未验证 提交 22b06db3 编写于 作者: B Bai Yifan 提交者: GitHub

add paddle.nn.functional.mse_loss (#26089)

* add paddle.nn.functional.mse_loss

* add name

* fix conflict
上级 29367bfe
develop 1.8.5 2.0.1-rocm-post 2.4.1 Ligoml-patch-1 OliverLPH-patch-1 OliverLPH-patch-2 PaddlePM-patch-1 PaddlePM-patch-2 ZHUI-patch-1 add_default_att add_kylinv10 add_model_benchmark_ci add_some_yaml_config addfile all_new_design_exec ascendrc ascendrelease bugfix-eval-frame-leakgae cherry-pick-fix-customOP-random-fail cherry_undefined_var compile_windows cp_2.4_fix_numpy delete_2.0.1-rocm-post delete_add_default_att delete_all_new_design_exec delete_ascendrc delete_compile_windows delete_delete_addfile delete_disable_iterable_dataset_unittest delete_fix_dataloader_memory_leak delete_fix_imperative_dygraph_error delete_fix_retry_ci delete_fix_undefined_var delete_improve_sccache delete_paralleltest delete_prv-disable-more-cache delete_revert-31068-fix_conv3d_windows delete_revert-31562-mean delete_revert-33630-bug-fix delete_revert-34159-add_npu_bce_logical_dev delete_revert-34910-spinlocks_for_allocator delete_revert-35069-revert-34910-spinlocks_for_allocator delete_revert-36057-dev/read_flags_in_ut dingjiaweiww-patch-1 disable_iterable_dataset_unittest dy2static enable_eager_model_test final_state_gen_python_c final_state_intermediate fix-numpy-issue fix-run-program-grad-node-mem fix_check fix_concat_slice fix_custom_device_copy_sync fix_dataloader_memory_leak fix_dlpack_for fix_imperative_dygraph_error fix_newexe_gc fix_npu_ci fix_op_flops fix_retry_ci fix_rnn_docs fix_tensor_type fix_undefined_var fix_var_stop_gradient_error fixiscan fixiscan1 fixiscan2 fixiscan3 github/fork/123malin/netifaces github/fork/123malin/tdm_abacus github/fork/AshburnLee/dev_unique github/fork/ForFishes/fix_memory_matmul github/fork/ForFishes/rm_fluid github/fork/LielinJiang/move-2.0-api github/fork/LielinJiang/visual-dl-cb github/fork/LiuChiachi/add-transformer-generate-square-subsequent-mask-api github/fork/LiuChiachi/fix-example-code-for-hapi-Model github/fork/LiuChiachi/remove-input-requirment-in-dygraph-Model github/fork/MrChengmo/fix_ps_profiler github/fork/MrChengmo/update_ps_heter github/fork/PWhiddy/patch-1 github/fork/Shixiaowei02/dev/save_load_upgrade github/fork/TCChenlong/fix_hapi github/fork/TCChenlong/fix_inden github/fork/Thunderbrook/xpu_slice github/fork/XieYunshen/disable_ut_test_parallel_executor_fetch_isolated_var github/fork/XieYunshen/disable_ut_test_parallel_executor_fetch_isolated_var_3 github/fork/XieYunshen/timeout_20S_ut github/fork/ZeyuChen/remove-nltk github/fork/arlesniak/arlesniak/selective__mkldnn_flags github/fork/baiyfbupt/code_doc_mig github/fork/chalsliu/set_timeout github/fork/chen-zhiyu/develop github/fork/chenwhql/ci/try_to_find_test_buffer_shared_memory_reuse_pass_error github/fork/chenwhql/dygraph/remove_scale_loss_and_apply_collective_grads github/fork/chenwhql/saveload/add_get_inference_program github/fork/chenwhql/saveload/remove_save_load_config github/fork/cryoco/pass-compatibility-trt github/fork/danleifeng/isempty_api2.0 github/fork/frankwhzhang/api_transfer github/fork/hbwx24/error_msg/cuda_kernel_error_msg github/fork/heavengate/cherry_yolo_box github/fork/heavengate/update_yolo_box github/fork/iclementine/rnn_fix github/fork/iducn/testestse github/fork/jczaja/prv-25537-fix github/fork/jiweibo/api_2.0 github/fork/jiweibo/fix_lite_resnet50_test github/fork/juncaipeng/fix_doc_1 github/fork/lfchener/sample_code github/fork/littletomatodonkey/fix_reg_doc github/fork/liym27/dy2stat_update_assign_to_rc20 github/fork/luotao1/profiler_ut github/fork/mapingshuo/add_wait github/fork/mapingshuo/doc_2.0 github/fork/mapingshuo/zero-0.5 github/fork/miraiwk/dev github/fork/pangyoki/add-Categorical-class-branch github/fork/pangyoki/add-multinomial-op-branch github/fork/pangyoki/fix-test_distritbution-CI github/fork/qjing666/doublegrad github/fork/qjing666/fix_hdfs_download github/fork/sandyhouse/add_gather_etc github/fork/sandyhouse/add_send_recv_alltoall_etc github/fork/sandyhouse/pipeline_exe_run github/fork/seiriosPlus/feature/large_scale_kv_save_delta github/fork/seiriosPlus/fix/paddle_errors_fix github/fork/seiriosPlus/fix/paddle_op_errors github/fork/shangzhizhou/fix_test_activation_op_random_bug github/fork/smallv0221/yxp0924 github/fork/smallv0221/yxp0925 github/fork/swtkiwi/del-matplotlib github/fork/tianshuo78520a/kunlun_test github/fork/tianshuo78520a/update_dockerfile github/fork/wanghaoshuang/bert_fuse github/fork/wanghaoshuang/label_smooth github/fork/wanghuancoder/develop_CUDASynchronize github/fork/wanghuancoder/develop_Layer_doc github/fork/wanghuancoder/develop_ParameterList_doc github/fork/wanghuancoder/develop_Sequential_doc github/fork/wanghuancoder/develop_bilinear_tensor_product github/fork/wanghuancoder/develop_coverage_build_sh github/fork/wanghuancoder/develop_in_dynamic_mode_doc github/fork/wanghuancoder/develop_unique_name_doc github/fork/wangxicoding/fleet_meta_combine github/fork/wawltor/error_message_fix_5 github/fork/willthefrog/remove_l2_norm github/fork/windstamp/momentum_op github/fork/windstamp/mv_op_5 github/fork/windstamp/normal_api github/fork/wojtuss/wojtuss/fusion_gru_quantization github/fork/wojtuss/wojtuss/quantization-with-shift github/fork/wzzju/fix_err_info github/fork/wzzju/pure_fp16 github/fork/xiemoyuan/op_error_message github/fork/xiemoyuan/optimize_error_message github/fork/yaoxuefeng6/fix_doc github/fork/yaoxuefeng6/mod_dataset_v2 github/fork/yongqiangma/lod github/fork/ysh329/fix-clip-by-norm-error github/fork/ysh329/fix-error-clip-by-value github/fork/yukavio/error_info github/fork/zhangting2020/conv_filter_grad github/fork/zhangting2020/is_compile_with_cuda github/fork/zhangting2020/place_doc github/fork/zhangting2020/program github/fork/zhhsplendid/fix_any github/fork/zhhsplendid/refine_api2 github/fork/zhhsplendid/refine_api2_test github/fork/zhhsplendid/refine_api_test_ptb_lm github/fork/zhhsplendid/refine_api_test_resnet github/fork/zhhsplendid/refine_api_test_simnet github/fork/zhiqiu/dev/refine_initializer github/fork/zhiqiu/dev/remove_inplace_argument github/fork/zlsh80826/nvinfer_plugin_var_len_cuda11 hack_event improve_sccache incuabte/new_frl incubate/frl_train_eval incubate/infrt incubate/new_frl incubate/new_frl_rc incubate/stride inplace_addto layer_norm make_flag_adding_easier matmul_double_grad move_embedding_to_phi move_histogram_to_pten move_sgd_to_phi move_slice_to_pten move_temporal_shift_to_phi move_yolo_box_to_phi npu_fix_alloc numel operator_opt paralleltest pass-compile-eval-frame preln_ernie prv-disable-more-cache prv-md-even-more prv-onednn-2.5 prv-reshape-mkldnn-ut2 pten_tensor_refactor release-deleted/2.5 release-rc/2.5 release/2.0 release/2.0-beta release/2.0-rc release/2.0-rc1 release/2.1 release/2.2 release/2.3 release/2.3-fc-ernie-fix release/2.4 release/2.5 release/llm_2.5 revert-26856-strategy_example2 revert-27520-disable_pr revert-31068-fix_conv3d_windows revert-31562-mean revert-32290-develop-hardlabel revert-33037-forci revert-33475-fix_cifar_label_dimension revert-33630-bug-fix revert-34159-add_npu_bce_logical_dev revert-34406-add_copy_from_tensor revert-34910-spinlocks_for_allocator revert-35069-revert-34910-spinlocks_for_allocator revert-36057-dev/read_flags_in_ut revert-36201-refine_fast_threaded_ssa_graph_executor revert-36985-add_license revert-37318-refactor_dygraph_to_eager revert-37926-eager_coreops_500 revert-37956-revert-37727-pylayer_support_tuple revert-38100-mingdong revert-38301-allocation_rearrange_pr revert-38703-numpy_bf16_package_reupload revert-38732-remove_useless_header_in_elementwise_mul_grad revert-38959-Reduce_Grad revert-39143-adjust_empty revert-39227-move_trace_op_to_pten revert-39268-dev/remove_concat_fluid_kernel revert-40170-support_partial_grad revert-41056-revert-40727-move_some_activaion_to_phi revert-41065-revert-40993-mv_ele_floordiv_pow revert-41068-revert-40790-phi_new revert-41944-smaller_inference_api_test revert-42149-do-not-reset-default-stream-for-stream-safe-cuda-allocator revert-43155-fix_ut_tempfile revert-43882-revert-41944-smaller_inference_api_test revert-45808-phi/simplify_size_op revert-46827-deform_comment revert-47325-remove_cudnn_hardcode revert-47645-add_npu_storage_dims revert-48815-set_free_when_no_cache_hit_default_value_true revert-49499-test_ninja_on_ci revert-49654-prim_api_gen revert-49673-modify_get_single_cov revert-49763-fix_static_composite_gen revert-50158-fix_found_inf_bug_for_custom_optimizer revert-50188-refine_optimizer_create_accumulators revert-50335-fix_optminizer_set_auxiliary_var_bug revert-51676-flag_delete revert-51850-fix_softmaxce_dev revert-52175-dev_peak_memory revert-52186-deve revert-52523-test_py38 revert-52912-develop revert-53248-set_cmake_policy revert-54029-fix_windows_compile_bug revert-54068-support_translating_op_attribute revert-54214-modify_cmake_dependencies revert-54370-offline_pslib revert-54391-fix_cmake_md5error revert-54411-fix_cpp17_compile revert-54466-offline_pslib revert-54480-cmake-rocksdb revert-55568-fix_BF16_bug1 revert-56328-new_ir_support_vector_type_place_transfer revert-56366-fix_openssl_bug revert-56545-revert-56366-fix_openssl_bug revert-56620-fix_new_ir_ocr_bug revert-56925-check_inputs_grad_semantic revert-57005-refine_stride_flag rocm_dev_0217 sd_conv_linear_autocast semi-auto/rule-base support-0D-sort support_weight_transpose test_benchmark_ci test_feature_precision_test_c test_for_Filtetfiles test_model_benchmark test_model_benchmark_ci zhiqiu-patch-1 v2.5.1 v2.5.0 v2.5.0-rc1 v2.5.0-rc0 v2.4.2 v2.4.1 v2.4.0 v2.4.0-rc0 v2.3.2 v2.3.1 v2.3.0 v2.3.0-rc0 v2.2.2 v2.2.1 v2.2.0 v2.2.0-rc0 v2.2.0-bak0 v2.1.3 v2.1.2 v2.1.1 v2.1.0 v2.1.0-rc0 v2.0.2 v2.0.1 v2.0.0 v2.0.0-rc1 v2.0.0-rc0 v2.0.0-beta0
1 合并请求!26594Fix slice doc
......@@ -69,6 +69,7 @@ class TestNNMseLoss(unittest.TestCase):
for dim in [[10, 10], [2, 10, 10], [3, 3, 10, 10]]:
input_np = np.random.uniform(0.1, 0.5, dim).astype("float32")
label_np = np.random.uniform(0.1, 0.5, dim).astype("float32")
paddle.enable_static()
prog = fluid.Program()
startup_prog = fluid.Program()
place = fluid.CUDAPlace(0) if fluid.core.is_compiled_with_cuda(
......@@ -106,6 +107,7 @@ class TestNNMseLoss(unittest.TestCase):
for dim in [[10, 10], [2, 10, 10], [3, 3, 10, 10]]:
input_np = np.random.uniform(0.1, 0.5, dim).astype("float32")
label_np = np.random.uniform(0.1, 0.5, dim).astype("float32")
paddle.enable_static()
prog = fluid.Program()
startup_prog = fluid.Program()
place = fluid.CUDAPlace(0) if fluid.core.is_compiled_with_cuda(
......@@ -143,6 +145,7 @@ class TestNNMseLoss(unittest.TestCase):
for dim in [[10, 10], [2, 10, 10], [3, 3, 10, 10]]:
input_np = np.random.uniform(0.1, 0.5, dim).astype("float32")
label_np = np.random.uniform(0.1, 0.5, dim).astype("float32")
paddle.enable_static()
prog = fluid.Program()
startup_prog = fluid.Program()
place = fluid.CUDAPlace(0) if fluid.core.is_compiled_with_cuda(
......@@ -177,5 +180,112 @@ class TestNNMseLoss(unittest.TestCase):
self.assertTrue(dy_result.shape, [1])
class TestNNFunctionalMseLoss(unittest.TestCase):
def test_NNFunctionalMseLoss_mean(self):
for dim in [[10, 10], [2, 10, 10], [3, 3, 10, 10]]:
input_np = np.random.uniform(0.1, 0.5, dim).astype("float32")
target_np = np.random.uniform(0.1, 0.5, dim).astype("float32")
paddle.enable_static()
prog = paddle.static.Program()
startup_prog = paddle.static.Program()
place = paddle.CUDAPlace(0) if core.is_compiled_with_cuda(
) else paddle.CPUPlace()
with paddle.static.program_guard(prog, startup_prog):
input = paddle.data(name='input', shape=dim, dtype='float32')
target = paddle.data(name='target', shape=dim, dtype='float32')
mse_loss = paddle.nn.functional.mse_loss(input, target, 'mean')
exe = paddle.static.Executor(place)
exe.run(startup_prog)
static_result = exe.run(
prog,
feed={"input": input_np,
"target": target_np},
fetch_list=[mse_loss])
paddle.disable_static()
dy_ret = paddle.nn.functional.mse_loss(
paddle.to_variable(input_np),
paddle.to_variable(target_np), 'mean')
dy_result = dy_ret.numpy()
sub = input_np - target_np
expected = np.mean(sub * sub)
self.assertTrue(np.allclose(static_result, expected))
self.assertTrue(np.allclose(static_result, dy_result))
self.assertTrue(np.allclose(dy_result, expected))
self.assertTrue(dy_result.shape, [1])
def test_NNFunctionalMseLoss_sum(self):
for dim in [[10, 10], [2, 10, 10], [3, 3, 10, 10]]:
input_np = np.random.uniform(0.1, 0.5, dim).astype("float32")
target_np = np.random.uniform(0.1, 0.5, dim).astype("float32")
paddle.enable_static()
prog = paddle.static.Program()
startup_prog = paddle.static.Program()
place = paddle.CUDAPlace(0) if core.is_compiled_with_cuda(
) else paddle.CPUPlace()
with paddle.static.program_guard(prog, startup_prog):
input = paddle.data(name='input', shape=dim, dtype='float32')
target = paddle.data(name='target', shape=dim, dtype='float32')
mse_loss = paddle.nn.functional.mse_loss(input, target, 'sum')
exe = paddle.static.Executor(place)
exe.run(startup_prog)
static_result = exe.run(
prog,
feed={"input": input_np,
"target": target_np},
fetch_list=[mse_loss])
paddle.disable_static()
dy_ret = paddle.nn.functional.mse_loss(
paddle.to_variable(input_np),
paddle.to_variable(target_np), 'sum')
dy_result = dy_ret.numpy()
sub = input_np - target_np
expected = np.sum(sub * sub)
self.assertTrue(np.allclose(static_result, expected))
self.assertTrue(np.allclose(static_result, dy_result))
self.assertTrue(np.allclose(dy_result, expected))
self.assertTrue(dy_result.shape, [1])
def test_NNFunctionalMseLoss_none(self):
for dim in [[10, 10], [2, 10, 10], [3, 3, 10, 10]]:
input_np = np.random.uniform(0.1, 0.5, dim).astype("float32")
target_np = np.random.uniform(0.1, 0.5, dim).astype("float32")
paddle.enable_static()
prog = paddle.static.Program()
startup_prog = paddle.static.Program()
place = paddle.CUDAPlace(0) if core.is_compiled_with_cuda(
) else paddle.CPUPlace()
with paddle.static.program_guard(prog, startup_prog):
input = paddle.data(name='input', shape=dim, dtype='float32')
target = paddle.data(name='target', shape=dim, dtype='float32')
mse_loss = paddle.nn.functional.mse_loss(input, target, 'none')
exe = paddle.static.Executor(place)
exe.run(startup_prog)
static_result = exe.run(
prog,
feed={"input": input_np,
"target": target_np},
fetch_list=[mse_loss])
paddle.disable_static()
dy_ret = paddle.nn.functional.mse_loss(
paddle.to_variable(input_np),
paddle.to_variable(target_np), 'none')
dy_result = dy_ret.numpy()
sub = input_np - target_np
expected = sub * sub
self.assertTrue(np.allclose(static_result, expected))
self.assertTrue(np.allclose(static_result, dy_result))
self.assertTrue(np.allclose(dy_result, expected))
self.assertTrue(dy_result.shape, [1])
if __name__ == "__main__":
unittest.main()
......@@ -12,6 +12,8 @@
# See the License for the specific language governing permissions and
# limitations under the License.
import paddle
# TODO: define loss functions of neural network
import numpy as np
import paddle
......@@ -25,7 +27,6 @@ from ...fluid.layers import dice_loss #DEFINE_ALIAS
from ...fluid.layers import iou_similarity #DEFINE_ALIAS
from ...fluid.layers import kldiv_loss #DEFINE_ALIAS
from ...fluid.layers import log_loss #DEFINE_ALIAS
from ...fluid.layers import mse_loss #DEFINE_ALIAS
from ...fluid.layers import npair_loss #DEFINE_ALIAS
from ...fluid.layers import rank_loss #DEFINE_ALIAS
from ...fluid.layers import reshape
......@@ -371,3 +372,101 @@ def nll_loss(input,
out = reshape(out, shape=out_shape)
return out
def mse_loss(input, label, reduction='mean', name=None):
"""
This op accepts input predications and label and returns the mean square error.
If :attr:`reduction` is set to ``'none'``, loss is calculated as:
.. math::
Out = (input - label)^2
If :attr:`reduction` is set to ``'mean'``, loss is calculated as:
.. math::
Out = \operatorname{mean}((input - label)^2)
If :attr:`reduction` is set to ``'sum'``, loss is calculated as:
.. math::
Out = \operatorname{sum}((input - label)^2)
Parameters:
input (Tensor): Input tensor, the data type should be float32 or float64.
label (Tensor): Label tensor, the data type should be float32 or float64.
reduction (string, optional): The reduction method for the output,
could be 'none' | 'mean' | 'sum'.
If :attr:`reduction` is ``'mean'``, the reduced mean loss is returned.
If :attr:`reduction` is ``'sum'``, the reduced sum loss is returned.
If :attr:`reduction` is ``'none'``, the unreduced loss is returned.
Default is ``'mean'``.
name (str, optional): Name for the operation (optional, default is None). For more information, please refer to :ref:`api_guide_Name`.
Returns:
Tensor: The tensor tensor storing the mean square error difference of input and label.
Return type: Tensor.
Examples:
.. code-block:: python
import numpy as np
import paddle
# static graph mode
paddle.enable_static()
mse_loss = paddle.nn.loss.MSELoss()
input = paddle.data(name="input", shape=[1])
label = paddle.data(name="label", shape=[1])
place = paddle.CPUPlace()
input_data = np.array([1.5]).astype("float32")
label_data = np.array([1.7]).astype("float32")
output = mse_loss(input,label)
exe = paddle.static.Executor(place)
exe.run(paddle.static.default_startup_program())
output_data = exe.run(
paddle.static.default_main_program(),
feed={"input":input_data, "label":label_data},
fetch_list=[output],
return_numpy=True)
print(output_data)
# [array([0.04000002], dtype=float32)]
# dynamic graph mode
paddle.disable_static()
input = paddle.to_variable(input_data)
label = paddle.to_variable(label_data)
output = mse_loss(input, label)
print(output.numpy())
# [0.04000002]
"""
if reduction not in ['sum', 'mean', 'none']:
raise ValueError(
"'reduction' in 'mse_loss' should be 'sum', 'mean' or 'none', "
"but received {}.".format(reduction))
if not paddle.fluid.framework.in_dygraph_mode():
paddle.fluid.data_feeder.check_variable_and_dtype(
input, 'input', ['float32', 'float64'], 'mse_loss')
paddle.fluid.data_feeder.check_variable_and_dtype(
label, 'label', ['float32', 'float64'], 'mse_loss')
if reduction == 'none':
return paddle.fluid.layers.square(
paddle.fluid.layers.elementwise_sub(input, label), name=name)
elif reduction == 'mean':
return paddle.mean(
paddle.fluid.layers.square(
paddle.fluid.layers.elementwise_sub(input, label)),
name=name)
else:
return paddle.sum(paddle.fluid.layers.square(
paddle.fluid.layers.elementwise_sub(input, label)),
name=name)
Markdown is supported
0% .
You are about to add 0 people to the discussion. Proceed with caution.
先完成此消息的编辑!
想要评论请 注册
反馈
建议
客服 返回
顶部