Skip to content
体验新版
项目
组织
正在加载...
登录
切换导航
打开侧边栏
PaddlePaddle
Paddle
提交
22b06db3
P
Paddle
项目概览
PaddlePaddle
/
Paddle
大约 1 年 前同步成功
通知
2298
Star
20931
Fork
5422
代码
文件
提交
分支
Tags
贡献者
分支图
Diff
Issue
1423
列表
看板
标记
里程碑
合并请求
543
Wiki
0
Wiki
分析
仓库
DevOps
项目成员
Pages
P
Paddle
项目概览
项目概览
详情
发布
仓库
仓库
文件
提交
分支
标签
贡献者
分支图
比较
Issue
1,423
Issue
1,423
列表
看板
标记
里程碑
合并请求
543
合并请求
543
Pages
分析
分析
仓库分析
DevOps
Wiki
0
Wiki
成员
成员
收起侧边栏
关闭侧边栏
动态
分支图
创建新Issue
提交
Issue看板
未验证
提交
22b06db3
编写于
8月 15, 2020
作者:
B
Bai Yifan
提交者:
GitHub
8月 15, 2020
浏览文件
操作
浏览文件
下载
电子邮件补丁
差异文件
add paddle.nn.functional.mse_loss (#26089)
* add paddle.nn.functional.mse_loss * add name * fix conflict
上级
29367bfe
变更
2
隐藏空白更改
内联
并排
Showing
2 changed file
with
210 addition
and
1 deletion
+210
-1
python/paddle/fluid/tests/unittests/test_mse_loss.py
python/paddle/fluid/tests/unittests/test_mse_loss.py
+110
-0
python/paddle/nn/functional/loss.py
python/paddle/nn/functional/loss.py
+100
-1
未找到文件。
python/paddle/fluid/tests/unittests/test_mse_loss.py
浏览文件 @
22b06db3
...
...
@@ -69,6 +69,7 @@ class TestNNMseLoss(unittest.TestCase):
for
dim
in
[[
10
,
10
],
[
2
,
10
,
10
],
[
3
,
3
,
10
,
10
]]:
input_np
=
np
.
random
.
uniform
(
0.1
,
0.5
,
dim
).
astype
(
"float32"
)
label_np
=
np
.
random
.
uniform
(
0.1
,
0.5
,
dim
).
astype
(
"float32"
)
paddle
.
enable_static
()
prog
=
fluid
.
Program
()
startup_prog
=
fluid
.
Program
()
place
=
fluid
.
CUDAPlace
(
0
)
if
fluid
.
core
.
is_compiled_with_cuda
(
...
...
@@ -106,6 +107,7 @@ class TestNNMseLoss(unittest.TestCase):
for
dim
in
[[
10
,
10
],
[
2
,
10
,
10
],
[
3
,
3
,
10
,
10
]]:
input_np
=
np
.
random
.
uniform
(
0.1
,
0.5
,
dim
).
astype
(
"float32"
)
label_np
=
np
.
random
.
uniform
(
0.1
,
0.5
,
dim
).
astype
(
"float32"
)
paddle
.
enable_static
()
prog
=
fluid
.
Program
()
startup_prog
=
fluid
.
Program
()
place
=
fluid
.
CUDAPlace
(
0
)
if
fluid
.
core
.
is_compiled_with_cuda
(
...
...
@@ -143,6 +145,7 @@ class TestNNMseLoss(unittest.TestCase):
for
dim
in
[[
10
,
10
],
[
2
,
10
,
10
],
[
3
,
3
,
10
,
10
]]:
input_np
=
np
.
random
.
uniform
(
0.1
,
0.5
,
dim
).
astype
(
"float32"
)
label_np
=
np
.
random
.
uniform
(
0.1
,
0.5
,
dim
).
astype
(
"float32"
)
paddle
.
enable_static
()
prog
=
fluid
.
Program
()
startup_prog
=
fluid
.
Program
()
place
=
fluid
.
CUDAPlace
(
0
)
if
fluid
.
core
.
is_compiled_with_cuda
(
...
...
@@ -177,5 +180,112 @@ class TestNNMseLoss(unittest.TestCase):
self
.
assertTrue
(
dy_result
.
shape
,
[
1
])
class
TestNNFunctionalMseLoss
(
unittest
.
TestCase
):
def
test_NNFunctionalMseLoss_mean
(
self
):
for
dim
in
[[
10
,
10
],
[
2
,
10
,
10
],
[
3
,
3
,
10
,
10
]]:
input_np
=
np
.
random
.
uniform
(
0.1
,
0.5
,
dim
).
astype
(
"float32"
)
target_np
=
np
.
random
.
uniform
(
0.1
,
0.5
,
dim
).
astype
(
"float32"
)
paddle
.
enable_static
()
prog
=
paddle
.
static
.
Program
()
startup_prog
=
paddle
.
static
.
Program
()
place
=
paddle
.
CUDAPlace
(
0
)
if
core
.
is_compiled_with_cuda
(
)
else
paddle
.
CPUPlace
()
with
paddle
.
static
.
program_guard
(
prog
,
startup_prog
):
input
=
paddle
.
data
(
name
=
'input'
,
shape
=
dim
,
dtype
=
'float32'
)
target
=
paddle
.
data
(
name
=
'target'
,
shape
=
dim
,
dtype
=
'float32'
)
mse_loss
=
paddle
.
nn
.
functional
.
mse_loss
(
input
,
target
,
'mean'
)
exe
=
paddle
.
static
.
Executor
(
place
)
exe
.
run
(
startup_prog
)
static_result
=
exe
.
run
(
prog
,
feed
=
{
"input"
:
input_np
,
"target"
:
target_np
},
fetch_list
=
[
mse_loss
])
paddle
.
disable_static
()
dy_ret
=
paddle
.
nn
.
functional
.
mse_loss
(
paddle
.
to_variable
(
input_np
),
paddle
.
to_variable
(
target_np
),
'mean'
)
dy_result
=
dy_ret
.
numpy
()
sub
=
input_np
-
target_np
expected
=
np
.
mean
(
sub
*
sub
)
self
.
assertTrue
(
np
.
allclose
(
static_result
,
expected
))
self
.
assertTrue
(
np
.
allclose
(
static_result
,
dy_result
))
self
.
assertTrue
(
np
.
allclose
(
dy_result
,
expected
))
self
.
assertTrue
(
dy_result
.
shape
,
[
1
])
def
test_NNFunctionalMseLoss_sum
(
self
):
for
dim
in
[[
10
,
10
],
[
2
,
10
,
10
],
[
3
,
3
,
10
,
10
]]:
input_np
=
np
.
random
.
uniform
(
0.1
,
0.5
,
dim
).
astype
(
"float32"
)
target_np
=
np
.
random
.
uniform
(
0.1
,
0.5
,
dim
).
astype
(
"float32"
)
paddle
.
enable_static
()
prog
=
paddle
.
static
.
Program
()
startup_prog
=
paddle
.
static
.
Program
()
place
=
paddle
.
CUDAPlace
(
0
)
if
core
.
is_compiled_with_cuda
(
)
else
paddle
.
CPUPlace
()
with
paddle
.
static
.
program_guard
(
prog
,
startup_prog
):
input
=
paddle
.
data
(
name
=
'input'
,
shape
=
dim
,
dtype
=
'float32'
)
target
=
paddle
.
data
(
name
=
'target'
,
shape
=
dim
,
dtype
=
'float32'
)
mse_loss
=
paddle
.
nn
.
functional
.
mse_loss
(
input
,
target
,
'sum'
)
exe
=
paddle
.
static
.
Executor
(
place
)
exe
.
run
(
startup_prog
)
static_result
=
exe
.
run
(
prog
,
feed
=
{
"input"
:
input_np
,
"target"
:
target_np
},
fetch_list
=
[
mse_loss
])
paddle
.
disable_static
()
dy_ret
=
paddle
.
nn
.
functional
.
mse_loss
(
paddle
.
to_variable
(
input_np
),
paddle
.
to_variable
(
target_np
),
'sum'
)
dy_result
=
dy_ret
.
numpy
()
sub
=
input_np
-
target_np
expected
=
np
.
sum
(
sub
*
sub
)
self
.
assertTrue
(
np
.
allclose
(
static_result
,
expected
))
self
.
assertTrue
(
np
.
allclose
(
static_result
,
dy_result
))
self
.
assertTrue
(
np
.
allclose
(
dy_result
,
expected
))
self
.
assertTrue
(
dy_result
.
shape
,
[
1
])
def
test_NNFunctionalMseLoss_none
(
self
):
for
dim
in
[[
10
,
10
],
[
2
,
10
,
10
],
[
3
,
3
,
10
,
10
]]:
input_np
=
np
.
random
.
uniform
(
0.1
,
0.5
,
dim
).
astype
(
"float32"
)
target_np
=
np
.
random
.
uniform
(
0.1
,
0.5
,
dim
).
astype
(
"float32"
)
paddle
.
enable_static
()
prog
=
paddle
.
static
.
Program
()
startup_prog
=
paddle
.
static
.
Program
()
place
=
paddle
.
CUDAPlace
(
0
)
if
core
.
is_compiled_with_cuda
(
)
else
paddle
.
CPUPlace
()
with
paddle
.
static
.
program_guard
(
prog
,
startup_prog
):
input
=
paddle
.
data
(
name
=
'input'
,
shape
=
dim
,
dtype
=
'float32'
)
target
=
paddle
.
data
(
name
=
'target'
,
shape
=
dim
,
dtype
=
'float32'
)
mse_loss
=
paddle
.
nn
.
functional
.
mse_loss
(
input
,
target
,
'none'
)
exe
=
paddle
.
static
.
Executor
(
place
)
exe
.
run
(
startup_prog
)
static_result
=
exe
.
run
(
prog
,
feed
=
{
"input"
:
input_np
,
"target"
:
target_np
},
fetch_list
=
[
mse_loss
])
paddle
.
disable_static
()
dy_ret
=
paddle
.
nn
.
functional
.
mse_loss
(
paddle
.
to_variable
(
input_np
),
paddle
.
to_variable
(
target_np
),
'none'
)
dy_result
=
dy_ret
.
numpy
()
sub
=
input_np
-
target_np
expected
=
sub
*
sub
self
.
assertTrue
(
np
.
allclose
(
static_result
,
expected
))
self
.
assertTrue
(
np
.
allclose
(
static_result
,
dy_result
))
self
.
assertTrue
(
np
.
allclose
(
dy_result
,
expected
))
self
.
assertTrue
(
dy_result
.
shape
,
[
1
])
if
__name__
==
"__main__"
:
unittest
.
main
()
python/paddle/nn/functional/loss.py
浏览文件 @
22b06db3
...
...
@@ -12,6 +12,8 @@
# See the License for the specific language governing permissions and
# limitations under the License.
import
paddle
# TODO: define loss functions of neural network
import
numpy
as
np
import
paddle
...
...
@@ -25,7 +27,6 @@ from ...fluid.layers import dice_loss #DEFINE_ALIAS
from
...fluid.layers
import
iou_similarity
#DEFINE_ALIAS
from
...fluid.layers
import
kldiv_loss
#DEFINE_ALIAS
from
...fluid.layers
import
log_loss
#DEFINE_ALIAS
from
...fluid.layers
import
mse_loss
#DEFINE_ALIAS
from
...fluid.layers
import
npair_loss
#DEFINE_ALIAS
from
...fluid.layers
import
rank_loss
#DEFINE_ALIAS
from
...fluid.layers
import
reshape
...
...
@@ -371,3 +372,101 @@ def nll_loss(input,
out
=
reshape
(
out
,
shape
=
out_shape
)
return
out
def
mse_loss
(
input
,
label
,
reduction
=
'mean'
,
name
=
None
):
"""
This op accepts input predications and label and returns the mean square error.
If :attr:`reduction` is set to ``'none'``, loss is calculated as:
.. math::
Out = (input - label)^2
If :attr:`reduction` is set to ``'mean'``, loss is calculated as:
.. math::
Out = \operatorname{mean}((input - label)^2)
If :attr:`reduction` is set to ``'sum'``, loss is calculated as:
.. math::
Out = \operatorname{sum}((input - label)^2)
Parameters:
input (Tensor): Input tensor, the data type should be float32 or float64.
label (Tensor): Label tensor, the data type should be float32 or float64.
reduction (string, optional): The reduction method for the output,
could be 'none' | 'mean' | 'sum'.
If :attr:`reduction` is ``'mean'``, the reduced mean loss is returned.
If :attr:`reduction` is ``'sum'``, the reduced sum loss is returned.
If :attr:`reduction` is ``'none'``, the unreduced loss is returned.
Default is ``'mean'``.
name (str, optional): Name for the operation (optional, default is None). For more information, please refer to :ref:`api_guide_Name`.
Returns:
Tensor: The tensor tensor storing the mean square error difference of input and label.
Return type: Tensor.
Examples:
.. code-block:: python
import numpy as np
import paddle
# static graph mode
paddle.enable_static()
mse_loss = paddle.nn.loss.MSELoss()
input = paddle.data(name="input", shape=[1])
label = paddle.data(name="label", shape=[1])
place = paddle.CPUPlace()
input_data = np.array([1.5]).astype("float32")
label_data = np.array([1.7]).astype("float32")
output = mse_loss(input,label)
exe = paddle.static.Executor(place)
exe.run(paddle.static.default_startup_program())
output_data = exe.run(
paddle.static.default_main_program(),
feed={"input":input_data, "label":label_data},
fetch_list=[output],
return_numpy=True)
print(output_data)
# [array([0.04000002], dtype=float32)]
# dynamic graph mode
paddle.disable_static()
input = paddle.to_variable(input_data)
label = paddle.to_variable(label_data)
output = mse_loss(input, label)
print(output.numpy())
# [0.04000002]
"""
if
reduction
not
in
[
'sum'
,
'mean'
,
'none'
]:
raise
ValueError
(
"'reduction' in 'mse_loss' should be 'sum', 'mean' or 'none', "
"but received {}."
.
format
(
reduction
))
if
not
paddle
.
fluid
.
framework
.
in_dygraph_mode
():
paddle
.
fluid
.
data_feeder
.
check_variable_and_dtype
(
input
,
'input'
,
[
'float32'
,
'float64'
],
'mse_loss'
)
paddle
.
fluid
.
data_feeder
.
check_variable_and_dtype
(
label
,
'label'
,
[
'float32'
,
'float64'
],
'mse_loss'
)
if
reduction
==
'none'
:
return
paddle
.
fluid
.
layers
.
square
(
paddle
.
fluid
.
layers
.
elementwise_sub
(
input
,
label
),
name
=
name
)
elif
reduction
==
'mean'
:
return
paddle
.
mean
(
paddle
.
fluid
.
layers
.
square
(
paddle
.
fluid
.
layers
.
elementwise_sub
(
input
,
label
)),
name
=
name
)
else
:
return
paddle
.
sum
(
paddle
.
fluid
.
layers
.
square
(
paddle
.
fluid
.
layers
.
elementwise_sub
(
input
,
label
)),
name
=
name
)
编辑
预览
Markdown
is supported
0%
请重试
或
添加新附件
.
添加附件
取消
You are about to add
0
people
to the discussion. Proceed with caution.
先完成此消息的编辑!
取消
想要评论请
注册
或
登录