3691 3692

    """
    if reduction not in ['sum', 'mean', 'none']:
        raise ValueError(
            "'reduction' in 'triplet_margin_loss' should be 'sum', 'mean' or 'none', "
3693 3694
            "but received {}.".format(reduction)
        )
Y
yangguohao 已提交
3695 3696 3697 3698
    if margin < 0:
        raise ValueError(
            "The margin between positive samples and negative samples should be greater than 0."
        )
姜永久 已提交
3699
    if not in_dygraph_mode():
3700 3701 3702 3703 3704 3705 3706 3707 3708
        check_variable_and_dtype(
            input, 'input', ['float32', 'float64'], 'triplet_margin_loss'
        )
        check_variable_and_dtype(
            positive, 'positive', ['float32', 'float64'], 'triplet_margin_loss'
        )
        check_variable_and_dtype(
            negative, 'negative', ['float32', 'float64'], 'triplet_margin_loss'
        )
Y
yangguohao 已提交
3709 3710

    if not (input.shape == positive.shape == negative.shape):
3711 3712 3713 3714 3715
        raise ValueError(
            "input's shape must equal to "
            "positive's shape and  "
            "negative's shape"
        )
Y
yangguohao 已提交
3716 3717 3718 3719 3720 3721 3722 3723 3724 3725 3726 3727 3728 3729 3730 3731 3732

    distance_function = paddle.nn.PairwiseDistance(p, epsilon=epsilon)
    positive_dist = distance_function(input, positive)
    negative_dist = distance_function(input, negative)

    if swap:
        swap_dist = distance_function(positive, negative)
        negative_dist = paddle.minimum(negative_dist, swap_dist)

    loss = paddle.clip(positive_dist - negative_dist + margin, min=0.0)

    if reduction == 'mean':
        return paddle.mean(loss, name=name)
    elif reduction == 'sum':
        return paddle.sum(loss, name=name)
    elif reduction == 'none':
        return loss
3733 3734


3735 3736 3737 3738 3739 3740 3741 3742 3743
def multi_margin_loss(
    input,
    label,
    p: int = 1,
    margin: float = 1.0,
    weight=None,
    reduction='mean',
    name=None,
):
Y
yangguohao 已提交
3744 3745 3746 3747 3748 3749 3750 3751 3752 3753 3754 3755 3756 3757 3758 3759 3760 3761 3762 3763 3764 3765 3766 3767 3768 3769 3770 3771 3772 3773 3774 3775 3776 3777 3778 3779 3780 3781 3782 3783 3784 3785 3786 3787 3788 3789 3790 3791 3792 3793 3794 3795 3796 3797 3798 3799 3800 3801 3802 3803 3804 3805
    r"""
        Measures a multi-class classification hinge loss between input :math:`input` and label :math:`label`:

        For i-th mini-batch sample, the loss in terms of the 1D input :math:`input_i` and scalar
        output :math:`label_i` is:

        .. math::
            \text{loss}(input_i, label_i) = \frac{\sum_{j} \max(0, \text{margin} - input_i[label_i] + input_i[j])^p}{\text{C}}

        where :math:`0 \leq j \leq \text{C}-1`, :math:`0 \leq i \leq \text{N}-1` and :math:`j \neq label_i`.

        Optionally, you can give non-equal weighting on the classes by passing
        a 1D :attr:`weight` tensor into the constructor.

        The loss function for i-th sample then becomes:

        .. math::
            \text{loss}(input_i, label_i) = \frac{\sum_{j} \max(0, weight[label_i] * (\text{margin} - input_i[label_i] + input_i[j]))^p}{\text{C}}


    Parameters:
        input (Tensor): Input tensor, the data type is float32 or float64. Shape is (N, C), where C is number of classes.

        label (Tensor): Label tensor, the data type is int32 or int64. The shape of label is (N,)

        p (int, Optional): The power num. Default: :math:`1`.

        margin (float, Optional): Default: :math:`1`.

        weight (Tensor,optional): a manual rescaling weight given to each class.
                If given, has to be a Tensor of shape (C,) and the data type is float32, float64.
                Default is ``'None'`` .


        reduction (str, Optional):Indicate how to calculate the loss by batch_size.
            the candidates are ``'none'`` | ``'mean'`` | ``'sum'``.
            If :attr:`reduction` is ``'none'``, the unreduced loss is returned;
            If :attr:`reduction` is ``'mean'``, the reduced mean loss is returned;
            If :attr:`reduction` is ``'sum'``, the summed loss is returned.
            Default: ``'mean'``

        name (str, Optional): Name for the operation (optional, default is None).
            For more information, please refer to :ref:`api_guide_Name`.

    Returns:
        Output: Tensor. The tensor variable storing the multi_margin_loss of input and label.

    Examples:
        .. code-block:: python

            import paddle
            import paddle.nn.functional as F

            input = paddle.to_tensor([[1, 5, 3], [0, 3, 2], [1, 4, 1]], dtype=paddle.float32)
            label = paddle.to_tensor([1, 2, 1], dtype=paddle.int32)
            loss = F.multi_margin_loss(input, label, margin=1.0, reduction='none')
            print(loss)

    """
    if reduction not in ['sum', 'mean', 'none']:
        raise ValueError(
            "'reduction' in 'multi_margin_loss' should be 'sum', 'mean' or 'none', "
3806 3807
            "but received {}.".format(reduction)
        )
Y
yangguohao 已提交
3808

姜永久 已提交
3809
    if not in_dygraph_mode():
3810 3811 3812 3813 3814 3815
        check_variable_and_dtype(
            input, 'input', ['float32', 'float64'], 'multi_margin_loss'
        )
        check_variable_and_dtype(
            label, 'label', ['int32', 'int64'], 'multi_margin_loss'
        )
Y
yangguohao 已提交
3816 3817 3818 3819
    if not (input.shape[0] == label.shape[0]):
        raise ValueError(
            "The label's shape[0] should be equal to input's shape[0], "
            "but received input's shape[0] {} and label's shape[0]:{}. ".format(
3820 3821 3822
                input.shape[0], label.shape[0]
            )
        )
Y
yangguohao 已提交
3823 3824 3825
    label = label.reshape((-1, 1))
    index_sample = paddle.index_sample(input, label)
    if weight is not None:
姜永久 已提交
3826
        if not in_dygraph_mode():
3827 3828 3829
            check_variable_and_dtype(
                weight, 'weight', ['float32', 'float64'], 'multi_margin_loss'
            )
Y
yangguohao 已提交
3830 3831 3832
        if not (input.shape[1] == weight.shape[0]):
            raise ValueError(
                "The weight's shape[0] should be equal to input's shape[1]"
3833 3834 3835 3836
                "but received weight's shape[0]: {} and input's shape[1]: {}".format(
                    weight.shape[0], input.shape[1]
                )
            )
Y
yangguohao 已提交
3837 3838 3839
        weight = paddle.gather(weight, label, axis=0).reshape((-1, 1))
        loss = paddle.mean(
            paddle.pow(
3840 3841 3842 3843 3844
                paddle.clip(weight * (margin - index_sample + input), min=0.0),
                p,
            ),
            axis=1,
        ) - weight * (margin**p / paddle.shape(input)[1])
Y
yangguohao 已提交
3845
    else:
3846 3847 3848 3849 3850 3851 3852 3853 3854
        loss = (
            paddle.mean(
                paddle.pow(
                    paddle.clip(margin - index_sample + input, min=0.0), p
                ),
                axis=1,
            )
            - margin**p / paddle.shape(input)[1]
        )
Y
yangguohao 已提交
3855 3856 3857 3858 3859 3860 3861 3862 3863

    if reduction == 'mean':
        return paddle.mean(loss, name=name)
    elif reduction == 'sum':
        return paddle.sum(loss, name=name)
    elif reduction == 'none':
        return loss


3864 3865
def soft_margin_loss(input, label, reduction='mean', name=None):
    """
3866

3867 3868 3869 3870 3871 3872 3873 3874
    The API measures the soft margin loss between input predictions ``input``
    and target labels ``label`` . It can be described as:

    .. math::
        Out = log(1 + exp((-label * input)))

    Parameters:

3875
        input (Tensor): The input predications tensor with shape: ``[N, *]``,
3876
            N is batch_size, `*` means any number of additional dimensions. The ``input`` ranges from -inf to inf.
3877
            Available dtype is float32, float64.
3878 3879 3880 3881 3882 3883 3884 3885 3886 3887 3888 3889 3890 3891 3892 3893 3894

        label (Tensor): The target labels tensor with the same shape as
            ``input``. The target labels which values should be numbers -1 or 1.
            Available dtype is int32, int64, float32, float64.

        reduction (str, optional): Indicate how to average the loss by batch_size,
            the candidates are ``'none'`` | ``'mean'`` | ``'sum'``.
            If :attr:`reduction` is ``'none'``, the unreduced loss is returned;
            If :attr:`reduction` is ``'mean'``, the reduced mean loss is returned;
            If :attr:`reduction` is ``'sum'``, the summed loss is returned.
            Default is ``'mean'``.

        name (str, optional): Name for the operation (optional, default is None).
            For more information, please refer to :ref:`api_guide_Name`.

    Returns:

3895
        Output (Tensor): If ``reduction`` is ``'none'``, the shape of output is same as ``input`` , else the shape of output is [].
3896 3897 3898 3899 3900 3901 3902 3903 3904

    Examples:
        .. code-block:: python

            import paddle

            input = paddle.to_tensor([[0.5, 0.6, 0.7],[0.3, 0.5, 0.2]], 'float32')
            label = paddle.to_tensor([[1.0, -1.0, 1.0],[-1.0, 1.0, 1.0]], 'float32')
            output = paddle.nn.functional.soft_margin_loss(input, label)
3905
            print(output)
3906 3907
            # Tensor(shape=[], dtype=float32, place=Place(gpu:0), stop_gradient=True,
            #        0.64022040)
3908 3909 3910 3911

            input = paddle.uniform(shape=(5, 5), dtype="float32", min=0.1, max=0.8)
            label = paddle.randint(0, 2, shape=(5, 5), dtype="int64")
            label[label==0]=-1
3912 3913

            output = paddle.nn.functional.soft_margin_loss(input, label, reduction='none')
3914 3915 3916 3917 3918 3919 3920
            print(output)
            # Tensor(shape=[5, 5], dtype=float32, place=Place(gpu:0), stop_gradient=True,
            #        [[1.09917796, 0.52613139, 0.56263304, 0.82736146, 0.38776723],
            #         [1.07179427, 1.11924267, 0.49877715, 1.10026348, 0.46184641],
            #         [0.84367639, 0.74795729, 0.44629076, 0.55123353, 0.77659678],
            #         [0.39465919, 0.76651484, 0.54485321, 0.76609844, 0.77166790],
            #         [0.51283568, 0.84757161, 0.78913331, 1.05268764, 0.45318675]])
3921

3922 3923 3924 3925
    """
    if reduction not in ['sum', 'mean', 'none']:
        raise ValueError(
            "The value of 'reduction' in soft_margin_loss should be 'sum', "
3926 3927 3928
            "'mean' or 'none', but received %s, which is not allowed."
            % reduction
        )
3929

姜永久 已提交
3930
    if not in_dygraph_mode():
3931
        fluid.data_feeder.check_variable_and_dtype(
3932 3933 3934 3935 3936 3937 3938 3939
            input, 'input', ['float32', 'float64'], 'soft_margin_loss'
        )
        fluid.data_feeder.check_variable_and_dtype(
            label,
            'label',
            ['int32', 'int64', 'float32', 'float64'],
            'soft_margin_loss',
        )
3940 3941

    if not (input.shape == label.shape):
3942
        raise ValueError("input's shape must equal to " "label's shape")
3943

3944
    label = paddle.cast(label, input.dtype)
3945 3946 3947 3948 3949 3950 3951 3952
    out = paddle.log(1 + paddle.exp(-label * input))

    if reduction == 'sum':
        return paddle.sum(out, name=name)
    elif reduction == 'mean':
        return paddle.mean(out, name=name)
    else:
        return out
Z
Zman 已提交
3953 3954 3955 3956 3957 3958 3959 3960 3961 3962 3963 3964 3965 3966 3967 3968 3969 3970 3971 3972 3973 3974 3975 3976 3977 3978 3979 3980 3981 3982 3983 3984 3985 3986 3987 3988 3989 3990 3991 3992 3993 3994 3995 3996 3997 3998 3999 4000 4001 4002 4003 4004 4005 4006


def gaussian_nll_loss(
    input,
    label,
    variance,
    full=False,
    epsilon=1e-6,
    reduction='mean',
    name=None,
):
    r"""Gaussian negative log likelihood loss.

    Gaussian negative log likelihood loss among ``input``, ``variance`` and
    ``label``. Note that the ``label`` is treated as samples from Gaussian distributions.
    This function is used to train a neural network predicts
    the ``input`` and ``variance`` of a gaussian distribution that ``label`` are supposed to
    be coming from. This means ``input`` and ``variance`` should be functions(the neural network) of some inputs.

    For a ``label`` having Gaussian distribution with ``input`` and ``variance`` predicted by neural network
    the loss is calculated as follows:

    .. math::
        \text{loss} = \frac{1}{2}\left(\log\left(\text{max}\left(\text{var},
        \ \text{epsilon}\right)\right) + \frac{\left(\text{input} - \text{label}\right)^2}
        {\text{max}\left(\text{var}, \ \text{epsilon}\right)}\right) + \text{const.}

    where :attr:`epsilon` is used for stability. By default, the constant term of
    the loss function is omitted unless :attr:`full` is ``True``. If ``variance`` is not the same
    size as ``input`` (due to a homoscedastic assumption), it must either have a final dimension
    of 1 or have one fewer dimension (with all other sizes being the same) for correct broadcasting.

    Args:
        input (Tensor): input tensor, :math:`(N, *)` or :math:`(*)` where :math:`*` means any number of additional
            dimensions. Expectation of the Gaussian distribution, available dtype is float32, float64.
        label (Tensor): target label tensor, :math:`(N, *)` or :math:`(*)`, same shape as the input, or same shape as the input
            but with one dimension equal to 1 (to allow for broadcasting). Sample from the Gaussian distribution, available dtype is float32, float64.
        variance (Tensor): tensor of positive variance(s), :math:`(N, *)` or :math:`(*)`, same shape as the input, or same shape as the input but
            with one dimension equal to 1, or same shape as the input but with one fewer
            dimension (to allow for broadcasting). One for each of the expectations
            in the input (heteroscedastic), or a single one (homoscedastic), available dtype is float32, float64.
        full (bool, optional): include the constant term in the loss
            calculation. Default: ``False``.
        epsilon (float, optional): value used to clamp ``variance`` (see note below), for
            stability. Default: 1e-6.
        reduction (str, optional): specifies the reduction to apply to the
            output:``'none'`` | ``'mean'`` | ``'sum'``. ``'none'``: no reduction
            will be applied, ``'mean'``: the output is the average of all batch
            member losses, ``'sum'``: the output is the sum of all batch member
            losses. Default: ``'mean'``.
        name (str, optional): Name for the operation (optional, default is None). For more information, please refer to :ref:`api_guide_Name`.

    Returns:

4007
        output (Tensor): If ``reduction`` is ``'none'``, the shape of output is same as ``input`` , else the shape of output is [].
Z
Zman 已提交
4008 4009 4010 4011 4012 4013 4014 4015 4016 4017 4018 4019 4020 4021 4022 4023 4024 4025 4026 4027 4028 4029 4030 4031 4032 4033 4034 4035 4036 4037 4038 4039 4040 4041 4042 4043 4044 4045 4046 4047 4048 4049 4050 4051 4052 4053 4054 4055 4056 4057 4058 4059 4060 4061 4062 4063 4064 4065 4066 4067 4068 4069 4070 4071 4072 4073 4074 4075 4076 4077 4078 4079 4080 4081 4082 4083 4084 4085 4086 4087 4088 4089 4090 4091 4092 4093 4094 4095 4096 4097 4098 4099 4100 4101 4102 4103 4104 4105 4106 4107 4108 4109 4110 4111 4112

    Examples::
        .. code-block:: python

            import paddle
            import paddle.nn.functional as F

            input = paddle.randn([5, 2], dtype=paddle.float32)
            label = paddle.randn([5, 2], dtype=paddle.float32)
            variance = paddle.ones([5, 2], dtype=paddle.float32)

            loss = F.gaussian_nll_loss(input, label, variance, reduction='none')
            print(loss)

            loss = F.gaussian_nll_loss(input, label, variance, reduction='mean')
            print(loss)

    Note:
        The clamping of ``variance`` is ignored with respect to autograd, and so the
        gradients are unaffected by it.
    """

    # Check variance shape
    # If variance.shape == input.shape, the case is heteroscedastic and no further checks are needed.
    # Otherwise:
    if variance.shape != input.shape:
        # If variance is one dimension short of input, but the shape match otherwise, then this is a homoscedastic case.
        # e.g. input.shape = (10, 2, 3), variance.shape = (10, 2)
        # -> unsqueeze variance so that variance.shape = (10, 2, 1)
        # this is done so that broadcasting can happen in the loss calculation
        if input.shape[:-1] == variance.shape:
            variance = paddle.unsqueeze(variance, -1)
        # This checks if the shape match up to the final dimension, and the final dimension of variance is of shape 1.
        # This is also a homoscedastic case.
        # e.g. input.shape = (10, 2, 3), variance.shape = (10, 2, 1)
        elif (
            input.shape[:-1] == variance.shape[:-1] and variance.shape[-1] == 1
        ):  # Heteroscedastic case
            pass
        # If none of the above pass, then the shape of variance is incorrect.
        else:
            raise ValueError("variance is of incorrect shape")

    # Check validity of reduction mode
    if reduction != 'none' and reduction != 'mean' and reduction != 'sum':
        raise ValueError(reduction + " is not valid")

    check_variable_and_dtype(
        input,
        'Input',
        ['float32', 'float64'],
        'gaussian_nll_loss',
    )
    check_variable_and_dtype(
        label,
        'Label',
        ['float32', 'float64'],
        'gaussian_nll_loss',
    )
    check_variable_and_dtype(
        variance,
        'Variance',
        ['float32', 'float64'],
        'gaussian_nll_loss',
    )
    # Entries of variance must be non-negative
    if not in_dygraph_mode():
        condition = paddle.all(variance > 0)
        Assert(condition, [variance], 6)
    else:
        if input.dtype not in [paddle.float32, paddle.float64]:
            raise ValueError(
                "The data type of input Variable must be 'float32' or 'float64'"
            )
        if label.dtype not in [
            paddle.float32,
            paddle.float64,
        ]:
            raise ValueError(
                "The data type of label Variable must be 'float32', 'float64'"
            )
        if variance.dtype not in [paddle.float32, paddle.float64]:
            raise ValueError(
                "The data type of variance Variable must be 'float32', 'float64'"
            )
        if paddle.any(variance < 0):
            raise ValueError("variance has negative entry/entries")

    # Clamp for stability
    variance = variance.clone()
    with paddle.no_grad():
        variance = paddle.clip(variance, min=epsilon)
    # Calculate the loss
    loss = 0.5 * (
        paddle.log(variance) + paddle.square(input - label) / variance
    )
    if full:
        loss += 0.5 * math.log(2 * math.pi)

    if reduction == 'mean':
        return paddle.mean(loss, name=name)
    elif reduction == 'sum':
        return paddle.sum(loss, name=name)
    elif reduction == 'none':
        return loss