loss.py 142.7 KB
Newer Older
1
# -*- coding: utf-8 -*
2 3 4 5 6 7 8 9 10 11 12 13 14 15
#   Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

16
import paddle
17
from ...fluid.data_feeder import check_variable_and_dtype
18

19
# TODO: define loss functions of neural network
20
import numpy as np
21 22 23
import paddle
import paddle.fluid as fluid
from ...fluid.layers.nn import _elementwise_op_in_dygraph
24
from ...tensor.manipulation import reshape
25
from ...fluid.layer_helper import LayerHelper
26
from ...fluid.framework import _varbase_creator
27
from ...static import Variable
28
from paddle.utils import deprecated
W
wanghuancoder 已提交
29
from paddle import _C_ops
Z
zhiboniu 已提交
30
from paddle import in_dynamic_mode
Y
yangguohao 已提交
31
from paddle.framework import core, _non_static_mode
32
from ...fluid.framework import _in_legacy_dygraph, in_dygraph_mode, _non_static_mode, _current_expected_place
33

34 35
__all__ = []

36

37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82
def dice_loss(input, label, epsilon=0.00001, name=None):
    r"""

    Dice loss for comparing the similarity between the input predictions and the label.
    This implementation is for binary classification, where the input is sigmoid
    predictions of each pixel, usually used for segmentation task. The dice loss can
    be defined as the following equation:

    .. math::

        dice\_loss &= 1 - \frac{2 * intersection\_area}{total\_area} \\
                  &= \frac{(total\_area - intersection\_area) - intersection\_area}{total\_area} \\
                  &= \frac{(union\_area - intersection\_area)}{total\_area}


    Parameters:
        input (Tensor): Tensor, rank>=2, shape is :math:`[N_1, N_2, ..., N_k, D]`, where :math:`N_1` is
                          the batch_size, :math:`D` is the number of categories. It is usually the output
                          predictions of sigmoid activation. The data type can be float32 or float64.
        label (Tensor): Tensor, the groud truth with the same rank as input, shape is :math:`[N_1, N_2, ..., N_k, 1]`.
                          where :math:`N_1` is the batch_size. The data type can be int32 or int64.
        epsilon (float): The epsilon will be added to the numerator and denominator.
                         If both input and label are empty, it makes sure dice is 1.
                         Default: 0.00001
        name(str, optional): The default value is None.
                             Normally there is no need for user to set this property.
                             For more information, please refer to :ref:`api_guide_Name`

    Returns:
        Tensor, which shape is [1], data type is the same as `input` .

    Example:
        .. code-block:: python

            import paddle
            import paddle.nn.functional as F

            x = paddle.randn((3,224,224,2))
            label = paddle.randint(high=2, shape=(3,224,224,1))
            predictions = F.softmax(x)
            loss = F.dice_loss(input=predictions, label=label)
    """
    assert input.dtype in (paddle.float32, paddle.float64)
    assert label.dtype in (paddle.int32, paddle.int64)
    assert len(input.shape) >= 2, \
        "The rank of input should be greater than or equal to 2."
83 84 85 86
    assert len(input.shape) == len(
        label.shape), ("The rank of input and label should be equal, "
                       "but received input: %d, label: %d." %
                       (len(input.shape), len(label.shape)))
87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149
    assert label.shape[-1] == 1, ("The last dimension of label should be 1, "
                                  "but received %d." % label.shape[-1])
    assert input.shape[:-1] == label.shape[:-1], (
        "All dimensions should be equal except the last one.")
    assert input.numel() > 0 and label.numel() > 0, \
        "Any dimension of input and label cannot be equal to 0."

    label = paddle.squeeze(label, [-1])
    label = paddle.nn.functional.one_hot(label, input.shape[-1])
    reduce_dim = list(range(1, len(input.shape)))
    inse = paddle.sum(input * label, axis=reduce_dim)
    dice_denominator = paddle.sum(input, axis=reduce_dim) + paddle.sum(
        label, axis=reduce_dim)
    dice_score = 1 - inse * 2 / (dice_denominator + epsilon)
    return paddle.mean(dice_score)


def log_loss(input, label, epsilon=1e-4, name=None):
    r"""

    **Negative Log Loss Layer**

    This layer accepts input predictions and target label and returns the
    negative log loss.

    .. math::

        Out = -label * \log{(input + \epsilon)}
              - (1 - label) * \log{(1 - input + \epsilon)}

    Args:
        input (Tensor|list):  A 2-D tensor with shape [N x 1], where N is the
                                batch size. This input is a probability computed
                                by the previous operator. Data type float32.
        label (Tensor|list):  The ground truth which is a 2-D tensor with
                                shape [N x 1], where N is the batch size.
                                Data type float32.
        epsilon (float, optional): A small number for numerical stability. Default 1e-4.
        name(str|None): For detailed information, please refer to
            :ref:`api_guide_Name` . Usually name is no need to set and None by default.

    Returns:
        Tensor, which shape is [N x 1], data type is float32.

    Examples:
        .. code-block:: python

          import paddle
          import paddle.nn.functional as F

          label = paddle.randn((10,1))
          prob = paddle.randn((10,1))
          cost = F.log_loss(input=prob, label=label)
    """
    if in_dygraph_mode():
        return _C_ops.final_state_log_loss(input, label, epsilon)

    helper = LayerHelper('log_loss', **locals())
    check_variable_and_dtype(input, 'input', ['float32'], 'log_loss')
    check_variable_and_dtype(label, 'label', ['float32'], 'log_loss')

    loss = helper.create_variable_for_type_inference(dtype=input.dtype)

150 151 152 153 154 155 156
    helper.append_op(type='log_loss',
                     inputs={
                         'Predicted': [input],
                         'Labels': [label]
                     },
                     outputs={'Loss': [loss]},
                     attrs={'epsilon': epsilon})
157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295
    return loss


def fluid_softmax_with_cross_entropy(logits,
                                     label,
                                     soft_label=False,
                                     ignore_index=-100,
                                     numeric_stable_mode=True,
                                     return_softmax=False,
                                     axis=-1):
    r"""

    This operator implements the cross entropy loss function with softmax. This function 
    combines the calculation of the softmax operation and the cross entropy loss function 
    to provide a more numerically stable gradient.

    Because this operator performs a softmax on logits internally, it expects
    unscaled logits. This operator should not be used with the output of
    softmax operator since that would produce incorrect results.

    When the attribute :attr:`soft_label` is set :attr:`False`, this operators 
    expects mutually exclusive hard labels, each sample in a batch is in exactly 
    one class with a probability of 1.0. Each sample in the batch will have a 
    single label.

    The equation is as follows:

    1) Hard label (one-hot label, so every sample has exactly one class)

    .. math::

        loss_j =  -\\text{logits}_{label_j} +
        \\log\\left(\\sum_{i=0}^{K}\\exp(\\text{logits}_i)\\right), j = 1,..., K

    2) Soft label (each sample can have a distribution over all classes)

    .. math::

        loss_j =  -\\sum_{i=0}^{K}\\text{label}_i
        \\left(\\text{logits}_i - \\log\\left(\\sum_{i=0}^{K}
        \\exp(\\text{logits}_i)\\right)\\right), j = 1,...,K

    3) If :attr:`numeric_stable_mode` is :attr:`True`, softmax is calculated first by:

    .. math::

        max_j &= \\max_{i=0}^{K}{\\text{logits}_i}

        log\\_max\\_sum_j &= \\log\\sum_{i=0}^{K}\\exp(logits_i - max_j)

        softmax_j &= \\exp(logits_j - max_j - {log\\_max\\_sum}_j)

    and then cross entropy loss is calculated by softmax and label.

    Args:
        logits (Tensor): A multi-dimension ``Tensor`` , and the data type is float32 or float64. The input tensor of unscaled log probabilities.
        label (Tensor): The ground truth  ``Tensor`` , data type is the same
            as the ``logits`` . If :attr:`soft_label` is set to :attr:`True`, 
            Label is a ``Tensor``  in the same shape with :attr:`logits`. 
            If :attr:`soft_label` is set to :attr:`True`, Label is a ``Tensor`` 
            in the same shape with :attr:`logits` expect shape in dimension :attr:`axis` as 1.
        soft_label (bool, optional): A flag to indicate whether to interpretant the given
            labels as soft labels. Default False.
        ignore_index (int, optional): Specifies a target value that is ignored and does
                                      not contribute to the input gradient. Only valid
                                      if :attr:`soft_label` is set to :attr:`False`. 
                                      Default: kIgnoreIndex(-100).
        numeric_stable_mode (bool, optional): A flag to indicate whether to use a more
                                              numerically stable algorithm. Only valid
                                              when :attr:`soft_label` is :attr:`False` 
                                              and GPU is used. When :attr:`soft_label` 
                                              is :attr:`True` or CPU is used, the 
                                              algorithm is always numerically stable.
                                              Note that the speed may be slower when use
                                              stable algorithm. Default: True.
        return_softmax (bool, optional): A flag indicating whether to return the softmax
                                         along with the cross entropy loss. Default: False.
        axis (int, optional): The index of dimension to perform softmax calculations. It 
                              should be in range :math:`[-1, rank - 1]`, while :math:`rank`
                              is the rank of input :attr:`logits`. Default: -1.

    Returns:
        ``Tensor`` or Tuple of two ``Tensor`` : Return the cross entropy loss if \
                                                    `return_softmax` is False, otherwise the tuple \
                                                    (loss, softmax), softmax is in the same shape \
                                                    with input logits and cross entropy loss is in \
                                                    the same shape with input logits except shape \
                                                    in dimension :attr:`axis` as 1.

    Examples:
        .. code-block:: python

            import paddle
            import numpy as np

            data = np.random.rand(128).astype("float32")
            label = np.random.rand(1).astype("int64")
            data = paddle.to_tensor(data)
            label = paddle.to_tensor(label)
            linear = paddle.nn.Linear(128, 100)
            x = linear(data)
            out = paddle.nn.functional.softmax_with_cross_entropy(logits=x, label=label)
            print(out)
    """
    if _non_static_mode():
        if core.is_compiled_with_npu():
            softmax, backprop, loss = _C_ops.softmax_with_cross_entropy(
                logits, label, 'soft_label', soft_label, 'ignore_index',
                ignore_index, 'numeric_stable_mode', numeric_stable_mode,
                'axis', axis)
        else:
            if in_dygraph_mode():
                softmax, loss = _C_ops.final_state_cross_entropy_with_softmax(
                    logits, label, soft_label, True, numeric_stable_mode,
                    ignore_index, axis)
            if _in_legacy_dygraph():
                softmax, loss = _C_ops.softmax_with_cross_entropy(
                    logits, label, 'soft_label', soft_label, 'ignore_index',
                    ignore_index, 'numeric_stable_mode', numeric_stable_mode,
                    'axis', axis)
        if not return_softmax:
            return loss
        else:
            return loss, softmax

    attrs = {
        'soft_label': soft_label,
        'ignore_index': ignore_index,
        'numeric_stable_mode': numeric_stable_mode,
        'axis': axis
    }
    helper = LayerHelper('softmax_with_cross_entropy', **locals())
    softmax = helper.create_variable_for_type_inference(dtype=logits.dtype)
    loss = helper.create_variable_for_type_inference(dtype=logits.dtype)

    outputs = {'Softmax': softmax, 'Loss': loss}
    if core.is_compiled_with_npu() or core.is_compiled_with_mlu():
        backprop = helper.create_variable_for_type_inference(dtype=logits.dtype)
        outputs['Backprop'] = backprop
296 297 298 299 300 301 302
    helper.append_op(type='softmax_with_cross_entropy',
                     inputs={
                         'Logits': logits,
                         'Label': label
                     },
                     outputs=outputs,
                     attrs=attrs)
303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359

    if return_softmax:
        return loss, softmax

    return loss


def npair_loss(anchor, positive, labels, l2_reg=0.002):
    """ 
  
    Npair loss requires paired data. Npair loss has two parts: the first part is L2
    regularizer on the embedding vector; the second part is cross entropy loss which
    takes the similarity matrix of anchor and positive as logits.
  
    For more information, please refer to:
    `Improved Deep Metric Learning with Multi class N pair Loss Objective <http://www.nec-labs.com/uploads/images/Department-Images/MediaAnalytics/papers/nips16_npairmetriclearning.pdf>`_
  
    Args:
      anchor(Tensor): embedding vector for the anchor image. shape=[batch_size, embedding_dims], 
                        the data type is float32 or float64.
      positive(Tensor): embedding vector for the positive image. shape=[batch_size, embedding_dims], 
                        the data type is float32 or float64.
      labels(Tensor): 1-D tensor. shape=[batch_size], the data type is float32 or float64 or int64.
      l2_reg(float32): L2 regularization term on embedding vector, default: 0.002.

  
    Returns:
      A Tensor representing the npair loss, the data type is the same as anchor, the shape is [1].
  
    Examples:

      .. code-block:: python
  
          import paddle
          
          DATATYPE = "float32"
  
          anchor = paddle.rand(shape=(18, 6), dtype=DATATYPE)
          positive = paddle.rand(shape=(18, 6), dtype=DATATYPE)
          labels = paddle.rand(shape=(18,), dtype=DATATYPE)
          
          npair_loss = paddle.nn.functional.npair_loss(anchor, positive, labels, l2_reg = 0.002)
          print(npair_loss)
  
    """
    check_variable_and_dtype(anchor, 'anchor', ['float32', 'float64'],
                             'npair_loss')
    check_variable_and_dtype(positive, 'positive', ['float32', 'float64'],
                             'positive')
    check_variable_and_dtype(labels, 'labels', ['float32', 'float64', 'int64'],
                             'labels')
    Beta = 0.25
    batch_size = labels.shape[0]

    labels = paddle.reshape(labels, shape=[batch_size, 1])
    labels = paddle.tile(labels, repeat_times=[1, batch_size])

360 361 362
    labels = paddle.equal(labels, paddle.transpose(labels,
                                                   perm=[1,
                                                         0])).astype('float32')
363 364 365 366 367 368
    labels = labels / paddle.sum(labels, axis=1, keepdim=True)

    l2loss = paddle.mean(paddle.sum(paddle.square(anchor), 1)) \
             + paddle.mean(paddle.sum(paddle.square(positive), 1))
    l2loss = l2loss * Beta * l2_reg

369 370 371 372 373 374 375
    similarity_matrix = paddle.matmul(anchor,
                                      positive,
                                      transpose_x=False,
                                      transpose_y=True)
    softmax_ce = fluid_softmax_with_cross_entropy(logits=similarity_matrix,
                                                  label=labels,
                                                  soft_label=True)
376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398
    cross_entropy = paddle.sum(labels * softmax_ce, 0)
    celoss = paddle.mean(cross_entropy)

    return l2loss + celoss


def square_error_cost(input, label):
    r"""

    This op accepts input predictions and target label and returns the
    squared error cost.

    For predictions label, and target label, the equation is:

    .. math::

        Out = (input - label)^2

    Parameters:
        input (Tensor): Input tensor, the data type should be float32.
        label (Tensor): Label tensor, the data type should be float32.

    Returns:
399 400
        Tensor, The tensor storing the element-wise squared error
        difference between input and label.
401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424

    Examples:

        .. code-block:: python

            import paddle
            input = paddle.to_tensor([1.1, 1.9])
            label = paddle.to_tensor([1.0, 2.0])
            output = paddle.nn.functional.square_error_cost(input, label)
            print(output)
            # [0.01, 0.01]

    """
    if _non_static_mode():
        minus_out = _C_ops.elementwise_sub(input, label)
        square_out = _C_ops.square(minus_out)
        return square_out

    check_variable_and_dtype(input, "input", ['float32', 'float64'],
                             'square_error_cost')
    check_variable_and_dtype(label, "label", ['float32', 'float64'],
                             'square_error_cost')
    helper = LayerHelper('square_error_cost', **locals())
    minus_out = helper.create_variable_for_type_inference(dtype=input.dtype)
425 426 427 428 429 430
    helper.append_op(type='elementwise_sub',
                     inputs={
                         'X': [input],
                         'Y': [label]
                     },
                     outputs={'Out': [minus_out]})
431 432

    square_out = helper.create_variable_for_type_inference(dtype=input.dtype)
433 434 435
    helper.append_op(type='square',
                     inputs={'X': [minus_out]},
                     outputs={'Out': [square_out]})
436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520
    return square_out


def edit_distance(input,
                  label,
                  normalized=True,
                  ignored_tokens=None,
                  input_length=None,
                  label_length=None):
    """
    This op computes the edit distances, also called Levenshtein distance, between a batch of
    hypothesis strings and their references. It measures how dissimilar two strings are by counting
    the minimum number of operations to transform one string into another.
    The operations include insertion, deletion, and substitution.

    For example, given hypothesis string A = "kitten" and reference
    B = "sitting", A will be transformed into B
    at least after two substitutions and one insertion:

    "kitten" -> "sitten" -> "sittin" -> "sitting"

    So the edit distance between A and B is 3.

    The input is a Tensor, the input_length and label_length should be supported.

    The `batch_size` of labels should be same as `input`.

    The output include the edit distance value between every pair of input and related label, and the number of sequence.
    If Attr(normalized) is true,
    the edit distance value will be divided by the length of label.

    Parameters:
        input(Tensor): The input tensor, its rank should be equal to 2 and its data type should be int64.
        label(Tensor): The label tensor, its rank should be equal to 2 and its data type should be int64.
        normalized(bool, default True): Indicated whether to normalize the edit distance.
        ignored_tokens(list<int>, default None): Tokens that will be removed before
                                     calculating edit distance.
        input_length(Tensor): The length for each sequence in `input` if it's of Tensor type, it should have shape `(batch_size, )` and its data type should be int64.
        label_length(Tensor): The length for each sequence in `label` if it's of Tensor type, it should have shape `(batch_size, )` and its data type should be int64.
        NOTE: To be avoid unexpected result, the value of every elements in input_length and label_length should be equal to the value of the second dimension of input and label. For example, The input: [[1,2,3,4],[5,6,7,8],[9,10,11,12]], the shape of input is [3,4] and the input_length should be [4,4,4]
        NOTE: This Api is different from fluid.metrics.EditDistance

    Returns:
	Tuple:

        distance(Tensor): edit distance result, its data type is float32, and its shape is (batch_size, 1).
        sequence_num(Tensor): sequence number, its data type is float32, and its shape is (1,).

    Examples:
        .. code-block:: python

            import paddle
            import paddle.nn.functional as F

            input = paddle.to_tensor([[1,2,3],[4,5,6],[4,4,4],[1,1,1]], dtype='int64')
            label = paddle.to_tensor([[1,3,4,1],[4,5,8,1],[7,7,7,1],[1,1,1,1]], dtype='int64')
            input_len = paddle.to_tensor([3,3,3,3], dtype='int64')
            label_len = paddle.to_tensor([4,4,4,4], dtype='int64')

            distance, sequence_num = F.loss.edit_distance(input=input, label=label, input_length=input_len, label_length=label_len, normalized=False)

            # print(distance)
            # [[3.]
            #  [2.]
            #  [4.]
            #  [1.]]
            # if set normalized to True
            # [[0.75]
            #  [0.5 ]
            #  [1.  ]
            #  [0.25]
            #
            # print(sequence_num)
            # [4]

    """
    check_variable_and_dtype(input, 'input', ['int64'], 'edit_distance')
    check_variable_and_dtype(label, 'label', ['int64'], 'edit_distance')
    helper = LayerHelper("edit_distance", **locals())

    # remove some tokens from input and labels
    if ignored_tokens is not None and len(ignored_tokens) > 0:
        erased_input = helper.create_variable_for_type_inference(dtype="int64")
        erased_label = helper.create_variable_for_type_inference(dtype="int64")

521 522 523 524
        helper.append_op(type="sequence_erase",
                         inputs={"X": [input]},
                         outputs={"Out": [erased_input]},
                         attrs={"tokens": ignored_tokens})
525 526
        input = erased_input

527 528 529 530
        helper.append_op(type="sequence_erase",
                         inputs={"X": [label]},
                         outputs={"Out": [erased_label]},
                         attrs={"tokens": ignored_tokens})
531 532
        label = erased_label

Z
zhiboniu 已提交
533 534 535 536
    if in_dygraph_mode():
        return _C_ops.final_state_edit_distance(input, label, input_length,
                                                label_length, normalized)

537 538 539 540 541 542 543 544
    this_inputs = {"Hyps": [input], "Refs": [label]}
    if input_length is not None and label_length is not None:
        this_inputs['HypsLength'] = [input_length]
        this_inputs['RefsLength'] = [label_length]

    # edit distance op
    edit_distance_out = helper.create_variable_for_type_inference(dtype="int64")
    sequence_num = helper.create_variable_for_type_inference(dtype="int64")
545 546 547 548 549 550 551
    helper.append_op(type="edit_distance",
                     inputs=this_inputs,
                     outputs={
                         "Out": [edit_distance_out],
                         "SequenceNum": [sequence_num]
                     },
                     attrs={"normalized": normalized})
552 553 554 555

    return edit_distance_out, sequence_num


556 557 558 559
def binary_cross_entropy(input,
                         label,
                         weight=None,
                         reduction='mean',
560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618
                         name=None):
    """
    This op measures the binary_cross_entropy loss between input predictions ``input``
    and target labels ``label`` . The binary_cross_entropy loss can be described as:

    If :attr:`weight` is set, the loss is:

    .. math::
        Out = -1 * weight * (label * log(input) + (1 - label) * log(1 - input))

    If :attr:`weight` is None, the loss is:

    .. math::
        Out = -1 * (label * log(input) + (1 - label) * log(1 - input))

    If :attr:`reduction` set to ``'none'``, the interface will return the original loss `Out`.

    If :attr:`reduction` set to ``'mean'``, the reduced mean loss is:

    .. math::
        Out = MEAN(Out)

    If :attr:`reduction` set to ``'sum'``, the reduced sum loss is:

    .. math::
        Out = SUM(Out)

    Note that the input predictions ``input`` always be the output of sigmoid, and the target labels ``label``
    should be numbers between 0 and 1.

    Parameters:
        input (Tensor): The input predications tensor. 2-D tensor with shape: [N, *],
            N is batch_size, `*` means number of additional dimensions. The ``input``
            should always be the output of sigmod.  Available dtype is float32, float64.
        label (Tensor): The target labels tensor. 2-D tensor with the same shape as
            ``input``. The target labels which values should be numbers between 0 and 1.
            Available dtype is float32, float64.
        weight (Tensor, optional): A manual rescaling weight given to the loss of each
            batch element. If given, has to be a Tensor of size nbatch and the data type
            is float32, float64. Default is ``'None'``.
        reduction (str, optional): Indicate how to average the loss by batch_size,
            the candicates are ``'none'`` | ``'mean'`` | ``'sum'``.
            If :attr:`reduction` is ``'none'``, the unreduced loss is returned;
            If :attr:`reduction` is ``'mean'``, the reduced mean loss is returned;
            If :attr:`reduction` is ``'sum'``, the summed loss is returned.
            Default is ``'mean'``.
        name (str, optional): Name for the operation (optional, default is None).
            For more information, please refer to :ref:`api_guide_Name`.


    Returns:
        output (Tensor): If ``reduction`` is ``'none'``, the shape of output is
            same as ``input`` , else the shape of output is scalar.

    Examples:
        .. code-block:: python

            import paddle

619 620
            input = paddle.to_tensor([0.5, 0.6, 0.7], 'float32')
            label = paddle.to_tensor([1.0, 0.0, 1.0], 'float32')
621
            output = paddle.nn.functional.binary_cross_entropy(input, label)
N
Noel 已提交
622
            print(output)  # [0.65537095]
623 624 625 626 627 628 629 630

    """
    if reduction not in ['sum', 'mean', 'none']:
        raise ValueError(
            "The value of 'reduction' in binary_cross_entropy should be 'sum', "
            "'mean' or 'none', but received %s, which is not allowed." %
            reduction)

J
Jiabin Yang 已提交
631 632
    if in_dygraph_mode():
        out = _C_ops.final_state_bce_loss(input, label)
633
        if weight is not None:
634
            out = _C_ops.final_state_multiply(out, weight, 'axis', -1)
635 636

        if reduction == 'sum':
W
wanghuancoder 已提交
637 638
            return _C_ops.reduce_sum(out, 'dim', [0], 'keep_dim', False,
                                     "reduce_all", True)
639
        elif reduction == 'mean':
640
            return _C_ops.final_state_mean_all(out)
641 642 643
        else:
            return out
    else:
J
Jiabin Yang 已提交
644 645 646 647 648 649 650 651 652 653 654 655
        if _in_legacy_dygraph():
            out = _C_ops.bce_loss(input, label)
            if weight is not None:
                out = _C_ops.elementwise_mul(out, weight, 'axis', -1)
            if reduction == 'sum':
                return _C_ops.reduce_sum(out, 'dim', [0], 'keep_dim', False,
                                         "reduce_all", True)
            elif reduction == 'mean':
                return _C_ops.mean(out)
            else:
                return out
        else:
656 657 658 659
            check_variable_and_dtype(input, 'input', ['float32', 'float64'],
                                     'binary_cross_entropy')
            check_variable_and_dtype(label, 'label', ['float32', 'float64'],
                                     'binary_cross_entropy')
J
Jiabin Yang 已提交
660 661 662 663

            sub_name = name if weight is None and reduction == 'none' else None
            helper = LayerHelper("binary_cross_entropy", name=sub_name)
            out = helper.create_variable_for_type_inference(dtype=input.dtype)
664 665 666 667 668 669
            helper.append_op(type='bce_loss',
                             inputs={
                                 'X': [input],
                                 'Label': [label],
                             },
                             outputs={'Out': [out]})
J
Jiabin Yang 已提交
670 671 672 673 674 675 676 677 678 679 680 681 682 683 684

            if weight is not None:
                if isinstance(weight, paddle.static.Variable):
                    weight_name = name if reduction == 'none' else None
                    out = paddle.multiply(out, weight, name=weight_name)
                else:
                    raise ValueError(
                        "The weight is not a Tensor, please convert to Tensor.")

            if reduction == 'sum':
                return paddle.sum(out, name=name)
            elif reduction == 'mean':
                return paddle.mean(out, name=name)
            else:
                return out
685 686


687 688 689 690 691 692
def binary_cross_entropy_with_logits(logit,
                                     label,
                                     weight=None,
                                     reduction='mean',
                                     pos_weight=None,
                                     name=None):
693
    r"""
694 695 696 697 698 699 700 701 702 703 704 705 706
    This operator combines the sigmoid layer and the :ref:`api_nn_loss_BCELoss` layer.
    Also, we can see it as the combine of ``sigmoid_cross_entropy_with_logits``
    layer and some reduce operations.

    This measures the element-wise probability error in classification tasks
    in which each class is independent.
    This can be thought of as predicting labels for a data-point, where labels
    are not mutually exclusive. For example, a news article can be about
    politics, technology or sports at the same time or none of these.

    First this operator calculate loss function as follows:

    .. math::
707
           Out = -Labels * \log(\sigma(Logit)) - (1 - Labels) * \log(1 - \sigma(Logit))
708

709
    We know that :math:`\sigma(Logit) = \frac{1}{1 + e^{-Logit}}`. By substituting this we get:
710 711

    .. math::
712
           Out = Logit - Logit * Labels + \log(1 + e^{-Logit})
713

N
Noel 已提交
714
    For stability and to prevent overflow of :math:`e^{-Logit}` when Logit < 0,
715 716 717
    we reformulate the loss as follows:

    .. math::
718
           Out = \max(Logit, 0) - Logit * Labels + \log(1 + e^{-\|Logit\|})
719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762

    Then, if ``weight`` or ``pos_weight`` is not None, this operator multiply the
    weight tensor on the loss `Out`. The ``weight`` tensor will attach different
    weight on every items in the batch. The ``pos_weight`` will attach different
    weight on the positive label of each class.

    Finally, this operator applies reduce operation on the loss.
    If :attr:`reduction` set to ``'none'``, the operator will return the original loss `Out`.
    If :attr:`reduction` set to ``'mean'``, the reduced mean loss is :math:`Out = MEAN(Out)`.
    If :attr:`reduction` set to ``'sum'``, the reduced sum loss is :math:`Out = SUM(Out)`.

    Note that the target labels ``label`` should be numbers between 0 and 1.

    Args:
        logit (Tensor): The input predications tensor. 2-D tensor with shape: [N, *],
            N is batch_size, `*` means number of additional dimensions. The ``logit``
            is usually the output of Linear layer. Available dtype is float32, float64.
        label (Tensor): The target labels tensor. 2-D tensor with the same shape as
            ``logit``. The target labels which values should be numbers between 0 and 1.
            Available dtype is float32, float64.
        weight (Tensor, optional): A manual rescaling weight given to the loss of each
            batch element. If given, it has to be a 1D Tensor whose size is `[N, ]`,
            The data type is float32, float64. Default is ``'None'``.
        reduction (str, optional): Indicate how to average the loss by batch_size,
            the candicates are ``'none'`` | ``'mean'`` | ``'sum'``.
            If :attr:`reduction` is ``'none'``, the unreduced loss is returned;
            If :attr:`reduction` is ``'mean'``, the reduced mean loss is returned;
            If :attr:`reduction` is ``'sum'``, the summed loss is returned.
            Default is ``'mean'``.
        pos_weight (Tensor, optional): A weight of positive examples. Must be a vector
            with length equal to the number of classes. The data type is float32, float64.
            Default is ``'None'``.
        name (str, optional): Name for the operation (optional, default is None).
            For more information, please refer to :ref:`api_guide_Name`.

    Returns:
        output (Tensor): If ``reduction`` is ``'none'``, the shape of output is
            same as ``logit`` , else the shape of output is scalar.

    Examples:

        .. code-block:: python

            import paddle
N
Noel 已提交
763

764 765
            logit = paddle.to_tensor([5.0, 1.0, 3.0])
            label = paddle.to_tensor([1.0, 0.0, 1.0])
766
            output = paddle.nn.functional.binary_cross_entropy_with_logits(logit, label)
N
Noel 已提交
767
            print(output)  # [0.45618808]
768 769 770 771 772 773 774 775

    """
    if reduction not in ['sum', 'mean', 'none']:
        raise ValueError(
            "The value of 'reduction' in binary_cross_entropy_with_logits "
            "should be 'sum', 'mean' or 'none', but received %s, which is not allowed."
            % reduction)

H
hong 已提交
776 777
    if _non_static_mode():
        if in_dygraph_mode():
778 779
            one = _C_ops.final_state_full([1], float(1.0),
                                          core.VarDesc.VarType.FP32,
780
                                          _current_expected_place())
H
hong 已提交
781 782 783
            out = _C_ops.final_state_sigmoid_cross_entropy_with_logits(
                logit, label, False, -100)
        else:
784
            one = _varbase_creator(dtype=logit.dtype)
785 786 787
            _C_ops.fill_constant(one, 'value', float(1.0), 'force_cpu', False,
                                 'dtype', one.dtype, 'str_value', '1.0',
                                 'shape', [1])
H
hong 已提交
788
            out = _C_ops.sigmoid_cross_entropy_with_logits(logit, label)
789
        if pos_weight is not None:
W
wanghuancoder 已提交
790 791 792 793 794
            log_weight = _C_ops.elementwise_add(
                _C_ops.elementwise_mul(label,
                                       _C_ops.elementwise_sub(pos_weight, one)),
                one)
            out = _C_ops.elementwise_mul(out, log_weight)
795
        if weight is not None:
W
wanghuancoder 已提交
796
            out = _C_ops.elementwise_mul(out, weight)
797 798

        if reduction == "sum":
W
wanghuancoder 已提交
799
            return _C_ops.reduce_sum(out, 'reduce_all', True)
800
        elif reduction == "mean":
W
wanghuancoder 已提交
801
            return _C_ops.mean(out)
802 803 804
        else:
            return out

805 806 807 808
    check_variable_and_dtype(logit, 'logit', ['float32', 'float64'],
                             'binary_cross_entropy_with_logits')
    check_variable_and_dtype(label, 'label', ['float32', 'float64'],
                             'binary_cross_entropy_with_logits')
809 810 811 812
    sigmoid_name = None
    if reduction == 'none' and pos_weight is None and weight is None:
        sigmoid_name = name

813
    out = paddle.fluid.layers.sigmoid_cross_entropy_with_logits(
814 815
        logit, label, name=sigmoid_name)

Z
zhiboniu 已提交
816
    one = paddle.full(shape=[1], fill_value=1.0, dtype=logit.dtype)
817
    if pos_weight is not None:
818 819 820
        check_variable_and_dtype(pos_weight, 'pos_weight',
                                 ['float32', 'float64'],
                                 'binary_cross_entropy_with_logits')
821
        log_weight = paddle.add(
822
            paddle.multiply(label, paddle.subtract(pos_weight, one)), one)
823 824 825 826
        pos_weight_name = name if reduction == 'none' and weight is None else None
        out = paddle.multiply(out, log_weight, name=pos_weight_name)

    if weight is not None:
827 828
        check_variable_and_dtype(weight, 'weight', ['float32', 'float64'],
                                 'binary_cross_entropy_with_logits')
829 830 831 832 833 834 835 836 837 838
        weight_name = name if reduction == 'none' else None
        out = paddle.multiply(out, weight, name=weight_name)

    if reduction == "sum":
        return paddle.sum(out, name=name)
    elif reduction == "mean":
        return paddle.mean(out, name=name)
    return out


839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905
def hsigmoid_loss(input,
                  label,
                  num_classes,
                  weight,
                  bias=None,
                  path_table=None,
                  path_code=None,
                  is_sparse=False,
                  name=None):
    """
    The hierarchical sigmoid organizes the classes into a complete binary tree to reduce the computational complexity
    and speed up the model training, especially the training of language model.
    Each leaf node of the complete binary tree represents a class(word) and each non-leaf node acts as a binary classifier.
    For each class(word), there's a unique path from root to itself, hsigmoid calculate the cost for each non-leaf node on
    the path, and sum them to get a total cost.
    Comparing to softmax, the OP can reduce the computational complexity from :math:`O(N)` to :math:`O(logN)`, where :math:`N`
    represents the number of classes or the size of word dict.

    The OP supports default tree and custom tree. For the default tree, you can refer to `Hierarchical Probabilistic Neural
    Network Language Model <http://www.iro.umontreal.ca/~lisa/pointeurs/hierarchical-nnlm-aistats05.pdf>`_. For the custom
    tree, you need to set :attr:`is_custom` to True, and do the following steps (take the language model as an example):

    1. Using a custom word dict to build a binary tree, each leaf node should be an word in the word dict.
    2. Creating a dict map word_id -> path that from the word to the root node, we call it path_table.
    3. Creating a dict map word_id -> code of path that from the word to the root node, we call it path_code.
       Code means the label of each binary classifier, 1 indicate true, 0 indicate false.
    4. Now, each word should has its path and code along the path, you can pass a batch of path and code related
       to the same batch of inputs.

    Parameters:
        input (Tensor): A tensor with the shape [N, D], where N is the size of mini-batch,
            and D is the feature size. Its data type supports float32 or float64.
        label (Tensor): A tensor contains the labels of training data. Its shape is [N, 1]
            and data type is int64.
        num_classes (int): The number of classes or the size of word dict, must be greater than 2.
            If the default tree is used (path_code and path_table is None are None), `num_classes`
            should not be None. If the custom tree is used (path_code and path_table is None are not None),
            `num_classes` should be the number of non-leaf nodes, which indicates the num of
            classes using by the binary classifier.
        weight (Tensor): A tensor with shape (num_classes - 1, D), with the same data type as `input`.
        bias (Tensor, optional): A tensor with shape (num_classes - 1, 1), with the same data type as `input`.
            If `bias` is None, no bias will be add. Default is None.
        path_table (Tensor, optional): A tensor that stores each batch of samples' path from leaf to root
            node, its shape is [N, L] and data type is int64, where L is the length of path. For each sample i,
            path_table[i] is a np.array like structure and each element in this array is the indexes in parent
            nodes' weight matrix. If `path_table` and `path_code` are None, the default tree will be used.
            Default is None.
        path_code (Tensor, optional): A tensor that stores each batch of samples' code of path from leaf
            to root node, its shape is [N, L] and data type is int64, which is the same as :attr:`path_table`.
            Each code of path is consisted with the code of nodes from leaf to root node. If `path_table` and
            `path_code` are None, the default tree will be used. Default is None.
        is_sparse (bool, optional): Whether use sparse updating instead of dense updating. If `is_sparse` is True,
            the gradient of `weight` and `input` will be sparse. Default is False.
        name (str, optional): Name for the operation (optional, default is None).
            For more information, please refer to :ref:`api_guide_Name`.

    Returns:
        A tensor with the cost of hierarchical sigmoid, its shape is [N, 1] and data type is the same as `input`.

    Examples:
        .. code-block:: python

            import paddle
            import paddle.nn.functional as F

            paddle.set_device('cpu')

L
Linjie Chen 已提交
906 907 908 909 910
            input = paddle.uniform([4, 3])
            # [[0.45424712  -0.77296764  0.82943869] # random
            #  [0.85062802  0.63303483  0.35312140] # random
            #  [0.57170701  0.16627562  0.21588242] # random
            #  [0.27610803  -0.99303514  -0.17114788]] # random
911 912 913
            label = paddle.to_tensor([0, 1, 4, 5])
            num_classes = 5
            weight=paddle.uniform([num_classes-1, 3])
L
Linjie Chen 已提交
914 915 916 917
            # [[-0.64477652  0.24821866  -0.17456549] # random
            #  [-0.04635394  0.07473493  -0.25081766] # random
            #  [ 0.05986035  -0.12185556  0.45153677] # random
            #  [-0.66236806  0.91271877  -0.88088769]] # random
918 919

            out=F.hsigmoid_loss(input, label, num_classes, weight)
L
Linjie Chen 已提交
920 921 922 923
            # [[1.96709502]
            #  [2.40019274]
            #  [2.11009121]
            #  [1.92374969]]
924
    """
925 926 927 928 929
    if in_dygraph_mode():
        out, _, _ = _C_ops.final_state_hierarchical_sigmoid(
            input, weight, label, path_table, path_code, bias, num_classes,
            is_sparse, 0, [], [], [], is_sparse)
        return out
930
    if _non_static_mode():
931 932 933 934 935
        out, _, _ = _C_ops.hierarchical_sigmoid(input, weight, label,
                                                path_table, path_code, bias,
                                                'num_classes', num_classes,
                                                'is_sparse', is_sparse,
                                                'remote_prefetch', is_sparse)
936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972
        return out

    check_variable_and_dtype(input, 'input', ['float32', 'float64'],
                             'hsigmoid_loss')
    check_variable_and_dtype(label, 'label', ['int64'], 'hsigmoid_loss')
    check_variable_and_dtype(weight, 'weight', ['float32', 'float64'],
                             'hsigmoid_loss')
    if bias is not None:
        check_variable_and_dtype(bias, 'bias', ['float32', 'float64'],
                                 'hsigmoid_loss')
    if path_table is not None:
        check_variable_and_dtype(path_table, 'path_table', ['int64'],
                                 'hsigmoid_loss')
    if path_code is not None:
        check_variable_and_dtype(path_code, 'path_code', ['int64'],
                                 'hsigmoid_loss')

    attrs = {
        "num_classes": num_classes,
        "is_sparse": is_sparse,
        "remote_prefetch": is_sparse
    }

    inputs = {
        "X": input,
        "W": weight,
        "Bias": bias,
        "PathTable": path_table,
        "PathCode": path_code,
        "Label": label
    }

    helper = LayerHelper('hsigmoid_loss', **locals())
    out = helper.create_variable_for_type_inference(input.dtype)
    pre_out = helper.create_variable_for_type_inference(input.dtype)
    outputs = {"Out": out, "PreOut": pre_out, "W_Out": weight}

973 974 975 976
    helper.append_op(type="hierarchical_sigmoid",
                     inputs=inputs,
                     outputs=outputs,
                     attrs=attrs)
977 978 979
    return out


980
def smooth_l1_loss(input, label, reduction='mean', delta=1.0, name=None):
981
    r"""
982
    Calculate smooth_l1_loss. Creates a criterion that uses a squared
983 984 985 986 987 988
    term if the absolute element-wise error falls below 1 and an L1 term otherwise.
    In some cases it can prevent exploding gradients and it is more robust and less
    sensitivity to outliers. Also known as the Huber loss:

    .. math::

989
         loss(x,y) = \frac{1}{n}\sum_{i}z_i
990 991 992 993 994 995


    where z_i is given by:

    .. math::

996 997
        \mathop{z_i} = \left\{\begin{array}{rcl}
        0.5(x_i - y_i)^2 & & {if |x_i - y_i| < delta} \\
998
        delta * |x_i - y_i| - 0.5 * delta^2 & & {otherwise}
999
        \end{array} \right.
1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012

    Parameters:
        input (Tensor): Input tensor, the data type is float32 or float64. Shape is
            (N, C), where C is number of classes, and if shape is more than 2D, this
            is (N, C, D1, D2,..., Dk), k >= 1.
        label (Tensor): Label tensor, the data type is float32 or float64. The shape of label
            is the same as the shape of input.
        reduction (str, optional): Indicate how to average the loss by batch_size,
            the candicates are ``'none'`` | ``'mean'`` | ``'sum'``.
            If :attr:`reduction` is ``'mean'``, the reduced mean loss is returned;
            If :attr:`reduction` is ``'sum'``, the reduced sum loss is returned.
            If :attr:`reduction` is ``'none'``, the unreduced loss is returned.
            Default is ``'mean'``.
1013
        delta (float, optional): Specifies the hyperparameter delta to be used.
1014 1015 1016 1017 1018 1019 1020
            The value determines how large the errors need to be to use L1. Errors
            smaller than delta are minimized with L2. Parameter is ignored for
            negative/zero values. Default = 1.0
        name (str, optional): Name for the operation (optional, default is
            None). For more information, please refer to :ref:`api_guide_Name`.

    Returns:
1021
        Tensor, The tensor variable storing the smooth_l1_loss of input and label.
1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032

    Examples:
        .. code-block:: python

            import paddle
            import numpy as np

            input_data = np.random.rand(3,3).astype("float32")
            label_data = np.random.rand(3,3).astype("float32")
            input = paddle.to_tensor(input_data)
            label = paddle.to_tensor(label_data)
C
Chen Long 已提交
1033
            output = paddle.nn.functional.smooth_l1_loss(input, label)
G
Guanghua Yu 已提交
1034
            print(output)
1035
    """
1036 1037 1038 1039
    check_variable_and_dtype(input, 'input', ['float32', 'float64'],
                             'smooth_l1_loss')
    check_variable_and_dtype(label, 'label', ['float32', 'float64'],
                             'smooth_l1_loss')
1040

1041 1042 1043 1044 1045 1046 1047 1048
    if in_dygraph_mode():
        out, residual = _C_ops.final_state_huber_loss(input, label, delta)
    else:
        helper = LayerHelper('huber_loss', **locals())
        residual = helper.create_variable_for_type_inference(
            dtype=helper.input_dtype())
        out = helper.create_variable_for_type_inference(
            dtype=helper.input_dtype())
1049 1050 1051 1052 1053 1054 1055 1056 1057 1058
        helper.append_op(type='huber_loss',
                         inputs={
                             'X': input,
                             'Y': label
                         },
                         outputs={
                             'Out': out,
                             'Residual': residual
                         },
                         attrs={'delta': delta})
1059 1060 1061 1062 1063 1064 1065 1066

    if reduction not in ['sum', 'mean', 'none']:
        raise ValueError(
            "The value of 'reduction' in smooth_l1_loss should be 'sum', 'mean' or"
            " 'none', but received %s, which is not allowed." % reduction)
    if reduction == 'none':
        return out
    elif reduction == 'mean':
1067
        return paddle.mean(out)
1068
    elif reduction == 'sum':
1069
        return paddle.sum(out)
1070 1071


1072 1073
def margin_ranking_loss(input,
                        other,
1074
                        label,
1075 1076 1077
                        margin=0.0,
                        reduction='mean',
                        name=None):
1078
    r"""
1079

1080
    Calcluate the margin rank loss between the input, other and label, use the math function as follows.
1081

1082
    .. math::
1083
        margin\_rank\_loss = max(0, -label * (input - other) + margin)
1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099

    If :attr:`reduction` set to ``'mean'``, the reduced mean loss is:

    .. math::
        Out = MEAN(margin\_rank\_loss)

    If :attr:`reduction` set to ``'sum'``, the reduced sum loss is:

    .. math::
        Out = SUM(margin\_rank\_loss)

    If :attr:`reduction` set to ``'none'``, just return the origin ``margin_rank_loss``.

    Parameters:
        input(Tensor): the first input tensor, it's data type should be float32, float64.
        other(Tensor): the second input tensor, it's data type should be float32, float64.
1100
        label(Tensor): the label value corresponding to input, it's data type should be float32, float64.
1101 1102 1103 1104
        margin (float, optional): The margin value to add, default value is 0;
        reduction (str, optional): Indicate the reduction to apply to the loss, the candicates are ``'none'``, ``'mean'``, ``'sum'``.If :attr:`reduction` is ``'none'``, the unreduced loss is returned; If :attr:`reduction` is ``'mean'``, the reduced mean loss is returned. If :attr:`reduction` is ``'sum'``, the reduced sum loss is returned. Default is ``'mean'``.
        name (str, optional): Name for the operation (optional, default is None). For more information, please refer to :ref:`api_guide_Name`.

1105 1106
    Returns: 
        Tensor, if :attr:`reduction` is ``'mean'`` or ``'sum'``, the out shape is :math:`[1]`, otherwise the shape is the same as `input` .The same dtype as input tensor.
1107 1108 1109 1110 1111

    Examples:

        .. code-block:: python

1112 1113
            import paddle

Z
Zhong Hui 已提交
1114 1115 1116
            input = paddle.to_tensor([[1, 2], [3, 4]], dtype='float32')
            other = paddle.to_tensor([[2, 1], [2, 4]], dtype='float32')
            label = paddle.to_tensor([[1, -1], [-1, -1]], dtype='float32')
1117
            loss = paddle.nn.functional.margin_ranking_loss(input, other, label)
N
Noel 已提交
1118
            print(loss) # [0.75]
1119
    """
1120 1121 1122 1123
    if reduction not in ['sum', 'mean', 'none']:
        raise ValueError(
            "The value of 'reduction' in MarginRankingLoss should be 'sum', 'mean' or 'none', but "
            "received %s, which is not allowed." % reduction)
1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136
    if in_dygraph_mode():
        out = _C_ops.final_state_subtract(other, input)
        out = _C_ops.final_state_multiply(out, label)
        if margin != 0.0:
            margin = fluid.dygraph.base.to_variable([margin], dtype=out.dtype)
            out = _C_ops.elementwise_add(out, margin)
        out = _C_ops.relu(out)
        if reduction == 'sum':
            return _C_ops.reduce_sum(out, 'reduce_all', True)
        elif reduction == 'mean':
            return _C_ops.final_state_mean_all(out)
        return out
    elif _in_legacy_dygraph():
W
wanghuancoder 已提交
1137 1138
        out = _C_ops.elementwise_sub(other, input)
        out = _C_ops.elementwise_mul(out, label)
1139 1140
        if margin != 0.0:
            margin = fluid.dygraph.base.to_variable([margin], dtype=out.dtype)
W
wanghuancoder 已提交
1141 1142
            out = _C_ops.elementwise_add(out, margin)
        out = _C_ops.relu(out)
1143
        if reduction == 'sum':
W
wanghuancoder 已提交
1144
            return _C_ops.reduce_sum(out, 'reduce_all', True)
1145
        elif reduction == 'mean':
W
wanghuancoder 已提交
1146
            return _C_ops.mean(out)
1147 1148 1149
        return out

    helper = LayerHelper("margin_ranking_loss", **locals())
1150 1151 1152 1153 1154 1155
    check_variable_and_dtype(input, 'input', ['float32', 'float64'],
                             'margin_rank_loss')
    check_variable_and_dtype(other, 'other', ['float32', 'float64'],
                             'margin_rank_loss')
    check_variable_and_dtype(label, 'label', ['float32', 'float64'],
                             'margin_rank_loss')
1156

1157
    out = paddle.subtract(other, input)
1158
    out = paddle.multiply(out, label)
1159 1160 1161

    if margin != 0.0:
        margin_var = out.block.create_var(dtype=out.dtype)
Z
zhiboniu 已提交
1162
        margin_var = paddle.full(shape=[1], fill_value=margin, dtype=out.dtype)
1163 1164 1165 1166 1167
        out = paddle.add(out, margin_var)

    result_out = helper.create_variable_for_type_inference(input.dtype)

    if reduction == 'none':
1168 1169 1170
        helper.append_op(type="relu",
                         inputs={"X": out},
                         outputs={"Out": result_out})
1171 1172 1173 1174
        return result_out
    elif reduction == 'sum':
        out = paddle.nn.functional.relu(out)
        attrs = {"dim": [0], "keep_dim": False, "reduce_all": True}
1175 1176 1177 1178
        helper.append_op(type="reduce_sum",
                         inputs={"X": out},
                         outputs={"Out": result_out},
                         attrs=attrs)
1179 1180 1181
        return result_out
    elif reduction == 'mean':
        out = paddle.nn.functional.relu(out)
1182 1183 1184 1185
        helper.append_op(type="mean",
                         inputs={"X": out},
                         outputs={"Out": result_out},
                         attrs={})
1186 1187 1188
        return result_out


1189
def l1_loss(input, label, reduction='mean', name=None):
1190
    r"""
1191
    This operator computes the L1 Loss of Tensor ``input`` and ``label`` as follows.
1192

1193
    If `reduction` set to ``'none'``, the loss is:
1194 1195

    .. math::
1196
        Out = \lvert input - label \rvert
1197

1198
    If `reduction` set to ``'mean'``, the loss is:
1199 1200

    .. math::
1201
        Out = MEAN(\lvert input - label \rvert)
1202

1203
    If `reduction` set to ``'sum'``, the loss is:
1204 1205

    .. math::
1206
        Out = SUM(\lvert input - label \rvert)
1207

1208

1209
    Parameters:
N
Noel 已提交
1210 1211
        input (Tensor): The input tensor. The shapes is [N, `*`], where N is batch size and `*` means any number of additional dimensions. It's data type should be float32, float64, int32, int64.
        label (Tensor): label. The shapes is [N, `*`], same shape as ``input`` . It's data type should be float32, float64, int32, int64.
1212
        reduction (str, optional): Indicate the reduction to apply to the loss,
1213
            the candicates are ``'none'`` | ``'mean'`` | ``'sum'``.
1214 1215 1216
            If `reduction` is ``'none'``, the unreduced loss is returned;
            If `reduction` is ``'mean'``, the reduced mean loss is returned.
            If `reduction` is ``'sum'``, the reduced sum loss is returned.
1217 1218
            Default is ``'mean'``.
        name (str, optional): Name for the operation (optional, default is None). For more information, please refer to :ref:`api_guide_Name`.
N
Noel 已提交
1219

1220
    Returns:
1221 1222 1223
        Tensor, the L1 Loss of Tensor ``input`` and ``label``.
            If `reduction` is ``'none'``, the shape of output loss is [N, *], the same as ``input`` .
            If `reduction` is ``'mean'`` or ``'sum'``, the shape of output loss is [1].
N
Noel 已提交
1224

1225 1226
    Examples:
        .. code-block:: python
N
Noel 已提交
1227

1228
            import paddle
1229

1230 1231
            input = paddle.to_tensor([[1.5, 0.8], [0.2, 1.3]])
            label = paddle.to_tensor([[1.7, 1], [0.4, 0.5]])
1232

1233
            l1_loss = paddle.nn.functional.l1_loss(input, label)
1234
            print(l1_loss.numpy())
1235 1236
            # [0.35]

1237
            l1_loss = paddle.nn.functional.l1_loss(input, label, reduction='none')
1238
            print(l1_loss.numpy())
1239 1240 1241
            # [[0.20000005 0.19999999]
            # [0.2        0.79999995]]

1242
            l1_loss = paddle.nn.functional.l1_loss(input, label, reduction='sum')
1243
            print(l1_loss.numpy())
1244 1245 1246 1247 1248 1249 1250
            # [1.4]
    """
    if reduction not in ['sum', 'mean', 'none']:
        raise ValueError(
            "The value of 'reduction' in L1Loss should be 'sum', 'mean' or 'none', but "
            "received %s, which is not allowed." % reduction)

1251
    if in_dygraph_mode():
1252 1253 1254 1255 1256
        unreduced = _elementwise_op_in_dygraph(input,
                                               label,
                                               axis=-1,
                                               act='abs',
                                               op_name='elementwise_sub')
1257 1258 1259 1260 1261 1262 1263 1264
        if reduction == 'mean':
            return _C_ops.final_state_mean_all(unreduced)
        elif reduction == 'sum':
            return _C_ops.reduce_sum(unreduced, 'dim', [0], 'keep_dim', False,
                                     'reduce_all', True)
        else:
            return unreduced
    elif in_dynamic_mode():
1265 1266 1267 1268 1269
        unreduced = _elementwise_op_in_dygraph(input,
                                               label,
                                               axis=-1,
                                               act='abs',
                                               op_name='elementwise_sub')
1270
        if reduction == 'mean':
W
wanghuancoder 已提交
1271
            return _C_ops.mean(unreduced)
1272
        elif reduction == 'sum':
W
wanghuancoder 已提交
1273 1274
            return _C_ops.reduce_sum(unreduced, 'dim', [0], 'keep_dim', False,
                                     'reduce_all', True)
1275 1276 1277
        else:
            return unreduced

1278 1279 1280 1281 1282 1283
    check_variable_and_dtype(input, 'input',
                             ['float32', 'float64', 'int32', 'int64'],
                             'l1_loss')
    check_variable_and_dtype(label, 'label',
                             ['float32', 'float64', 'int32', 'int64'],
                             'l1_loss')
1284 1285

    if reduction == 'sum':
1286
        unreduced = paddle.fluid.layers.elementwise_sub(input, label, act='abs')
1287 1288
        return paddle.sum(unreduced, name=name)
    elif reduction == 'mean':
1289
        unreduced = paddle.fluid.layers.elementwise_sub(input, label, act='abs')
1290 1291
        return paddle.mean(unreduced, name=name)
    else:
1292 1293 1294 1295
        return paddle.fluid.layers.elementwise_sub(input,
                                                   label,
                                                   act='abs',
                                                   name=name)
1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333


def nll_loss(input,
             label,
             weight=None,
             ignore_index=-100,
             reduction='mean',
             name=None):
    """
    This api returns negative log likelihood.
    See more detail in :ref:`api_nn_loss_NLLLoss` .

    Parameters:
         input (Tensor): Input tensor, the shape is :math:`[N, C]`, `C` is the number of classes.
             But in K-dimension situation, the shape is :math:`[N, C, d_1, d_2, ..., d_K]`.
             The data type is float32, float64.
         label (Tensor): Label tensor, the shape is :math:`[N,]` or :math:`[N, d_1, d_2, ..., d_K]`.
             The data type is int64.
         weight (Tensor, optional): Weight tensor, a manual rescaling weight given
             to each class. If given, it has to be a 1D Tensor whose size is `[C, ]`. Otherwise,
             it treated as if having all ones. the data type is
             float32, float64, Default is ``'None'``.
         ignore_index (int64, optional): Specifies a target value that is ignored
             and does not contribute to the input gradient.
         reduction (str, optional): Indicate how to average the loss,
             the candicates are ``'none'`` | ``'mean'`` | ``'sum'``.
             If `reduction` is ``'mean'``, the reduced mean loss is returned;
             if `reduction` is ``'sum'``, the reduced sum loss is returned;
             if `reduction` is ``'none'``, no reduction will be apllied.
             Default is ``'mean'``.
         name (str, optional): Name for the operation (optional, default is None).
             For more information, please refer to :ref:`api_guide_Name`.

    Returns:
         `Tensor`, the value of negative log likelihood loss.

    Examples:
        .. code-block:: python
1334

1335 1336 1337 1338
                import paddle
                from paddle.nn.functional import nll_loss
                log_softmax = paddle.nn.LogSoftmax(axis=1)

1339 1340 1341 1342 1343
                input = paddle.to_tensor([[0.88103855, 0.9908683 , 0.6226845 ],
                          [0.53331435, 0.07999352, 0.8549948 ],
                          [0.25879037, 0.39530203, 0.698465  ],
                          [0.73427284, 0.63575995, 0.18827209],
                          [0.05689114, 0.0862954 , 0.6325046 ]], "float32")
1344
                log_out = log_softmax(input)
1345
                label = paddle.to_tensor([0, 2, 1, 1, 0], "int64")
1346
                result = nll_loss(log_out, label)
1347
                print(result) # Tensor(shape=[1], dtype=float32, place=CPUPlace, stop_gradient=True, [1.07202101])
1348 1349 1350 1351 1352 1353 1354 1355 1356
    """
    if reduction not in ['sum', 'mean', 'none']:
        raise ValueError(
            "The value of 'reduction' in nll_loss should be 'sum', 'mean' or "
            "'none', but received %s, which is not allowed." % reduction)

    input_shape = list(input.shape)
    input_dims = len(input_shape)
    if input_dims < 2:
1357 1358
        raise ValueError(
            'Expected 2 or more dimensions (got {})'.format(input_dims))
1359 1360
    n = input_shape[0]
    c = input_shape[1]
Z
zyfncg 已提交
1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371
    if in_dygraph_mode():
        if input_dims != 2 and input_dims != 4:
            input, _ = _C_ops.reshape2(input, None, 'shape', [n, c, 1, -1])
            label, _ = _C_ops.reshape2(label, None, 'shape', [n, 1, -1])
            out_shape = [n] + input_shape[2:]
        out, total_weight = _C_ops.final_state_nll_loss(input, label, weight,
                                                        ignore_index, reduction)
        if input_dims != 2 and input_dims != 4 and reduction == 'none':
            out, _ = _C_ops.reshape2(out, None, 'shape', out_shape)
        return out
    if _in_legacy_dygraph():
1372
        if input_dims != 2 and input_dims != 4:
W
wanghuancoder 已提交
1373 1374
            input, _ = _C_ops.reshape2(input, None, 'shape', [n, c, 1, -1])
            label, _ = _C_ops.reshape2(label, None, 'shape', [n, 1, -1])
1375
            out_shape = [n] + input_shape[2:]
H
hong 已提交
1376

W
wanghuancoder 已提交
1377 1378 1379
        out, total_weight = _C_ops.nll_loss(input, label, weight,
                                            'ignore_index', ignore_index,
                                            'reduction', reduction)
1380
        if input_dims != 2 and input_dims != 4 and reduction == 'none':
W
wanghuancoder 已提交
1381
            out, _ = _C_ops.reshape2(out, None, 'shape', out_shape)
1382 1383 1384 1385 1386 1387 1388 1389 1390
        return out

    helper = LayerHelper('nll_loss', **locals())

    if input_dims != 2 and input_dims != 4:
        input = reshape(input, shape=[n, c, 1, -1])
        label = reshape(label, shape=[n, 1, -1])
        out_shape = [n] + input_shape[2:]

1391 1392
    check_variable_and_dtype(input, 'input', ['float32', 'float64'], 'nll_loss')
    check_variable_and_dtype(label, 'label', ['int64'], 'nll_loss')
1393 1394 1395 1396 1397 1398 1399 1400 1401 1402
    inputs = {'X': input, 'Label': label}
    attrs = {'reduction': reduction, 'ignore_index': ignore_index}
    if weight is not None:
        if isinstance(weight, Variable):
            inputs['Weight'] = weight

    out = helper.create_variable_for_type_inference(dtype=input.dtype)
    total_weight = helper.create_variable_for_type_inference(dtype=input.dtype)
    outputs = {'Out': out, 'Total_weight': total_weight}

1403 1404 1405 1406
    helper.append_op(type='nll_loss',
                     inputs=inputs,
                     outputs=outputs,
                     attrs=attrs)
1407 1408 1409 1410
    if input_dims != 2 and input_dims != 4 and reduction == 'none':
        out = reshape(out, shape=out_shape)

    return out
1411 1412


1413
def kl_div(input, label, reduction='mean', name=None):
1414
    r"""
1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425
    This operator calculates the Kullback-Leibler divergence loss
    between Input(X) and Input(Target). Notes that Input(X) is the
    log-probability and Input(Target) is the probability.

    KL divergence loss is calculated as follows:

    $$l(x, y) = y * (\log(y) - x)$$

    While :math:`x` is input and :math:`y` is label.

    While :attr:`reduction` is :attr:`none`, output loss is in
1426
    the same shape as input, loss in each point is calculated
1427
    separately and no reduction is applied.
1428

1429 1430
    While :attr:`reduction` is :attr:`mean`, output loss is in
    shape of [1] and loss value is the mean value of all losses.
1431

1432 1433
    While :attr:`reduction` is :attr:`sum`, output loss is in
    shape of [1] and loss value is the sum value of all losses.
1434 1435

    While :attr:`reduction` is :attr:`batchmean`, output loss is
1436 1437 1438 1439
    in shape of [1] and loss value is the sum value of all losses
    divided by batch size.

    Args:
1440
        input (Tensor): The input tensor. The shapes is [N, *], where N is batch size and `*` means
1441 1442 1443 1444 1445 1446 1447 1448 1449
             any number of additional dimensions. It's data type should be float32, float64.
        label (Tensor): label. The shapes is [N, *], same shape as ``input`` . It's data type should be float32, float64.
        reduction (Tensor): Indicate how to average the loss,
             the candicates are ``'none'`` | ``'batchmean'`` | ``'mean'`` | ``'sum'``.
             If `reduction` is ``'mean'``, the reduced mean loss is returned;
             If `reduction` is ``'batchmean'``, the sum loss divided by batch size is returned;
             if `reduction` is ``'sum'``, the reduced sum loss is returned;
             if `reduction` is ``'none'``, no reduction will be apllied.
             Default is ``'mean'``.
1450
        name(str, optional): Name for the operation (optional, default is None). For more information,
1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461
            please refer to :ref:`api_guide_Name`.

    Returns:
        Tensor: The KL divergence loss. The data type is same as input tensor

    Examples:
        .. code-block:: python

            import paddle
            import numpy as np
            import paddle.nn.functional as F
1462

1463 1464 1465 1466
            shape = (5, 20)
            input = np.random.uniform(-10, 10, shape).astype('float32')
            target = np.random.uniform(-10, 10, shape).astype('float32')

L
LielinJiang 已提交
1467
            # 'batchmean' reduction, loss shape will be [1]
1468 1469
            pred_loss = F.kl_div(paddle.to_tensor(input),
                                 paddle.to_tensor(target), reduction='batchmean')
L
LielinJiang 已提交
1470
            # shape=[1]
1471

1472
            # 'mean' reduction, loss shape will be [1]
1473 1474
            pred_loss = F.kl_div(paddle.to_tensor(input),
                                 paddle.to_tensor(target), reduction='mean')
1475 1476 1477
            # shape=[1]

            # 'sum' reduction, loss shape will be [1]
1478 1479
            pred_loss = F.kl_div(paddle.to_tensor(input),
                                 paddle.to_tensor(target), reduction='sum')
1480 1481 1482
            # shape=[1]

            # 'none' reduction, loss shape is same with input shape
1483 1484
            pred_loss = F.kl_div(paddle.to_tensor(input),
                                 paddle.to_tensor(target), reduction='none')
1485 1486 1487
            # shape=[5, 20]

    """
L
LielinJiang 已提交
1488 1489 1490 1491
    # ugly type promotion
    if fluid.data_feeder.convert_dtype(
            input.dtype) == 'float32' and fluid.data_feeder.convert_dtype(
                label.dtype) == 'float64':
1492
        input = paddle.cast(input, 'float64')
L
LielinJiang 已提交
1493 1494 1495
    elif fluid.data_feeder.convert_dtype(
            input.dtype) == 'float64' and fluid.data_feeder.convert_dtype(
                label.dtype) == 'float32':
1496
        label = paddle.cast(label, 'float64')
L
LielinJiang 已提交
1497

1498 1499 1500 1501 1502
    if _non_static_mode():
        if _in_legacy_dygraph():
            out = _C_ops.kldiv_loss(input, label, 'reduction', 'none')
        else:
            out = _C_ops.final_state_kldiv_loss(input, label, 'none')
1503 1504 1505 1506 1507 1508 1509 1510
        if reduction == 'mean':
            out = paddle.mean(out)
        elif reduction == 'sum':
            out = paddle.sum(out)
        elif reduction == 'batchmean':
            if len(input.shape) > 0:
                batch_size = input.shape[0]
                out = paddle.sum(out) / batch_size
1511 1512 1513 1514
        return out

    helper = LayerHelper('kl_div', **locals())

1515 1516
    check_variable_and_dtype(input, 'input', ['float32', 'float64'], 'kl_div')
    check_variable_and_dtype(label, 'label', ['float32', 'float64'], 'kl_div')
1517 1518 1519
    fluid.data_feeder.check_type(reduction, 'reduction', str, 'kl_div')

    loss = helper.create_variable_for_type_inference(dtype=input.dtype)
1520 1521 1522 1523 1524 1525 1526
    helper.append_op(type='kldiv_loss',
                     inputs={
                         'X': input,
                         'Target': label
                     },
                     outputs={'Loss': loss},
                     attrs={'reduction': 'none'})
1527 1528 1529 1530 1531 1532 1533 1534

    if reduction == 'mean':
        loss = paddle.mean(loss)
    elif reduction == 'sum':
        loss = paddle.sum(loss)
    elif reduction == 'batchmean':
        batch_size = paddle.shape(input)[0]
        loss = paddle.sum(loss) / batch_size
1535 1536 1537
    return loss


1538
def mse_loss(input, label, reduction='mean', name=None):
1539
    r"""
1540
    Accept input predications and label and returns the mean square error.
1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569

    If :attr:`reduction` is set to ``'none'``, loss is calculated as:

    .. math::
        Out = (input - label)^2

    If :attr:`reduction` is set to ``'mean'``, loss is calculated as:

    .. math::
        Out = \operatorname{mean}((input - label)^2)

    If :attr:`reduction` is set to ``'sum'``, loss is calculated as:

    .. math::
        Out = \operatorname{sum}((input - label)^2)

    Parameters:
        input (Tensor): Input tensor, the data type should be float32 or float64.
        label (Tensor): Label tensor, the data type should be float32 or float64.
        reduction (string, optional): The reduction method for the output,
            could be 'none' | 'mean' | 'sum'.
            If :attr:`reduction` is ``'mean'``, the reduced mean loss is returned.
            If :attr:`reduction` is ``'sum'``, the reduced sum loss is returned.
            If :attr:`reduction` is ``'none'``, the unreduced loss is returned.
            Default is ``'mean'``.
        name (str, optional): Name for the operation (optional, default is None). For more information, please refer to :ref:`api_guide_Name`.


    Returns:
1570
        Tensor, The tensor tensor storing the mean square error difference of input and label.
1571

1572 1573 1574
    Examples:

        .. code-block:: python
1575

1576 1577
            import paddle
            mse_loss = paddle.nn.loss.MSELoss()
1578 1579
            input = paddle.to_tensor(1.5)
            label = paddle.to_tensor(1.7)
1580
            output = mse_loss(input, label)
B
Bai Yifan 已提交
1581
            print(output)
1582 1583 1584 1585 1586 1587 1588 1589 1590
            # [0.04000002]

    """

    if reduction not in ['sum', 'mean', 'none']:
        raise ValueError(
            "'reduction' in 'mse_loss' should be 'sum', 'mean' or 'none', "
            "but received {}.".format(reduction))

Z
zhiboniu 已提交
1591
    if not in_dynamic_mode():
1592 1593 1594 1595
        check_variable_and_dtype(input, 'input', ['float32', 'float64'],
                                 'mse_loss')
        check_variable_and_dtype(label, 'label', ['float32', 'float64'],
                                 'mse_loss')
1596 1597

    if reduction == 'none':
1598
        return paddle.square(paddle.subtract(input, label), name=name)
1599
    elif reduction == 'mean':
1600 1601
        return paddle.mean(paddle.square(paddle.subtract(input, label)),
                           name=name)
1602
    else:
1603
        return paddle.sum(paddle.square(paddle.subtract(input, label)),
1604
                          name=name)
1605 1606


1607 1608 1609 1610 1611
def ctc_loss(log_probs,
             labels,
             input_lengths,
             label_lengths,
             blank=0,
1612
             reduction='mean',
H
Hui Zhang 已提交
1613
             norm_by_times=False):
1614 1615
    """

1616 1617 1618
    An operator integrating the open source Warp-CTC library (https://github.com/baidu-research/warp-ctc)
    to compute Connectionist Temporal Classification (CTC) loss.
    It can be aliased as softmax with CTC, since a native softmax activation
1619 1620 1621
    is interated to the Warp-CTC library to normalize values for each row of the input tensor.

    Parameters:
1622
        log_probs (Tensor): The unscaled probability sequence with padding, which is a 3-D Tensor. The tensor shape is [max_logit_length, batch_size, num_classes + 1], where max_logit_length is the longest length of input logit sequence. The data type should be float32 or float64.
1623 1624 1625 1626 1627
        labels (Tensor): The ground truth sequence with padding, which must be a 3-D Tensor. The tensor shape is [batch_size, max_label_length], where max_label_length is the longest length of label sequence. The data type must be int32.
        input_lengths (Tensor): The length for each input sequence, it should have shape [batch_size] and dtype int64.
        label_lengths (Tensor): The length for each label sequence, it should have shape [batch_size] and dtype int64.
        blank (int, optional): The blank label index of Connectionist Temporal Classification (CTC) loss, which is in the half-opened interval [0, num_classes + 1). The data type must be int32. Default is 0.
        reduction (string, optional): Indicate how to average the loss, the candicates are ``'none'`` | ``'mean'`` | ``'sum'``. If :attr:`reduction` is ``'mean'``, the output loss will be divided by the label_lengths, and then return the mean of quotient; If :attr:`reduction` is ``'sum'``, return the sum of loss; If :attr:`reduction` is ``'none'``, no reduction will be applied. Default is ``'mean'``.
1628
        norm_by_times (bool, default False) – Whether to normalize the gradients by the number of time-step, which is also the sequence’s length. There is no need to normalize the gradients if reduction mode is 'mean'.
H
Hui Zhang 已提交
1629

1630 1631
    Returns:
        Tensor, The Connectionist Temporal Classification (CTC) loss between ``log_probs`` and  ``labels``. If attr:`reduction` is ``'none'``, the shape of loss is [batch_size], otherwise, the shape of loss is [1]. Data type is the same as ``log_probs``.
1632

1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670
    Examples:

        .. code-block:: python

            # declarative mode
            import paddle.nn.functional as F
            import numpy as np
            import paddle

            # length of the longest logit sequence
            max_seq_length = 4
            #length of the longest label sequence
            max_label_length = 3
            # number of logit sequences
            batch_size = 2
            # class num
            class_num = 3

            np.random.seed(1)
            log_probs = np.array([[[4.17021990e-01, 7.20324516e-01, 1.14374816e-04],
                                    [3.02332580e-01, 1.46755889e-01, 9.23385918e-02]],

                                    [[1.86260208e-01, 3.45560730e-01, 3.96767467e-01],
                                    [5.38816750e-01, 4.19194520e-01, 6.85219526e-01]],

                                    [[2.04452246e-01, 8.78117442e-01, 2.73875929e-02],
                                    [6.70467496e-01, 4.17304814e-01, 5.58689833e-01]],

                                    [[1.40386939e-01, 1.98101491e-01, 8.00744593e-01],
                                    [9.68261600e-01, 3.13424170e-01, 6.92322612e-01]],

                                    [[8.76389146e-01, 8.94606650e-01, 8.50442126e-02],
                                    [3.90547849e-02, 1.69830427e-01, 8.78142476e-01]]]).astype("float32")
            labels = np.array([[1, 2, 2],
                            [1, 2, 2]]).astype("int32")
            input_lengths = np.array([5, 5]).astype("int64")
            label_lengths = np.array([3, 3]).astype("int64")

1671 1672 1673 1674
            log_probs = paddle.to_tensor(log_probs)
            labels = paddle.to_tensor(labels)
            input_lengths = paddle.to_tensor(input_lengths)
            label_lengths = paddle.to_tensor(label_lengths)
1675

1676 1677 1678 1679
            loss = F.ctc_loss(log_probs, labels,
                input_lengths,
                label_lengths,
                blank=0,
1680
                reduction='none')
1681
            print(loss)  #[3.9179852 2.9076521]
1682

1683 1684 1685 1686 1687
            loss = F.ctc_loss(log_probs, labels,
                input_lengths,
                label_lengths,
                blank=0,
                reduction='mean')
1688
            print(loss)  #[1.1376063]
1689 1690 1691

    """

1692
    loss_out = fluid.layers.warpctc(log_probs, labels, blank, norm_by_times,
H
Hui Zhang 已提交
1693
                                    input_lengths, label_lengths)
1694

Z
zhiboniu 已提交
1695
    loss_out = paddle.squeeze(loss_out, [-1])
1696 1697
    assert reduction in ['mean', 'sum', 'none']
    if reduction == 'mean':
S
ShenLiang 已提交
1698
        loss_out = paddle.mean(loss_out / label_lengths)
1699 1700 1701 1702 1703
    elif reduction == 'sum':
        loss_out = paddle.sum(loss_out)
    return loss_out


1704 1705 1706 1707 1708 1709 1710 1711 1712
def margin_cross_entropy(logits,
                         label,
                         margin1=1.0,
                         margin2=0.5,
                         margin3=0.0,
                         scale=64.0,
                         group=None,
                         return_softmax=False,
                         reduction='mean'):
1713
    r"""
1714 1715
    .. math::

1716
        L=-\frac{1}{N}\sum^N_{i=1}\log\frac{e^{s(cos(m_{1}\theta_{y_i}+m_{2})-m_{3})}}{e^{s(cos(m_{1}\theta_{y_i}+m_{2})-m_{3})}+\sum^n_{j=1,j\neq y_i} e^{scos\theta_{y_i}}}
1717

1718
    where the :math:`\theta_{y_i}` is the angle between the feature :math:`x` and
1719 1720 1721 1722
    the representation of class :math:`i`. The details of ArcFace loss
    could be referred to https://arxiv.org/abs/1801.07698.

    .. hint::
1723 1724 1725 1726 1727 1728
        The API supports single GPU and multi GPU, and don't supports CPU.

        For data parallel mode, set ``group=False``.

        For model parallel mode, set ``group=None`` or the group instance return by paddle.distributed.new_group.
        And logits.shape[-1] can be different at each rank.
1729 1730

    Args:
G
Guoxia Wang 已提交
1731
        logits (Tensor): shape[N, local_num_classes], the output of the normalized X multiply the normalized W.
1732
                The logits is shard_logits when using model parallel.
G
Guoxia Wang 已提交
1733 1734 1735 1736 1737
        label (Tensor): shape[N] or shape[N, 1], the groud truth label.
        margin1 (float, optional): m1 of margin loss, default value is `1.0`.
        margin2 (float, optional): m2 of margin loss, default value is `0.5`.
        margin3 (float, optional): m3 of margin loss, default value is `0.0`.
        scale (float, optional): s of margin loss, default value is `64.0`.
1738 1739 1740
        group (Group, optional): The group instance return by paddle.distributed.new_group 
            or ``None`` for global default group or ``False`` for data parallel (do not communication cross ranks).
            Default is ``None``.
1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758
        return_softmax (bool, optional): Whether return softmax probability. Default value is `False`.
        reduction (str, optional): The candicates are ``'none'`` | ``'mean'`` | ``'sum'``.
                    If :attr:`reduction` is ``'mean'``, return the average of loss;
                    If :attr:`reduction` is ``'sum'``, return the sum of loss;
                    If :attr:`reduction` is ``'none'``, no reduction will be applied.
                    Default value is `'mean'`.

    Returns:
        ``Tensor`` or Tuple of two ``Tensor`` : Return the cross entropy loss if \
            `return_softmax` is False, otherwise the tuple \
            (loss, softmax), softmax is shard_softmax when \
            using model parallel, otherwise softmax is in \
            the same shape with input logits. If ``reduction == None``, \
            the shape of loss is ``[N, 1]``, otherwise the shape is ``[1]``.

    Examples:

    .. code-block:: python
G
Guoxia Wang 已提交
1759
        :name: code-example1
1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807

        # required: gpu
        # Single GPU
        import paddle
        m1 = 1.0
        m2 = 0.5
        m3 = 0.0
        s = 64.0
        batch_size = 2
        feature_length = 4
        num_classes = 4

        label = paddle.randint(low=0, high=num_classes, shape=[batch_size], dtype='int64')

        X = paddle.randn(
            shape=[batch_size, feature_length],
            dtype='float64')
        X_l2 = paddle.sqrt(paddle.sum(paddle.square(X), axis=1, keepdim=True))
        X = paddle.divide(X, X_l2)

        W = paddle.randn(
            shape=[feature_length, num_classes],
            dtype='float64')
        W_l2 = paddle.sqrt(paddle.sum(paddle.square(W), axis=0, keepdim=True))
        W = paddle.divide(W, W_l2)

        logits = paddle.matmul(X, W)
        loss, softmax = paddle.nn.functional.margin_cross_entropy(
            logits, label, margin1=m1, margin2=m2, margin3=m3, scale=s, return_softmax=True, reduction=None)

        print(logits)
        print(label)
        print(loss)
        print(softmax)
        
        #Tensor(shape=[2, 4], dtype=float64, place=CUDAPlace(0), stop_gradient=True,
        #       [[ 0.85204151, -0.55557678,  0.04994566,  0.71986042],
        #        [-0.20198586, -0.35270476, -0.55182702,  0.09749021]])
        #Tensor(shape=[2], dtype=int64, place=CUDAPlace(0), stop_gradient=True,
        #       [2, 3])
        #Tensor(shape=[2, 1], dtype=float64, place=CUDAPlace(0), stop_gradient=True,
        #       [[82.37059586],
        #        [12.13448420]])
        #Tensor(shape=[2, 4], dtype=float64, place=CUDAPlace(0), stop_gradient=True,
        #       [[0.99978819, 0.00000000, 0.00000000, 0.00021181],
        #        [0.99992995, 0.00006468, 0.00000000, 0.00000537]])

    .. code-block:: python
G
Guoxia Wang 已提交
1808
        :name: code-example2
1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898

        # required: distributed
        # Multi GPU, test_margin_cross_entropy.py
        import paddle
        import paddle.distributed as dist
        strategy = dist.fleet.DistributedStrategy()
        dist.fleet.init(is_collective=True, strategy=strategy)
        rank_id = dist.get_rank()
        m1 = 1.0
        m2 = 0.5
        m3 = 0.0
        s = 64.0
        batch_size = 2
        feature_length = 4
        num_class_per_card = [4, 8]
        num_classes = paddle.sum(paddle.to_tensor(num_class_per_card))

        label = paddle.randint(low=0, high=num_classes.item(), shape=[batch_size], dtype='int64')
        label_list = []
        dist.all_gather(label_list, label)
        label = paddle.concat(label_list, axis=0)

        X = paddle.randn(
            shape=[batch_size, feature_length],
            dtype='float64')
        X_list = []
        dist.all_gather(X_list, X)
        X = paddle.concat(X_list, axis=0)
        X_l2 = paddle.sqrt(paddle.sum(paddle.square(X), axis=1, keepdim=True))
        X = paddle.divide(X, X_l2)

        W = paddle.randn(
            shape=[feature_length, num_class_per_card[rank_id]],
            dtype='float64')
        W_l2 = paddle.sqrt(paddle.sum(paddle.square(W), axis=0, keepdim=True))
        W = paddle.divide(W, W_l2)

        logits = paddle.matmul(X, W)
        loss, softmax = paddle.nn.functional.margin_cross_entropy(
            logits, label, margin1=m1, margin2=m2, margin3=m3, scale=s, return_softmax=True, reduction=None)

        print(logits)
        print(label)
        print(loss)
        print(softmax)

        # python -m paddle.distributed.launch --gpus=0,1 test_margin_cross_entropy.py 
        ## for rank0 input
        #Tensor(shape=[4, 4], dtype=float64, place=CUDAPlace(0), stop_gradient=True,
        #       [[ 0.32888934,  0.02408748, -0.02763289,  0.18173063],
        #        [-0.52893978, -0.10623845, -0.21596515, -0.06432517],
        #        [-0.00536345, -0.03924667,  0.66735314, -0.28640926],
        #        [-0.09907366, -0.48534973, -0.10365338, -0.39472322]])
        #Tensor(shape=[4], dtype=int64, place=CUDAPlace(0), stop_gradient=True,
        #       [11, 1 , 10, 11])

        ## for rank1 input
        #Tensor(shape=[4, 8], dtype=float64, place=CUDAPlace(1), stop_gradient=True,
        #       [[ 0.68654754,  0.28137170,  0.69694954, -0.60923933, -0.57077653,  0.54576703, -0.38709028,  0.56028204],
        #        [-0.80360371, -0.03042448, -0.45107338,  0.49559349,  0.69998950, -0.45411693,  0.61927630, -0.82808600],
        #        [ 0.11457570, -0.34785879, -0.68819499, -0.26189226, -0.48241491, -0.67685711,  0.06510185,  0.49660849],
        #        [ 0.31604851,  0.52087884,  0.53124749, -0.86176582, -0.43426329,  0.34786144, -0.10850784,  0.51566383]])
        #Tensor(shape=[4], dtype=int64, place=CUDAPlace(1), stop_gradient=True,
        #       [11, 1 , 10, 11])

        ## for rank0 output
        #Tensor(shape=[4, 1], dtype=float64, place=CUDAPlace(0), stop_gradient=True,
        #       [[38.96608230],
        #        [81.28152394],
        #        [69.67229865],
        #        [31.74197251]])
        #Tensor(shape=[4, 4], dtype=float64, place=CUDAPlace(0), stop_gradient=True,
        #       [[0.00000000, 0.00000000, 0.00000000, 0.00000000],
        #        [0.00000000, 0.00000000, 0.00000000, 0.00000000],
        #        [0.00000000, 0.00000000, 0.99998205, 0.00000000],
        #        [0.00000000, 0.00000000, 0.00000000, 0.00000000]])
        ## for rank1 output
        #Tensor(shape=[4, 1], dtype=float64, place=CUDAPlace(1), stop_gradient=True,
        #       [[38.96608230],
        #        [81.28152394],
        #        [69.67229865],
        #        [31.74197251]])
        #Tensor(shape=[4, 8], dtype=float64, place=CUDAPlace(1), stop_gradient=True,
        #       [[0.33943993, 0.00000000, 0.66051859, 0.00000000, 0.00000000, 0.00004148, 0.00000000, 0.00000000],
        #        [0.00000000, 0.00000000, 0.00000000, 0.00000207, 0.99432097, 0.00000000, 0.00567696, 0.00000000],
        #        [0.00000000, 0.00000000, 0.00000000, 0.00000000, 0.00000000, 0.00000000, 0.00000000, 0.00001795],
        #        [0.00000069, 0.33993085, 0.66006319, 0.00000000, 0.00000000, 0.00000528, 0.00000000, 0.00000000]])
    """

    assert reduction in ['mean', 'sum', 'none', None]
1899 1900 1901 1902 1903 1904 1905
    if not (group == False or group is None or hasattr(group, 'is_member')):
        raise ValueError(
            'Expected group is False, None or instance of paddle.distributed.collective.Group \
             (got group: {})'.format(group))
        return

    if hasattr(group, 'is_member') and not group.is_member():
1906 1907
        return

1908
    ring_id = 0
1909 1910
    rank = 0
    nranks = 1
1911 1912 1913 1914 1915 1916 1917 1918
    if group != False:
        ring_id = 0 if group is None else group.id
        if core.is_compiled_with_dist():
            parallel_env = paddle.distributed.ParallelEnv()
            global_rank = parallel_env.rank
            rank = global_rank if group is None else group.get_group_rank(
                global_rank)
            nranks = parallel_env.world_size if group is None else group.nranks
1919 1920 1921 1922 1923

    input_dims = len(list(logits.shape))
    label_dims = len(list(label.shape))
    if input_dims - 1 != label_dims and input_dims != label_dims:
        raise ValueError(
1924
            'Expected input_dims - 1 = label_dims or input_dims == label_dims\
1925 1926 1927 1928
             (got nput_dims{}, label_dims{})'.format(input_dims, label_dims))
    if input_dims - 1 == label_dims:
        label = paddle.unsqueeze(label, axis=-1)

Z
zhiboniu 已提交
1929
    if in_dynamic_mode():
1930
        softmax, loss = _C_ops.margin_cross_entropy(
1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1950 1951 1952 1953
            logits, label, 'ring_id', ring_id, 'rank', rank, 'nranks', nranks,
            'margin1', margin1, 'margin2', margin2, 'margin3', margin3, 'scale',
            scale, 'return_softmax', return_softmax)
        if reduction == 'mean':
            loss = paddle.mean(loss)
        elif reduction == 'sum':
            loss = paddle.sum(loss)
        if not return_softmax:
            return loss
        else:
            return loss, softmax

    op_type = 'margin_cross_entropy'
    helper = LayerHelper(op_type, **locals())
    softmax = helper.create_variable_for_type_inference(dtype=logits.dtype)
    loss = helper.create_variable_for_type_inference(dtype=logits.dtype)

    check_variable_and_dtype(logits, 'logits',
                             ['float16', 'float32', 'float64'],
                             'margin_cross_entropy')
    check_variable_and_dtype(label, 'label', ['int32', 'int64'],
                             'margin_cross_entropy')

1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972
    helper.append_op(type=op_type,
                     inputs={
                         'Logits': logits,
                         'Label': label
                     },
                     outputs={
                         'Softmax': softmax,
                         'Loss': loss
                     },
                     attrs={
                         'return_softmax': return_softmax,
                         'ring_id': ring_id,
                         'rank': rank,
                         'nranks': nranks,
                         'margin1': margin1,
                         'margin2': margin2,
                         'margin3': margin3,
                         'scale': scale,
                     })
1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984

    if reduction == 'mean':
        loss = paddle.mean(loss)
    elif reduction == 'sum':
        loss = paddle.sum(loss)

    if not return_softmax:
        return loss
    else:
        return loss, softmax


1985 1986 1987 1988
@deprecated(
    since="2.0.0",
    update_to="paddle.nn.functional.cross_entropy",
    level=1,
1989 1990 1991
    reason=
    ('Please notice that behavior of "paddle.nn.functional.softmax_with_cross_entropy" '
     'and "paddle.nn.functional.cross_entropy" is different.'))
1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003
def softmax_with_cross_entropy(logits,
                               label,
                               soft_label=False,
                               ignore_index=-100,
                               numeric_stable_mode=True,
                               return_softmax=False,
                               axis=-1):
    return fluid_softmax_with_cross_entropy(logits, label, soft_label,
                                            ignore_index, numeric_stable_mode,
                                            return_softmax, axis)


2004 2005 2006 2007
def cross_entropy(input,
                  label,
                  weight=None,
                  ignore_index=-100,
2008 2009 2010
                  reduction='mean',
                  soft_label=False,
                  axis=-1,
2011
                  use_softmax=True,
2012
                  name=None):
2013
    r"""
H
HydrogenSulfate 已提交
2014 2015 2016
    By default, this operator implements the cross entropy loss function with softmax. This function 
    combines the calculation of the softmax operation and the cross entropy loss function 
    to provide a more numerically stable computing. 
2017

2018
    This operator will calculate the cross entropy loss function without softmax when use_softmax=False.
2019

H
HydrogenSulfate 已提交
2020 2021
    By default, this operator will calculate the mean of the result, and you can also affect 
    the default behavior by using the reduction parameter. Please refer to the part of 
2022
    parameters for details.
2023

2024
    This operator can be used to calculate the softmax cross entropy loss with soft and hard labels.
H
HydrogenSulfate 已提交
2025
    Where, the hard labels mean the actual label value, 0, 1, 2, etc.  And the soft labels 
2026
    mean the probability of the actual label, 0.6, 0.8, 0.2, etc.
2027

2028
    The calculation of this operator includes the following two steps.
2029

2030
    - **1.softmax cross entropy**
2031

2032
        1. Hard label (each sample can only be assigned into one category)
2033

2034
        1.1. when use_softmax=True
2035

2036 2037
            .. math::
              \\loss_j=-\text{logits}_{label_j}+\log\left(\sum_{i=0}^{C}\exp(\text{logits}_i)\right) , j = 1,...,N
2038

2039 2040 2041 2042 2043 2044 2045 2046 2047 2048 2049 2050 2051 2052 2053 2054 2055 2056 2057 2058 2059 2060 2061 2062 2063 2064 2065 2066 2067 2068 2069 2070 2071 2072 2073 2074 2075 2076 2077 2078 2079
            where, N is the number of samples and C is the number of categories.

        1.2. when use_softmax=False

            .. math::
              \\loss_j=-\log\left({P}_{label_j}\right) , j = 1,...,N

            where, N is the number of samples and C is the number of categories, P is input(the output of softmax).


        2. Soft label (each sample is assigned to multiple categories with a certain probability, and the probability sum is 1).

        2.1. when use_softmax=True

            .. math::
              \\loss_j=-\sum_{i=0}^{C}\text{label}_i\left(\text{logits}_i-\log\left(\sum_{i=0}^{C}\exp(\text{logits}_i)\right)\right) , j = 1,...,N

            where, N is the number of samples and C is the number of categories.

        2.2. when use_softmax=False

            .. math::
              \\loss_j=-\sum_{j=0}^{C}\left({label}_j*\log\left({P}_{label_j}\right)\right) , j = 1,...,N

            where, N is the number of samples and C is the number of categories, P is input(the output of softmax).




    - **2. Weight and reduction processing**

        1. Weight

            If the ``weight`` parameter is ``None`` , go to the next step directly.

            If the ``weight`` parameter is not ``None`` , the cross entropy of each sample is weighted by weight
            according to soft_label = False or True as follows.

            1.1. Hard labels (soft_label = False)

            .. math::
H
HydrogenSulfate 已提交
2080
                \\loss_j=loss_j*weight[label_j] 
2081

2082

2083 2084 2085 2086 2087 2088 2089
            1.2. Soft labels (soft_label = True)

             .. math::
                \\loss_j=loss_j*\sum_{i}\left(weight[label_i]*logits_i\right)

        2. reduction

H
HydrogenSulfate 已提交
2090
            2.1 if the ``reduction`` parameter is ``none`` 
2091 2092 2093

                Return the previous result directly

H
HydrogenSulfate 已提交
2094
            2.2 if the ``reduction`` parameter is ``sum`` 
2095 2096 2097 2098 2099 2100

                Return the sum of the previous results

            .. math::
               \\loss=\sum_{j}loss_j

H
HydrogenSulfate 已提交
2101 2102
            2.3 if the ``reduction`` parameter is ``mean`` , it will be processed according to 
            the ``weight`` parameter as follows. 
2103

H
HydrogenSulfate 已提交
2104
            2.3.1. If the  ``weight``  parameter is ``None`` 
2105 2106 2107

                   Return the average value of the previous results

2108
            .. math::
2109 2110 2111 2112 2113 2114 2115 2116
                \\loss=\sum_{j}loss_j/N

                  where, N is the number of samples and C is the number of categories.

            2.3.2. If the 'weight' parameter is not 'None', the weighted average value of the previous result will be returned

            1. Hard labels (soft_label = False)

2117
            .. math::
H
HydrogenSulfate 已提交
2118
                \\loss=\sum_{j}loss_j/\sum_{j}weight[label_j] 
2119 2120 2121

            2. Soft labels (soft_label = True)

2122
            .. math::
2123
                \\loss=\sum_{j}loss_j/\sum_{j}\left(\sum_{i}weight[label_i]\right)
2124 2125


2126
    Parameters:
2127 2128 2129 2130

        - **input** (Tensor)

            Input tensor, the data type is float32, float64. Shape is
2131
        :math:`[N_1, N_2, ..., N_k, C]`, where C is number of classes ,  ``k >= 1`` . 
2132

H
HydrogenSulfate 已提交
2133
            Note: 
2134

H
HydrogenSulfate 已提交
2135
                1. when use_softmax=True, it expects unscaled logits. This operator should not be used with the 
2136 2137 2138
                output of softmax operator, which will produce incorrect results.

                2. when use_softmax=False, it expects the output of softmax operator.
2139

2140 2141 2142 2143 2144 2145
        - **label** (Tensor)

            1. If soft_label=False, the shape is
            :math:`[N_1, N_2, ..., N_k]` or :math:`[N_1, N_2, ..., N_k, 1]`, k >= 1.
            the data type is int32, int64, float32, float64, where each value is [0, C-1].

H
HydrogenSulfate 已提交
2146
            2. If soft_label=True, the shape and data type should be same with ``input`` , 
2147 2148 2149 2150
            and the sum of the labels for each sample should be 1.

        - **weight** (Tensor, optional)

H
HydrogenSulfate 已提交
2151 2152
            a manual rescaling weight given to each class. 
            If given, has to be a Tensor of size C and the data type is float32, float64. 
2153 2154 2155 2156 2157
            Default is ``'None'`` .

        - **ignore_index** (int64, optional)

            Specifies a target value that is ignored
H
HydrogenSulfate 已提交
2158 2159
            and does not contribute to the loss. A negative value means that no label 
            value needs to be ignored. Only valid when soft_label = False.  
2160 2161 2162 2163 2164
            Default is ``-100`` .

        - **reduction** (str, optional)

            Indicate how to average the loss by batch_size,
2165 2166
            the candicates are ``'none'`` | ``'mean'`` | ``'sum'``.
            If :attr:`reduction` is ``'mean'``, the reduced mean loss is returned;
H
Hui Zhang 已提交
2167
            If :attr:`size_average` is ``'sum'``, the reduced sum loss is returned.
2168 2169
            If :attr:`reduction` is ``'none'``, the unreduced loss is returned.
            Default is ``'mean'``.
2170

2171 2172
        - **soft_label** (bool, optional)

H
HydrogenSulfate 已提交
2173
            Indicate whether label is soft. 
2174 2175 2176 2177
            Default is ``False``.

        - **axis** (int, optional)

H
HydrogenSulfate 已提交
2178 2179 2180
            The index of dimension to perform softmax calculations. 
            It should be in range :math:`[-1, rank - 1]`, where :math:`rank` is the 
            number of dimensions of input :attr:`input`. 
2181 2182 2183 2184 2185 2186 2187
            Default is ``-1`` .

        - **use_softmax** (bool, optional)

            Indicate whether compute softmax before cross_entropy.
            Default is ``True``.

Z
zhiboniu 已提交
2188
        - **name** (str, optional)
2189 2190 2191

            The name of the operator. Default is ``None`` .
            For more information, please refer to :ref:`api_guide_Name` .
2192 2193 2194

    Returns:

2195 2196
        Tensor. Return the softmax cross_entropy loss of ``input`` and ``label``.
        The data type is the same as input.
2197

2198
        If :attr:`reduction` is ``'mean'`` or ``'sum'`` , the dimension of return value is ``1``.
2199

2200
        If :attr:`reduction` is ``'none'``:
C
Chen Long 已提交
2201

H
HydrogenSulfate 已提交
2202
        1. If soft_label = False, the dimension of return value is the same with ``label`` . 
C
Chen Long 已提交
2203

H
HydrogenSulfate 已提交
2204
        2. if soft_label = True, the dimension of return value is :math:`[N_1, N_2, ..., N_k, 1]` . 
2205 2206


2207
    Examples:
2208 2209

        .. code-block:: python
2210 2211

            # hard labels
2212 2213 2214 2215 2216
            import paddle
            paddle.seed(99999)
            N=100
            C=200
            reduction='mean'
H
HydrogenSulfate 已提交
2217
            input =  paddle.rand([N, C], dtype='float64')  
2218
            label =  paddle.randint(0, C, shape=[N], dtype='int64')
H
HydrogenSulfate 已提交
2219 2220
            weight = paddle.rand([C], dtype='float64') 
            
2221 2222 2223 2224 2225 2226 2227 2228
            cross_entropy_loss = paddle.nn.loss.CrossEntropyLoss(
                weight=weight, reduction=reduction)
            dy_ret = cross_entropy_loss(
                                       input,
                                       label)
            print(dy_ret.numpy()) #[5.41993642]

        .. code-block:: python
2229 2230

            # soft labels
2231 2232 2233 2234 2235 2236 2237 2238 2239 2240 2241 2242 2243
            import paddle
            paddle.seed(99999)
            axis = -1
            ignore_index = -100
            N = 4
            C = 3
            shape = [N, C]
            reduction='mean'
            weight = None
            logits = paddle.uniform(shape, dtype='float64', min=0.1, max=1.0)
            labels = paddle.uniform(shape, dtype='float64', min=0.1, max=1.0)
            labels /= paddle.sum(labels, axis=axis, keepdim=True)
            paddle_loss_mean = paddle.nn.functional.cross_entropy(
H
HydrogenSulfate 已提交
2244 2245 2246
                                                                  logits,  
                                                                  labels, 
                                                                  soft_label=True, 
2247 2248 2249 2250
                                                                  axis=axis,
                                                                  weight=weight,
                                                                  reduction=reduction)
            print(paddle_loss_mean.numpy()) #[1.12908343]
C
Chen Long 已提交
2251

2252 2253 2254 2255
    """

    if reduction not in ['sum', 'mean', 'none']:
        raise ValueError(
2256 2257 2258
            "The value of 'reduction' in softmax_cross_entropy"
            "should be 'sum', 'mean' or 'none', but received %s, which is not allowed."
            % reduction)
2259 2260 2261 2262 2263 2264
    if ignore_index > 0 and soft_label == True:
        raise ValueError(
            "When soft_label == True, the value of 'ignore_index' in softmax_cross_entropy"
            "should be '-100', but received %s, which is not allowed." %
            ignore_index)

2265
    input_dims = len(list(input.shape))
2266 2267 2268
    if input_dims == 0:
        raise ValueError('The dimention of input should be larger than zero!')

2269 2270
    label_dims = len(list(label.shape))
    if input_dims - 1 != label_dims and input_dims != label_dims:
2271
        raise ValueError(
2272 2273 2274 2275
            'Expected nput_dims - 1 = label_dims or input_dims == label_dims\
             (got nput_dims{}, label_dims{})'.format(input_dims, label_dims))
    if input_dims - 1 == label_dims:
        label = paddle.unsqueeze(label, axis=axis)
2276 2277

    if _non_static_mode():
H
HydrogenSulfate 已提交
2278
        if soft_label == False:
2279 2280
            valid_label = paddle.cast(label != ignore_index,
                                      dtype=label.dtype) * label
H
HydrogenSulfate 已提交
2281 2282 2283
            label_min = paddle.min(valid_label)
            label_max = paddle.max(valid_label)
            if label_min < 0:
2284 2285
                raise ValueError("Target {} is out of lower bound.".format(
                    label_min.item()))
H
HydrogenSulfate 已提交
2286
            if label_max >= input.shape[axis]:
2287 2288
                raise ValueError("Target {} is out of upper bound.".format(
                    label_max.item()))
F
fwenguang 已提交
2289
        if core.is_compiled_with_npu() or core.is_compiled_with_mlu():
2290 2291 2292 2293 2294
            _, _, out = _C_ops.softmax_with_cross_entropy(
                input, label, 'soft_label', soft_label, 'ignore_index',
                ignore_index, 'numeric_stable_mode', True, 'axis', axis,
                'use_softmax', use_softmax)
        else:
2295 2296 2297 2298 2299 2300 2301 2302 2303
            if in_dygraph_mode():
                _, out = _C_ops.final_state_cross_entropy_with_softmax(
                    input, label, soft_label, use_softmax, True, ignore_index,
                    axis)
            if _in_legacy_dygraph():
                _, out = _C_ops.softmax_with_cross_entropy(
                    input, label, 'soft_label', soft_label, 'ignore_index',
                    ignore_index, 'numeric_stable_mode', True, 'axis', axis,
                    'use_softmax', use_softmax)
2304

2305
        if weight is not None:
2306

H
HydrogenSulfate 已提交
2307
            # trans weight from class to sample, shape:N or [N,H,W] for 1d and 2d cases.
2308 2309
            if soft_label == True:
                # chajchaj:
H
HydrogenSulfate 已提交
2310
                # weight's shape is C, where C is class num.
2311 2312
                # for 1d case: label's shape is [N,C], weight_gather's shape is N.
                # for 2d case: label's shape is [N,H,W,C], weight_gather's shape is [N,H,W].
2313 2314 2315 2316 2317
                weight_gather = paddle.matmul(x=paddle.cast(
                    label, weight.dtype),
                                              y=weight,
                                              transpose_x=False,
                                              transpose_y=True)
2318 2319 2320 2321
                out_shape = list(out.shape)
                weight_gather_reshape = reshape(weight_gather, shape=out_shape)
                out = paddle.cast(out, weight_gather_reshape.dtype)

W
wanghuancoder 已提交
2322
                out = _C_ops.elementwise_mul(out, weight_gather_reshape)
2323 2324

            else:
2325 2326 2327 2328 2329 2330 2331
                if input.shape[axis] != weight.shape[-1]:
                    raise ValueError(
                        "input's class_dimension({}) must equal to "
                        "weight's class_dimension({}) "
                        "when weight is provided" \
                            .format(input.shape[axis], weight.shape[-1]))

H
HydrogenSulfate 已提交
2332 2333
                ignore_weight_mask = paddle.cast((label != ignore_index),
                                                 out.dtype)
H
HydrogenSulfate 已提交
2334
                if ignore_weight_mask.ndim > 1 and ignore_weight_mask.shape[
2335
                        axis] == 1:
H
HydrogenSulfate 已提交
2336
                    # TODO: Temporarily use squeeze instead of squeeze_
H
HydrogenSulfate 已提交
2337 2338
                    ignore_weight_mask = paddle.squeeze(ignore_weight_mask,
                                                        axis)
H
HydrogenSulfate 已提交
2339
                if axis != -1 and axis != valid_label.ndim - 1:
2340
                    temp_perm = list(range(axis % valid_label.ndim)) \
2341
                                + list(range((axis % valid_label.ndim + 1), valid_label.ndim)) \
H
HydrogenSulfate 已提交
2342
                                + [axis % valid_label.ndim]
2343 2344 2345 2346
                    weight_gather = _C_ops.gather_nd(
                        weight, valid_label.transpose(temp_perm))
                else:
                    weight_gather = _C_ops.gather_nd(weight, valid_label)
H
HydrogenSulfate 已提交
2347 2348
                weight_gather = _C_ops.elementwise_mul(weight_gather,
                                                       ignore_weight_mask)
2349
                input_shape = list(label.shape)
2350 2351
                weight_gather_reshape = reshape(weight_gather,
                                                shape=input_shape)
2352
                out = paddle.cast(out, weight_gather_reshape.dtype)
W
wanghuancoder 已提交
2353
                out = _C_ops.elementwise_mul(out, weight_gather_reshape)
2354

2355
        if reduction == "sum":
H
HydrogenSulfate 已提交
2356
            #   because of fluid_softmax_with_cross_entropy op's inner logic,
2357 2358
            #   in the out tensor of this op, the loss of sample with class_index==ignore_index is 0
            #   so, reduce_sum all directly is ok
W
wanghuancoder 已提交
2359
            return _C_ops.reduce_sum(out, 'reduce_all', True)
2360
        elif reduction == "mean":
H
HydrogenSulfate 已提交
2361 2362 2363 2364 2365 2366
            # 1. if weight==none,
            #     numerator: reduce_sum all loss directly is ok causeof fluid_softmax_with_cross_entropy's inner logic
            #     denominator: count sample num with class_index!=ignore_index
            # 2. else
            #     numerator: loss's weighted sum
            #     denominator: cal the sum of weight where the sample's class_index!=ignore_index
S
sneaxiy 已提交
2367
            if ignore_index >= 0:
W
wanghuancoder 已提交
2368
                out_sum = _C_ops.reduce_sum(out, 'reduce_all', True)
H
HydrogenSulfate 已提交
2369 2370 2371
                # for each label[i],set 1 or 0, according to ignore_index
                # mask[i]=0, if label[i]==ignore_index
                # mask[i]=1, otherwise
2372
                mask = (label != ignore_index)
2373
                if weight is None:
2374
                    mask = paddle.cast(mask, dtype=out_sum.dtype)
W
wanghuancoder 已提交
2375
                    count = _C_ops.reduce_sum(mask, 'reduce_all', True)
2376
                    ret = out_sum / (count + (count == 0.0))
2377 2378
                else:
                    mask = paddle.cast(mask, weight_gather_reshape.dtype)
W
wanghuancoder 已提交
2379
                    weight_ignored = _C_ops.elementwise_mul(
2380
                        mask, weight_gather_reshape)
W
wanghuancoder 已提交
2381 2382
                    weight_sum = _C_ops.reduce_sum(weight_ignored, 'reduce_all',
                                                   True)
2383
                    ret = out_sum / (weight_sum + (weight_sum == 0.0))
2384 2385
                return ret
            elif weight is not None:
W
wanghuancoder 已提交
2386 2387 2388
                out_sum = _C_ops.reduce_sum(out, 'reduce_all', True)
                total_weight = _C_ops.reduce_sum(weight_gather_reshape,
                                                 'reduce_all', True)
2389
                return out_sum / (total_weight + (total_weight == 0.0))
2390
            else:
2391 2392 2393 2394
                if in_dygraph_mode():
                    return _C_ops.final_state_mean_all(out)
                else:
                    return _C_ops.mean(out)
2395

2396
        else:
2397 2398
            if input_dims - 1 == label_dims:
                out = paddle.squeeze(out, axis=axis)
2399
            return out
2400

2401 2402 2403
    check_variable_and_dtype(input, 'input', ['float32', 'float64'],
                             'softmax_cross_entropy')
    check_variable_and_dtype(
2404 2405
        label, 'label',
        ['uint8', 'int8', 'int16', 'int32', 'int64', 'float32', 'float64'],
2406
        'softmax_cross_entropy')
2407 2408 2409 2410 2411
    attrs = {
        'soft_label': soft_label,
        'ignore_index': ignore_index,
        'numeric_stable_mode': True,
        'axis': axis,
2412
        'use_softmax': use_softmax
2413 2414 2415 2416
    }
    helper = LayerHelper('softmax_with_cross_entropy', **locals())
    softmax = helper.create_variable_for_type_inference(dtype=input.dtype)
    out = helper.create_variable_for_type_inference(dtype=input.dtype)
2417 2418 2419 2420 2421

    outputs = {'Softmax': softmax, 'Loss': out}
    if core.is_compiled_with_npu() or core.is_compiled_with_mlu():
        backprop = helper.create_variable_for_type_inference(dtype=input.dtype)
        outputs['Backprop'] = backprop
2422 2423 2424 2425 2426 2427 2428
    helper.append_op(type='softmax_with_cross_entropy',
                     inputs={
                         'Logits': input,
                         'Label': label
                     },
                     outputs=outputs,
                     attrs=attrs)
2429

2430
    if weight is not None:
2431 2432
        check_variable_and_dtype(weight, 'weight', ['float32', 'float64'],
                                 'softmax_cross_entropy')
2433
        weight_name = name if reduction == 'none' else None
2434 2435
        if soft_label == True:
            # chajchaj:
H
HydrogenSulfate 已提交
2436
            # trans weight from class to sample, shape:N or [N,H,W] for 1d and 2d cases.
2437 2438 2439
            # weight's shape is C, where C is class num.
            # for 1d case: label's shape is [N,C], weight_gather's shape is N.
            # for 2d case: label's shape is [N,H,W,C], weight_gather's shape is [N,H,W].
2440 2441 2442 2443
            weight_gather = paddle.matmul(x=paddle.cast(label, weight.dtype),
                                          y=weight,
                                          transpose_x=False,
                                          transpose_y=True)
2444 2445 2446 2447 2448

            out_shape = list(out.shape)
            weight_gather_reshape = reshape(weight_gather, shape=out_shape)
            out = paddle.cast(out, weight_gather_reshape.dtype)
        else:
2449 2450
            if input.shape[axis] != weight.shape[-1]:
                raise ValueError("input's class_dimension({}) must equal to "
2451 2452
                                 "weight's class_dimension({}) "
                                 "when weight is provided" \
2453
                                 .format(input.shape[axis], weight.shape[-1]))
H
HydrogenSulfate 已提交
2454

H
HydrogenSulfate 已提交
2455
            valid_label = paddle.multiply(
2456
                paddle.cast(label != ignore_index, dtype=label.dtype), label)
H
HydrogenSulfate 已提交
2457 2458
            ignore_weight_mask = paddle.cast((label != ignore_index),
                                             input.dtype)
H
HydrogenSulfate 已提交
2459
            if ignore_weight_mask.ndim > 1 and ignore_weight_mask.shape[
2460 2461
                    axis] == 1:
                ignore_weight_mask = paddle.squeeze(ignore_weight_mask, axis)
H
HydrogenSulfate 已提交
2462
            if axis != -1 and axis != valid_label.ndim - 1:
2463
                temp_perm = list(range(axis % valid_label.ndim)) \
H
HydrogenSulfate 已提交
2464
                            + list(range((axis % valid_label.ndim + 1), valid_label.ndim)) \
2465 2466 2467 2468 2469
                            + [axis % valid_label.ndim]
                weight_gather = paddle.gather_nd(
                    weight, paddle.transpose(valid_label, temp_perm))
            else:
                weight_gather = paddle.gather_nd(weight, valid_label)
H
HydrogenSulfate 已提交
2470 2471
            weight_gather = paddle.multiply(weight_gather, ignore_weight_mask)

2472 2473
            input_shape = list(label.shape)
            weight_gather_reshape = reshape(weight_gather, shape=input_shape)
2474
        out = paddle.multiply(out, weight_gather_reshape, name=weight_name)
2475

2476 2477 2478
    if reduction == "sum":
        return paddle.sum(out, name=name)
    elif reduction == "mean":
S
sneaxiy 已提交
2479
        if ignore_index >= 0:
2480
            out_sum = paddle.sum(out, name=name)
H
HydrogenSulfate 已提交
2481 2482 2483
            # for each label[i],set 1 or 0, according to ignore_index
            # mask[i]=0, if label[i]==ignore_index
            # mask[i]=1, otherwise
2484 2485 2486 2487
            mask = (label != ignore_index)
            if (weight is None):
                mask = paddle.cast(mask, dtype=out_sum.dtype)
                count = paddle.sum(mask, name=name)
2488
                ret = out_sum / (count + (count == 0.0))
2489 2490 2491 2492
            else:
                mask = paddle.cast(mask, weight_gather_reshape.dtype)
                weight_ignored = paddle.multiply(mask, weight_gather_reshape)
                weight_sum = paddle.sum(weight_ignored, name=name)
2493
                ret = out_sum / (weight_sum + (weight_sum == 0.0))
2494 2495
            return ret
        elif weight is not None:
2496 2497
            out_sum = paddle.sum(out, name=name)
            total_weight = paddle.sum(weight_gather_reshape)
2498
            return out_sum / (total_weight + (total_weight == 0.0))
2499 2500
        else:
            return paddle.mean(out, name=name)
2501

2502
    else:
2503 2504 2505
        if input_dims - 1 == label_dims:
            out = paddle.squeeze(out, axis=axis)

2506
        return out
2507 2508 2509 2510 2511 2512 2513 2514 2515


def sigmoid_focal_loss(logit,
                       label,
                       normalizer=None,
                       alpha=0.25,
                       gamma=2.0,
                       reduction='sum',
                       name=None):
2516
    r"""
2517 2518 2519 2520 2521 2522
    `Focal Loss <https://arxiv.org/abs/1708.02002>`_ is proposed to address the
    foreground-background class imbalance for classification tasks. It down-weights
    easily-classified examples and thus focuses training on hard examples. For example,
    it is used in one-stage object detection where the foreground-background class
    imbalance is extremely high.

H
HydrogenSulfate 已提交
2523
    This operator measures focal loss function as follows: 
2524 2525

    .. math::
2526
           Out = -Labels * alpha * {(1 - \sigma(Logit))}^{gamma}\log(\sigma(Logit)) - (1 - Labels) * (1 - alpha) * {\sigma(Logit)}^{gamma}\log(1 - \sigma(Logit))
2527

H
HydrogenSulfate 已提交
2528
    We know that :math:`\sigma(Logit) = \frac{1}{1 + \exp(-Logit)}`. 
2529 2530 2531 2532 2533

    Then, if :attr:`normalizer` is not None, this operator divides the
    normalizer tensor on the loss `Out`:

    .. math::
2534
           Out = \frac{Out}{normalizer}
2535 2536 2537 2538 2539 2540 2541 2542 2543 2544 2545 2546 2547 2548 2549 2550 2551

    Finally, this operator applies reduce operation on the loss.
    If :attr:`reduction` set to ``'none'``, the operator will return the original loss `Out`.
    If :attr:`reduction` set to ``'mean'``, the reduced mean loss is :math:`Out = MEAN(Out)`.
    If :attr:`reduction` set to ``'sum'``, the reduced sum loss is :math:`Out = SUM(Out)`.

    Note that the target ``label`` is 0 for the negative class and is 1 for the positive class.

    Args:
        logit (Tensor): The input logit tensor. The shape is [N, *], where N is batch_size,
            `*` means any number of additional dimensions. The ``logit`` is usually the
            output of a convolution layer. Available dtype is float32, float64.
        label (Tensor): The target label tensor with the same shape as
            ``logit``. The target label whose value should be numbers between 0 and 1.
            Available dtype is float32, float64.
        normalizer (Tensor, optional): The number normalizes the focal loss. It has to be
            a 1-D Tensor whose shape is `[1, ]`. The data type is float32, float64.
2552
            For object detection task, it is the number of positive samples.
2553 2554
            If set to None, the focal loss will not be normalized. Default is None.
        alpha(int|float, optional): Hyper-parameter to balance the positive and negative example,
H
HydrogenSulfate 已提交
2555
            it should be between 0 and 1.  Default value is set to 0.25. 
2556 2557 2558 2559 2560 2561 2562 2563 2564 2565 2566 2567 2568 2569 2570 2571 2572 2573 2574 2575 2576 2577 2578 2579
        gamma(int|float, optional): Hyper-parameter to modulate the easy and hard examples.
            Default value is set to 2.0.
        reduction (str, optional): Indicate how to average the loss by batch_size,
            the candicates are ``'none'`` | ``'mean'`` | ``'sum'``.
            If :attr:`reduction` is ``'none'``, the unreduced loss is returned;
            If :attr:`reduction` is ``'mean'``, the reduced mean loss is returned;
            If :attr:`reduction` is ``'sum'``, the summed loss is returned.
            Default is ``'sum'``.
        name (str, optional): Name for the operation (optional, default is None).
            For more information, please refer to :ref:`api_guide_Name`.

    Returns:
        Tensor, if :attr:`reduction` is ``'mean'`` or ``'sum'``, the out shape is :math:`[1]`, otherwise the shape is the same as ``logit``. The same dtype as ``logit`` tensor.

    Examples:

        .. code-block:: python

            import paddle

            logit = paddle.to_tensor([[0.97, 0.91, 0.03], [0.55, 0.43, 0.71]], dtype='float32')
            label = paddle.to_tensor([[1.0, 0.0, 0.0], [0.0, 1.0, 0.0]], dtype='float32')
            one = paddle.to_tensor([1.], dtype='float32')
            fg_label = paddle.greater_equal(label, one)
2580
            fg_num = paddle.sum(paddle.cast(fg_label, dtype='float32'))
2581
            output = paddle.nn.functional.sigmoid_focal_loss(logit, label, normalizer=fg_num)
2582
            print(output)  # [0.65782464]
2583 2584 2585 2586 2587 2588 2589 2590 2591

    """
    if reduction not in ['sum', 'mean', 'none']:
        raise ValueError(
            "The value of 'reduction' in sigmoid_focal_loss "
            "should be 'sum', 'mean' or 'none', but received %s, which is not allowed."
            % reduction)

    if normalizer is not None:
2592 2593
        check_variable_and_dtype(normalizer, 'normalizer',
                                 ['float32', 'float64'], 'sigmoid_focal_loss')
2594 2595 2596 2597
        normalizer_shape = list(normalizer.shape)
        normalizer_dims = len(normalizer_shape)
        if normalizer_dims > 1:
            raise ValueError(
2598 2599
                "Expected one dimension of normalizer in sigmoid_focal_loss but got {}."
                .format(normalizer_dims))
2600

H
hong 已提交
2601
    if _non_static_mode():
2602
        one = _varbase_creator(dtype=logit.dtype)
2603 2604 2605
        _C_ops.fill_constant(one, 'value', float(1.0), 'force_cpu', False,
                             'dtype', one.dtype, 'str_value', '1.0', 'shape',
                             logit.shape)
H
hong 已提交
2606 2607 2608 2609 2610
        if in_dygraph_mode():
            loss = _C_ops.final_state_sigmoid_cross_entropy_with_logits(
                logit, label, False, -100)
        else:
            loss = _C_ops.sigmoid_cross_entropy_with_logits(logit, label)
W
wanghuancoder 已提交
2611 2612 2613
        pred = _C_ops.sigmoid(logit)
        p_t = _C_ops.elementwise_add(
            _C_ops.elementwise_mul(pred, label),
2614 2615
            _C_ops.elementwise_mul(_C_ops.elementwise_sub(one, pred),
                                   _C_ops.elementwise_sub(one, label)))
2616 2617

        alpha = fluid.dygraph.base.to_variable([alpha], dtype=loss.dtype)
W
wanghuancoder 已提交
2618 2619
        alpha_t = _C_ops.elementwise_add(
            _C_ops.elementwise_mul(alpha, label),
2620 2621
            _C_ops.elementwise_mul(_C_ops.elementwise_sub(one, alpha),
                                   _C_ops.elementwise_sub(one, label)))
W
wanghuancoder 已提交
2622
        loss = _C_ops.elementwise_mul(alpha_t, loss)
2623 2624

        gamma = fluid.dygraph.base.to_variable([gamma], dtype=loss.dtype)
2625 2626
        gamma_t = _C_ops.elementwise_pow(_C_ops.elementwise_sub(one, p_t),
                                         gamma)
W
wanghuancoder 已提交
2627
        loss = _C_ops.elementwise_mul(gamma_t, loss)
2628 2629

        if normalizer is not None:
W
wanghuancoder 已提交
2630
            loss = _C_ops.elementwise_div(loss, normalizer)
2631 2632

        if reduction == "sum":
W
wanghuancoder 已提交
2633
            return _C_ops.reduce_sum(loss, 'reduce_all', True)
2634
        elif reduction == "mean":
2635 2636
            if in_dygraph_mode():
                return _C_ops.final_state_mean_all(loss)
W
wanghuancoder 已提交
2637
            return _C_ops.mean(loss)
2638 2639 2640

        return loss

2641 2642 2643 2644
    check_variable_and_dtype(logit, 'logit', ['float32', 'float64'],
                             'sigmoid_focal_loss')
    check_variable_and_dtype(label, 'label', ['float32', 'float64'],
                             'sigmoid_focal_loss')
2645 2646 2647 2648 2649 2650 2651

    bce_name = None
    if reduction == 'none' and normalizer is None:
        bce_name = name
    loss = paddle.nn.functional.binary_cross_entropy_with_logits(
        logit, label, reduction='none', name=bce_name)

Z
zhiboniu 已提交
2652
    pred = paddle.nn.functional.sigmoid(logit)
2653 2654 2655 2656 2657 2658 2659 2660 2661 2662 2663 2664 2665 2666 2667 2668 2669 2670
    p_t = pred * label + (1 - pred) * (1 - label)

    alpha_t = alpha * label + (1 - alpha) * (1 - label)
    loss = paddle.multiply(alpha_t, loss)

    gamma_t = paddle.pow((1 - p_t), gamma)
    loss = paddle.multiply(gamma_t, loss)

    if normalizer is not None:
        normalizer_name = name if reduction == 'none' else None
        loss = paddle.divide(loss, normalizer, name=normalizer_name)

    if reduction == 'mean':
        loss = paddle.mean(loss, name=name)
    elif reduction == 'sum':
        loss = paddle.sum(loss, name=name)

    return loss
2671 2672


Y
yangguohao 已提交
2673 2674 2675 2676 2677 2678 2679 2680 2681 2682 2683 2684 2685 2686 2687 2688 2689 2690 2691 2692 2693 2694 2695 2696 2697 2698 2699 2700 2701 2702 2703 2704 2705 2706 2707 2708 2709 2710 2711 2712 2713 2714 2715 2716 2717 2718 2719 2720 2721 2722 2723 2724 2725 2726 2727 2728 2729 2730 2731 2732 2733 2734 2735 2736 2737 2738 2739 2740 2741 2742 2743 2744 2745 2746 2747 2748 2749 2750 2751 2752
def multi_label_soft_margin_loss(input,
                                 label,
                                 weight=None,
                                 reduction="mean",
                                 name=None):
    r"""

        Parameters:
            input (Tensor): Input tensor, the data type is float32 or float64. Shape is (N, C), where C is number of classes, and if shape is more than 2D, this is (N, C, D1, D2,..., Dk), k >= 1.
            label (Tensor): Label tensor, the data type is float32 or float64. The shape of label is the same as the shape of input.
            weight (Tensor,optional): a manual rescaling weight given to each class.
                    If given, has to be a Tensor of size C and the data type is float32, float64.
                    Default is ``'None'`` .
            reduction (str, optional): Indicate how to average the loss by batch_size,
                    the candicates are ``'none'`` | ``'mean'`` | ``'sum'``.
                    If :attr:`reduction` is ``'none'``, the unreduced loss is returned;
                    If :attr:`reduction` is ``'mean'``, the reduced mean loss is returned;
                    If :attr:`reduction` is ``'sum'``, the summed loss is returned.
                    Default: ``'mean'``
            name (str, optional): Name for the operation (optional, default is None).
                    For more information, please refer to :ref:`api_guide_Name`.

	Shape:
            input: N-D Tensor, the shape is [N, \*], N is batch size and `\*` means number of classes, available dtype is float32, float64. The sum operationoperates over all the elements.
            label: N-D Tensor, same shape as the input.
            weight:N-D Tensor, the shape is [N,1]
            output: scalar. If :attr:`reduction` is ``'none'``, then same shape as the input.

	Returns:
            Tensor, The tensor variable storing the multi_label_soft_margin_loss of input and label.

	Examples:
            .. code-block:: python

                import paddle
                import paddle.nn.functional as F
                input = paddle.to_tensor([[1, -2, 3], [0, -1, 2], [1, 0, 1]], dtype=paddle.float32)
                # label elements in {1., -1.}
                label = paddle.to_tensor([[-1, 1, -1], [1, 1, 1], [1, -1, 1]], dtype=paddle.float32)
                loss = F.multi_label_soft_margin_loss(input, label, reduction='none')
                print(loss)
                # Tensor([3.49625897, 0.71111226, 0.43989015])
                loss = F.multi_label_soft_margin_loss(input, label, reduction='mean')
                print(loss)
                # Tensor([1.54908717])
    """
    if reduction not in ['sum', 'mean', 'none']:
        raise ValueError(
            "'reduction' in 'multi_label_soft_margin_loss' should be 'sum', 'mean' or 'none', "
            "but received {}.".format(reduction))

    if not (input.shape == label.shape):
        raise ValueError("The input and label should have same dimension,"
                         "but received {}!={}".format(input.shape, label.shape))

    if not _non_static_mode():
        check_variable_and_dtype(input, 'input', ['float32', 'float64'],
                                 'multilabel_soft_margin_loss')
        check_variable_and_dtype(label, 'label', ['float32', 'float64'],
                                 'multilabel_soft_margin_loss')

    loss = -(label * paddle.nn.functional.log_sigmoid(input) +
             (1 - label) * paddle.nn.functional.log_sigmoid(-input))

    if weight is not None:
        if not _non_static_mode():
            check_variable_and_dtype(weight, 'weight', ['float32', 'float64'],
                                     'multilabel_soft_margin_loss')
        loss = loss * weight

    loss = loss.mean(axis=-1)  # only return N loss values

    if reduction == "none":
        return loss
    elif reduction == "mean":
        return paddle.mean(loss)
    elif reduction == "sum":
        return paddle.sum(loss)


2753 2754 2755 2756 2757 2758 2759 2760 2761 2762 2763 2764 2765 2766 2767 2768 2769 2770 2771 2772 2773 2774 2775 2776 2777 2778 2779 2780 2781 2782 2783 2784 2785 2786 2787 2788 2789 2790 2791 2792 2793 2794 2795 2796 2797 2798 2799 2800 2801 2802 2803 2804 2805 2806 2807 2808 2809 2810 2811 2812 2813 2814 2815 2816 2817 2818 2819 2820 2821 2822 2823 2824 2825 2826 2827 2828 2829 2830 2831
def hinge_embedding_loss(input, label, margin=1.0, reduction='mean', name=None):
    r"""
    This operator calculates hinge_embedding_loss. Measures the loss given an input tensor :math:`x` and a labels tensor :math:`y`(containing 1 or -1).
    This is usually used for measuring whether two inputs are similar or dissimilar, e.g. using the L1 pairwise distance as :math:`x`,
    and is typically used for learning nonlinear embeddings or semi-supervised learning.

    The loss function for :math:`n`-th sample in the mini-batch is

    .. math::
        l_n = \begin{cases}
            x_n, & \text{if}\; y_n = 1,\\
            \max \{0, \Delta - x_n\}, & \text{if}\; y_n = -1,
        \end{cases}

    and the total loss functions is

    .. math::
        \ell(x, y) = \begin{cases}
            \operatorname{mean}(L), & \text{if reduction} = \text{'mean';}\\
            \operatorname{sum}(L),  & \text{if reduction} = \text{'sum'.}
        \end{cases}

    where :math:`L = \{l_1,\dots,l_N\}^\top`.

    Parameters:
        input (Tensor): Input tensor, the data type is float32 or float64.
            the shape is [N, \*], N is batch size and `\*` means any number of additional dimensions, available dtype is float32, float64.
        label (Tensor): Label tensor containing 1 or -1, the data type is float32 or float64.
            The shape of label is the same as the shape of input.
        margin (float, optional): Specifies the hyperparameter margin to be used.
            The value determines how large the input need to be to calculate in
            hinge_embedding_loss. When label is -1, Input smaller than margin are minimized with hinge_embedding_loss.
            Default = 1.0
        reduction (str, optional): Indicate how to average the loss by batch_size.
            the candicates are ``'none'`` | ``'mean'`` | ``'sum'``.
            If :attr:`reduction` is ``'none'``, the unreduced loss is returned;
            If :attr:`reduction` is ``'mean'``, the reduced mean loss is returned;
            If :attr:`reduction` is ``'sum'``, the summed loss is returned.
            Default: ``'mean'``
        name (str, optional): Name for the operation (optional, default is None).
            For more information, please refer to :ref:`api_guide_Name`.

    Shape:

        input: N-D Tensor, the shape is [N, \*], N is batch size and `\*` means any number of additional dimensions, available dtype is float32, float64. The sum operationoperates over all the elements.

        label: N-D Tensor, same shape as the input. tensor elements should containing 1 or -1, the data type is float32 or float64.

        output: scalar. If :attr:`reduction` is ``'none'``, then same shape as the input.

    Returns:
        Tensor. The tensor variable storing the hinge_embedding_loss of input and label.

    Examples:
        .. code-block:: python

            import paddle
            import paddle.nn.functional as F

            input = paddle.to_tensor([[1, -2, 3], [0, -1, 2], [1, 0, 1]], dtype=paddle.float32)
            # label elements in {1., -1.}
            label = paddle.to_tensor([[-1, 1, -1], [1, 1, 1], [1, -1, 1]], dtype=paddle.float32)

            loss = F.hinge_embedding_loss(input, label, margin=1.0, reduction='none')
            print(loss)
            # Tensor([[0., -2., 0.],
            #         [0., -1., 2.],
            #         [1., 1., 1.]])

            loss = F.hinge_embedding_loss(input, label, margin=1.0, reduction='mean')
            print(loss)
            # Tensor([0.22222222])
    """

    if reduction not in ['sum', 'mean', 'none']:
        raise ValueError(
            "'reduction' in 'hinge_embedding_loss' should be 'sum', 'mean' or 'none', "
            "but received {}.".format(reduction))

2832
    if not _non_static_mode():
2833 2834 2835 2836 2837 2838 2839 2840 2841 2842 2843 2844 2845 2846 2847
        check_variable_and_dtype(input, 'input', ['float32', 'float64'],
                                 'hinge_embedding_loss')
        check_variable_and_dtype(label, 'label', ['float32', 'float64'],
                                 'hinge_embedding_loss')

    zero_ = paddle.zeros([1], dtype=input.dtype)
    loss = paddle.where(label == 1., input, zero_) + \
           paddle.where(label == -1., paddle.nn.functional.relu(margin - input), zero_)

    if reduction == 'mean':
        return paddle.mean(loss, name=name)
    elif reduction == 'sum':
        return paddle.sum(loss, name=name)
    elif reduction == 'none':
        return loss
2848 2849 2850 2851 2852 2853 2854 2855 2856 2857 2858 2859 2860 2861 2862 2863 2864 2865 2866 2867 2868 2869 2870 2871 2872 2873 2874 2875 2876 2877 2878 2879 2880 2881 2882 2883 2884 2885 2886 2887 2888 2889 2890 2891 2892 2893 2894 2895 2896 2897 2898 2899 2900 2901 2902 2903 2904 2905 2906 2907 2908 2909 2910 2911 2912 2913 2914 2915 2916 2917 2918 2919 2920 2921 2922 2923 2924 2925 2926 2927 2928 2929 2930 2931 2932 2933 2934 2935 2936 2937 2938 2939 2940 2941 2942 2943 2944 2945 2946 2947 2948 2949 2950 2951 2952 2953 2954 2955


def cosine_embedding_loss(input1,
                          input2,
                          label,
                          margin=0,
                          reduction='mean',
                          name=None):
    r"""
    This operator computes the cosine embedding loss of Tensor ``input1``, ``input2`` and ``label`` as follows.

    If label = 1, then the loss value can be calculated as follow:

    .. math::
        Out = 1 - cos(input1, input2)

    If label = -1, then the loss value can be calculated as follow:

    .. math::
        Out = max(0, cos(input1, input2)) - margin

    The operator cos can be described as follow:
     .. math::
        cos(x1, x2) = \frac{x1 \cdot{} x2}{\Vert x1 \Vert_2 * \Vert x2 \Vert_2}

     Parameters:
        input1 (Tensor): tensor with shape: [N, M] or [M], 'N' means batch size, 'M' means the length of input array.
                         Available dtypes are float32, float64.
        input2 (Tensor): tensor with shape: [N, M] or [M], 'N' means batch size, 'M' means the length of input array.
                         Available dtypes are float32, float64.
        label (Tensor): tensor with shape: [N] or [1]. The target labels values should be -1 or 1.
                         Available dtypes are int32, int64, float32, float64.
        margin (float, optional): Should be a number from :math:`-1` to :math:`1`,
                         :math:`0` to :math:`0.5` is suggested. If :attr:`margin` is missing, the
                         default value is :math:`0`.
        reduction (string, optional): Specifies the reduction to apply to the output:
                         ``'none'`` | ``'mean'`` | ``'sum'``. ``'none'``: no reduction will be applied,
                         ``'mean'``: the sum of the output will be divided by the number of elements in the output
                         ``'sum'``: the output will be summed.
        name (str, optional): Name for the operation (optional, default is None).
                         For more information, please refer to :ref:`api_guide_Name`.

    Returns:
        Tensor, the cosine embedding Loss of Tensor ``input1`` ``input2`` and ``label``.
            If `reduction` is ``'none'``, the shape of output loss is [N], the same as ``input`` .
            If `reduction` is ``'mean'`` or ``'sum'``, the shape of output loss is [1].

    Examples:
        .. code-block:: python

            import paddle

            input1 = paddle.to_tensor([[1.6, 1.2, -0.5], [3.2, 2.6, -5.8]], 'float32')
            input2 = paddle.to_tensor([[0.5, 0.5, -1.8], [2.3, -1.4, 1.1]], 'float32')
            label = paddle.to_tensor([1, -1], 'int64')

            output = paddle.nn.functional.cosine_embedding_loss(input1, input2, label, margin=0.5, reduction='mean')
            print(output)  # [0.21155193]

            output = paddle.nn.functional.cosine_embedding_loss(input1, input2, label, margin=0.5, reduction='sum')
            print(output)  # [0.42310387]

            output = paddle.nn.functional.cosine_embedding_loss(input1, input2, label, margin=0.5, reduction='none')
            print(output)  # [0.42310387, 0.        ]

    """
    if len(label.shape) != 1:
        raise ValueError(
            "1D target tensor expected, multi-target not supported")

    if input1.shape != input2.shape:
        raise ValueError(
            "the shape of input tensor 1 should be equal to input tensor 2, but found inputs with "
            "different sizes")

    if len(input1.shape) > 2:
        raise ValueError(
            "1D target tensor expects 1D or 2D input tensors, but found inputs with different sizes"
        )

    if input1.dtype not in [paddle.float32, paddle.float64]:
        raise ValueError(
            "The data type of input Variable must be 'float32' or 'float64'")
    if label.dtype not in [
            paddle.int32, paddle.int64, paddle.float32, paddle.float64
    ]:
        raise ValueError(
            "The data type of label Variable must be 'int32', 'int64', 'float32', 'float64'"
        )

    prod_sum = (input1 * input2).sum(axis=-1)
    mag_square1 = paddle.square(input1).sum(axis=-1) + 10e-12
    mag_square2 = paddle.square(input2).sum(axis=-1) + 10e-12
    denom = paddle.sqrt(mag_square1 * mag_square2)
    cos = prod_sum / denom
    zeros = paddle.zeros_like(cos)
    pos = 1 - cos
    neg = paddle.clip(cos - margin, min=0)
    out_pos = paddle.where(label == 1, pos, zeros)
    out_neg = paddle.where(label == -1, neg, zeros)
    out = out_pos + out_neg

    if reduction == 'none':
        return out
    if reduction == 'mean':
        return paddle.mean(out, name=name)
    elif reduction == 'sum':
        return paddle.sum(out, name=name)
Y
yangguohao 已提交
2956 2957 2958 2959 2960 2961 2962 2963 2964 2965 2966 2967 2968 2969 2970 2971 2972 2973 2974 2975 2976 2977 2978 2979 2980 2981 2982 2983 2984 2985 2986 2987 2988 2989 2990 2991 2992 2993 2994 2995 2996 2997 2998 2999 3000 3001 3002 3003 3004 3005 3006 3007 3008 3009 3010 3011 3012 3013 3014 3015 3016 3017 3018 3019 3020 3021 3022 3023 3024 3025 3026 3027 3028 3029 3030 3031 3032 3033 3034 3035 3036 3037 3038 3039 3040 3041 3042 3043 3044 3045 3046 3047 3048 3049 3050 3051 3052 3053 3054 3055 3056 3057 3058 3059 3060 3061 3062 3063 3064 3065 3066 3067 3068 3069 3070 3071 3072 3073 3074 3075 3076 3077 3078 3079 3080 3081 3082


def triplet_margin_with_distance_loss(input,
                                      positive,
                                      negative,
                                      distance_function=None,
                                      margin=1.0,
                                      swap=False,
                                      reduction='mean',
                                      name=None):
    r"""
    Measures the triplet loss given an input
    tensors :math:`x1`, :math:`x2`, :math:`x3` and a margin with a value greater than :math:`0`.
    This is used for measuring a relative similarity between samples. A triplet
    is composed by `input`, `positive` and `negative` (i.e., `input`, `positive examples` and `negative
    examples` respectively). The shapes of all input tensors should be
    :math:`(N, D)`.

    The loss function for each sample in the mini-batch is:

    .. math::
        L(input, pos, neg) = \max \{d(input_i, pos_i) - d(input_i, neg_i) + {\rm margin}, 0\}


    where the default distance function

    .. math::
        d(x_i, y_i) = \left\lVert {\bf x}_i - {\bf y}_i \right\rVert_p

    or user can defined their own distance functions. `margin` is a nonnegative margin representing the minimum difference 
    between the positive and negative distances that is required for the loss to be 0. If `swap` is true, it will compare distance of (input, negative) with
    distance of (negative, positive) and change it to the smaller one. For more details see http://www.bmva.org/bmvc/2016/papers/paper119/paper119.pdf.

    Parameters:

        input (Tensor):Input tensor, the data type is float32 or float64.
            the shape is [N, \*], N is batch size and `\*` means any number of additional dimensions, available dtype is float32, float64.

        positive (Tensor):Positive tensor, the data type is float32 or float64.
            The shape of label is the same as the shape of input.

        negative (Tensor):Negative tensor, the data type is float32 or float64.
            The shape of label is the same as the shape of input.

        distance_function (callable, optional): Quantifies the distance between two tensors. if not specified, 2 norm functions will be used.
	
	    margin (float, optional):Default: :math:`1`.A nonnegative margin representing the minimum difference
            between the positive and negative distances required for the loss to be 0.
	
        swap (bool, optional):The distance swap changes the negative distance to the swap distance (distance between positive samples
                and negative samples) if swap distance smaller than negative distance. Default: ``False``.

        reduction (str, optional):Indicate how to average the loss by batch_size.
            the candicates are ``'none'`` | ``'mean'`` | ``'sum'``.
            If :attr:`reduction` is ``'none'``, the unreduced loss is returned;
            If :attr:`reduction` is ``'mean'``, the reduced mean loss is returned;
            If :attr:`reduction` is ``'sum'``, the summed loss is returned.
            Default: ``'mean'``
        name (str, optional): Name for the operation (optional, default is None).
            For more information, please refer to :ref:`api_guide_Name`.
	    
    Returns:
        Output: Tensor. The tensor variable storing the triplet_margin_with_distance_loss of input and positive and negative.

    Examples:
        .. code-block:: python

            import paddle
            import paddle.nn.functional as F

            input = paddle.to_tensor([[1, 5, 3], [0, 3, 2], [1, 4, 1]], dtype=paddle.float32)
            positive= paddle.to_tensor([[5, 1, 2], [3, 2, 1], [3, -1, 1]], dtype=paddle.float32)
            negative = paddle.to_tensor([[2, 1, -3], [1, 1, -1], [4, -2, 1]], dtype=paddle.float32)
            loss = F.triplet_margin_with_distance_loss(input, positive, negative, margin=1.0, reduction='none')
            print(loss)
            # Tensor([0.        , 0.57496738, 0.        ])


            loss = F.triplet_margin_with_distance_loss(input, positive, negative, margin=1.0, reduction='mean')
            print(loss)
            # Tensor([0.19165580])

    """
    if reduction not in ['sum', 'mean', 'none']:
        raise ValueError("'reduction' in 'triplet_margin_with_distance_loss' "
                         "should be 'sum', 'mean' or 'none', "
                         "but received {}.".format(reduction))
    if margin < 0:
        raise ValueError(
            "The margin between positive samples and negative samples should be greater than 0."
        )
    if not _non_static_mode():
        check_variable_and_dtype(input, 'input', ['float32', 'float64'],
                                 'triplet_margin_with_distance_loss')
        check_variable_and_dtype(positive, 'positive', ['float32', 'float64'],
                                 'triplet_margin_with_distance_loss')
        check_variable_and_dtype(negative, 'negative', ['float32', 'float64'],
                                 'triplet_margin_with_distance_loss')

    if not (input.shape == positive.shape == negative.shape):
        raise ValueError("input's shape must equal to "
                         "positive's shape and  "
                         "negative's shape")

    distance_function = distance_function if distance_function is not None \
        else paddle.nn.PairwiseDistance(2)

    positive_dist = distance_function(input, positive)
    negative_dist = distance_function(input, negative)

    if swap:
        swap_dist = distance_function(positive, negative)
        negative_dist = paddle.minimum(negative_dist, swap_dist)

    if not paddle.all(positive_dist > 0) or not paddle.all(negative_dist > 0):
        raise ValueError(
            "The positive distance or negative distance should be greater than 0, "
            "The distance functions should be checked.")

    loss = paddle.clip(positive_dist - negative_dist + margin, min=0.0)

    if reduction == 'mean':
        return paddle.mean(loss, name=name)
    elif reduction == 'sum':
        return paddle.sum(loss, name=name)
    elif reduction == 'none':
        return loss
Y
yangguohao 已提交
3083 3084 3085 3086 3087 3088 3089 3090 3091 3092 3093 3094 3095 3096 3097 3098 3099 3100 3101 3102 3103 3104 3105 3106 3107 3108 3109 3110 3111 3112 3113 3114 3115 3116 3117 3118 3119 3120 3121 3122 3123 3124 3125 3126 3127 3128 3129 3130 3131 3132 3133 3134 3135 3136 3137 3138 3139 3140 3141 3142 3143 3144 3145 3146 3147 3148 3149 3150 3151 3152 3153 3154 3155 3156 3157 3158 3159 3160 3161 3162 3163 3164 3165 3166 3167 3168 3169 3170 3171 3172 3173 3174 3175 3176 3177 3178 3179 3180 3181 3182 3183 3184 3185 3186 3187 3188 3189 3190 3191 3192 3193 3194 3195 3196 3197 3198 3199 3200 3201 3202 3203


def triplet_margin_loss(input,
                        positive,
                        negative,
                        margin=1.0,
                        p=2,
                        epsilon=1e-6,
                        swap=False,
                        reduction='mean',
                        name=None):
    r"""
        Measures the triplet loss given an input
        tensors :math:`x1`, :math:`x2`, :math:`x3` and a margin with a value greater than :math:`0`.
        This is used for measuring a relative similarity between samples. A triplet
        is composed by `input`, `positive` and `negative` (i.e., `input`, `positive examples` and `negative
        examples` respectively). The shapes of all input tensors should be
        :math:`(N, *)`.

        The loss function for each sample in the mini-batch is:

        .. math::
            L(input, pos, neg) = \max \{d(input_i, pos_i) - d(input_i, neg_i) + {\rm margin}, 0\}


        where

        .. math::
            d(x_i, y_i) = \left\lVert {\bf x}_i - {\bf y}_i \right\rVert_p

    Parameters:
        input (Tensor): Input tensor, the data type is float32 or float64.
            the shape is [N, \*], N is batch size and `\*` means any number of additional dimensions, available dtype is float32, float64.

        positive (Tensor): Positive tensor, the data type is float32 or float64.
            The shape of label is the same as the shape of input.

        negative (Tensor): Negative tensor, the data type is float32 or float64.
            The shape of label is the same as the shape of input.

        margin (float, Optional): Default: :math:`1`.

        p (int, Optional): The norm degree for pairwise distance. Default: :math:`2`.

        epsilon (float, Optional): Add small value to avoid division by zero,
            default value is 1e-6.

        swap (bool,Optional): The distance swap change the negative distance to the distance between
            positive sample and negative sample. For more details, see `Learning shallow convolutional feature descriptors with triplet losses`.
            Default: ``False``.


        reduction (str, Optional):Indicate how to average the loss by batch_size.
            the candicates are ``'none'`` | ``'mean'`` | ``'sum'``.
            If :attr:`reduction` is ``'none'``, the unreduced loss is returned;
            If :attr:`reduction` is ``'mean'``, the reduced mean loss is returned;
            If :attr:`reduction` is ``'sum'``, the summed loss is returned.
            Default: ``'mean'``

        name (str, Optional): Name for the operation (optional, default is None).
            For more information, please refer to :ref:`api_guide_Name`.

    Returns:
        Output: Tensor. The tensor variable storing the triplet_margin_loss of input and positive and negative.

    Examples:
        .. code-block:: python

            import paddle
            import paddle.nn.functional as F

            input = paddle.to_tensor([[1, 5, 3], [0, 3, 2], [1, 4, 1]], dtype=paddle.float32)
            positive= paddle.to_tensor([[5, 1, 2], [3, 2, 1], [3, -1, 1]], dtype=paddle.float32)
            negative = paddle.to_tensor([[2, 1, -3], [1, 1, -1], [4, -2, 1]], dtype=paddle.float32)
            loss = F.triplet_margin_loss(input, positive, negative, margin=1.0, reduction='none')
            print(loss)
            # Tensor([0.        , 0.57496738, 0.        ])


            loss = F.triplet_margin_loss(input, positive, negative, margin=1.0, reduction='mean')
            print(loss)
            # Tensor([0.19165580])

    """
    if reduction not in ['sum', 'mean', 'none']:
        raise ValueError(
            "'reduction' in 'triplet_margin_loss' should be 'sum', 'mean' or 'none', "
            "but received {}.".format(reduction))
    if margin < 0:
        raise ValueError(
            "The margin between positive samples and negative samples should be greater than 0."
        )
    if not _non_static_mode():
        check_variable_and_dtype(input, 'input', ['float32', 'float64'],
                                 'triplet_margin_loss')
        check_variable_and_dtype(positive, 'positive', ['float32', 'float64'],
                                 'triplet_margin_loss')
        check_variable_and_dtype(negative, 'negative', ['float32', 'float64'],
                                 'triplet_margin_loss')

    if not (input.shape == positive.shape == negative.shape):
        raise ValueError("input's shape must equal to "
                         "positive's shape and  "
                         "negative's shape")

    distance_function = paddle.nn.PairwiseDistance(p, epsilon=epsilon)
    positive_dist = distance_function(input, positive)
    negative_dist = distance_function(input, negative)

    if swap:
        swap_dist = distance_function(positive, negative)
        negative_dist = paddle.minimum(negative_dist, swap_dist)

    loss = paddle.clip(positive_dist - negative_dist + margin, min=0.0)

    if reduction == 'mean':
        return paddle.mean(loss, name=name)
    elif reduction == 'sum':
        return paddle.sum(loss, name=name)
    elif reduction == 'none':
        return loss
3204 3205 3206 3207 3208 3209 3210 3211 3212 3213 3214 3215 3216 3217 3218 3219 3220 3221 3222 3223 3224 3225 3226 3227 3228 3229 3230 3231 3232 3233 3234 3235 3236 3237 3238 3239 3240 3241 3242 3243 3244 3245 3246 3247 3248 3249 3250 3251 3252 3253 3254 3255 3256 3257 3258 3259 3260 3261 3262 3263 3264 3265 3266 3267 3268 3269 3270 3271 3272 3273 3274 3275 3276 3277 3278 3279 3280 3281 3282


def soft_margin_loss(input, label, reduction='mean', name=None):
    """
    The API measures the soft margin loss between input predictions ``input``
    and target labels ``label`` . It can be described as:

    .. math::
        Out = log(1 + exp((-label * input)))

    Parameters:

        input (Tensor): The input predications tensor with shape: [N, *],
            N is batch_size, `*` means any number of additional dimensions. The ``input`` ranges from -inf to inf.
             Available dtype is float32, float64.

        label (Tensor): The target labels tensor with the same shape as
            ``input``. The target labels which values should be numbers -1 or 1.
            Available dtype is int32, int64, float32, float64.

        reduction (str, optional): Indicate how to average the loss by batch_size,
            the candidates are ``'none'`` | ``'mean'`` | ``'sum'``.
            If :attr:`reduction` is ``'none'``, the unreduced loss is returned;
            If :attr:`reduction` is ``'mean'``, the reduced mean loss is returned;
            If :attr:`reduction` is ``'sum'``, the summed loss is returned.
            Default is ``'mean'``.

        name (str, optional): Name for the operation (optional, default is None).
            For more information, please refer to :ref:`api_guide_Name`.

    Returns:

        Output (Tensor): If ``reduction`` is ``'none'``, the shape of output is
            same as ``input`` , else the shape of output is [1].

    Examples:
        .. code-block:: python

            import paddle
            import numpy as np

            input = paddle.to_tensor([[0.5, 0.6, 0.7],[0.3, 0.5, 0.2]], 'float32')
            label = paddle.to_tensor([[1.0, -1.0, 1.0],[-1.0, 1.0, 1.0]], 'float32')
            output = paddle.nn.functional.soft_margin_loss(input, label)

            input_np = np.random.uniform(0.1, 0.8, size=(5, 5)).astype(np.float64)
            label_np = np.random.randint(0, 2, size=(5, 5)).astype(np.int64)
            label_np[label_np==0]=-1
            input = paddle.to_tensor(input_np)
            label = paddle.to_tensor(label_np)
            output = paddle.nn.functional.soft_margin_loss(input, label, reduction='none')
    """
    if reduction not in ['sum', 'mean', 'none']:
        raise ValueError(
            "The value of 'reduction' in soft_margin_loss should be 'sum', "
            "'mean' or 'none', but received %s, which is not allowed." %
            reduction)

    if not _non_static_mode():
        fluid.data_feeder.check_variable_and_dtype(input, 'input',
                                                   ['float32', 'float64'],
                                                   'soft_margin_loss')
        fluid.data_feeder.check_variable_and_dtype(
            label, 'label', ['int32', 'int64', 'float32', 'float64'],
            'soft_margin_loss')

    if not (input.shape == label.shape):
        raise ValueError("input's shape must equal to "
                         "label's shape")

    label = fluid.layers.cast(label, input.dtype)
    out = paddle.log(1 + paddle.exp(-label * input))

    if reduction == 'sum':
        return paddle.sum(out, name=name)
    elif reduction == 'mean':
        return paddle.mean(out, name=name)
    else:
        return out